1
|
Zhong S, Peng S, Chen Z, Chen Z, Luo JL. Choosing Kinase Inhibitors for Androgen Deprivation Therapy-Resistant Prostate Cancer. Pharmaceutics 2022; 14:498. [PMID: 35335873 PMCID: PMC8950316 DOI: 10.3390/pharmaceutics14030498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 11/25/2022] Open
Abstract
Androgen deprivation therapy (ADT) is a systemic therapy for advanced prostate cancer (PCa). Although most patients initially respond to ADT, almost all cancers eventually develop castration resistance. Castration-resistant PCa (CRPC) is associated with a very poor prognosis, and the treatment of which is a serious clinical challenge. Accumulating evidence suggests that abnormal expression and activation of various kinases are associated with the emergence and maintenance of CRPC. Many efforts have been made to develop small molecule inhibitors to target the key kinases in CRPC. These inhibitors are designed to suppress the kinase activity or interrupt kinase-mediated signal pathways that are associated with PCa androgen-independent (AI) growth and CRPC development. In this review, we briefly summarize the roles of the kinases that are abnormally expressed and/or activated in CRPC and the recent advances in the development of small molecule inhibitors that target kinases for the treatment of CRPC.
Collapse
Affiliation(s)
- Shangwei Zhong
- Department of General Surgery, Xiangya Hospital, Central South University, Hunan 410008, China; (S.Z.); (S.P.); (Z.C.)
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33459, USA
| | - Shoujiao Peng
- Department of General Surgery, Xiangya Hospital, Central South University, Hunan 410008, China; (S.Z.); (S.P.); (Z.C.)
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33459, USA
| | - Zihua Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Hunan 410008, China; (S.Z.); (S.P.); (Z.C.)
| | - Zhikang Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Hunan 410008, China; (S.Z.); (S.P.); (Z.C.)
| | - Jun-Li Luo
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33459, USA
| |
Collapse
|
2
|
Preis E, Schulze J, Gutberlet B, Pinnapireddy SR, Jedelská J, Bakowsky U. The chorioallantoic membrane as a bio-barrier model for the evaluation of nanoscale drug delivery systems for tumour therapy. Adv Drug Deliv Rev 2021; 174:317-336. [PMID: 33905805 DOI: 10.1016/j.addr.2021.04.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/29/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
In 2010, the European Parliament and the European Union adopted a directive on the protection of animals used for scientific purposes. The directive aims to protect animals in scientific research, with the final goal of complete replacement of procedures on live animals for scientific and educational purposes as soon as it is scientifically viable. Furthermore, the directive announces the implementation of the 3Rs principle: "When choosing methods, the principles of replacement, reduction and refinement should be implemented through a strict hierarchy of the requirement to use alternative methods." The visibility, accessibility, and the rapid growth of the chorioallantoic membrane (CAM) offers a clear advantage for various manipulations and for the simulation of different Bio-Barriers according to the 3R principle. The extensive vascularisation on the CAM provides an excellent substrate for the cultivation of tumour cells or tumour xenografts which could be used for the therapeutic evaluation of nanoscale drug delivery systems. The tumour can be targeted either by topical application, intratumoural injection or i.v. injection. Different application sites and biological barriers can be examined within a single model.
Collapse
Affiliation(s)
- Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Jan Schulze
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Bernd Gutberlet
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Shashank Reddy Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; CSL Behring Innovation GmbH, Emil-von-Behring-Str. 76, 35041 Marburg, Germany
| | - Jarmila Jedelská
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; Center for Tumor Biology and Immunology, Core Facility for Small Animal MRI, Hans-Meerwein Str. 3, 35043 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| |
Collapse
|
3
|
He R, Du S, Lei T, Xie X, Wang Y. Glycogen synthase kinase 3β in tumorigenesis and oncotherapy (Review). Oncol Rep 2020; 44:2373-2385. [PMID: 33125126 PMCID: PMC7610307 DOI: 10.3892/or.2020.7817] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/17/2020] [Indexed: 02/05/2023] Open
Abstract
Glycogen synthase kinase 3β (GSK 3β), a multifunctional serine and threonine kinase, plays a critical role in a variety of cellular activities, including signaling transduction, protein and glycogen metabolism, cell proliferation, cell differentiation, and apoptosis. Therefore, aberrant regulation of GSK 3β results in a broad range of human diseases, such as tumors, diabetes, inflammation and neurodegenerative diseases. Accumulating evidence has suggested that GSK 3β is correlated with tumorigenesis and progression. However, GSK 3β is controversial due to its bifacial roles of tumor suppression and activation. In addition, overexpression of GSK 3β is involved in tumor growth, whereas it contributes to the cell sensitivity to chemotherapy. However, the underlying regulatory mechanisms of GSK 3β in tumorigenesis remain obscure and require further in‑depth investigation. In this review, we comprehensively summarize the roles of GSK 3β in tumorigenesis and oncotherapy, and focus on its potentials as an available target in oncotherapy.
Collapse
Affiliation(s)
- Rui He
- Department of Union, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Suya Du
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Tiantian Lei
- Department of Pharmacy, Chongqing Health Center for Women and Children, Chongqing 400013, P.R. China
| | - Xiaofang Xie
- Department of Medicine, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Yi Wang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
4
|
Nalairndran G, Hassan Abdul Razack A, Mai C, Fei‐Lei Chung F, Chan K, Hii L, Lim W, Chung I, Leong C. Phosphoinositide-dependent Kinase-1 (PDPK1) regulates serum/glucocorticoid-regulated Kinase 3 (SGK3) for prostate cancer cell survival. J Cell Mol Med 2020; 24:12188-12198. [PMID: 32926495 PMCID: PMC7578863 DOI: 10.1111/jcmm.15876] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer (PCa) is the most common malignancy and is the second leading cause of cancer among men globally. Using a kinome-wide lentiviral small-hairpin RNA (shRNA) library screen, we identified phosphoinositide-dependent kinase-1 (PDPK1) as a potential mediator of cell survival in PCa cells. We showed that knock-down of endogenous human PDPK1 induced significant tumour-specific cell death in PCa cells (DU145 and PC3) but not in the normal prostate epithelial cells (RWPE-1). Further analyses revealed that PDPK1 mediates cancer cell survival predominantly via activation of serum/glucocorticoid-regulated kinase 3 (SGK3). Knock-down of endogenous PDPK1 in DU145 and PC3 cells significantly reduced SGK3 phosphorylation while ectopic expression of a constitutively active SGK3 completely abrogated the apoptosis induced by PDPK1. In contrast, no such effect was observed in SGK1 and AKT phosphorylation following PDPK1 knock-down. Importantly, PDPK1 inhibitors (GSK2334470 and BX-795) significantly reduced tumour-specific cell growth and synergized docetaxel sensitivity in PCa cells. In summary, our results demonstrated that PDPK1 mediates PCa cells' survival through SGK3 signalling and suggest that inactivation of this PDPK1-SGK3 axis may potentially serve as a novel therapeutic intervention for future treatment of PCa.
Collapse
Affiliation(s)
- Geetha Nalairndran
- Department of PharmacologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | | | - Chun‐Wai Mai
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | - Felicia Fei‐Lei Chung
- Mechanisms of Carcinogenesis Section (MCA)Epigenetics Group (EGE)International Agency for Research on Cancer World Health OrganizationLyonFrance
| | - Kok‐Keong Chan
- School of MedicineInternational Medical UniversityKuala LumpurMalaysia
| | - Ling‐Wei Hii
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
- School of Postgraduate StudiesInternational Medical UniversityKuala LumpurMalaysia
| | - Wei‐Meng Lim
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
- School of Postgraduate StudiesInternational Medical UniversityKuala LumpurMalaysia
| | - Ivy Chung
- Department of PharmacologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
- Faculty of MedicineUniversity of Malaya Cancer Research InstituteUniversity of MalayaKuala LumpurMalaysia
| | - Chee‐Onn Leong
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| |
Collapse
|
5
|
Ismail M, Mohamady S, Samir N, Abouzid KAM. Design, Synthesis, and Biological Evaluation of Novel 7 H-[1,2,4]Triazolo[3,4- b][1,3,4]thiadiazine Inhibitors as Antitumor Agents. ACS OMEGA 2020; 5:20170-20186. [PMID: 32832771 PMCID: PMC7439371 DOI: 10.1021/acsomega.0c01829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
A series of novel anticancer hydrazinotriazolothiadiazine-based derivatives were designed based on the structure-activity relationship of the previously reported anticancer triazolothiadiazines. These derivatives were synthesized and biologically screened against full NCI-60 cancer cell lines revealing compound 5l with a potential antiproliferative effect. 5l was screened over 16 kinases to study its cytotoxic mechanism which showed to inhibit glycogen synthase kinase-3 β (GSK-3β) with IC50 equal to 0.883 μM and 14-fold selectivity over CDK2. Also, 5l increased active caspase-3 levels, induced cell cycle arrest at the G2-M phase, and increased the percentage of Annexin V-fluorescein isothiocyanate-positive apoptotic cells in PC-3 prostate cancer-treated cells. Molecular docking and dynamics were performed to predict the binding mode of 5l in the GSK-3β ATP binding site. 5l can be utilized as a starting scaffold for developing potential GSK-3β inhibitors.
Collapse
Affiliation(s)
- Muhammad
I. Ismail
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, Al-Sherouk City, Cairo-Suez Desert Road, 11837 Cairo, Egypt
| | - Samy Mohamady
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, Al-Sherouk City, Cairo-Suez Desert Road, 11837 Cairo, Egypt
| | - Nermin Samir
- Pharmaceutical
Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Khaled A. M. Abouzid
- Pharmaceutical
Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
- Department
of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufia 32897, Egypt
| |
Collapse
|
6
|
Glycogen Synthase Kinase 3β in Cancer Biology and Treatment. Cells 2020; 9:cells9061388. [PMID: 32503133 PMCID: PMC7349761 DOI: 10.3390/cells9061388] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022] Open
Abstract
Glycogen synthase kinase (GSK)3β is a multifunctional serine/threonine protein kinase with more than 100 substrates and interacting molecules. GSK3β is normally active in cells and negative regulation of GSK3β activity via phosphorylation of its serine 9 residue is required for most normal cells to maintain homeostasis. Aberrant expression and activity of GSK3β contributes to the pathogenesis and progression of common recalcitrant diseases such as glucose intolerance, neurodegenerative disorders and cancer. Despite recognized roles against several proto-oncoproteins and mediators of the epithelial–mesenchymal transition, deregulated GSK3β also participates in tumor cell survival, evasion of apoptosis, proliferation and invasion, as well as sustaining cancer stemness and inducing therapy resistance. A therapeutic effect from GSK3β inhibition has been demonstrated in 25 different cancer types. Moreover, there is increasing evidence that GSK3β inhibition protects normal cells and tissues from the harmful effects associated with conventional cancer therapies. Here, we review the evidence supporting aberrant GSK3β as a hallmark property of cancer and highlight the beneficial effects of GSK3β inhibition on normal cells and tissues during cancer therapy. The biological rationale for targeting GSK3β in the treatment of cancer is also discussed at length.
Collapse
|
7
|
Impaired Nuclear Export of Polyglutamine-Expanded Androgen Receptor in Spinal and Bulbar Muscular Atrophy. Sci Rep 2019; 9:119. [PMID: 30644418 PMCID: PMC6333819 DOI: 10.1038/s41598-018-36784-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/26/2018] [Indexed: 01/22/2023] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by polyglutamine (polyQ) expansion in the androgen receptor (AR). Prior studies have highlighted the importance of AR nuclear localization in SBMA pathogenesis; therefore, in this study, we sought to determine the role of AR nuclear export in the pathological manifestations of SBMA. We demonstrate here that the nuclear export of polyQ-expanded AR is impaired, even prior to the formation of intranuclear inclusions of aggregated AR. Additionally, we find that promoting AR export with an exogenous nuclear export signal substantially reduces its aggregation and blocks hormone-induced toxicity. Moreover, we show that these protective effects are conferred by destabilization of the mutant protein due to an increase in proteasomal degradation of the cytoplasmic AR. Despite a growing body of evidence that global disruption of nucleo/cytoplasmic transport occurs in ALS and HD, our data suggest that no such global disruption occurs in models of SBMA; rather, AR-specific mechanisms, including reduced phosphorylation at Serine 650, are likely responsible for the impaired nuclear export of polyQ-expanded AR.
Collapse
|
8
|
Hupe MC, Hoda MR, Zengerling F, Perner S, Merseburger AS, Cronauer MV. The BET-inhibitor PFI-1 diminishes AR/AR-V7 signaling in prostate cancer cells. World J Urol 2018; 37:343-349. [PMID: 29934670 DOI: 10.1007/s00345-018-2382-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/16/2018] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE The bromodomain and extra-terminal (BET) family of proteins provides a scaffolding platform for the recruitment and tethering of transcription factors to acetylated chromatin, thereby modulating gene expression. In this study, we evaluated the efficacy of the BET-inhibitor PFI-1 to diminish AR/AR-V7 signaling and proliferation in castration-resistant prostate cancer cells. METHODS Prostate-specific antigen and androgen receptor (AR) protein were quantified by means of two commercial ELISAs. Transactivation of the AR, AR-V7 and Q641X was determined by reporter gene assays. Cell proliferation was measured using a colorimetric MTT-assay. RESULTS PFI-1 dose-dependently inhibited transactivation of full-length AR (non- mutated, i.e., wild-type or point-mutated/promiscuous forms) without affecting their cellular protein levels. Moreover, PFI-1 was active against C-terminally truncated constitutively active ARs like AR-V7 and Q641X. Prostate cancer cells exhibiting a transcriptionally active AR-signaling complex (LNCaP, 22Rv1) were more susceptible to the growth-inhibitory effects than the AR-negative PC-3 cells. CONCLUSION The quinazolinone PFI-1 is a highly efficient inhibitor of AR-signaling-competent prostate cancer cells in vitro. PFI-1 could serve as a lead compound for the development of new therapeutics able to block AR/AR-V7 signaling in advanced prostate cancer.
Collapse
Affiliation(s)
- Marie C Hupe
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - M Raschid Hoda
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | | | - Sven Perner
- Pathology of the University Hospital Schleswig-Holstein, Campus Lübeck and Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| | - Axel S Merseburger
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Marcus V Cronauer
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| |
Collapse
|
9
|
Tecalco-Cruz AC. Molecular pathways involved in the transport of nuclear receptors from the nucleus to cytoplasm. J Steroid Biochem Mol Biol 2018; 178:36-44. [PMID: 29107180 DOI: 10.1016/j.jsbmb.2017.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/18/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022]
Abstract
Nuclear receptors (NRs) are transcription regulators that direct the expression of many genes linked to cellular processes, such as proliferation, differentiation, and apoptosis. Additionally, some cellular events are also modulated by signaling pathways induced by NRs outside of the nucleus. Hence, the subcellular transport of NRs is dynamic and is modulated by several signals, protein-protein interactions, and posttranslational modifications. Particularly, the exit of NRs from the nucleus to cytoplasm and/or other compartments is transcendental, as it is this export event, which determines their abundance in the cells' compartments, the activation or attenuation of nuclear or extranuclear pathways, and the magnitude and duration of their effects inside or outside of the nucleus. Consequently, an adequate control of the distribution of NRs is critical for homeostasis, because a deregulation in the nucleo-cytoplasmic transport of NRs could be involved in diseases including cancer as well as metabolic and vascular alterations. In this review, we investigated the pathways and molecular and biological aspects that have been described for the nuclear export of NRs so far and their functional relevance in some diseases. This information suggests that the transport of NRs out of the nucleus is a key mechanism for the identification of new therapeutic targets for alterations associated with the deregulation of the function of NRs.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo Postal, D.F. 04510, Mexico.
| |
Collapse
|
10
|
Wei A, Fan B, Zhao Y, Zhang H, Wang L, Yu X, Yuan Q, Yang D, Wang S. ST6Gal-I overexpression facilitates prostate cancer progression via the PI3K/Akt/GSK-3β/β-catenin signaling pathway. Oncotarget 2018; 7:65374-65388. [PMID: 27588482 PMCID: PMC5323162 DOI: 10.18632/oncotarget.11699] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/24/2016] [Indexed: 11/25/2022] Open
Abstract
ST6Gal-I sialyltransferase adds α2,6-linked sialic acids to the terminal ends of glycan chains of glycoproteins and glycolipids. ST6Gal-I is reportedly upregulated in many cancers, including hepatocellular carcinoma, ovarian cancer and breast cancer. However, the expression and function of ST6Gal-I in prostate cancer (PCa) and the mechanism underlying this function remain largely unknown. In this study, we observed that ST6Gal-I expression was upregulated in human PCa tissues compared to non-malignant prostate tissues. High ST6Gal-I expression was positively correlated with Gleason scores, seminal vesicle involvement and poor survival in patients with PCa. ST6Gal-I knockdown in aggressive prostate cancer PC-3 and DU145 cells significantly inhibited the proliferation, growth, migration and invasion capabilities of these cells. ST6Gal-I knockdown decreased the levels of several PI3K/Akt/GSK-3β/ β-catenin pathway components, such as p-PI3K, (Ser473)p-Akt, (Ser9)p-GSK-3β and β-catenin. Furthermore, targeting this pathway with a PI3K inhibitor or Akt RNA interference decreased p-Akt, p-GSK-3β and β-catenin expression, resulting in decreased PC-3 and DU145 proliferation, migration and invasion. Taken together, these results indicate that ST6Gal-I plays a critical role in cell proliferation and invasion via the PI3K/Akt/GSK-3β/β-catenin signaling pathway during PCa progression and that it might be a promising target for PCa prognosis determination and therapy.
Collapse
Affiliation(s)
- Anwen Wei
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Bo Fan
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Yujie Zhao
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Han Zhang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Liping Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Xiao Yu
- Department of Pathology, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Qingmin Yuan
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| |
Collapse
|
11
|
Pharmacophore-based screening and drug repurposing exemplified on glycogen synthase kinase-3 inhibitors. Mol Divers 2017; 21:385-405. [PMID: 28108896 DOI: 10.1007/s11030-016-9724-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/30/2016] [Indexed: 12/13/2022]
Abstract
The current study was conducted to elaborate a novel pharmacophore model to accurately map selective glycogen synthase kinase-3 (GSK-3) inhibitors, and perform virtual screening and drug repurposing. Pharmacophore modeling was developed using PHASE on a data set of 203 maleimides. Two benchmarking validation data sets with focus on selectivity were assembled using ChEMBL and PubChem GSK-3 confirmatory assays. A drug repurposing experiment linking pharmacophore matching with drug information originating from multiple data sources was performed. A five-point pharmacophore model was built consisting of a hydrogen bond acceptor (A), hydrogen bond donor (D), hydrophobic (H), and two rings (RR). An atom-based 3D quantitative structure-activity relationship (QSAR) model showed good correlative and satisfactory predictive abilities (training set [Formula: see text]; test set: [Formula: see text]; whole data set: stability [Formula: see text]). Virtual screening experiments revealed that selective GSK-3 inhibitors are ranked preferentially by Hypo-1, but fail to retrieve nonselective compounds. The pharmacophore and 3D QSAR models can provide assistance to design novel, potential GSK-3 inhibitors with high potency and selectivity pattern, with potential application for the treatment of GSK-3-driven diseases. A class of purine nucleoside antileukemic drugs was identified as potential inhibitor of GSK-3, suggesting the reassessment of the target range of these drugs.
Collapse
|
12
|
Kroon J, in 't Veld LS, Buijs JT, Cheung H, van der Horst G, van der Pluijm G. Glycogen synthase kinase-3β inhibition depletes the population of prostate cancer stem/progenitor-like cells and attenuates metastatic growth. Oncotarget 2015; 5:8986-94. [PMID: 25344861 PMCID: PMC4253412 DOI: 10.18632/oncotarget.1510] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cancer cells with stem or progenitor properties play a pivotal role in the initiation, recurrence and metastatic potential of solid tumors, including those of the human prostate. Cancer stem cells are generally more resistant to conventional therapies thus requiring the characterization of key pathways involved in the formation and/or maintenance of this malignant cellular subpopulation. To this end, we identified Glycogen Synthase Kinase-3β (GSK-3β) as a crucial kinase for the maintenance of prostate cancer stem/progenitor-like cells and pharmacologic inhibition of GSK-3β dramatically decreased the size of this cellular subpopulation. This was paralleled by impaired clonogenicity, decreased migratory potential and dramatic morphological changes. In line with our in vitro observations, treatment with a GSK-3β inhibitor leads to a complete loss of tumorigenicity and a decrease in metastatic potential in preclinical in vivo models. These observed anti-tumor effects appear to be largely Wnt-independent as simultaneous Wnt inhibition does not reverse the observed antitumor effects of GSK-3β blockage. We found that GSK-3β activity is linked to cytoskeletal protein F-actin and inhibition of GSK-3β leads to disturbance of F-actin polymerization. This may underlie the dramatic effects of GSK-3β inhibition on prostate cancer migration. Furthermore, GSK-3β inhibition led to strongly decreased expression of several integrin types including the cancer stem cell-associated α2β1 integrin. Taken together, our mechanistic observations highlight the importance of GSK-3β activity in prostate cancer stemness and may facilitate the development of novel therapy for advanced prostate cancer.
Collapse
Affiliation(s)
- Jan Kroon
- Department of Urology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lars S in 't Veld
- Department of Urology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jeroen T Buijs
- Department of Urology, Leiden University Medical Center, Leiden, the Netherlands
| | - Henry Cheung
- Department of Urology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Gabri van der Pluijm
- Department of Urology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
13
|
Campa VM, Baltziskueta E, Bengoa-Vergniory N, Gorroño-Etxebarria I, Wesołowski R, Waxman J, Kypta RM. A screen for transcription factor targets of glycogen synthase kinase-3 highlights an inverse correlation of NFκB and androgen receptor signaling in prostate cancer. Oncotarget 2015; 5:8173-87. [PMID: 25327559 PMCID: PMC4226675 DOI: 10.18632/oncotarget.2303] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Expression of Glycogen Synthase Kinase-3 (GSK-3) is elevated in prostate cancer and its inhibition reduces prostate cancer cell proliferation, in part by reducing androgen receptor (AR) signaling. However, GSK-3 inhibition can also activate signals that promote cell proliferation and survival, which may preclude the use of GSK-3 inhibitors in the clinic. To identify such signals in prostate cancer, we screened for changes in transcription factor target DNA binding activity in GSK-3-silenced cells. Among the alterations was a reduction in AR DNA target binding, as predicted from previous studies, and an increase in NFκB DNA target binding. Consistent with the latter, gene silencing of GSK-3 or inhibition using the GSK-3 inhibitor CHIR99021 increased basal NFκB transcriptional activity. Activation of NFκB was accompanied by an increase in the level of the NFκB family member RelB. Conversely, silencing RelB reduced activation of NFκB by CHIR99021. Furthermore, the reduction of prostate cancer cell proliferation by CHIR99021 was potentiated by inhibition of NFκB signaling using the IKK inhibitor PS1145. Finally, stratification of human prostate tumor gene expression data for GSK3 revealed an inverse correlation between NFκB-dependent and androgen-dependent gene expression, consistent with the results from the transcription factor target DNA binding screen. In addition, there was a correlation between expression of androgen-repressed NFκB target genes and reduced survival of patients with metastatic prostate cancer. These findings highlight an association between GSK-3/AR and NFκB signaling and its potential clinical importance in metastatic prostate cancer.
Collapse
Affiliation(s)
- Victor M Campa
- Cell Biology and Stem Cells Unit, CIC bioGUNE, Spain. Present address: Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander 39011, Spain
| | | | | | | | | | - Jonathan Waxman
- Department of Surgery and Cancer, Imperial College London, UK
| | - Robert M Kypta
- Cell Biology and Stem Cells Unit, CIC bioGUNE, Spain. Department of Surgery and Cancer, Imperial College London, UK
| |
Collapse
|
14
|
Li B, Thrasher JB, Terranova P. Glycogen synthase kinase-3: a potential preventive target for prostate cancer management. Urol Oncol 2015; 33:456-63. [PMID: 26051358 DOI: 10.1016/j.urolonc.2015.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Prostate cancers are the frequently diagnosed cancers in men, and patients with metastatic disease only have 28% chance for 5-year survival. Patients with low-risk tumors are subjected to active surveillance, whereas high-risk cases are actively treated. Unfortunately, there is no cure for patients with late-stage disease. Glycogen synthase kinase-3 (GSK-3, α and β) is a protein serine/threonine kinase and has diverse cellular functions and numerous substrates. We sought to summarize all the studies done with GSK-3 in prostate cancers and to provide a prospective direction for future work. METHODS AND MATERIALS A comprehensive search of the literature on the electronic databases PubMed was conducted for the subject terms of GSK-3 and prostate cancer. Gene mutation and expression information was extracted from Oncomine and COSMIC databases. Case reports were not included. RESULTS Accumulating evidence indicates that GSK-3α is mainly expressed in low-risk prostate cancers and is related to hormone-dependent androgen receptor (AR)-mediated gene expression, whereas GSK-3β is mainly expressed in high-risk prostate cancers and is related to hormone-independent AR-mediated gene expression. GSK-3 has been demonstrated as a positive regulator in AR transactivation and prostate cancer growth independent of the Wnt/β-catenin pathway. Different types of GSK-3inhibitors including lithium show promising results in suppressing tumor growth in different animal models of prostate cancer. Importantly, clinical use of lithium is associated with reduced cancer incidence in psychiatric patients. CONCLUSIONS Taken together, GSK-3 inhibition might be implicated in prostate cancer management as a preventive treatment.
Collapse
Affiliation(s)
- Benyi Li
- Department of Urology, University of Kansas Medical Center, Kansas City, KS.
| | | | - Paul Terranova
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS; Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
15
|
Goc A, Al-Husein B, Katsanevas K, Steinbach A, Lou U, Sabbineni H, DeRemer DL, Somanath PR. Targeting Src-mediated Tyr216 phosphorylation and activation of GSK-3 in prostate cancer cells inhibit prostate cancer progression in vitro and in vivo. Oncotarget 2015; 5:775-87. [PMID: 24519956 PMCID: PMC3996673 DOI: 10.18632/oncotarget.1770] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Recent studies suggest a positive correlation between glycogen synthase kinase-3 (GSK-3) activation and tumor growth. Currently, it is unclear how both Akt that inhibits GSK-3 and active GSK-3 are maintained concurrently in tumor cells. We investigated the role of GSK-3 and the existence of an Akt-resistant pathway for GSK-3 activation in prostate cancer cells. Our data show that Src, a non-receptor tyrosine kinase is responsible for Y216GSK-3 phosphorylation leading to its activation even when Akt is active. Experiments involving mouse embryonic fibroblasts lacking cSrc, Yes and Fyn, as well as Src activity modulation in prostate cancer cells with constitutively active (CA-Src) and dominant negative Src (DN-Src) plasmids demonstrated the integral role of Src in Y216GSK-3 phosphorylation and activity modulation. Inhibition of GSK-3 with SB415286 in PC3 cells resulted in impaired motility, proliferation and colony formation. Treatment of PC3 cells with the Src inhibitor dasatinib reduced Y216GSK-3 phosphorylation and inhibited proliferation, invasion and micrometastasis in vitro. Dasatinib treatment of athymic nude mice resulted in impaired growth of PC3 cell tumor xenograft. Together, we provide novel insight into the Src-mediated Y216GSK-3 phosphorylation and activation in prostate cancer cells and reveal the potential benefits of targeting Src-GSK-3 axis using drugs such as dasatinib.
Collapse
Affiliation(s)
- Anna Goc
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Grassilli E, Ianzano L, Bonomo S, Missaglia C, Cerrito MG, Giovannoni R, Masiero L, Lavitrano M. GSK3A is redundant with GSK3B in modulating drug resistance and chemotherapy-induced necroptosis. PLoS One 2014; 9:e100947. [PMID: 24984063 PMCID: PMC4077702 DOI: 10.1371/journal.pone.0100947] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/30/2014] [Indexed: 12/26/2022] Open
Abstract
Glycogen Synthase Kinase-3 alpha (GSK3A) and beta (GSK3B) isoforms are encoded by distinct genes, are 98% identical within their kinase domain and perform similar functions in several settings; however, they are not completely redundant and, depending on the cell type and differentiative status, they also play unique roles. We recently identified a role for GSK3B in drug resistance by demonstrating that its inhibition enables necroptosis in response to chemotherapy in p53-null drug-resistant colon carcinoma cells. We report here that, similarly to GSK3B, also GSK3A silencing/inhibition does not affect cell proliferation or cell cycle but only abolishes growth after treatment with DNA-damaging chemotherapy. In particular, blocking GSK3A impairs DNA repair upon exposure to DNA-damaging drugs. As a consequence, p53-null cells overcome their inability to undergo apoptosis and mount a necroptotic response, characterized by absence of caspase activation and RIP1-independent, PARP-dependent AIF nuclear re-localization. We therefore conclude that GSK3A is redundant with GSK3B in regulating drug-resistance and chemotherapy-induced necroptosis and suggest that inhibition of only one isoform, or rather partial inhibition of overall cellular GSK3 activity, is enough to re-sensitize drug-resistant cells to chemotherapy.
Collapse
Affiliation(s)
- Emanuela Grassilli
- Department of Surgery and Traslational Medicine, Medical School, University of Milano-Bicocca, via Cadore 48, Monza, Italy
- BiOnSil srl, via Cadore 48, Monza, Italy
- * E-mail: (EG); (ML)
| | - Leonarda Ianzano
- Department of Surgery and Traslational Medicine, Medical School, University of Milano-Bicocca, via Cadore 48, Monza, Italy
| | - Sara Bonomo
- Department of Surgery and Traslational Medicine, Medical School, University of Milano-Bicocca, via Cadore 48, Monza, Italy
| | - Carola Missaglia
- Department of Surgery and Traslational Medicine, Medical School, University of Milano-Bicocca, via Cadore 48, Monza, Italy
| | - Maria Grazia Cerrito
- Department of Surgery and Traslational Medicine, Medical School, University of Milano-Bicocca, via Cadore 48, Monza, Italy
| | - Roberto Giovannoni
- Department of Surgery and Traslational Medicine, Medical School, University of Milano-Bicocca, via Cadore 48, Monza, Italy
| | - Laura Masiero
- Department of Surgery and Traslational Medicine, Medical School, University of Milano-Bicocca, via Cadore 48, Monza, Italy
| | - Marialuisa Lavitrano
- Department of Surgery and Traslational Medicine, Medical School, University of Milano-Bicocca, via Cadore 48, Monza, Italy
- * E-mail: (EG); (ML)
| |
Collapse
|
17
|
Grunseich C, Zukosky K, Kats IR, Ghosh L, Harmison GG, Bott LC, Rinaldi C, Chen KL, Chen G, Boehm M, Fischbeck KH. Stem cell-derived motor neurons from spinal and bulbar muscular atrophy patients. Neurobiol Dis 2014; 70:12-20. [PMID: 24925468 DOI: 10.1016/j.nbd.2014.05.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/23/2014] [Accepted: 05/30/2014] [Indexed: 11/26/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA, Kennedy's disease) is a motor neuron disease caused by polyglutamine repeat expansion in the androgen receptor. Although degeneration occurs in the spinal cord and muscle, the exact mechanism is not clear. Induced pluripotent stem cells from spinal and bulbar muscular atrophy patients provide a useful model for understanding the disease mechanism and designing effective therapy. Stem cells were generated from six patients and compared to control lines from three healthy individuals. Motor neurons from four patients were differentiated from stem cells and characterized to understand disease-relevant phenotypes. Stem cells created from patient fibroblasts express less androgen receptor than control cells, but show androgen-dependent stabilization and nuclear translocation. The expanded repeat in several stem cell clones was unstable, with either expansion or contraction. Patient stem cell clones produced a similar number of motor neurons compared to controls, with or without androgen treatment. The stem cell-derived motor neurons had immunoreactivity for HB9, Isl1, ChAT, and SMI-32, and those with the largest repeat expansions were found to have increased acetylated α-tubulin and reduced HDAC6. Reduced HDAC6 was also found in motor neuron cultures from two other patients with shorter repeats. Evaluation of stably transfected mouse cells and SBMA spinal cord showed similar changes in acetylated α-tubulin and HDAC6. Perinuclear lysosomal enrichment, an HDAC6 dependent process, was disrupted in motor neurons from two patients with the longest repeats. SBMA stem cells present new insights into the disease, and the observations of reduced androgen receptor levels, repeat instability, and reduced HDAC6 provide avenues for further investigation of the disease mechanism and development of effective therapy.
Collapse
Affiliation(s)
- Christopher Grunseich
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, 2A-1000 Building 35, 35 Convent Drive, NIH, Bethesda, MD 20892, USA.
| | - Kristen Zukosky
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, 2A-1000 Building 35, 35 Convent Drive, NIH, Bethesda, MD 20892, USA.
| | - Ilona R Kats
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, 2A-1000 Building 35, 35 Convent Drive, NIH, Bethesda, MD 20892, USA.
| | - Laboni Ghosh
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, 2A-1000 Building 35, 35 Convent Drive, NIH, Bethesda, MD 20892, USA.
| | - George G Harmison
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, 2A-1000 Building 35, 35 Convent Drive, NIH, Bethesda, MD 20892, USA.
| | - Laura C Bott
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, 2A-1000 Building 35, 35 Convent Drive, NIH, Bethesda, MD 20892, USA; Department of Cell and Molecular Biology, Karolinska Institute, Solnavagen 1, 17177 Solna, Sweden.
| | - Carlo Rinaldi
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, 2A-1000 Building 35, 35 Convent Drive, NIH, Bethesda, MD 20892, USA.
| | - Ke-lian Chen
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, 2A-1000 Building 35, 35 Convent Drive, NIH, Bethesda, MD 20892, USA.
| | - Guibin Chen
- National Heart, Lung and Blood Institute, Bld 10-CRC Rm 5-3132, 10 Center Dr., NIH, Bethesda, MD 20892, USA.
| | - Manfred Boehm
- National Heart, Lung and Blood Institute, Bld 10-CRC Rm 5-3132, 10 Center Dr., NIH, Bethesda, MD 20892, USA.
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, 2A-1000 Building 35, 35 Convent Drive, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Stilbene induced inhibition of androgen receptor dimerization: implications for AR and ARΔLBD-signalling in human prostate cancer cells. PLoS One 2014; 9:e98566. [PMID: 24887556 PMCID: PMC4041728 DOI: 10.1371/journal.pone.0098566] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/05/2014] [Indexed: 12/25/2022] Open
Abstract
Background Advanced castration resistant prostate cancer (CRPC) is often characterized by an increase of C-terminally truncated, constitutively active androgen receptor (AR) variants. Due to the absence of a ligand binding domain located in the AR-C-terminus, these receptor variants (also termed ARΔLBD) are unable to respond to all classical forms of endocrine treatments like surgical/chemical castration and/or application of anti-androgens. Methodology In this study we tested the effects of the naturally occurring stilbene resveratrol (RSV) and (E)-4-(2, 6-Difluorostyryl)-N, N-dimethylaniline, a fluorinated dialkylaminostilbene (FIDAS) on AR- and ARΔLBD in prostate cancer cells. The ability of the compounds to modulate transcriptional activity of AR and the ARΔLBD-variant Q640X was shown by reporter gene assays. Expression of endogenous AR and ARΔLBD mRNA and protein levels were determined by qRT-PCR and Western Blot. Nuclear translocation of AR-molecules was analyzed by fluorescence microscopy. AR and ARΔLBD/Q640X homo-/heterodimer formation was assessed by mammalian two hybrid assays. Biological activity of both compounds in vivo was demonstrated using a chick chorioallantoic membrane xenograft assay. Results The stilbenes RSV and FIDAS were able to significantly diminish AR and Q640X-signalling. Successful inhibition of the Q640X suggests that RSV and FIDAS are not interfering with the AR-ligand binding domain like all currently available anti-hormonal drugs. Repression of AR and Q640X-signalling by RSV and FIDAS in prostate cancer cells was caused by an inhibition of the AR and/or Q640X-dimerization. Although systemic bioavailability of both stilbenes is very low, both compounds were also able to downregulate tumor growth and AR-signalling in vivo. Conclusion RSV and FIDAS are able to inhibit the dimerization of AR and ARΔLBD molecules suggesting that stilbenes might serve as lead compounds for a novel generation of AR-inhibitors.
Collapse
|
19
|
Mou L, Li M, Lu SY, Li S, Shen Q, Zhang J, Li C, Lu X. Unraveling the Role of Arg4 and Arg6 in the Auto-Inhibition Mechanism of GSK3βFrom Molecular Dynamics Simulation. Chem Biol Drug Des 2014; 83:721-30. [PMID: 24444018 DOI: 10.1111/cbdd.12286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/13/2013] [Accepted: 01/06/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Linkai Mou
- Department of Urology; The Second Affiliated Hospital of Dalian Medical University; Dalian China
| | - Molin Li
- Department of Pathophysiology; Dalian Medical University; Dalian China
| | - Shao-Yong Lu
- Department of Pathophysiology and Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education; School of Medicine; Shanghai Jiao-Tong University; Shanghai China
| | - Shuai Li
- Department of Pathophysiology and Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education; School of Medicine; Shanghai Jiao-Tong University; Shanghai China
- Department of Obstetrics and Gynecology; Institute of Obstetrics and Gynecology; Renji Hospital; School of Medicine; Shanghai Jiao Tong University; Shanghai 200001 China
| | - Qiancheng Shen
- Department of Pathophysiology and Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education; School of Medicine; Shanghai Jiao-Tong University; Shanghai China
- Department of Obstetrics and Gynecology; Institute of Obstetrics and Gynecology; Renji Hospital; School of Medicine; Shanghai Jiao Tong University; Shanghai 200001 China
| | - Jian Zhang
- Department of Pathophysiology and Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education; School of Medicine; Shanghai Jiao-Tong University; Shanghai China
| | - Chuangang Li
- Department of Urology; The Second Affiliated Hospital of Dalian Medical University; Dalian China
| | - Xuefeng Lu
- Department of Obstetrics and Gynecology; Institute of Obstetrics and Gynecology; Renji Hospital; School of Medicine; Shanghai Jiao Tong University; Shanghai 200001 China
| |
Collapse
|
20
|
Lescarbeau RM, Kaplan DL. Quantitative analysis of castration resistant prostate cancer progression through phosphoproteome signaling. BMC Cancer 2014; 14:325. [PMID: 24885093 PMCID: PMC4031492 DOI: 10.1186/1471-2407-14-325] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 04/21/2014] [Indexed: 01/03/2023] Open
Abstract
Background Although recent progress has been made in treating castration resistant prostate cancer, the interplay of signaling pathways which enable castration resistant growth is incompletely understood. A data driven, multivariate approach, was used in this study to predict prostate cancer cell survival based on the phosphorylation levels of key proteins in PC3, LNCaP, and MDA-PCa-2b cell lines in response to EGF, IGF1, IL6, TNFα, dihydrotestosterone, and docetaxel treatment. Methods The prostate cancer cell lines were treated with ligands or inhibitors, cell lyates were collected, and the amount of phosphoprotein quantified using 384 well ELISA assays. In separate experiments, relative cell viability was determined using an MTT assay. Normalized data was imported into Matlab where regression analysis was performed. Results Based on a linear model developed using partial least squares regression, p-Erk1/2 was found to correlate with castration resistant survival along with p-RPS6, and this model was determined to have a leave-one-out cross validated R2 value of 0.61. The effect of androgen on the phosphoproteome was examined, and increases in PI3K related phosphoproteins (p-Akt, p-RPS6, and p-GSK3) were observed which accounted for the majority of the significant increase in androgen-mediated cell survival. Simultaneous inhibition of the PI3K pathway and treatment with androgen resulted in a non-significant increase in survival. Given the strong effect of PI3K related signaling in enabling castration resistant survival, the specific effect of mTor versus complete inhibition was examined using targeted inhibitors. It was determine that mTor inhibition accounts for 52% of the effect of complete PI3K inhibition on cell survival. The differences in signaling between the cell lines were explored it was observed that MDA-PCa-2b exhibited far less activation of p-Erk in response to varying treatments, explaining one of the reasons for the lack of castration resistance. Conclusion In this work, regression analysis to the phosphoproteome was used to illustrate the sources of castration resistance between the cell lines including reduced p-Erk signaling in MDA-PCa-2b and variations in p-JNK across the cell lines, as well as studying the signaling pathways which androgen acts through, and determining the response to treatment with targeted inhibitors.
Collapse
Affiliation(s)
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| |
Collapse
|
21
|
Lescarbeau R, Kaplan DL. Correlating phosphoproteomic signaling with castration resistant prostate cancer survival through regression analysis. MOLECULAR BIOSYSTEMS 2014; 10:605-12. [PMID: 24413303 DOI: 10.1039/c3mb70403c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prostate cancer most commonly presents as initially castration dependent, however in a minority of patients the disease will progress to a state of castration resistance. Here, approaches for correlating alterations in the phosphoproteome with androgen independent cell survival in the LNCaP, PC3, and MDa-PCa-2b cell lines are discussed. The performance of the regression techniques multiple linear, ridge, principal component, and partial least squares regression is compared. The predictive performance of these algorithms over randomized data sets and using the Akaike Information Criterion is explored, and principal component and partial least squares regression are found to outperform other regression approaches. The effect of altering the number of features versus observations on the R(2) value and predictive performance is also examined using the partial least squares regression model. Utilizing these approaches "drivers" of castration resistant disease can be identified whose modulation alters phenotypic outcomes. These data provide an empirical comparison of the various considerations when statistically analyzing phosphorylation data with the aim of correlating with phenotypic outcomes.
Collapse
|
22
|
Samaan S, Tranchevent LC, Dardenne E, Polay Espinoza M, Zonta E, Germann S, Gratadou L, Dutertre M, Auboeuf D. The Ddx5 and Ddx17 RNA helicases are cornerstones in the complex regulatory array of steroid hormone-signaling pathways. Nucleic Acids Res 2013; 42:2197-207. [PMID: 24275493 PMCID: PMC3936752 DOI: 10.1093/nar/gkt1216] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Estrogen and androgen receptors (ER and AR) play key roles in breast and prostate cancers, respectively, where they regulate the transcription of large arrays of genes. The activities of ER and AR are controlled by large networks of protein kinases and transcriptional coregulators, including Ddx5 and its highly related paralog Ddx17. The Ddx5 and Ddx17 RNA helicases are also splicing regulators. Here, we report that Ddx5 and Ddx17 are master regulators of the estrogen- and androgen-signaling pathways by controlling transcription and splicing both upstream and downstream of the receptors. First, Ddx5 and Ddx17 are required downstream of ER and AR for the transcriptional and splicing regulation of a large number of steroid hormone target genes. Second, Ddx5 and Ddx17 act upstream of ER and AR by controlling the expression, at the splicing level, of several key regulators of ER and AR activities. Of particular interest, we demonstrate that Ddx5 and Ddx17 control alternative splicing of the GSK3β kinase, which impacts on both ER and AR protein stability. We also provide a freely available online resource which gives information regarding splicing variants of genes involved in the estrogen- and androgen-signaling pathways.
Collapse
Affiliation(s)
- Samaan Samaan
- Université de Paris Diderot-Paris 7, F-75013 Paris, France, Inserm U1052, F-69008 Lyon, France, CNRS UMR5286, F-69008 Lyon, France, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France and Université de Lyon 1, F-69100 Villeurbanne, France
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zengerling F, Streicher W, Schrader AJ, Schrader M, Nitzsche B, Cronauer MV, Höpfner M. Effects of sorafenib on C-terminally truncated androgen receptor variants in human prostate cancer cells. Int J Mol Sci 2012; 13:11530-11542. [PMID: 23109869 PMCID: PMC3472761 DOI: 10.3390/ijms130911530] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/05/2012] [Accepted: 09/06/2012] [Indexed: 01/26/2023] Open
Abstract
Recent evidence suggests that the development of castration resistant prostate cancer (CRPCa) is commonly associated with an aberrant, ligand-independent activation of the androgen receptor (AR). A putative mechanism allowing prostate cancer (PCa) cells to grow under low levels of androgens, is the expression of constitutively active, C-terminally truncated AR lacking the AR-ligand binding domain (LBD). Due to the absence of a LBD, these receptors, termed ARΔLBD, are unable to respond to any form of anti-hormonal therapies. In this study we demonstrate that the multikinase inhibitor sorafenib inhibits AR as well as ARΔLBD-signalling in CRPCa cells. This inhibition was paralleled by proteasomal degradation of the AR- and ARΔLBD-molecules. In line with these observations, maximal antiproliferative effects of sorafenib were achieved in AR and ARΔLBD-positive PCa cells. The present findings warrant further investigations on sorafenib as an option for the treatment of advanced AR-positive PCa.
Collapse
Affiliation(s)
- Friedemann Zengerling
- Department of Urology, Ulm University, Ulm 89075, Germany; E-Mails: (A.J.S.); (M.S.); (M.V.C.)
- Department of Physiology, Charité Universitätsmedizin, Campus Benjamin Franklin, Berlin 14195, Germany; E-Mails: (B.N.); (M.H.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-731-500-58036; Fax: +49-731-500-58002
| | - Wolfgang Streicher
- Institute of General Zoology and Endocrinology, Ulm University, Ulm 89069, Germany; E-Mail:
| | - Andres J. Schrader
- Department of Urology, Ulm University, Ulm 89075, Germany; E-Mails: (A.J.S.); (M.S.); (M.V.C.)
| | - Mark Schrader
- Department of Urology, Ulm University, Ulm 89075, Germany; E-Mails: (A.J.S.); (M.S.); (M.V.C.)
| | - Bianca Nitzsche
- Department of Physiology, Charité Universitätsmedizin, Campus Benjamin Franklin, Berlin 14195, Germany; E-Mails: (B.N.); (M.H.)
| | - Marcus V. Cronauer
- Department of Urology, Ulm University, Ulm 89075, Germany; E-Mails: (A.J.S.); (M.S.); (M.V.C.)
| | - Michael Höpfner
- Department of Physiology, Charité Universitätsmedizin, Campus Benjamin Franklin, Berlin 14195, Germany; E-Mails: (B.N.); (M.H.)
| |
Collapse
|
24
|
Pradeep H, Rajanikant GK. A rational approach to selective pharmacophore designing: an innovative strategy for specific recognition of Gsk3β. Mol Divers 2012; 16:553-62. [PMID: 22918724 PMCID: PMC7089308 DOI: 10.1007/s11030-012-9387-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/25/2012] [Indexed: 12/21/2022]
Abstract
We propose a novel cheminformatics approach that combines structure and ligand-based design to identify target-specific pharmacophores with well-defined exclusion ability. Our strategy includes the prediction of selective interactions, developing structure, and knowledge-based selective pharmacophore models, followed by database screening and molecular docking. This unique strategy was employed in addressing the off-target toxicity of Gsk3β and CDKs. The connections of Gsk3β in eukaryotic cell apoptosis and the extensive potency of Gsk3β inhibitors to block cell death have made it a potential drug-discovery target for many grievous human disorders. Gsk3β is phylogenetically very closely related to the CDKs, such as CDK1 and CDK2, which are suggested to be the off-target proteins of Gsk3β inhibitors. Here, we have employed novel computational approaches in designing the ligand candidates that are potentially inhibitory against Gsk3β, with well-defined the exclusion ability to CDKs. A structure-ligand -based selective pharmacophore was modeled. This model was used to retrieve molecules from the zinc database. The hits retrieved were further screened by molecular docking and protein–ligand interaction fingerprints. Based on these results, four molecules were predicted as selective Gsk3β antagonists. It is anticipated that this unique approach can be extended to investigate any protein–ligand specificity.
Collapse
Affiliation(s)
- H Pradeep
- Bioinformatics Centre, School of Biotechnology, National Institute of Technology, Calicut 673601, India
| | | |
Collapse
|
25
|
IκB kinases modulate the activity of the androgen receptor in prostate carcinoma cell lines. Neoplasia 2012; 14:178-89. [PMID: 22496618 DOI: 10.1593/neo.111444] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/27/2012] [Accepted: 02/27/2012] [Indexed: 01/21/2023] Open
Abstract
Enhanced nuclear localization of nuclear factor κB (NF-κB) in prostate cancer (PCa) samples and constitutive NF-κB signaling in a class of PCa cell lines with low androgen receptor (AR) expression (PC3 and DU-145) imply an important role of the IκB kinase (IKK)/NF-κB system in PCa. However, most PCa and PCa cell lines depend on the activity of the AR, and the role of NF-κB in these AR-expressing PCa remains unclear. Here, we demonstrate that inhibition of NF-κB signaling by the IKK inhibitor BMS345541 reduced proliferation and increased apoptosis in AR-expressing PCa cell lines. Furthermore, AR activity and target gene expression were distinctively reduced, whereas AR protein levels remained unaltered on BMS345541 treatment. Similar effects were observed particularly after small interfering RNA (siRNA)-mediated knockdown of IKK1, but not by siRNA-mediated suppression of IKK2. Moreover, IKK1 overexpression augmented 5α-dihydrotestosterone-induced nuclear AR translocation, whereas nuclear AR was reduced by IKK1 knockdown or BMS345541. However, because IKK1 also enhances the activity of a chronically nuclear AR mutant, modulation of the subcellular distribution seems not to be the only mechanism by which IKK1 enhances AR activity. Finally, reduced in vivo AR phosphorylation after BMS345541 treatment and in vitro AR phosphorylation by IKK1 or IKK2 imply that AR constitutes a novel IKK target. Taken together, our data identify IKK1 as a potentially target structure for future therapeutic intervention in PCa.
Collapse
|
26
|
Darrington RS, Campa VM, Walker MM, Bengoa-Vergniory N, Gorrono-Etxebarria I, Uysal-Onganer P, Kawano Y, Waxman J, Kypta RM. Distinct expression and activity of GSK-3α and GSK-3β in prostate cancer. Int J Cancer 2012; 131:E872-83. [DOI: 10.1002/ijc.27620] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/29/2012] [Indexed: 01/02/2023]
|
27
|
Laschak M, Spindler KD, Schrader AJ, Hessenauer A, Streicher W, Schrader M, Cronauer MV. JS-K, a glutathione/glutathione S-transferase-activated nitric oxide releasing prodrug inhibits androgen receptor and WNT-signaling in prostate cancer cells. BMC Cancer 2012; 12:130. [PMID: 22462810 PMCID: PMC3376035 DOI: 10.1186/1471-2407-12-130] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 03/30/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Nitric oxide (NO) and its oxidative reaction products have been repeatedly shown to block steroid receptor function via nitrosation of zinc finger structures in the DNA-binding domain (DBD). In consequence NO-donors could be of special interest for the treatment of deregulated androgen receptor(AR)-signaling in castration resistant prostate cancer (CRPC). METHODS Prostate cancer (PCa) cells were treated with JS-K, a diazeniumdiolate derivate capable of generating large amounts of intracellular NO following activation by glutathione S-transferase. Generation of NO was determined indirectly by the detection of nitrate in tissue culture medium or by immunodetection of nitrotyrosine in the cytoplasm. Effects of JS-K on intracellular AR-levels were determined by western blotting. AR-dimerization was analyzed by mammalian two hybrid assay, nuclear translocation of the AR was visualized in PCa cells transfected with a green fluorescent AR-Eos fusion protein using fluorescence microscopy. Modulation of AR- and WNT-signalling by JS-K was investigated using reporter gene assays. Tumor cell proliferation following JS-K treatment was measured by MTT-Assay. RESULTS The NO-releasing compound JS-K was shown to inhibit AR-mediated reporter gene activity in 22Rv1 CRPC cells. Inhibition of AR signaling was neither due to an inhibition of nuclear import nor to a reduction in AR-dimerization. In contrast to previously tested NO-donors, JS-K was able to reduce the intracellular concentration of functional AR. This could be attributed to the generation of extremely high intracellular levels of the free radical NO as demonstrated indirectly by high levels of nitrotyrosine in JS-K treated cells. Moreover, JS-K diminished WNT-signaling in AR-positive 22Rv1 cells. In line with these observations, castration resistant 22Rv1 cells were found to be more susceptible to the growth inhibitory effects of JS-K than the androgen dependent LNCaP which do not exhibit an active WNT-signaling pathway. CONCLUSIONS Our results suggest that small molecules able to inhibit WNT- and AR-signaling via NO-release represent a promising platform for the development of new compounds for the treatment of CRPC.
Collapse
Affiliation(s)
- Martin Laschak
- Department of Urology, Ulm University, Prittwitzstrasse 43, 89075, Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Menschikowski M, Hagelgans A, Tiebel O, Vogel M, Eisenhofer G, Siegert G. Regulation of thrombomodulin expression in prostate cancer cells. Cancer Lett 2012; 322:177-84. [PMID: 22406829 DOI: 10.1016/j.canlet.2012.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 02/22/2012] [Accepted: 03/01/2012] [Indexed: 11/16/2022]
Abstract
In carcinomas the expression of thrombomodulin (TM) is inversely correlated with tumour progression and metastasis. In the present study a decreased TM expression in human prostate cancer cell lines, LNCaP, DU-145, and PC-3, in relation to normal prostate epithelial cells (PrEC) is shown. Sequencing and methylation-specific high resolution melting (MS-HRM) analyses of bisulphite-modified genomic DNA indicates a high degree of methylation in DU-145 cells and lesser degrees in PC-3 and LNCaP cells, whereas in PrEC the TM promoter is unmethylated. The expression of TM is negatively regulated by NF-κB- and GSK3-β-dependent signalling pathways and positively regulated by retinoic acid and transcription factor Sp1 in PrEC, LNCaP and PC-3 cells, but not in DU-145 cells. However, exposure of DU-145 cells to the demethylating agent, 5-aza-2'deoxycytidine, restores the TM expression and its control by retinoic acid, NF-κB- and GSK3-β-dependent signalling. In conclusion, the study establishes that in prostate cancer cell lines relative to PrEC the TM is down-regulated and that the TM promoter is hypermethylated, which seems to be responsible for the down-regulation and failed regulation of TM expression in DU-145 cells.
Collapse
Affiliation(s)
- Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, Technical University of Dresden, Medical Faculty "Carl Gustav Carus", Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Streicher W, Zengerling F, Laschak M, Weidemann W, Höpfner M, Schrader AJ, Jentzmik F, Schrader M, Cronauer MV. AR-Q640X, a model to study the effects of constitutively active C-terminally truncated AR variants in prostate cancer cells. World J Urol 2012; 30:333-9. [PMID: 22362413 DOI: 10.1007/s00345-012-0842-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/10/2012] [Indexed: 01/20/2023] Open
Abstract
PURPOSE A recently identified mechanism allowing prostate cancer (PCa) cells to grow in the absence of androgens is the expression of constitutively active, C-terminally truncated androgen receptor (AR) variants lacking vast parts of the ligand-binding domain. These AR variants termed ARΔLBD are either products of alternative splicing, point mutations leading to premature stop codons or proteolytic cleavage of the AR. Some controversies exist about the requirement of additional full-length AR for the full transcriptional activity of the ARΔLBD. On basis of a mutated, C-terminally truncated AR termed Q640X, we developed an experimental model for the study of ARΔLBD in PCa cells. METHODS Activation of AR-dependent promoters was analyzed by reporter gene assays. Dimerization studies were conducted using a mammalian two-hybrid system. RESULTS Although Q640X/Q640X homodimers were able to induce the expression of certain AR target genes, Q640X/AR heterodimers were necessary to activate the full panel of androgen-dependent genes under androgen-deprived conditions. CONCLUSIONS The following study supports the hypothesis that castration-resistant prostate cancer (CRPC) cells are able to activate specific androgen-dependent genes by selective modulation of the ratio between ARΔLBD and their putative dimerization partners like the full-length AR or other ARΔLBD in the absence of androgens. The present data suggest that AR-mutant Q640X is a powerful experimental tool for the functional analysis of ARΔLBD in CRPC.
Collapse
Affiliation(s)
- Wolfgang Streicher
- Department of Urology, Research Laboratory, University of Ulm, Prittwitzstrasse 43, 89075, Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Stope MB, Schubert T, Staar D, Rönnau C, Streitbörger A, Kroeger N, Kubisch C, Zimmermann U, Walther R, Burchardt M. Effect of the heat shock protein HSP27 on androgen receptor expression and function in prostate cancer cells. World J Urol 2012; 30:327-31. [PMID: 22362414 DOI: 10.1007/s00345-012-0843-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/10/2012] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Heat shock proteins (HSP) are involved in processes of folding, activation, trafficking and transcriptional activity of most steroid receptors including the androgen receptor (AR). Accumulating evidence links rising heat shock protein 27 (HSP27) levels with the development of castration-resistant prostate cancer. In order to study the functional relationship between HSP27 and the AR, we modulated the expression of the small heat shock protein HSP27 in human prostate cancer (PC) cell lines. METHODS HSP27 protein concentrations in LNCaP and PC-3 cells were modulated by over-expression or silencing of HSP27. The effects of HSP27 on AR protein and mRNA levels were monitored by Western blotting and quantitative RT-PCR. RESULTS Treatment for the AR-positive LNCaP with HSP27-specific siRNA resulted in a down-regulation of AR levels. This down-regulation of protein was paralleled by a decrease in AR mRNA. Most interestingly, over-expression of HSP27 in PC-3 cells led to a significant increase in AR mRNA although the cells were unable to produce functional AR protein. CONCLUSION The observation that HSP27 is involved in the regulation of AR mRNA by a yet unknown mechanism highlights the complexity of HSP27-AR signaling network.
Collapse
Affiliation(s)
- Matthias B Stope
- Department of Urology, Ernst Moritz Arndt University of Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|