1
|
Khounsaraki GM, Movahedi M, Oscuii HN, Voloshin A. Analysis of the Adherent Cell Response to the Substrate Stiffness Using Tensegrity. Ann Biomed Eng 2024; 52:1213-1221. [PMID: 38324074 DOI: 10.1007/s10439-024-03447-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024]
Abstract
Cell's shape is dependent on the cytoskeleton mechanical properties. Hybrid models were developed that combine the discrete structure for the cytoskeleton and continuum parts for other cell organelles. Tensegrity-based structures that consist of tensile and compression elements are useful models to understand the cytoskeleton mechanical behavior. In this study, we are looking to examine the reaction of the cell to a variety of substrate stiffnesses and explain the relationship between cell behavior and substrate mechanical properties. However, which tensegrity structure is appropriate for modeling a living cell? Is the structure's complexity play a major role? We used two spherical tensegrities with different complexities to assess the impact of the structure on the cell's mechanical response versus substrate's stiffness. Six- and twelve-strut tensegrities together with membrane, cytoplasm, nucleoskeleton, and nucleus envelope were assembled in Abaqus package to create a hybrid cell model. A compressive load was applied to the cell model and the reaction forces versus deflection curves were analyzed for number of substrate stiffness values. By analyzing the difference due to two different tensegrities it became clear that the lower density structure is a better choice for modeling stiffer cells. It was also found that the six-strut tensegrity is sensitive to higher range of substrate stiffness.
Collapse
Affiliation(s)
| | | | | | - Arkady Voloshin
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, 18017, USA.
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18017, USA.
| |
Collapse
|
2
|
Liu C, Chen Y, Xie Y, Xiang M. Tubulin Post-translational Modifications: Potential Therapeutic Approaches to Heart Failure. Front Cell Dev Biol 2022; 10:872058. [PMID: 35493101 PMCID: PMC9039000 DOI: 10.3389/fcell.2022.872058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
In recent decades, advancing insights into the mechanisms of cardiac dysfunction have focused on the involvement of microtubule network. A variety of tubulin post-translational modifications have been discovered to fine-tune the microtubules’ properties and functions. Given the limits of therapies based on conserved structures of the skeleton, targeting tubulin modifications appears to be a potentially promising therapeutic strategy. Here we review the current understanding of tubulin post-translational modifications in regulating microtubule functions in the cardiac system. We also discussed how altered modifications may lead to a range of cardiac dysfunctions, many of which are linked to heart failure.
Collapse
Affiliation(s)
- Chang Liu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuwen Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Xie
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Wang C, Li S, Ademiloye AS, Nithiarasu P. Biomechanics of cells and subcellular components: A comprehensive review of computational models and applications. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3520. [PMID: 34390323 DOI: 10.1002/cnm.3520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Cells are a fundamental structural, functional and biological unit for all living organisms. Up till now, considerable efforts have been made to study the responses of single cells and subcellular components to an external load, and understand the biophysics underlying cell rheology, mechanotransduction and cell functions using experimental and in silico approaches. In the last decade, computational simulation has become increasingly attractive due to its critical role in interpreting experimental data, analysing complex cellular/subcellular structures, facilitating diagnostic designs and therapeutic techniques, and developing biomimetic materials. Despite the significant progress, developing comprehensive and accurate models of living cells remains a grand challenge in the 21st century. To understand current state of the art, this review summarises and classifies the vast array of computational biomechanical models for cells. The article covers the cellular components at multi-spatial levels, that is, protein polymers, subcellular components, whole cells and the systems with scale beyond a cell. In addition to the comprehensive review of the topic, this article also provides new insights into the future prospects of developing integrated, active and high-fidelity cell models that are multiscale, multi-physics and multi-disciplinary in nature. This review will be beneficial for the researchers in modelling the biomechanics of subcellular components, cells and multiple cell systems and understanding the cell functions and biological processes from the perspective of cell mechanics.
Collapse
Affiliation(s)
- Chengyuan Wang
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, UK
| | - Si Li
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, UK
| | - Adesola S Ademiloye
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, UK
| | - Perumal Nithiarasu
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, UK
| |
Collapse
|
4
|
Liu N, Chavoshnejad P, Li S, Razavi MJ, Liu T, Pidaparti R, Wang X. Geometrical nonlinear elasticity of axon under tension: A coarse-grained computational study. Biophys J 2021; 120:3697-3708. [PMID: 34310941 DOI: 10.1016/j.bpj.2021.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/19/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Axon bundles cross-linked by microtubule (MT) associate proteins and bounded by a shell skeleton are critical for normal function of neurons. Understanding effects of the complexly geometrical parameters on their mechanical properties can help gain a biomechanical perspective on the neurological functions of axons and thus brain disorders caused by the structural failure of axons. Here, the tensile mechanical properties of MT bundles cross-linked by tau proteins are investigated by systematically tuning MT length, axonal cross-section radius, and tau protein spacing in a bead-spring coarse-grained model. Our results indicate that the stress-strain curves of axons can be divided into two regimes, a nonlinear elastic regime dominated by rigid-body like inter-MT sliding, and a linear elastic regime dominated by affine deformation of both tau proteins and MTs. From the energetic analyses, first, the tau proteins dominate the mechanical performance of axons under tension. In the nonlinear regime, tau proteins undergo a rigid-body like rotating motion rather than elongating, whereas in the nonlinear elastic regime, tau proteins undergo a flexible elongating deformation along the MT axis. Second, as the average spacing between adjacent tau proteins along the MT axial direction increases from 25 to 125 nm, the Young's modulus of axon experiences a linear decrease whereas with the average space varying from 125 to 175 nm, and later reaches a plateau value with a stable fluctuation. Third, the increment of the cross-section radius of the MT bundle leads to a decrease in Young's modulus of axon, which is possibly attributed to the decrease in MT numbers per cross section. Overall, our research findings offer a new perspective into understanding the effects of geometrical parameters on the mechanics of MT bundles as well as serving as a theoretical basis for the development of artificial MT complexes potentially toward medical applications.
Collapse
Affiliation(s)
- Ning Liu
- College of Engineering, University of Georgia, Athens, Georgia
| | - Poorya Chavoshnejad
- Department of Mechanical Engineering, Binghamton University, Binghamton, New York
| | - Shaoheng Li
- College of Engineering, University of Georgia, Athens, Georgia
| | - Mir Jalil Razavi
- Department of Mechanical Engineering, Binghamton University, Binghamton, New York
| | - Tianming Liu
- Department of Computer Science, University of Georgia, Athens, Georgia
| | | | - Xianqiao Wang
- College of Engineering, University of Georgia, Athens, Georgia.
| |
Collapse
|
5
|
Finite Element Simulations of Mechanical Behaviour of Endothelial Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8847372. [PMID: 33681382 PMCID: PMC7904360 DOI: 10.1155/2021/8847372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 01/07/2023]
Abstract
Biomechanical models based on the finite element method have already shown their potential in the simulation of the mechanical behaviour of cells. For instance, development of atherosclerosis is accelerated by damage of the endothelium, a monolayer of endothelial cells on the inner surface of arteries. Finite element models enable us to investigate mechanical factors not only at the level of the arterial wall but also at the level of individual cells. To achieve this, several finite element models of endothelial cells with different shapes are presented in this paper. Implementing the recently proposed bendotensegrity concept, these models consider the flexural behaviour of microtubules and incorporate also waviness of intermediate filaments. The suspended and adherent cell models are validated by comparison of their simulated force-deformation curves with experiments from the literature. The flat and dome cell models, mimicking natural cell shapes inside the endothelial layer, are then used to simulate their response in compression and shear which represent typical loads in a vascular wall. The models enable us to analyse the role of individual cytoskeletal components in the mechanical responses, as well as to quantify the nucleus deformation which is hypothesized to be the quantity decisive for mechanotransduction.
Collapse
|
6
|
Migration of the 3T3 Cell with a Lamellipodium on Various Stiffness Substrates—Tensegrity Model. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Changes in mechanical stimuli and the physiological environment are sensed by the cell. Thesechanges influence the cell’s motility patterns. The cell’s directional migration is dependent on the substrate stiffness. To describe such behavior of a cell, a tensegrity model was used. Cells with an extended lamellipodium were modeled. The internal elastic strain energy of a cell attached to the substrates with different stiffnesses was evaluated. The obtained results show that on the stiffer substrate, the elastic strain energy of the cell adherent to this substrate decreases. Therefore, the substrate stiffness is one of the parameters that govern the cell’s directional movement.
Collapse
|
7
|
Mechanics of actin filaments in cancer onset and progress. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 355:205-243. [DOI: 10.1016/bs.ircmb.2020.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Bansod YD, Matsumoto T, Nagayama K, Bursa J. A Finite Element Bendo-Tensegrity Model of Eukaryotic Cell. J Biomech Eng 2019; 140:2681670. [PMID: 30029237 DOI: 10.1115/1.4040246] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Indexed: 01/07/2023]
Abstract
Mechanical interaction of cell with extracellular environment affects its function. The mechanisms by which mechanical stimuli are sensed and transduced into biochemical responses are still not well understood. Considering this, two finite element (FE) bendo-tensegrity models of a cell in different states are proposed with the aim to characterize cell deformation under different mechanical loading conditions: a suspended cell model elucidating the global response of cell in tensile test simulation and an adherent cell model explicating its local response in atomic force microscopy (AFM) indentation simulation. The force-elongation curve obtained from tensile test simulation lies within the range of experimentally obtained characteristics of smooth muscle cells (SMCs) and illustrates a nonlinear increase in reaction force with cell stretching. The force-indentation curves obtained from indentation simulations lie within the range of experimentally obtained curves of embryonic stem cells (ESCs) and exhibit the influence of indentation site on the overall reaction force of cell. Simulation results have demonstrated that actin filaments (AFs) and microtubules (MTs) play a crucial role in the cell stiffness during stretching, whereas actin cortex (AC) along with actin bundles (ABs) and MTs are essential for the cell rigidity during indentation. The proposed models quantify the mechanical contribution of individual cytoskeletal components to cell mechanics and the deformation of nucleus under different mechanical loading conditions. These results can aid in better understanding of structure-function relationships in living cells.
Collapse
Affiliation(s)
- Yogesh Deepak Bansod
- Faculty of Mechanical Engineering (FME), Institute of Solid Mechanics, Mechatronics and Biomechanics (ISMMB), Brno University of Technology (BUT), Technicka 2896/2, Brno 61669, Czech Republic e-mail:
| | - Takeo Matsumoto
- Biomechanics Laboratory, Department of Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan e-mail:
| | - Kazuaki Nagayama
- Biomechanics Laboratory, Department of Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan e-mail:
| | - Jiri Bursa
- Faculty of Mechanical Engineering (FME), Institute of Solid Mechanics, Mechatronics and Biomechanics (ISMMB), Brno University of Technology (BUT), , Brno 61669, Czech Republic e-mail:
| |
Collapse
|
9
|
Simhadri JJ, Chandran PL. Capturing 3D large-strain Euler-bending filament dynamics in fibrous media simulations; sample case of compression collapse in dendritic actin network. Sci Rep 2019; 9:3990. [PMID: 30850656 PMCID: PMC6408500 DOI: 10.1038/s41598-019-40430-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/14/2019] [Indexed: 12/03/2022] Open
Abstract
Cytoskeletal networks to transmission towers are comprised of slender elements. Slender filaments bend and buckle more easily than stretch. Therefore a deforming network is expected to exhaust all possible bending-based modes before engaging filament stretch. While the large-strain bending critically determines fibrous-media response, simulations use small-strain and jointed approximations. At low resolution, these approximations inflate bending resistance and delay buckling onset. The proposed string-of-continuous-beams (SOCB) approach captures 3D nonlinear Euler bending of filaments with high fidelity at low cost. Bending geometry (i.e. angles and its differentials) is solved as primary variables, to fit a 5th order polynomial of the contour angle. Displacement, solved simultaneously as length conservation, is predicted with C3 and C6 smoothness between and within segments, using only 2 nodes. In the chosen analysis frame, in-plane and out-plane moments can be decoupled for arbitrarily-curved segments. Complex crosslink force-transfers can be specified. Simulations show that when a daughter branch is appended, the buckling resistance of a filament changes from linear to nonlinear before reversible collapse. An actin outcrop with 8 generations of mother-daughter branching produced the linear, nonlinear, and collapse regimes observed in compression experiments. 'Collapse' was a redistribution of outcrop forces following the buckling of few strands.
Collapse
Affiliation(s)
| | - Preethi L Chandran
- Department of Chemical Engineering, Howard University, Washington, DC, 2005, USA.
| |
Collapse
|
10
|
Li S, Zhang J, Wang C, Nithiarasu P. Atomistic Modeling of F-Actin Mechanical Responses and Determination of Mechanical Properties. ACS Biomater Sci Eng 2018; 4:2794-2803. [DOI: 10.1021/acsbiomaterials.8b00640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Si Li
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, Wales SA1 8EN, U.K
| | - Jin Zhang
- Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Chengyuan Wang
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, Wales SA1 8EN, U.K
| | - Perumal Nithiarasu
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, Wales SA1 8EN, U.K
| |
Collapse
|
11
|
Effects of the cross-linkers on the buckling of microtubules in cells. J Biomech 2018; 72:167-172. [PMID: 29551426 DOI: 10.1016/j.jbiomech.2018.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/13/2018] [Accepted: 03/03/2018] [Indexed: 11/23/2022]
Abstract
In cells, the protein cross-linkers lead to a distinct buckling behavior of microtubules (MTs) different from the buckling of individual MTs. This paper thus aims to examine this issue via the molecular structural mechanics (MSM) simulations. The transition of buckling responses was captured as the two-dimensional-linkers were replaced by the three-dimensional (3D) ones. Then, the effects of the radial orientation and the axial density of the 3D-linkers were examined, showing that more uniform distribution of the radial orientation leads to the higher critical load with 3D buckling modes, while the inhomogeneity of the axial density results in the localized buckling patterns. The results demonstrated the important role of the cross-linker in regulating MT stiffness, revealed the physics of the experimentally observed localized buckling and these results will pave the way to a new multi-component mechanics model for whole cells.
Collapse
|
12
|
Shams H, Soheilypour M, Peyro M, Moussavi-Baygi R, Mofrad MRK. Looking "Under the Hood" of Cellular Mechanotransduction with Computational Tools: A Systems Biomechanics Approach across Multiple Scales. ACS Biomater Sci Eng 2017; 3:2712-2726. [PMID: 33418698 DOI: 10.1021/acsbiomaterials.7b00117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Signal modulation has been developed in living cells throughout evolution to promote utilizing the same machinery for multiple cellular functions. Chemical and mechanical modules of signal transmission and transduction are interconnected and necessary for organ development and growth. However, due to the high complexity of the intercommunication of physical intracellular connections with biochemical pathways, there are many missing details in our overall understanding of mechanotransduction processes, i.e., the process by which mechanical signals are converted to biochemical cascades. Cell-matrix adhesions are mechanically coupled to the nucleus through the cytoskeleton. This modulated and tightly integrated network mediates the transmission of mechanochemical signals from the extracellular matrix to the nucleus. Various experimental and computational techniques have been utilized to understand the basic mechanisms of mechanotransduction, yet many aspects have remained elusive. Recently, in silico experiments have made important contributions to the field of mechanobiology. Herein, computational modeling efforts devoted to understanding integrin-mediated mechanotransduction pathways are reviewed, and an outlook is presented for future directions toward using suitable computational approaches and developing novel techniques for addressing important questions in the field of mechanotransduction.
Collapse
Affiliation(s)
- Hengameh Shams
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California 94720-1762, United States
| | - Mohammad Soheilypour
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California 94720-1762, United States
| | - Mohaddeseh Peyro
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California 94720-1762, United States
| | - Ruhollah Moussavi-Baygi
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California 94720-1762, United States
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California 94720-1762, United States
| |
Collapse
|
13
|
Kamm RD, Lammerding J, Mofrad MRK. Cellular Nanomechanics. SPRINGER HANDBOOK OF NANOTECHNOLOGY 2017. [DOI: 10.1007/978-3-662-54357-3_31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Robison P, Caporizzo MA, Ahmadzadeh H, Bogush AI, Chen CY, Margulies KB, Shenoy VB, Prosser BL. Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes. Science 2016; 352:aaf0659. [PMID: 27102488 PMCID: PMC5441927 DOI: 10.1126/science.aaf0659] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 01/29/2016] [Indexed: 12/24/2022]
Abstract
The microtubule (MT) cytoskeleton can transmit mechanical signals and resist compression in contracting cardiomyocytes. How MTs perform these roles remains unclear because of difficulties in observing MTs during the rapid contractile cycle. Here, we used high spatial and temporal resolution imaging to characterize MT behavior in beating mouse myocytes. MTs deformed under contractile load into sinusoidal buckles, a behavior dependent on posttranslational "detyrosination" of α-tubulin. Detyrosinated MTs associated with desmin at force-generating sarcomeres. When detyrosination was reduced, MTs uncoupled from sarcomeres and buckled less during contraction, which allowed sarcomeres to shorten and stretch with less resistance. Conversely, increased detyrosination promoted MT buckling, stiffened the myocyte, and correlated with impaired function in cardiomyopathy. Thus, detyrosinated MTs represent tunable, compression-resistant elements that may impair cardiac function in disease.
Collapse
Affiliation(s)
- Patrick Robison
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew A Caporizzo
- Department of Materials Science and Engineering, University of Pennsylvania School of Engineering and Applied Science, Philadelphia, PA 19104, USA
| | - Hossein Ahmadzadeh
- Department of Materials Science and Engineering, University of Pennsylvania School of Engineering and Applied Science, Philadelphia, PA 19104, USA
| | - Alexey I Bogush
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Christina Yingxian Chen
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kenneth B Margulies
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, University of Pennsylvania School of Engineering and Applied Science, Philadelphia, PA 19104, USA
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Soheilypour M, Peyro M, Peter SJ, Mofrad MRK. Buckling behavior of individual and bundled microtubules. Biophys J 2016; 108:1718-1726. [PMID: 25863063 DOI: 10.1016/j.bpj.2015.01.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/07/2014] [Accepted: 01/15/2015] [Indexed: 11/16/2022] Open
Abstract
As the major structural constituent of the cytoskeleton, microtubules (MTs) serve a variety of biological functions that range from facilitating organelle transport to maintaining the mechanical integrity of the cell. Neuronal MTs exhibit a distinct configuration, hexagonally packed bundles of MT filaments, interconnected by MT-associated protein (MAP) tau. Building on our previous work on mechanical response of axonal MT bundles under uniaxial tension, this study is focused on exploring the compression scenarios. Intracellular MTs carry a large fraction of the compressive loads sensed by the cell and therefore, like any other column-like structure, are prone to substantial bending and buckling. Various biological activities, e.g., actomyosin contractility and many pathological conditions are driven or followed by bending, looping, and buckling of MT filaments. The coarse-grained model previously developed in our lab has been used to study the mechanical behavior of individual and bundled in vivo MT filaments under uniaxial compression. Both configurations show tip-localized, decaying, and short-wavelength buckling. This behavior highlights the role of the surrounding cytoplasm and MAP tau on MT buckling behavior, which allows MT filaments to bear much larger compressive forces. It is observed that MAP tau interconnections improve this effect by a factor of two. The enhanced ability of MT bundles to damp buckling waves relative to individual MT filaments, may be interpreted as a self-defense mechanism because it helps axonal MTs to endure harsher environments while maintaining their function. The results indicate that MT filaments in a bundle do not buckle simultaneously implying that the applied stress is not equally shared among the MT filaments, that is a consequence of the nonuniform distribution of MAP tau proteins along the bundle length. Furthermore, from a pathological perspective, it is observed that axonal MT bundles are more vulnerable to failure in compression than tension.
Collapse
Affiliation(s)
- Mohammad Soheilypour
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, California
| | - Mohaddeseh Peyro
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, California
| | - Stephen J Peter
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, California
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, California.
| |
Collapse
|
16
|
Lopez BJ, Valentine MT. Molecular control of stress transmission in the microtubule cytoskeleton. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015. [PMID: 26225932 DOI: 10.1016/j.bbamcr.2015.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this article, we will summarize recent progress in understanding the mechanical origins of rigidity, strength, resiliency and stress transmission in the MT cytoskeleton using reconstituted networks formed from purified components. We focus on the role of network architecture, crosslinker compliance and dynamics, and molecular determinants of single filament elasticity, while highlighting open questions and future directions for this work.
Collapse
Affiliation(s)
- Benjamin J Lopez
- Department of Mechanical Engineering and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-5070, USA
| | - Megan T Valentine
- Department of Mechanical Engineering and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-5070, USA.
| |
Collapse
|
17
|
Golji J, Mofrad MRK. The talin dimer structure orientation is mechanically regulated. Biophys J 2015; 107:1802-1809. [PMID: 25418161 DOI: 10.1016/j.bpj.2014.08.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 06/30/2014] [Accepted: 08/27/2014] [Indexed: 01/09/2023] Open
Abstract
Formation of a stable cell-substrate contact can be regulated by mechanical force, especially at the focal adhesion. Individual proteins that make up the focal adhesions, such as talin, can exhibit mechanosensing. We previously described one mode of talin mechanosensing in which the vinculin-binding site of talin is exposed after force-induced stretch of a single talin rod domain. Here, we describe a second mode of talin mechanosensing in which the talin dimer itself can adopt different orientations in response to mechanical stimulation. Using molecular dynamics models, we demonstrate that the C-terminus region of the talin dimer is flexible mainly at the linker between the dimerization helices and the nearby actin-binding helical bundle. Our molecular dynamics simulations reveal two possible orientations of the talin dimer at its C-terminus. The extracellular matrix (ECM)-bound integrins cross-linked by talin can be forced apart leading to an elongated orientation of the talin dimer, and the ECM-bound integrins can be forced together by the ECM producing a collapsed orientation of the talin dimer. Formation of the elongated orientation is shown to be more favorable. Switching between the two talin dimer orientations constitutes a mode of mechanosensing.
Collapse
Affiliation(s)
- Javad Golji
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California.
| |
Collapse
|
18
|
Banerjee N, Park J. Modeling and simulation of biopolymer networks: Classification of the cytoskeleton models according to multiple scales. KOREAN J CHEM ENG 2015. [DOI: 10.1007/s11814-015-0071-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Tsai RY, Cheng YC, Wong CS. (+)-Naloxone inhibits morphine-induced chemotaxis via prevention of heat shock protein 90 cleavage in microglia. J Formos Med Assoc 2015; 114:446-55. [PMID: 25649471 DOI: 10.1016/j.jfma.2014.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/30/2014] [Accepted: 12/26/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND/PURPOSE Microglia have a crucial role in maintaining neuronal homeostasis in the central nervous system. Immune factors released from microglia have important roles in nociceptive signal transduction. Activation of microglia seems to be a shared mechanism in pathological pain and morphine tolerance because pharmacological attenuation of microglia activation provides satisfactory management in both situations. METHODS In the present study, we investigated the effect of 1nM (+)-naloxone, which is not an opioid receptor antagonist, on morphine-induced activation of microglia EOC13.31 cells. RESULTS Our results showed that 1μM morphine enhanced microglia activation and migration, decreased α-tubulin acetylation, and induced heat shock protein 90 (HSP90) fragmentation and histone deacetylase 6 (HDAC6) expression. Morphine-induced α-tubulin deacetylation and HSP90 fragmentation were HDAC6-dependent. Pretreatment with (+)-naloxone (1nM) inhibited morphine-evoked microglia activation and chemotaxis and prevented α-tubulin deacetylation and HSP90 fragmentation by inhibiting HDAC6 expression. CONCLUSION Based on the findings of the present study, we suggest that (+)-naloxone inhibits morphine-induced microglia activation by regulating HDAC6-dependent α-tubulin deacetylation and HSP90 fragmentation.
Collapse
Affiliation(s)
- Ru-Yin Tsai
- Department of Nursing, Da-Yeh University, Changhua, Taiwan; Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| | - Yu-Che Cheng
- Department of Medical Research, Cathay General Hospital, Taipei, Taiwan
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan; School of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan; Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
20
|
Kushagra A. Thermal Fluctuation Induced Piezoelectric Effect in Cytoskeletal Microtubules: Model for Energy Harvesting and Their Intracellular Communication. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jbise.2015.88048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Jin MZ, Ru CQ. Localized vibration of a microtubule surrounded by randomly distributed cross linkers. J Biomech Eng 2014; 136:1861670. [PMID: 24728501 DOI: 10.1115/1.4027413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 04/11/2014] [Indexed: 11/08/2022]
Abstract
Based on finite element simulation, the present work studies free vibration of a microtubule surrounded by 3D randomly distributed cross linkers in living cells. A basic result of the present work is that transverse vibration modes associated with the lowest frequencies are highly localized, in sharp contrast to the through-length modes predicted by the commonly used classic elastic foundation model. Our simulations show that the deflected length of localized modes increases with increasing frequency and approaches the entire length of microtubule when frequency approaches the minimum classic frequency given by the elastic foundation model. In particular, unlike the length-sensitive classic frequencies predicted by the elastic foundation model, the lowest frequencies of localized modes predicted by the present model are insensitive to the length of microtubules and are at least 50% lower than the minimum classic frequency for infinitely long microtubules and could be one order of magnitude lower than the minimum classic frequency for shorter microtubules (only a few microns in length). These results suggest that the existing elastic foundation model may have overestimated the lowest frequencies of microtubules in vivo. Finally, based on our simulation results, some empirical relations are proposed for the critical (lowest) frequency of localized modes and the associated wave length. Compared to the classic elastic foundation model, the localized vibration modes and the associated wave lengths predicted by the present model are in better agreement with some known experimental observations.
Collapse
|
22
|
Seyedpour SM, Pachenari M, Janmaleki M, Alizadeh M, Hosseinkhani H. Effects of an antimitotic drug on mechanical behaviours of the cytoskeleton in distinct grades of colon cancer cells. J Biomech 2014; 48:1172-8. [PMID: 25678199 DOI: 10.1016/j.jbiomech.2014.11.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 11/17/2014] [Accepted: 11/20/2014] [Indexed: 11/28/2022]
Abstract
Biomechanical behaviours of cells change during cancer progression due to alterations in the main cytoskeletal proteins. Microtubules play a vital role in mitosis and in supporting the integrity of the cell due to their ability to withstand high compressive loads. Accordingly, microtubule-targeting agents (MTAs) have become one of the most promising classes of drugs in cancer therapy. This study evaluated changes in visco-elastic parameters induced by an appropriate concentration of an antimitotic drug in two different grades of colon cancer cells. Actin microfilaments and microtubules contents in the cells were evaluated by Western blot analysis and fluorescence intensity calculation. Micropipette aspiration experiments showed that the MTA had distinct mechanical effects on different cell lines. The more aggressive the cells, the greater the reduction in elasticity and viscosity. Invasive cells had a higher initial instantaneous Young's modulus than primary cells, but this reduced to approximately one half of the values for primary cells after 48 h of drug treatment. A considerable association was seen between the changes in mechanical properties and the microtubule to F-actin microfilament content ratio, which decreased with MTA treatment.
Collapse
Affiliation(s)
- S M Seyedpour
- Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran; Medical Nanotechnology and Tissue Engineering Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Pachenari
- Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran; Medical Nanotechnology and Tissue Engineering Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Janmaleki
- Medical Nanotechnology and Tissue Engineering Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - M Alizadeh
- Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - H Hosseinkhani
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| |
Collapse
|
23
|
Pritchard RH, Huang YYS, Terentjev EM. Mechanics of biological networks: from the cell cytoskeleton to connective tissue. SOFT MATTER 2014; 10:1864-84. [PMID: 24652375 DOI: 10.1039/c3sm52769g] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
From the cell cytoskeleton to connective tissues, fibrous networks are ubiquitous in metazoan life as the key promoters of mechanical strength, support and integrity. In recent decades, the application of physics to biological systems has made substantial strides in elucidating the striking mechanical phenomena observed in such networks, explaining strain stiffening, power law rheology and cytoskeletal fluidisation - all key to the biological function of individual cells and tissues. In this review we focus on the current progress in the field, with a primer into the basic physics of individual filaments and the networks they form. This is followed by a discussion of biological networks in the context of a broad spread of recent in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Robyn H Pritchard
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK.
| | | | | |
Collapse
|
24
|
Zhang J, Wang C. Molecular structural mechanics model for the mechanical properties of microtubules. Biomech Model Mechanobiol 2014; 13:1175-84. [DOI: 10.1007/s10237-014-0564-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 02/20/2014] [Indexed: 11/24/2022]
|
25
|
Nava MM, Raimondi MT, Pietrabissa R. Bio-chemo-mechanical models for nuclear deformation in adherent eukaryotic cells. Biomech Model Mechanobiol 2014; 13:929-43. [DOI: 10.1007/s10237-014-0558-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/30/2014] [Indexed: 12/12/2022]
|
26
|
Ladjal H, Hanus JL, Ferreira A. Micro-to-Nano Biomechanical Modeling for Assisted Biological Cell Injection. IEEE Trans Biomed Eng 2013; 60:2461-71. [DOI: 10.1109/tbme.2013.2258155] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Jin MZ, Ru CQ. Localized buckling of a microtubule surrounded by randomly distributed cross linkers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:012701. [PMID: 23944486 DOI: 10.1103/physreve.88.012701] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 04/26/2013] [Indexed: 06/02/2023]
Abstract
Microtubules supported by surrounding cross linkers in eukaryotic cells can bear a much higher compressive force than free-standing microtubules. Different from some previous studies, which treated the surroundings as a continuum elastic foundation or elastic medium, the present paper develops a micromechanics numerical model to examine the role of randomly distributed discrete cross linkers in the buckling of compressed microtubules. First, the proposed numerical approach is validated by reproducing the uniform multiwave buckling mode predicted by the existing elastic-foundation model. For more realistic buckling of microtubules surrounded by randomly distributed cross linkers, the present numerical model predicts that the buckling mode is localized at one end in agreement with some known experimental observations. In particular, the critical force for localized buckling, predicted by the present model, is insensitive to microtubule length and can be about 1 order of magnitude lower than those given by the elastic-foundation model, which suggests that the elastic-foundation model may have overestimated the critical force for buckling of microtubules in vivo. In addition, unlike the elastic-foundation model, the present model can capture the effect of end conditions on the critical force and wavelength of localized buckling. Based on the known data of spacing and elastic constants of cross linkers available in literature, the critical force and wavelength of the localized buckling mode, predicted by the present model, are compared to some experimental data with reasonable agreement. Finally, two empirical formulas are proposed for the critical force and wavelength of the localized buckling of microtubules surrounded by cross linkers.
Collapse
Affiliation(s)
- M Z Jin
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada T6G 2G8
| | | |
Collapse
|
28
|
Abstract
The mechanical properties of microtubules have been an area of active research for the past two decades, in part because understanding the mechanics of individual microtubules contributes to modeling whole-cell rigidity and structure and hence to better understanding the processes underlying motility and transport. Moreover, the role of microtubule structure and microtubule-associated proteins (MAPs) in microtubule stiffness remains unclear. In this chapter, we present a kinesin-driven microtubule gliding assay analysis of persistence length that is amenable to simultaneous variation of microtubule parameters such as length, structure, or MAP coverage and determination of persistence length. By combining sparse fluorescent labeling of individual microtubules with single particle tracking of individual fluorophores, microtubule gliding trajectories are tracked with nanometer-level precision. The fluctuations in these trajectories, due to thermal fluctuations in the microtubules themselves, are analyzed to extract the microtubule persistence length. In the following, we describe this gliding assay and analysis and discuss two example microtubule variables, length and diameter, in anticipation that the method may be of wide use for in vitro study of microtubule mechanical properties.
Collapse
|
29
|
Martin DS, Yu L, Van Hoozen BL. Flexural rigidity measurements of biopolymers using gliding assays. J Vis Exp 2012:50117. [PMID: 23169251 DOI: 10.3791/50117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Microtubules are cytoskeletal polymers which play a role in cell division, cell mechanics, and intracellular transport. Each of these functions requires microtubules that are stiff and straight enough to span a significant fraction of the cell diameter. As a result, the microtubule persistence length, a measure of stiffness, has been actively studied for the past two decades(1). Nonetheless, open questions remain: short microtubules are 10-50 times less stiff than long microtubules(2-4), and even long microtubules have measured persistence lengths which vary by an order of magnitude(5-9). Here, we present a method to measure microtubule persistence length. The method is based on a kinesin-driven microtubule gliding assay(10). By combining sparse fluorescent labeling of individual microtubules with single particle tracking of individual fluorophores attached to the microtubule, the gliding trajectories of single microtubules are tracked with nanometer-level precision. The persistence length of the trajectories is the same as the persistence length of the microtubule under the conditions used(11). An automated tracking routine is used to create microtubule trajectories from fluorophores attached to individual microtubules, and the persistence length of this trajectory is calculated using routines written in IDL. This technique is rapidly implementable, and capable of measuring the persistence length of 100 microtubules in one day of experimentation. The method can be extended to measure persistence length under a variety of conditions, including persistence length as a function of length along microtubules. Moreover, the analysis routines used can be extended to myosin-based acting gliding assays, to measure the persistence length of actin filaments as well.
Collapse
|
30
|
Kardas D, Nackenhorst U, Balzani D. Computational model for the cell-mechanical response of the osteocyte cytoskeleton based on self-stabilizing tensegrity structures. Biomech Model Mechanobiol 2012; 12:167-83. [PMID: 22527364 DOI: 10.1007/s10237-012-0390-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 03/15/2012] [Indexed: 10/28/2022]
Abstract
The mechanism by which mechanical stimulation on osteocytes results in biochemical signals that initiate the remodeling process inside living bone tissue is largely unknown. Even the type of stimulation acting on these cells is not yet clearly identified. However, the cytoskeleton of osteocytes is suggested to play a major role in the mechanosensory process due to the direct connection to the nucleus. In this paper, a computational approach to model and simulate the cell structure of osteocytes based on self-stabilizing tensegrity structures is suggested. The computational model of the cell consists of the major components with respect to mechanical aspects: the integrins that connect the cell with the extracellular bone matrix, and different types of protein fibers (microtubules and intermediate filaments) that form the cytoskeleton, the membrane-cytoskeleton (microfilaments), the nucleus and the centrosome. The proposed geometrical cell models represent the cell in its physiological environment which is necessary in order to give a statement on the cell behavior in vivo. Studies on the mechanical response of osteocytes after physiological loading and in particular the mechanical response of the nucleus show that the load acting on the nucleus is rising with increasing deformation applied to the integrins.
Collapse
Affiliation(s)
- Dieter Kardas
- Institute of Mechanics and Computational Mechanics, Leibniz Universität Hannover, Hanover, Germany.
| | | | | |
Collapse
|
31
|
Peter SJ, Mofrad MRK. Computational modeling of axonal microtubule bundles under tension. Biophys J 2012; 102:749-57. [PMID: 22385845 DOI: 10.1016/j.bpj.2011.11.4024] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 11/04/2011] [Accepted: 11/22/2011] [Indexed: 01/29/2023] Open
Abstract
Microtubule bundles cross-linked by tau protein serve a variety of neurological functions including maintaining mechanical integrity of the axon, promoting axonal growth, and facilitating cargo transport. It has been observed that axonal damage in traumatic brain injury leads to bundle disorientation, loss of axonal viability, and cognitive impairment. This study investigates the initial mechanical response of axonal microtubule bundles under uniaxial tension using a discrete bead-spring representation. Mechanisms of failure due to traumatic stretch loading and their impact on the mechanical response and stability are also characterized. This study indicates that cross-linked axonal microtubule bundles in tension display stiffening behavior similar to a power-law relationship from nonaffine network deformations. Stretching of cross-links and microtubule bending were the primary deformation modes at low stresses. Microtubule stretch was negligible up to tensile stresses of ∼1 MPa. Bundle failure occurred by failure of cross-links leading to pull-out of microtubules and loss of bundle integrity. This may explain the elongation, undulation, and delayed elasticity of axons following traumatic stretch loading. More extensively cross-linked bundles withstood higher tensile stresses before failing. The bundle mechanical behavior uncovered by these computational techniques should guide future experiments on stretch-injured axons.
Collapse
Affiliation(s)
- Stephen J Peter
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering, University of California, Berkeley, California, USA
| | | |
Collapse
|