1
|
Dong X, Xue S, Chen C, Jiang Z, Wu X, Wang W. MYCT-1 Gene Expression in Patients with Gastric Cancer: an Ex Vivo Study. Appl Biochem Biotechnol 2024; 196:5114-5126. [PMID: 38112991 DOI: 10.1007/s12010-023-04754-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/21/2023]
Abstract
Ploidy, p53, bcl-2, and c-myc genes are associated with gastric cancer. Myc target 1 (MYCT1) gene is an oncogenic gene and is associated with cancer progression through different signal transduction pathways identifying the corresponding genes The objective of the study was to evaluate the association between MYCT1 gene expression and gastric cancer. Real-time polymerase chain reaction (RT-PCR), western blot analysis, cell growth study, and TUNEL assay were performed for the human gastric cancer cell lines and human embryonic kidney cell line. β-Actin gene preferred as a control in RT-PCR. The ratio of MYCT1 gene expression to β-actin gene expression less than 0.5 was considered as downregulation. Using SDS-PAGE MYCT1 gene expression was measured in western blot analysis. Cells with and without the MYCT1 gene were incubated in 35 mm plates with 10% fetal bovine serum in the cell growth study. TUNEL assay was performed to detect the effect of the MYCT1 gene on the apoptosis of cells. The ratio of MYCT1 gene expression to β-actin gene expression was 0.47 ± 0.01 and 0.76 ± 0.01 for human gastric cancer cell lines and human embryonic kidney cell lines, respectively. MYCT1 gene expression was downregulated in the human gastric cancer cell lines than human embryonic kidney cell line (p < 0.001). MYCT1 gene decreased cell growth (p = 0.041) during 6 days of incubation study of cells. TUNEL assay showed only the fluorescence of PI in BGC823 cells without the MYCT1 gene. MYCT1 gene expression was downregulated in the human gastric cancer cell lines, and MYCT1 gene accelerates the apoptotic process.
Collapse
Affiliation(s)
- Xiangning Dong
- Department of Oncology, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou, China.
| | - Song Xue
- Department of Oncology, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou, China
| | - Chen Chen
- Department of Ultrasound, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou, China
| | - Zonghui Jiang
- Department of Oncology, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou, China
| | - Xiangdu Wu
- Department of Gastroenterology, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou, China
| | - Weifei Wang
- Department of Oncology, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou, China
| |
Collapse
|
2
|
Mittal K, Cooper GW, Lee BP, Su Y, Skinner KT, Shim J, Jonus HC, Kim WJ, Doshi M, Almanza D, Kynnap BD, Christie AL, Yang X, Cowley GS, Leeper BA, Morton CL, Dwivedi B, Lawrence T, Rupji M, Keskula P, Meyer S, Clinton CM, Bhasin M, Crompton BD, Tseng YY, Boehm JS, Ligon KL, Root DE, Murphy AJ, Weinstock DM, Gokhale PC, Spangle JM, Rivera MN, Mullen EA, Stegmaier K, Goldsmith KC, Hahn WC, Hong AL. Targeting TRIP13 in favorable histology Wilms tumor with nuclear export inhibitors synergizes with doxorubicin. Commun Biol 2024; 7:426. [PMID: 38589567 PMCID: PMC11001930 DOI: 10.1038/s42003-024-06140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/03/2024] [Indexed: 04/10/2024] Open
Abstract
Wilms tumor (WT) is the most common renal malignancy of childhood. Despite improvements in the overall survival, relapse occurs in ~15% of patients with favorable histology WT (FHWT). Half of these patients will succumb to their disease. Identifying novel targeted therapies remains challenging in part due to the lack of faithful preclinical in vitro models. Here we establish twelve patient-derived WT cell lines and demonstrate that these models faithfully recapitulate WT biology using genomic and transcriptomic techniques. We then perform loss-of-function screens to identify the nuclear export gene, XPO1, as a vulnerability. We find that the FDA approved XPO1 inhibitor, KPT-330, suppresses TRIP13 expression, which is required for survival. We further identify synergy between KPT-330 and doxorubicin, a chemotherapy used in high-risk FHWT. Taken together, we identify XPO1 inhibition with KPT-330 as a potential therapeutic option to treat FHWTs and in combination with doxorubicin, leads to durable remissions in vivo.
Collapse
Affiliation(s)
- Karuna Mittal
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Garrett W Cooper
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Benjamin P Lee
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Yongdong Su
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Katie T Skinner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Jenny Shim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Hunter C Jonus
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Won Jun Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mihir Doshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Diego Almanza
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bryan D Kynnap
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amanda L Christie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xiaoping Yang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Brittaney A Leeper
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Bhakti Dwivedi
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Taylor Lawrence
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Manali Rupji
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Paula Keskula
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephanie Meyer
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Catherine M Clinton
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Manoj Bhasin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Brian D Crompton
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yuen-Yi Tseng
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jesse S Boehm
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Keith L Ligon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Merck & Co., Rahway, NJ, USA
| | - Prafulla C Gokhale
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jennifer M Spangle
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Miguel N Rivera
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth A Mullen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kimberly Stegmaier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kelly C Goldsmith
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Andrew L Hong
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
3
|
Zhu X, Zhao R, Feng C, Cheng Y, Zhang X, Deng Q, Liu H. [Application of acellular dermal matrix in prevention of laryngeal stenosis in glottic carcinoma]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2024; 38:321-324. [PMID: 38563176 PMCID: PMC11387300 DOI: 10.13201/j.issn.2096-7993.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Indexed: 04/04/2024]
Abstract
Objective:To investigate the effect of acellular dermal matrix in preventing laryngeal stenosis in glottic carcinoma patients. Methods:Fifty-five patients with glottic carcinoma(T2, T3) from February 2018 to December 2022 were divided into experimental group(28 cases) and control group(27 cases) according to their wishes. Acellular dermal matrix was placed in the operation cavity in the experimental group after laryngofission, while control group 12 cases were sutured by pulling the upper and lower edges, 15 cases were repaired with sternohyoid muscle fascia flap. Results:In the experimental group, 1 case had laryngeal stenosis caused by laryngeal mucosa swelling after operation, and extubated successfully after symptomatic treatment. In the control group, 7 cases had laryngeal stenosis after operation, of which 3 cases were caused by granulation tissue hyperplasia in laryngeal cavity, and extubated after symptomatic treatment. 2 cases extubated after operation suffered from progressive dyspnea during radiotherapy, and underwent tracheotomy again, extubation successful after treatment. 2 cases caused by laryngeal mucosa swelling, after symptomatic treatment, one case was successfully extubated, and one case had long-term intubation. The laryngeal stenosis rate of the experimental group was 3.6%(1/28) , which was lower than control group 25.9%(7/27), and the therapeutic effect of the experimental group was significantly better than control group (χ²=5.526, P=0.019). Conclusion:Implanting acellular dermal matrix in the operation cavity of glottic carcinoma can reduce the occurrence of laryngeal stenosis and have satisfactory preventive effect on laryngeal stenosis.
Collapse
Affiliation(s)
- Xin Zhu
- Department of Otolaryngology,Affiliated Hospital of North Sichuan Medical College,Nanchong,637000,China
| | - Rui Zhao
- Department of Otolaryngology,Affiliated Hospital of North Sichuan Medical College,Nanchong,637000,China
| | - Chengmin Feng
- Department of Otolaryngology,Affiliated Hospital of North Sichuan Medical College,Nanchong,637000,China
| | - Yao Cheng
- Department of Otolaryngology,Affiliated Hospital of North Sichuan Medical College,Nanchong,637000,China
| | - Xi Zhang
- Department of Otolaryngology,Affiliated Hospital of North Sichuan Medical College,Nanchong,637000,China
| | - Qicheng Deng
- Department of Otolaryngology,Affiliated Hospital of North Sichuan Medical College,Nanchong,637000,China
| | - Hai Liu
- Department of Otolaryngology,Affiliated Hospital of North Sichuan Medical College,Nanchong,637000,China
| |
Collapse
|
4
|
Liang Y, Wei X, Yue PJ, Zhang HC, Li ZN, Wang XX, Sun YY, Fu WN. MYCT1 inhibits hematopoiesis in diffuse large B-cell lymphoma by suppressing RUNX1 transcription. Cell Mol Biol Lett 2024; 29:5. [PMID: 38172714 PMCID: PMC10763471 DOI: 10.1186/s11658-023-00522-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The abnormality of chromosomal karyotype is one factor causing poor prognosis of lymphoma. In the analysis of abnormal karyotype of lymphoma patients, three smallest overlap regions were found, in which MYCT1 was located. MYCT1 is the first tumor suppressor gene cloned by our research team, but its studies relating to the occurrence and development of lymphoma have not been reported. METHODS R banding analyses were employed to screen the abnormality of chromosomal karyotype in clinical specimen and MYCT1 over-expression cell lines. FISH was to monitor MYCT1 copy number aberration. RT-PCR and Western blot were to detect the mRNA and protein levels of the MYCT1 and RUNX1 genes, respectively. The MYCT1 and RUNX1 protein levels in clinical specimen were evaluated by immunohistochemical DAB staining. The interaction between MYCT1 and MAX proteins was identified via Co-IP and IF. The binding of MAX on the promoter of the RUNX1 gene was detected by ChIP and Dual-luciferase reporter assay, respectively. Flow cytometry and CCK-8 assay were to explore the effects of MYCT1 and RUNX1 on the cell cycle and proliferation, respectively. RESULTS MYCT1 was located in one of three smallest overlap regions of diffuse large B-cell lymphoma, it altered chromosomal instability of diffuse large B-cell lymphoma cells. MYCT1 negatively correlated with RUNX1 in lymphoma tissues of the patients. MAX directly promoted the RUNX1 gene transcription by binding to its promoter region. MYCT1 may represses RUNX1 transcription by binding MAX in diffuse large B-cell lymphoma cells. MYCT1 binding to MAX probably suppressed RUNX1 transcription, leading to the inhibition of proliferation and cell cycle of the diffuse large B-cell lymphoma cells. CONCLUSION This study finds that there is a MYCT1-MAX-RUNX1 signaling pathway in diffuse large B-cell lymphoma. And the study provides clues and basis for the in-depth studies of MYCT1 in the diagnosis, treatment and prognosis of lymphoma.
Collapse
Affiliation(s)
- Ying Liang
- Department of Medical Genetics, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Xin Wei
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Peng-Jie Yue
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - He-Cheng Zhang
- Department of Medical Genetics, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Zhen-Ning Li
- Department of Oromaxillofacial-Head and Neck Surgery, Liaoning Province Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Shenyang, People's Republic of China
| | - Xiao-Xue Wang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Yuan-Yuan Sun
- Department of Medical Genetics, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China.
| | - Wei-Neng Fu
- Department of Medical Genetics, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China.
| |
Collapse
|
5
|
Guo H, Zhang WX, Zhang QY, Li M, Wang HY, Li D, Liu J, Zhuo Z, He J, Miao L, Xia H. MUC15 is an independent prognostic factor that promotes metastases of MYCN non-amplified neuroblastoma. J Cancer 2023; 14:3496-3507. [PMID: 38021164 PMCID: PMC10647185 DOI: 10.7150/jca.89360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Neuroblastoma (NB) is a cancer that arises from neural-crest-derived sympathoadrenal lineage. Less is known about the pathogenesis and molecular characteristics of MYCN non-amplified (MYCN-NA) NB. Methods: We constructed a signature model targeting mucin family according to RNA sequencing data from GSE49710 dataset, and validated the prognostic performance. We also analyzed the gene expression matrix using DESeq2 R packages to screen the most differential mucin in high-risk NB samples. We further assessed its prognostic value, particularly in MYCN-NA NB samples. Moreover, we performed functional experiments to evaluate the impact of MUC15 overexpression on the migration of MYCN-NA NB cell lines. Results: The 8-mucin signature model showed good prognostic performance in the GSE49710 dataset. Among the mucin genes, MUC15 was significantly upregulated in the high-risk NB cohort and was associated with poor prognosis, especially in MYCN-NA NB samples. Furthermore, MUC15 overexpression and exogenous MUC15 protein enhanced the migration of MYCN-NA NB cell lines. Mechanistically, MUC15 promoted the phosphorylation of focal adhesion kinase (FAK) by inhibiting the expression of MYCT1, a target of c-Myc. Conclusions: Our findings suggested a potential network in controlling NB cell metastasis. Targeting MUC15 in MYCN-NA NB patients could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Huiqin Guo
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Wei-Xin Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Qiu-yan Zhang
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Hai-Yun Wang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Di Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jiabin Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Zhenjian Zhuo
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Huimin Xia
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| |
Collapse
|
6
|
Xu J, Sun Y, Fu W, Fu S. MYCT1 in cancer development: Gene structure, regulation, and biological implications for diagnosis and treatment. Biomed Pharmacother 2023; 165:115208. [PMID: 37499454 DOI: 10.1016/j.biopha.2023.115208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
Myc target 1 (MYCT1), located at 6q25.2, is a crucial player in cancer development. While widely distributed in cells, its subcellular localization varies across different cancer types. As a novel c-Myc target gene, MYCT1 is subject to regulation by multiple transcription factors. Studies have revealed aberrant expression of MYCT1 in various cancers, impacting pivotal biological processes such as proliferation, apoptosis, migration, genomic instability, and differentiation in cancer cells. Additionally, MYCT1 plays a critical role in modulating tumor angiogenesis and remodeling tumor immune responses within the tumor microenvironment. Despite certain debated functions, MYCT1 undeniably holds significance in cancer development. In this review, we comprehensively examine the relationship between MYCT1 and cancer, encompassing gene structure, regulation of gene expression, gene mutation, and biological function, with the aim of providing valuable insights for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Jianan Xu
- Department of Medical genetics, China Medical University, Shenyang 110022, PR China
| | - Yuanyuan Sun
- Department of Medical genetics, China Medical University, Shenyang 110022, PR China
| | - Weineng Fu
- Department of Medical genetics, China Medical University, Shenyang 110022, PR China
| | - Shuang Fu
- Department of Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110022, PR China; Department of Medical genetics, China Medical University, Shenyang 110022, PR China.
| |
Collapse
|
7
|
Sunder-Plassmann R, Geusau A, Endler G, Weninger W, Wielscher M. Identification of Genetic Risk Factors for Keratinocyte Cancer in Immunosuppressed Solid Organ Transplant Recipients: A Case-Control Study. Cancers (Basel) 2023; 15:3354. [PMID: 37444464 DOI: 10.3390/cancers15133354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Because of long-term immunosuppression, solid organ transplant recipients are at increased risk for keratinocyte cancer. We matched solid organ transplant patients (n = 150), cases with keratinocyte cancers and tumor-free controls, considering the most important risk factors for keratinocyte cancer in solid organ transplant recipients. Using whole exome data of germline DNA from this patient cohort, we identified several genetic loci associated with the occurrence of multiple keratinocyte cancers. We found one genome-wide significant association of a common single nucleotide polymorphism located in EXOC3 (rs72698504). In addition, we found several variants with a p-value of less than 10-5 associated with the number of keratinocyte cancers. These variants were located in the genes CYB561, WASHC1, PITRM1-AS1, MUC8, ABI3BP, and THBS2-AS1. Using whole exome sequencing data, we performed groupwise tests for rare missense variants in our dataset and found robust associations (p < 10-6, Burden Zeggini test) between MC1R, EPHA8, EPO, MYCT1, ADGRG3, and MGME1 and keratinocyte cancer. Thus, overall, we detected genes involved in pigmentation/UV protection, tumor suppression, immunomodulation, intracellular traffic, and response to UV as genetic risk factors for multiple keratinocyte cancers in solid organ transplant recipients. We also grouped selected genes to pathways and found a selection of genes involved in the "cellular response to UV" to be significantly associated with multiple keratinocyte cancers.
Collapse
Affiliation(s)
| | - Alexandra Geusau
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Georg Endler
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Matthias Wielscher
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
8
|
Bisht S, Chawla B, Kumar A, Vijayan V, Kumar M, Sharma P, Dada R. Identification of novel genes by targeted exome sequencing in Retinoblastoma. Ophthalmic Genet 2022; 43:771-788. [PMID: 35930312 DOI: 10.1080/13816810.2022.2106497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Retinoblastoma (RB) is initiated by mutation in both alleles of RB1 gene. However, few cases may occur even in the absence of RB1 mutation suggesting the role of genes other than RB1. METHODOLOGY The current study was planned to utilize targeted exome sequencing in Indian RB patients affected with unilateral non-familial RB. 75 unilateral RB patients below 5 years of age were enrolled. Genomic DNA was extracted from blood and tumor tissue. From peripheral blood DNA, all coding and exon/intron regions were amplified using PCR and direct sequencing. Cases which did not harbor pathogenic variants in peripheral blood DNA were further screened for mutations in their tumor tissue DNA using targeted exome sequencing. Three pathogenicity prediction tools (Mutation Taster, SIFT, and PolyPhen-2) were used to determine the pathogenicity of non-synonymous variations. An in-house bioinformatics pipeline was devised for the mutation screening by targeted exome sequencing. Protein modeling studies were also done to predict the effect of the mutations on the protein structure and function. RESULTS Using the mentioned approach, we found two novel variants (g.69673_69674insT and g.48373314C>A) in RB1 gene in peripheral blood DNA. We also found novel variants in eight genes (RB1, ACAD11, GPR151, KCNA1, OTOR, SOX30, ARL11, and MYCT1) that may be associated with RB pathogenesis. CONCLUSION The present study expands our current knowledge regarding the genomic landscape of RB and also highlights the importance of NGS technologies to detect genes and novel variants that may play an important role in cancer initiation, progression, and prognosis.
Collapse
Affiliation(s)
- Shilpa Bisht
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Bhavna Chawla
- Ocular Oncology Service, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Amit Kumar
- Computational Genomics Centre, Indian Council of Medical Research, New Delhi, India
| | - Viswanathan Vijayan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Manoj Kumar
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Rima Dada
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
9
|
Fitriana M, Hwang WL, Chan PY, Hsueh TY, Liao TT. Roles of microRNAs in Regulating Cancer Stemness in Head and Neck Cancers. Cancers (Basel) 2021; 13:cancers13071742. [PMID: 33917482 PMCID: PMC8038798 DOI: 10.3390/cancers13071742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/14/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are epithelial malignancies with 5-year overall survival rates of approximately 40-50%. Emerging evidence indicates that a small population of cells in HNSCC patients, named cancer stem cells (CSCs), play vital roles in the processes of tumor initiation, progression, metastasis, immune evasion, chemo-/radioresistance, and recurrence. The acquisition of stem-like properties of cancer cells further provides cellular plasticity for stress adaptation and contributes to therapeutic resistance, resulting in a worse clinical outcome. Thus, targeting cancer stemness is fundamental for cancer treatment. MicroRNAs (miRNAs) are known to regulate stem cell features in the development and tissue regeneration through a miRNA-target interactive network. In HNSCCs, miRNAs act as tumor suppressors and/or oncogenes to modulate cancer stemness and therapeutic efficacy by regulating the CSC-specific tumor microenvironment (TME) and signaling pathways, such as epithelial-to-mesenchymal transition (EMT), Wnt/β-catenin signaling, and epidermal growth factor receptor (EGFR) or insulin-like growth factor 1 receptor (IGF1R) signaling pathways. Owing to a deeper understanding of disease-relevant miRNAs and advances in in vivo delivery systems, the administration of miRNA-based therapeutics is feasible and safe in humans, with encouraging efficacy results in early-phase clinical trials. In this review, we summarize the present findings to better understand the mechanical actions of miRNAs in maintaining CSCs and acquiring the stem-like features of cancer cells during HNSCC pathogenesis.
Collapse
Affiliation(s)
- Melysa Fitriana
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Otorhinolaryngology Head and Neck Surgery Department, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Wei-Lun Hwang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Cancer Progression Center of Excellence, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Pak-Yue Chan
- School of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-Y.C.); (T.-Y.H.)
| | - Tai-Yuan Hsueh
- School of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-Y.C.); (T.-Y.H.)
| | - Tsai-Tsen Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Correspondence: ; Tel.: +886-2736-1661 (ext. 3435)
| |
Collapse
|
10
|
Wang PP, Ding SY, Sun YY, Li YH, Fu WN. MYCT1 Inhibits the Adhesion and Migration of Laryngeal Cancer Cells Potentially Through Repressing Collagen VI. Front Oncol 2021; 10:564733. [PMID: 33680912 PMCID: PMC7931689 DOI: 10.3389/fonc.2020.564733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/30/2020] [Indexed: 12/24/2022] Open
Abstract
MYCT1, a target of c-Myc, inhibits laryngeal cancer cell migration, but the underlying mechanism remains unclear. In the study, we detected differentially expressed genes (DEGs) from laryngeal cancer cells transfected by MYCT1 using RNA-seq (GSE123275). DEGs from head and neck squamous cell carcinoma (HNSCC) were first screened by comparison of transcription data from the Gene Expression Omnibus (GSE6631) and the Cancer Genome Atlas (TCGA) datasets using weighted gene co-expression network analysis (WGCNA). GO and KEGG pathway analysis explained the functions of the DEGs. The DEGs overlapped between GSE6631and TCGA datasets were then compared with ours to find the key DEGs downstream of MYCT1 related to the adhesion and migration of laryngeal cancer cells. qRT-PCR and Western blot were applied to validate gene expression at mRNA and protein levels, respectively. Finally, the cell adhesion, migration, and wound healing assays were to check cell adhesion and migration abilities, respectively. As results, 39 overlapping genes were enriched in the GSE6631 and TCGA datasets, and most of them revealed adhesion function. Thirteen of 39 genes including COL6 members COL6A1, COL6A2, and COL6A3 were overlapped in GSE6631, TCGA, and GSE123275 datasets. Similar to our RNA-seq results, we confirmed that COL6 is a target of MYCT1 in laryngeal cancer cells. We also found that MYCT1 inhibited the adhesion and migration of laryngeal cancer cells via COL6. These indicate that COL6 is a potential target of MYCT1 and participates the adhesion and migration of laryngeal cancer cells, which provides an important clue for further study on how MYCT1 regulating COL6 in laryngeal cancer progression.
Collapse
Affiliation(s)
- Peng-Peng Wang
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - Si-Yu Ding
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - Yuan-Yuan Sun
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - Yun-Hui Li
- Department of Laboratory Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Wei-Neng Fu
- Department of Medical Genetics, China Medical University, Shenyang, China
| |
Collapse
|
11
|
Mao CG, Zhou XC, Jiang YD, Wan LJ, Tao ZZ, Guo J. The Evi5 oncogene promotes laryngeal cancer cells proliferation by stabilizing c-Myc protein. Cancer Cell Int 2020; 20:44. [PMID: 32047362 PMCID: PMC7006165 DOI: 10.1186/s12935-020-1127-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/29/2020] [Indexed: 01/23/2023] Open
Abstract
Background The Ecotropic viral integration site 5 (Evi5) is recognized as a potential oncogene and a cell cycle regulator. Evi5 regulates the abundance of Emi1, an inhibitor of the anaphase-promoting complex/cyclosome, to govern mitotic fidelity. Evi5 has been shown to be dysregulated in several cancer types. However, the expression and biological function of Evi5 in human laryngeal squamous cell carcinoma (LSCC) are still unknown. Methods Clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing was used to generate Evi5 knockout (KO) LSCC cells. The proliferation and cell cycle distribution of LSCC cells was determined. The effect of Evi5 on LSCC tumor growth in vivo was studied in a tumor xenograft model in mice. The interaction between Evi5 and c-Myc was detected by immunoprecipitation (IP) assay. Luciferase assay was used to determine the transcriptional activity of c-Myc. Results Here, we show that Evi5 controls LSCC tumorigenesis via the stabilization of c-MYC oncogene. CRISPR-mediated knockout (KO) of Evi5 decreased the proliferation and decreased colony formation ability of LSCC cells. Knockout of Evi5 caused increased G1 phase and decreased S phase cells. In the tumor-bearing nude mice, The transplanted tumors originated from Evi5-KO TU212 cells were significantly decreased when compared with control TU212 cells. At the molecular level, we found that Evi5 interacted with c-MYC and Evi5 antagonized E3 ligase FBXW7-mediated ubiquitination and degradation of c-Myc protein, and promoted c-Myc-dependent transactivation. Conclusion Given the critical role of c-Myc in tumorigenesis, our data suggest that Evi5 is a potential therapeutic target in LSCC, and inhibition of Evi5 should be a prospective strategy for LSCC therapy.
Collapse
Affiliation(s)
- Cheng-Gang Mao
- 1Department of Otolaryngology-Head and Neck Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, 1 Ren-Min Road, Jingzhou, 434020 People's Republic of China
| | - Xiao-Chun Zhou
- 1Department of Otolaryngology-Head and Neck Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, 1 Ren-Min Road, Jingzhou, 434020 People's Republic of China
| | - Yi-Dao Jiang
- 1Department of Otolaryngology-Head and Neck Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, 1 Ren-Min Road, Jingzhou, 434020 People's Republic of China
| | - Li-Jia Wan
- 1Department of Otolaryngology-Head and Neck Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, 1 Ren-Min Road, Jingzhou, 434020 People's Republic of China
| | - Ze-Zhang Tao
- 2Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 People's Republic of China
| | - Jun Guo
- 3Department of Oncology, Affiliated Dongfeng Hospital, Hubei University of Medicine, No. 10, Daling Road, Shiyan, 442008 Hubei People's Republic of China
| |
Collapse
|
12
|
Yin K, Zhang Y, Zhang S, Bao Y, Guo J, Zhang G, Li T. Using weighted gene co-expression network analysis to identify key modules and hub genes in tongue squamous cell carcinoma. Medicine (Baltimore) 2019; 98:e17100. [PMID: 31517839 PMCID: PMC6750333 DOI: 10.1097/md.0000000000017100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Tongue squamous cell carcinoma (TSCC) is one of the most common malignant tumors in head and neck, but its molecular mechanism is not clear. METHODS Weighted gene co-expression network analysis (WGCNA) combining with gene differential expression analysis, survival analysis to screen key modules and hub genes related to the progress of TSCC. Gene Set Enrichment Analysis (GSEA) was used to identify biological pathways that might be involved. RESULTS Weighted gene co-expression network was constructed based on dataset GSE34105. The blue module and turquoise module most related to the progress of TSCC were identified by the network. Gene Ontology (GO) enrichment analysis showed that 2 key modules were significantly enriched in apoptosis and immunity related biological processes and pathway. Network topology analysis, gene difference analysis and survival analysis were used to screen 9 hub genes (NOC2L, AIMP2, ANXA2, DIABLO, H2AFZ, MANBAL, PRDX6, SNX14, TIMM23). The expression of hub genes was significantly correlated with the prognosis of TSCC. GSEA showed that the high expression group of hub genes was mainly enriched in olfactory transduction, neuroactive ligand receptor interaction, nicotinate and nicotinamide metabolism, and the low expression group was mainly enriched in base excision repair, cysteine and methionine metabolism, oxidative phosphorylation. CONCLUSION Two key modules and 9 hub genes screened by WGCNA were closely related to the occurrence and prognosis of TSCC. Hub genes can be used as biomarkers and potential therapeutic targets for the accurate diagnosis and treatment of TSCC in the future.
Collapse
Affiliation(s)
- Ke Yin
- Department of Stomatology, Xingtai People's Hospital of Hebei Medical University, Xingtai
| | - Ying Zhang
- Department of Stomatology, The Third Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Suxin Zhang
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang
| | - Yang Bao
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang
| | - Jie Guo
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang
| | - Guanhua Zhang
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang
| | - Tianke Li
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang
| |
Collapse
|
13
|
Zhang MJ, Chen DS, Li H, Liu WW, Han GY, Han YF. Clinical significance of USP7 and EZH2 in predicting prognosis of laryngeal squamous cell carcinoma and their possible functional mechanism. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2184-2194. [PMID: 31934041 PMCID: PMC6949638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Laryngeal squamous cell carcinoma (LSCC) is one of the most prevalent cancer types in the world. The ubiquitin specific protease 7 (USP7), a kind of deubiquitylating enzyme, has been reported to play multifaceted roles in different tumor types. EZH2 has been found to be highly expressed in various malignantcells and high expression of EZH2 is closely related to tumor growth infiltration, lymph node involvement, clinical stage, and poor prognosis. The aim of this study was to investigate the expression and function of USP7 and EZH2 in LSCC. CASE PRESENTATION Immunohistochemical staining and histochemical staining were performed to explore the expression of USP7 and EZH2 in both LSCC tissues and adjacent normal laryngeal tissues. Chi-square test, univariate analysis, and multivariate analysis were conducted to statistically evaluate the clinical significance of USP7 and EZH2. CONCLUSIONS USP7and EZH2 affects LSCC evolution; USP7 and EZH2 were upregulated in LSCC tissues, which can serve as independent prognostic predictors, and potential therapeutic targets for LSCC.
Collapse
Affiliation(s)
- Ming-Jie Zhang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Bengbu Medical University Bengbu, Anhui, China
| | - De-Shang Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital of Bengbu Medical University Bengbu, Anhui, China
| | - Hui Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Bengbu Medical University Bengbu, Anhui, China
| | - Wei-Wei Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Bengbu Medical University Bengbu, Anhui, China
| | - Guo-Ying Han
- Department of Otorhinolaryngology, The First Affiliated Hospital of Bengbu Medical University Bengbu, Anhui, China
| | - Yue-Feng Han
- Department of Otorhinolaryngology, The First Affiliated Hospital of Bengbu Medical University Bengbu, Anhui, China
| |
Collapse
|
14
|
Zhang X, Feng H, Li Z, Li D, Liu S, Huang H, Li M. Application of weighted gene co-expression network analysis to identify key modules and hub genes in oral squamous cell carcinoma tumorigenesis. Onco Targets Ther 2018; 11:6001-6021. [PMID: 30275705 PMCID: PMC6157991 DOI: 10.2147/ott.s171791] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose Oral squamous cell carcinoma (OSCC) is one of the most common malignant diseases worldwide, yet its molecular mechanisms are largely unknown. We aimed to construct gene co-expression networks to identify key modules and hub genes involved in the pathogenesis of OSCC. Patients and methods We used dataset GSE30784 to construct co-expression networks by weighted gene co-expression network analysis (WGCNA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed by Database for Annotation, Visualization and Integrated Discovery (DAVID). Hub genes were screened and validated by other datasets. Results Turquoise and brown modules were found to be the most significantly related to tumorigenesis. Functional enrichment analysis showed that the turquoise module was associated with cell–cell adhesion, extracellular matrix and collagen catabolic process. A total of 10 hub genes (MMP1, TNFRSF12A, PLAU, FSCN1, PDPN, KRT78, EVPL, GGT6, SMIM5 and CYSRT1) were identified and validated at transcriptional and translational levels. Their genetic alteration and survival analysis were also revealed. Conclusion We identified two modules and 10 hub genes, which were associated with the tumorigenesis of OSCC. The two modules provided references that will advance the understanding of mechanisms of tumorigenesis in OSCC. Moreover, the hub genes may serve as biomarkers and therapeutic targets for precise diagnosis and treatment of OSCC in the future.
Collapse
Affiliation(s)
- Xiaoqi Zhang
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China, ;
| | - Hao Feng
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China, ;
| | - Ziyu Li
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China, ;
| | - Dongfang Li
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China, ;
| | - Shanshan Liu
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China, ;
| | - Haiyun Huang
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China, ;
| | - Minqi Li
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China, ;
| |
Collapse
|
15
|
Fu S, Fu Y, Chen F, Hu Y, Quan B, Zhang J. Overexpression of MYCT1 Inhibits Proliferation and Induces Apoptosis in Human Acute Myeloid Leukemia HL-60 and KG-1a Cells in vitro and in vivo. Front Pharmacol 2018; 9:1045. [PMID: 30283340 PMCID: PMC6157318 DOI: 10.3389/fphar.2018.01045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022] Open
Abstract
MYC target 1 (MYCT1), a direct target gene of c-Myc, is a novel candidate tumor suppressor gene first cloned from laryngeal squamous cell carcinoma. The downregulation of MYCT1 has been reported to be associated with carcinogenesis. However, the role of MYCT1 in the development and progress of acute myeloid leukemia (AML) remains unknown and requires further investigation. In this study, we first found that the expression level of MYCT1 was significantly lower in the bone marrow (BM) derived from AML patients than that from healthy individuals. The low expression of MYCT1 in AML BM may be due to the hypermethylation in its promoter. MYCT1 expression was strongly associated with French-American-British classifications of AML. The low expression level of MYCT1 was more often observed in patients of M1, M5 and M6 types. In vitro, lentiviral particles carrying the complete CDS of MYCT1 gene were used to mediate the forced overexpression of MYCT1 in two AML cell lines, HL-60 and KG-1a. MYCT1 overexpression significantly inhibited cell proliferation, arrested cell cycle at G0/G1 phase, and downregulated the expression of cyclins D and E. Moreover, MYCT1 overexpression triggered apoptosis in AML cells, which was accompanied by enhanced cleavage of caspase-3 and -9, upregulated expression of B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax), and downregulated Bcl-2. Finally, in BALB/c nude mice bearing xenograft tumors generated by HL-60 and KG-1a cells, we noted that the intratumoral injection of MYCT1 lentivirus repressed tumor growth and led to massive apoptosis. In summary, our results reveal that MYCT1's promoter is hypermethylated and its expression is downregulated in the BM of AML patients. MYCT1 plays a tumor-suppressive role, and it may serve as a promising target for the genetic therapeutic strategy in treating AML.
Collapse
Affiliation(s)
- Shuang Fu
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Fu
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang Chen
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanping Hu
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bi Quan
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jihong Zhang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Zhang ZX, Zhang WN, Sun YY, Li YH, Xu ZM, Fu WN. CREB promotes laryngeal cancer cell migration via MYCT1/NAT10 axis. Onco Targets Ther 2018; 11:1323-1331. [PMID: 29563811 PMCID: PMC5848665 DOI: 10.2147/ott.s156582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose CREB, MYCY1 and NAT10 are involved in cancer cell migration. However, the relationship between these three proteins and their role in laryngeal cancer cell migration remains unknown. Methods Transient gene transfection was performed in laryngeal cancer cells. Bioinformatics analysis was used to predict the binding of CREB to MYCT1 promoter. Binding of CREB to the promoter of MYCT1 was monitored by luciferase reporter assay and chromatin immuno-precipitation method in vitro and in vivo, respectively. Real-time RT-PCR and Western bolt were applied to detect gene transcription and translation levels, respectively. Laryngeal cancer cell migration was assayed by transwell chamber experiment. Results CREB protein expression was significantly up-regulated in laryngeal cancer tissues and associated with cancer differentiation, tumor stage, and lymphatic metastasis. CREB inhibits MYCT1 expression by direct binding to its promoter. Meanwhile, MYCT1 has a negative impact on the NAT10 gene expression. Furthermore, CREB promotes NAT10 expression via down-regulating the MYCT1 gene expression. In addition, contrary to MYCT1, CREB and NAT10 enhanced laryngeal cancer cell migration. MYCT1 and NAT10 significantly rescued the effects of CREB and MYCT1 on Hep2 cell migration, respectively. Conclusion CREB promotes laryngeal cancer cell migration via MYCT1/NAT10 axis, suggesting that CREB might be a potential prognostic marker in laryngeal cancer.
Collapse
Affiliation(s)
- Zhao-Xiong Zhang
- Department of Medical Genetics, China Medical University, Shenyang, People's Republic of China
| | - Wan-Ni Zhang
- Department of Medical Genetics, China Medical University, Shenyang, People's Republic of China
| | - Yuan-Yuan Sun
- Department of Medical Genetics, China Medical University, Shenyang, People's Republic of China
| | - Yun-Hui Li
- Department of Laboratory Medicine, No 202 Hospital of PLA, Shenyang, People's Republic of China
| | - Zhen-Ming Xu
- Department of Otolaryngology, No 463 Hospital of PLA, Shenyang, People's Republic of China
| | - Wei-Neng Fu
- Department of Medical Genetics, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
17
|
Cordeiro YG, Xavier PLP, Rochetti AL, Alexandre PA, Mori CMC, Strefezzi RF, Fukumasu H. Transcriptomic profile reveals molecular events associated to focal adhesion and invasion in canine mammary gland tumour cell lines. Vet Comp Oncol 2017; 16:E89-E98. [DOI: 10.1111/vco.12339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/20/2017] [Accepted: 06/26/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Y. G. Cordeiro
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, School of Animal Science and Food Engineering; University of São Paulo; Pirassununga Brazil
| | - P. L. P. Xavier
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, School of Animal Science and Food Engineering; University of São Paulo; Pirassununga Brazil
| | - A. L. Rochetti
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, School of Animal Science and Food Engineering; University of São Paulo; Pirassununga Brazil
| | - P. A. Alexandre
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, School of Animal Science and Food Engineering; University of São Paulo; Pirassununga Brazil
| | - C. M. C. Mori
- Department of Pathology, School of Veterinary Medicine and Animal Science; University of São Paulo; São Paulo Brazil
| | - R. F. Strefezzi
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, School of Animal Science and Food Engineering; University of São Paulo; Pirassununga Brazil
| | - H. Fukumasu
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, School of Animal Science and Food Engineering; University of São Paulo; Pirassununga Brazil
| |
Collapse
|
18
|
Qu S, Sun Y, Li Y, Xu Z, Fu W. YY1 directly suppresses MYCT1 leading to laryngeal tumorigenesis and progress. Cancer Med 2017; 6:1389-1398. [PMID: 28485541 PMCID: PMC5463081 DOI: 10.1002/cam4.1073] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/07/2017] [Accepted: 03/15/2017] [Indexed: 12/14/2022] Open
Abstract
YY1 is a key transcription factor and plays different roles in various cancers. However, role and mechanism of YY1 in laryngeal cancer are still unknown. YY1 and MYCT1 mRNA and protein levels were detected by Real-time RT-PCR and Western Blot methods, respectively. Binding of YY1 to MYCT1 promoter was predicted and confirmed by bioinformatics and chromatin immunoprecipitation assays, respectively. MYCT1 promoter activity was assessed by dual luciferase assay system. Laryngeal cancer cell proliferation, migration, and apoptosis were evaluated by cell viability, colony formation, cell scratch assay, transwell assay, and flow cytometry methods, respectively. YY1 and MYCT1 were upregulated and downregulated at transcriptional level in laryngeal cancer, respectively, which showed a negative correlation between YY1 and MYCT1 expression in laryngeal cancer. Significantly higher expression of YY1 and lower expression of MYCT1 were found in laryngeal cancer tissues of patients with lymphatic metastasis than those without metastasis.YY1 directly bound to MYCT1 promoter region and inhibited its promoter activity. YY1 silence had similar biological functions as MYCT1 overexpression in repressiveness of proliferation and migration, and promotion of apoptosis in laryngeal cancer cells. However, the effects of YY1 silence were recovered by MYCT1 knockdown. YY1 promotes proliferation and migration with suppression of apoptosis via directly inhibiting MYCT1 in laryngeal cancer cells, suggesting that YY1 is a useful target as a potential oncogene in laryngeal cancer development and progression.
Collapse
Affiliation(s)
- Si‐Yao Qu
- Department of Medical GeneticsChina Medical UniversityShenyang110122China
- National Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100005China
| | - Yuan‐Yuan Sun
- Department of Medical GeneticsChina Medical UniversityShenyang110122China
| | - Yun‐Hui Li
- Department of Laboratory MedicineNo. 202 Hospital of PLAShenyang110003China
| | - Zhen‐Ming Xu
- Department of OtolaryngologyNo. 463 Hospital of PLAShenyang110007China
| | - Wei‐Neng Fu
- Department of Medical GeneticsChina Medical UniversityShenyang110122China
| |
Collapse
|
19
|
Yang B, Guo Q, Wang F, Cai K, Bao X, Chu J. A 80-gene set potentially predicts the relapse in laryngeal carcinoma optimized by support vector machine. Cancer Biomark 2017; 19:65-73. [DOI: 10.3233/cbm-160375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Dunnick JK, Merrick BA, Brix A, Morgan DL, Gerrish K, Wang Y, Flake G, Foley J, Shockley KR. Molecular Changes in the Nasal Cavity after N, N-dimethyl-p-toluidine Exposure. Toxicol Pathol 2016; 44:835-47. [PMID: 27099258 DOI: 10.1177/0192623316637708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
N, N-dimethyl-p-toluidine (DMPT; Cas No. 99-97-8), an accelerant for methyl methacrylate monomers in medical devices, is a nasal cavity carcinogen according to a 2-yr cancer study of male and female F344/N rats, with the nasal tumors arising from the transitional cell epithelium. In this study, we exposed male F344/N rats for 5 days to DMPT (0, 1, 6, 20, 60, or 120 mg/kg [oral gavage]) to explore the early changes in the nasal cavity after short-term exposure. Lesions occurred in the nasal cavity including hyperplasia of transitional cell epithelium (60 and 120 mg/kg). Nasal tissue was rapidly removed and preserved for subsequent laser capture microdissection and isolation of the transitional cell epithelium (0 and 120 mg/kg) for transcriptomic studies. DMPT transitional cell epithelium gene transcript patterns were characteristic of an antioxidative damage response (e.g., Akr7a3, Maff, and Mgst3), cell proliferation, and decrease in signals for apoptosis. The transcripts of amino acid transporters were upregulated (e.g., Slc7a11). The DMPT nasal transcript expression pattern was similar to that found in the rat nasal cavity after formaldehyde exposure, with over 1,000 transcripts in common. Molecular changes in the nasal cavity after DMPT exposure suggest that oxidative damage is a mechanism of the DMPT toxic and/or carcinogenic effects.
Collapse
Affiliation(s)
- June K Dunnick
- Toxicology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - B Alex Merrick
- Biomolecular Screening Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Amy Brix
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - Daniel L Morgan
- NTP Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Kevin Gerrish
- Molecular Genomics Core, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Yu Wang
- Cellular and Molecular Pathology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Gordon Flake
- Cellular and Molecular Pathology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Julie Foley
- Cellular and Molecular Pathology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Keith R Shockley
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
21
|
Wu S, Gui J, Yin X, Pan Q, Liu X, Chu L. Transmembrane domain is crucial to the subcellular localization and function of Myc target 1. J Cell Mol Med 2015; 20:471-81. [PMID: 26710964 PMCID: PMC4759468 DOI: 10.1111/jcmm.12747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/30/2015] [Indexed: 12/20/2022] Open
Abstract
Deregulation of c-MYC occurs in a variety of human cancers. Overexpression of c-MYC promotes cell growth, proliferation, apoptosis, transformation and genomic instability. MYC target 1 (MYCT1) is a direct target gene of c-MYC, and its murine homologue MT-MC1 recapitulated multiple c-Myc-related phenotypes. However, the molecular mechanism of MYCT1 remains unclear. Here, we identified the transmembrane (TM) domain of MYCT1, not the nuclear localization sequence, is indispensable to the vesicle-associated localization of MYCT1 protein in the cytoplasmic membrane vesicle. Overexpression of MYCT1, not MYCT1 (ΔTM), decreased cell viability under serum deprivation and increased tumour cell migration ability. We further identified CKAP4 interacted with MYCT1 and contributed to the function of MYCT1. In addition, we found that a mutation, A88D, which is observed in patient sample, changed the localization, and abolished the effect on cell viability and cell migration, suggesting that the TM domain is critical to MYCT1.
Collapse
Affiliation(s)
- Shuai Wu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinghua Gui
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaofei Yin
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Pan
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinyuan Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liang Chu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
22
|
Lu ZM, Lin YF, Jiang L, Chen LS, Luo XN, Song XH, Chen SH, Zhang SY. Micro-ribonucleic acid expression profiling and bioinformatic target gene analyses in laryngeal carcinoma. Onco Targets Ther 2014; 7:525-33. [PMID: 24741319 PMCID: PMC3983076 DOI: 10.2147/ott.s59871] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Abnormal expression of micro-ribonucleic acid (miRNA) might be clinically valuable as a biomarker or treatment target in the early diagnosis, treatment, and prognosis of tumors. However, little is known concerning abnormal miRNA expression of laryngeal carcinoma, one of the most commonly encountered head and neck tumors. Microarray analysis was used to obtain miRNA-expression profiles of ten pairs of freshly frozen laryngeal carcinoma tissue and surrounding normal tissue specimens. Characteristic miRNAs that were significantly related to laryngeal carcinoma were identified. Verification was performed using an additional 32 pairs of samples. The expression of two miRNAs (miR-21-3p and miR-106b-3p) was upregulated in both microarray and quantitative real-time polymerase chain-reaction analyses, whereas the expression of six miRNAs (let-7f-5p, miR-10a-5p, miR-125a-5p, miR-144-3p, miR-195-5p, and miR-203) was downregulated. The decreased expression of let-7f-5p and miR-195-5p is a novel finding in head and neck cancer. The target genes of these miRNAs were also predicted through multiple software programs. The differential expression of miRNAs might be related to the early onset and development of laryngeal carcinoma, and may be exploited as new biomarkers and therapeutic targets in the treatment of laryngeal carcinoma.
Collapse
Affiliation(s)
- Zhong-Ming Lu
- Department of Otorhinolaryngology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Ye-Feng Lin
- Department of Otorhinolaryngology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Li Jiang
- Medical Research Center, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Liang-Si Chen
- Department of Otorhinolaryngology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Xiao-Ning Luo
- Department of Otorhinolaryngology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Xin-Han Song
- Department of Otorhinolaryngology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Shao-Hua Chen
- Department of Otorhinolaryngology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Si-Yi Zhang
- Department of Otorhinolaryngology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| |
Collapse
|
23
|
Yang M, Li W, Liu YY, Fu S, Qiu GB, Sun KL, Fu WN. Promoter hypermethylation-induced transcriptional down-regulation of the gene MYCT1 in laryngeal squamous cell carcinoma. BMC Cancer 2012; 12:219. [PMID: 22672838 PMCID: PMC3472177 DOI: 10.1186/1471-2407-12-219] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/06/2012] [Indexed: 12/21/2022] Open
Abstract
Background MYCT1, previously named MTLC, is a novel candidate tumor suppressor gene. MYCT1 was cloned from laryngeal squamous cell cancer (LSCC) and has been found to be down-regulated in LSCC; however, the regulatory details have not been fully elucidated. Methods Here, we sought to investigate the methylation status of the CpG islands of MYCT1 and mRNA levels by bisulfite-specific PCR (BSP) based on sequencing restriction enzyme digestion, reverse transcription and real-time quantitative polymerase chain reaction (RQ-PCR). The function of specific sites in the proximal promoter of MYCT1 in LSCC was measured by transient transfection, luciferase assays, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP). Results The results suggested hypermethylation of 12 CpG sites of the promoter in both laryngeal cancer tissues and the laryngeal cancer line Hep-2 cell. The hypermethylation of the site CGCG (−695 to −692), which has been identified as the c-Myc binding site, was identified in laryngeal cancer tissues (59/73) compared to paired mucosa (13/73); in addition, statistical analysis revealed that the methylation status of this site significantly correlated with cancer cell differentiation(p < 0.01). The mRNA level of MYCT1 increased in Hep-2 cells treated with 5-aza-C (p < 0.01). The luciferase activity from mutant transfectants pGL3-MYCT1m (−852/+12, mut-695-C > A, mut-693-C > G) was significantly reduced compared with the wild type pGL3-MYCT1 (−852/+12), while the luciferase activity from wild transfectants pGL3-MYCT1 (−852/+12) rose after 5-aza treatment in Hep-2 cells. Finally, EMSA and ChIP confirmed that the methylation of the CGCG (−695 to −692) site prevented c-Myc from binding of the site and demethylation treatment of the 5′ flanking region of MYCT1 by 5-aza induced the increased occupation of the core promoter by c-Myc (p < 0.01). Conclusion In summary, this study concluded that hypermethylation contributed to the transcriptional down-regulation of MYCT1 and could inhibit cancer cell differentiation in LSCC. DNA methylation of the CGCG site (−695 to −692) of MYCT1 altered the promoter activity by interfering with its binding to c-Myc in LSCC. Epigenetic therapy of reactivating MYCT1 by 5-aza should be further evaluated in clinical trails of LSCC.
Collapse
Affiliation(s)
- Min Yang
- Department of Medical Genetics, China Medical University, Shenyang, P.R. China
| | | | | | | | | | | | | |
Collapse
|