1
|
Abstract
Using neXtProt release 2019-01-11, we manually curated a list of 1837 functionally uncharacterized human proteins. Using OrthoList 2, we found that 270 of them have homologues in Caenorhabditis elegans, including 60 with a one-to-one orthology relationship. According to annotations extracted from WormBase, the vast majority of these 60 worm genes have RNAi experimental data or mutant alleles, but manual inspection shows that only 15% have phenotypes that could be interpreted in terms of a specific function. One third of the worm orthologs have protein-protein interaction data, and two of these interactions are conserved in humans. The combination of phenotypic, protein-protein interaction, and gene expression data provides functional hypotheses for 8 uncharacterized human proteins. Experimental validation in human or orthologs is necessary before they can be considered for annotation.
Collapse
Affiliation(s)
- Paula Duek
- CALIPHO Group , SIB-Swiss Institute of Bioinformatics, CMU , Michel-Servet 1 , 1211 Geneva 4 , Switzerland
| | - Lydie Lane
- CALIPHO Group , SIB-Swiss Institute of Bioinformatics, CMU , Michel-Servet 1 , 1211 Geneva 4 , Switzerland.,Department of Microbiology and Molecular Medicine, Faculty of Medicine , University of Geneva, CMU , Michel-Servet 1 , 1211 Geneva 4 , Switzerland
| |
Collapse
|
2
|
Zhu B, Li Q, Liu R, Zheng M, Wen J, Zhao G. Genome-Wide Association Study of H/L Traits in Chicken. Animals (Basel) 2019; 9:ani9050260. [PMID: 31117270 PMCID: PMC6562784 DOI: 10.3390/ani9050260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 11/16/2022] Open
Abstract
Presently, the heterophil-to-lymphocyte (H/L) ratio is being studied extensively as a disease resistance trait. Through intricate mechanisms to identify and destroy pathogenic microorganisms, heterophils play a pivotal role in the immune defense systems of avian species. To reveal the genetic basis and molecular mechanisms affecting the H/L ratio, phenotypic and H/L data from 1650 white feather chicken broilers were used in performing a genome-wide association study. A self-developed, chicken-specific 55K chip was used for heterophils, lymphocytes, and H/L classification, according to individual genomic DNA profiles. We identified five significant single nucleotide polymorphisms (SNPs) when the genome-wide significance threshold was set to 5% (p < 2.42 × 10-6). A total of 15 SNPs obtained seemingly significant levels (p < 4.84 × 10-5). Gene annotation indicated that CARD11 (Caspase recruitment domain family member 11), BRIX1 (Biogenesis of ribosomes BRX1), and BANP (BTG3 associated nuclear protein) play a role in H/L-associated cell regulation and potentially constitute candidate gene regions for cellular functions dependent on H/L ratios. These results lay the foundation for revealing the genetic basis of disease resistance and future marker-assisted selection for disease resistance.
Collapse
Affiliation(s)
- Bo Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- State Key Laboratory of Animal Nutrition, Beijing 100193, China.
| | - Qinghe Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- State Key Laboratory of Animal Nutrition, Beijing 100193, China.
| | - Ranran Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- State Key Laboratory of Animal Nutrition, Beijing 100193, China.
| | - Maiqing Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- State Key Laboratory of Animal Nutrition, Beijing 100193, China.
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- State Key Laboratory of Animal Nutrition, Beijing 100193, China.
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- State Key Laboratory of Animal Nutrition, Beijing 100193, China.
- School of Life Science and Engineering, Foshan University, Foshan 528000, China.
| |
Collapse
|
3
|
Nass N, Dittmer A, Hellwig V, Lange T, Beyer JM, Leyh B, Ignatov A, Weiβenborn C, Kirkegaard T, Lykkesfeldt AE, Kalinski T, Dittmer J. Expression of transmembrane protein 26 (TMEM26) in breast cancer and its association with drug response. Oncotarget 2016; 7:38408-38426. [PMID: 27224909 PMCID: PMC5122400 DOI: 10.18632/oncotarget.9493] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/29/2016] [Indexed: 12/18/2022] Open
Abstract
We have previously shown that stromal cells desensitize breast cancer cells to the anti-estrogen fulvestrant and, along with it, downregulate the expression of TMEM26 (transmembrane protein 26). In an effort to study the function and regulation of TMEM26 in breast cancer cells, we found that breast cancer cells express non-glycosylated and N-glycosylated isoforms of the TMEM26 protein and demonstrate that N-glycosylation is important for its retention at the plasma membrane. Fulvestrant induced significant changes in expression and in the N-glycosylation status of TMEM26. In primary breast cancer, TMEM26 protein expression was higher in ERα (estrogen receptor α)/PR (progesterone receptor)-positive cancers. These data suggest that ERα is a major regulator of TMEM26. Significant changes in TMEM26 expression and N-glycosylation were also found, when MCF-7 and T47D cells acquired fulvestrant resistance. Furthermore, patients who received aromatase inhibitor treatment tend to have a higher risk of recurrence when tumoral TMEM26 protein expression is low. In addition, TMEM26 negatively regulates the expression of integrin β1, an important factor involved in endocrine resistance. Data obtained by spheroid formation assays confirmed that TMEM26 and integrin β1 can have opposite effects in breast cancer cells. These data are consistent with the hypothesis that, in ERα-positive breast cancer, TMEM26 may function as a tumor suppressor by impeding the acquisition of endocrine resistance. In contrast, in ERα-negative breast cancer, particularly triple-negative cancer, high TMEM26 expression was found to be associated with a higher risk of recurrence. This implies that TMEM26 has different functions in ERα-positive and -negative breast cancer.
Collapse
Affiliation(s)
- Norbert Nass
- Otto-von-Guericke-Universität Magdeburg, Institut für Pathologie, Magdeburg, Germany
| | - Angela Dittmer
- Klinik für Gynäkologie, Martin-Luther-Universität Halle-Wittenberg, Halle/Saale, Germany
| | - Vicky Hellwig
- Klinik für Gynäkologie, Martin-Luther-Universität Halle-Wittenberg, Halle/Saale, Germany
| | - Theresia Lange
- Klinik für Gynäkologie, Martin-Luther-Universität Halle-Wittenberg, Halle/Saale, Germany
| | - Johanna Mirjam Beyer
- Klinik für Gynäkologie, Martin-Luther-Universität Halle-Wittenberg, Halle/Saale, Germany
| | - Benjamin Leyh
- Klinik für Gynäkologie, Martin-Luther-Universität Halle-Wittenberg, Halle/Saale, Germany
| | - Atanas Ignatov
- Otto-von-Guericke-Universität Magdeburg, Universitätsfrauenklinik, Magdeburg, Germany
| | - Christine Weiβenborn
- Otto-von-Guericke-Universität Magdeburg, Universitätsfrauenklinik, Magdeburg, Germany
| | - Tove Kirkegaard
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, Copenhagen, Denmark.,Present address: Department of Surgery, Koege Hospital, Koege, Denmark
| | - Anne E Lykkesfeldt
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Thomas Kalinski
- Otto-von-Guericke-Universität Magdeburg, Institut für Pathologie, Magdeburg, Germany
| | - Jürgen Dittmer
- Klinik für Gynäkologie, Martin-Luther-Universität Halle-Wittenberg, Halle/Saale, Germany
| |
Collapse
|
4
|
Masuda T, Fu Y, Eguchi A, Czogalla J, Rose MA, Kuczkowski A, Gerasimova M, Feldstein AE, Scadeng M, Vallon V. Dipeptidyl peptidase IV inhibitor lowers PPARγ agonist-induced body weight gain by affecting food intake, fat mass, and beige/brown fat but not fluid retention. Am J Physiol Endocrinol Metab 2014; 306:E388-98. [PMID: 24347054 PMCID: PMC3923087 DOI: 10.1152/ajpendo.00124.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) agonists like pioglitazone (PGZ) are effective antidiabetic drugs, but they induce fluid retention and body weight (BW) gain. Dipeptidyl peptidase IV (DPP IV) inhibitors are antidiabetic drugs that enhance renal Na(+) and fluid excretion. Therefore, we examined whether the DPP IV inhibitor alogliptin (ALG) ameliorates PGZ-induced BW gain. Male Sv129 mice were treated with vehicle (repelleted diet), PGZ (220 mg/kg diet), ALG (300 mg/kg diet), or a combination of PGZ and ALG (PGZ + ALG) for 14 days. PGZ + ALG prevented the increase in BW observed with PGZ but did not attenuate the increase in body fluid content determined by bioimpedance spectroscopy (BIS). BIS revealed that ALG alone had no effect on fat mass (FM) but enhanced the FM-lowering effect of PGZ; MRI analysis confirmed the latter and showed reductions in visceral and inguinal subcutaneous (sc) white adipose tissue (WAT). ALG but not PGZ decreased food intake and plasma free fatty acid concentrations. Conversely, PGZ but not ALG increased mRNA expression of thermogenesis mediator uncoupling protein 1 in epididymal WAT. Adding ALG to PGZ treatment increased the abundance of multilocular cell islets in sc WAT, and PGZ + ALG increased the expression of brown-fat-like "beige" cell marker TMEM26 in sc WAT and interscapular brown adipose tissue and increased rectal temperature vs. vehicle. In summary, DPP IV inhibition did not attenuate PPARγ agonist-induced fluid retention but prevented BW gain by reducing FM. This involved ALG inhibition of food intake and was associated with food intake-independent synergistic effects of PPARγ agonism and DPP-IV inhibition on beige/brown fat cells and thermogenesis.
Collapse
|
5
|
Zhao Y, Guo S, Sun J, Huang Z, Zhu T, Zhang H, Gu J, He Y, Wang W, Ma K, Wang J, Yu J. Methylcap-seq reveals novel DNA methylation markers for the diagnosis and recurrence prediction of bladder cancer in a Chinese population. PLoS One 2012; 7:e35175. [PMID: 22529986 PMCID: PMC3328468 DOI: 10.1371/journal.pone.0035175] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/09/2012] [Indexed: 12/21/2022] Open
Abstract
PURPOSE There is a need to supplement or supplant the conventional diagnostic tools, namely, cystoscopy and B-type ultrasound, for bladder cancer (BC). We aimed to identify novel DNA methylation markers for BC through genome-wide profiling of BC cell lines and subsequent methylation-specific PCR (MSP) screening of clinical urine samples. EXPERIMENTAL DESIGN The methyl-DNA binding domain (MBD) capture technique, methylCap/seq, was performed to screen for specific hypermethylated CpG islands in two BC cell lines (5637 and T24). The top one hundred hypermethylated targets were sequentially screened by MSP in urine samples to gradually narrow the target number and optimize the composition of the diagnostic panel. The diagnostic performance of the obtained panel was evaluated in different clinical scenarios. RESULTS A total of 1,627 hypermethylated promoter targets in the BC cell lines was identified by Illumina sequencing. The top 104 hypermethylated targets were reduced to eight genes (VAX1, KCNV1, ECEL1, TMEM26, TAL1, PROX1, SLC6A20, and LMX1A) after the urine DNA screening in a small sample size of 8 normal control and 18 BC subjects. Validation in an independent sample of 212 BC patients enabled the optimization of five methylation targets, including VAX1, KCNV1, TAL1, PPOX1, and CFTR, which was obtained in our previous study, for BC diagnosis with a sensitivity and specificity of 88.68% and 87.25%, respectively. In addition, the methylation of VAX1 and LMX1A was found to be associated with BC recurrence. CONCLUSIONS We identified a promising diagnostic marker panel for early non-invasive detection and subsequent BC surveillance.
Collapse
Affiliation(s)
- Yangxing Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shicheng Guo
- Ministry of Education's Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jinfeng Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaohui Huang
- Oncology Institute of Wuxi, The Fourth Affiliated Hospital of Suzhou University, Wuxi, China
| | - Tongyu Zhu
- Department of Urology, Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongyu Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinghua He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kelong Ma
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jina Wang
- Department of Urology, Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|