1
|
Siddiqui S, Bachert C, Bjermer L, Buchheit KM, Castro M, Qin Y, Rupani H, Sagara H, Howarth P, Taillé C. Eosinophils and tissue remodeling: Relevance to airway disease. J Allergy Clin Immunol 2023; 152:841-857. [PMID: 37343842 DOI: 10.1016/j.jaci.2023.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/15/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023]
Abstract
The ability of human tissue to reorganize and restore its existing structure underlies tissue homeostasis in the healthy airways, but in disease can persist without normal resolution, leading to an altered airway structure. Eosinophils play a cardinal role in airway remodeling both in health and disease, driving epithelial homeostasis and extracellular matrix turnover. Physiological consequences associated with eosinophil-driven remodeling include impaired lung function and reduced bronchodilator reversibility in asthma, and obstructed airflow in chronic rhinosinusitis with nasal polyps. Given the contribution of airway remodeling to the development and persistence of symptoms in airways disease, targeting remodeling is an important therapeutic consideration. Indeed, there is early evidence that eosinophil attenuation may reduce remodeling and disease progression in asthma. This review provides an overview of tissue remodeling in both health and airway disease with a particular focus on eosinophilic asthma and chronic rhinosinusitis with nasal polyps, as well as the role of eosinophils in these processes and the implications for therapeutic interventions. Areas for future research are also noted, to help improve our understanding of the homeostatic and pathological roles of eosinophils in tissue remodeling, which should aid the development of targeted and effective treatments for eosinophilic diseases of the airways.
Collapse
Affiliation(s)
- Salman Siddiqui
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | - Claus Bachert
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Münster, Münster, Germany; First Affiliated Hospital, Sun Yat-Sen University, International Airway Research Center, Guangzhou, China; Division of Ear, Nose, and Throat Diseases, Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden; Upper Airways Research Laboratory, Faculty of Medicine, Ghent University, Ghent, Belgium
| | - Leif Bjermer
- Department of Clinical Sciences, Respiratory Medicine, and Allergology, Lund University, Lund, Sweden
| | - Kathleen M Buchheit
- Jeff and Penny Vinik Center for Allergic Diseases Research, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Mario Castro
- Division of Pulmonary, Critical Care Medicine, University of Kansas School of Medicine, Kansas City, NC
| | - Yimin Qin
- Global Medical Affairs, Global Specialty and Primary Care, GlaxoSmithKline, Research Triangle Park, NC
| | - Hitasha Rupani
- Department of Respiratory Medicine, University Hospital Southampton National Health Service Foundation Trust, Southampton, United Kingdom
| | - Hironori Sagara
- Department of Medicine, Division of Respiratory Medicine and Allergology, Showa University, School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Peter Howarth
- Global Medical, Global Specialty and Primary Care, GlaxoSmithKline, Brentford, Middlesex, United Kingdom
| | - Camille Taillé
- Pneumology Department, Reference Center for Rare Pulmonary Diseases, Bichat Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unit 1152, University of Paris Cité, Paris, France
| |
Collapse
|
2
|
Adu-Agyeiwaah Y, Grant MB, Obukhov AG. The Potential Role of Osteopontin and Furin in Worsening Disease Outcomes in COVID-19 Patients with Pre-Existing Diabetes. Cells 2020; 9:E2528. [PMID: 33238570 PMCID: PMC7700577 DOI: 10.3390/cells9112528] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the ongoing coronavirus disease 2019 (COVID-19) pandemic, with more than 50 million cases reported globally. Findings have consistently identified an increased severity of SARS-CoV-2 infection in individuals with diabetes. Osteopontin, a cytokine-like matrix-associated phosphoglycoprotein, is elevated in diabetes and drives the expression of furin, a proprotein convertase implicated in the proteolytic processing and activation of several precursors, including chemokines, growth factors, hormones, adhesion molecules, and receptors. Elevated serum furin is a signature of diabetes mellitus progression and is associated with a dysmetabolic phenotype and increased risk of diabetes-linked premature mortality. Additionally, furin plays an important role in enhancing the infectivity of SARS-CoV-2 by promoting its entry and replication in the host cell. Here, we hypothesize that diabetes-induced osteopontin and furin protein upregulation results in worse outcomes in diabetic patients with SARS-CoV-2 infection owing to the roles of these protein in promoting viral infection and increasing metabolic dysfunction. Thus, targeting the osteopontin-furin axis may be a plausible strategy for reducing mortality in SARS-CoV-2 patients with diabetes.
Collapse
Affiliation(s)
- Yvonne Adu-Agyeiwaah
- Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Y.A.-A.); (M.B.G.)
| | - Maria B. Grant
- Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Y.A.-A.); (M.B.G.)
| | - Alexander G. Obukhov
- Department of Anatomy, Cell Biology & Physiology, The Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Trinh HKT, Nguyen TVT, Kim SH, Cao TBT, Luu QQ, Kim SH, Park HS. Osteopontin contributes to late-onset asthma phenotypes in adult asthma patients. Exp Mol Med 2020; 52:253-265. [PMID: 32009132 PMCID: PMC7062758 DOI: 10.1038/s12276-020-0376-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 01/07/2023] Open
Abstract
Patients with late-onset asthma (LOA) have poor clinical outcomes. Osteopontin (OPN) is associated with airway inflammation and remodeling. To investigate the role of OPN in LOA compared to early-onset asthma (EOA), serum OPN levels were compared between 131 adult asthma patients (48 LOA and 83 EOA patients) and 226 healthy controls (HCs). BALB/c mice were sensitized with ovalbumin with/without polyinosinic-polycytidylic acid (poly(I:C)) from week 6 (A6 mice) or week 12 (A12 mice) after birth. Airway hyperresponsiveness (AHR), bronchoalveolar lavage fluid (BALF), cell counts, histology, and Spp1 expression were assessed. The levels of OPN, transforming growth factor β1 (TGF-β1), chitinase 3-like 1 (CH3L1), and interleukin (IL) 5 were measured by ELISA. The expression of Smad3 phosphorylation and tissue transglutaminase 2 (TGM2) was evaluated by Western blot. The serum OPN levels were significantly higher in asthma patients than in HCs and in LOA patients than in those with EOA (P < 0.05) and were positively correlated with serum TGF-β1 and CH3L1 (r = 0.174, r = 0.264; P < 0.05). A12 mice showed elevated AHR with increased levels of OPN/TGF-β1/IL-5 in BALF and Spp1 compared to A6 mice. Poly(I:C) induced remarkable TGF-β1, CH3L1, Th2 cytokine, and OPN levels in BALF and the expression of phosphorylated Smad3, TGM2, and Spp1 in the lungs. OPN triggered TGF-β1/Smad3 signaling in the lungs, which was suppressed by dexamethasone and anti-IL5 antibody. In conclusion, aging and exposure to viral infections may induce OPN release and consequently modulate inflammation and TGF-β1/Smad3-related remodeling, contributing to the development of LOA. Aging and viral infections in older individuals may combine to spur the release of an inflammatory protein implicated in late-onset asthma. A team led by Hae-Sim Park from Ajou University School of Medicine, Suwon, South Korea, showed that people who develop asthma after age 40 have higher blood levels of osteopontin, a multifunctional protein with roles in airway inflammation and tissue remodeling, than people who develop asthma at a younger age or healthy individuals. The researchers developed two ovalbumin-induced asthma models in younger and older mice, and found that older mice developed more severe airway hyperresponsiveness with higher levels of osteopontin, among other inflammatory markers, which were emnhanced by viral infection. Drug therapies that target osteopontin signaling could help combat the late-onset asthma.
Collapse
Affiliation(s)
- Hoang Kim Tu Trinh
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea.,Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thuy Van Thao Nguyen
- Department of Pediatrics, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Seo-Hee Kim
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | - Thi Bich Tra Cao
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | - Quoc Quang Luu
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | - Seung-Hyun Kim
- Translational Research Laboratory for Inflammatory Disease, Clinical Trial Center, Ajou University Medical Center, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea. .,Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea.
| |
Collapse
|
4
|
Lamort AS, Giopanou I, Psallidas I, Stathopoulos GT. Osteopontin as a Link between Inflammation and Cancer: The Thorax in the Spotlight. Cells 2019; 8:cells8080815. [PMID: 31382483 PMCID: PMC6721491 DOI: 10.3390/cells8080815] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/23/2022] Open
Abstract
The glycoprotein osteopontin (OPN) possesses multiple functions in health and disease. To this end, osteopontin has beneficial roles in wound healing, bone homeostasis, and extracellular matrix (ECM) function. On the contrary, osteopontin can be deleterious for the human body during disease. Indeed, osteopontin is a cardinal mediator of tumor-associated inflammation and facilitates metastasis. The purpose of this review is to highlight the importance of osteopontin in malignant processes, focusing on lung and pleural tumors as examples.
Collapse
Affiliation(s)
- Anne-Sophie Lamort
- Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University of Munich and Helmholtz Center Munich, Member of the German Center for Lung Research, Max-Lebsche-Platz 31, 81377 Munich, Bavaria, Germany.
| | - Ioanna Giopanou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Biomedical Sciences Research Center, 1 Asklepiou Str., University Campus, 26504 Rio, Achaia, Greece
| | - Ioannis Psallidas
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E6BT, UK
| | - Georgios T Stathopoulos
- Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University of Munich and Helmholtz Center Munich, Member of the German Center for Lung Research, Max-Lebsche-Platz 31, 81377 Munich, Bavaria, Germany.
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Biomedical Sciences Research Center, 1 Asklepiou Str., University Campus, 26504 Rio, Achaia, Greece.
| |
Collapse
|
5
|
Perego S, Sansoni V, Banfi G, Lombardi G. Sodium butyrate has anti-proliferative, pro-differentiating, and immunomodulatory effects in osteosarcoma cells and counteracts the TNFα-induced low-grade inflammation. Int J Immunopathol Pharmacol 2018; 32:394632017752240. [PMID: 29363375 PMCID: PMC5849245 DOI: 10.1177/0394632017752240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Butyrate, an essential factor for colonocytes and regulator in the development of
colon cancer, is partially absorbed by the gut. It influences the proliferation
and differentiation of several cell types including osteoblasts. We evaluated
the effects of different doses of butyrate on differentiation and functionality
of osteosarcoma cells in vitro and the expression of a pro-inflammatory
phenotype in a normal or inflammatory environment. SaOS-2 osteosarcoma cells
were induced to differentiate and contemporarily treated for 24 h, 48 h, or
7 days with sodium butyrate 10−4, 5 × 10−4, or
10−3 M in the presence or absence of tumor necrosis factor alpha
(TNFα) 1 ng/mL, a pro-inflammatory stimulus. Despite the mild effects on
proliferation and alkaline phosphatase activity, butyrate dose- and
time-dependently induced the expression of a differentiated phenotype (RUNX2,
COL1A1 gene expression, and osteopontin gene and protein expression). This was
associated with a partial inhibition of nuclear factor kappa B (NF-κB)
activation and the induction of histone deacetylase 1 expression. The net effect
was the expression of an anti-inflammatory phenotype and the increase in the
osteoprotegerin-to-receptor activator of nuclear factor kappa-B ligand (RANKL)
ratio. Moreover, butyrate, especially at the highest dose, counteracted the
effects of the pro-inflammatory stimulus of TNFα 1 ng/mL. Butyrate affects
osteosarcoma cell metabolism by anticipating the expression of a differentiated
phenotype and by inducing the expression of anti-inflammatory mediators.
Collapse
Affiliation(s)
- Silvia Perego
- 1 Laboratory of Experimental Biochemistry & Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Milan, Italy
| | - Veronica Sansoni
- 1 Laboratory of Experimental Biochemistry & Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Milan, Italy
| | - Giuseppe Banfi
- 1 Laboratory of Experimental Biochemistry & Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Milan, Italy.,2 Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Lombardi
- 1 Laboratory of Experimental Biochemistry & Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
6
|
Viloria K, Munasinghe A, Asher S, Bogyere R, Jones L, Hill NJ. A holistic approach to dissecting SPARC family protein complexity reveals FSTL-1 as an inhibitor of pancreatic cancer cell growth. Sci Rep 2016; 6:37839. [PMID: 27886258 PMCID: PMC5122892 DOI: 10.1038/srep37839] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023] Open
Abstract
SPARC is a matricellular protein that is involved in both pancreatic cancer and diabetes. It belongs to a wider family of proteins that share structural and functional similarities. Relatively little is known about this extended family, but evidence of regulatory interactions suggests the importance of a holistic approach to their study. We show that Hevin, SPOCKs, and SMOCs are strongly expressed within islets, ducts, and blood vessels, suggesting important roles for these proteins in the normal pancreas, while FSTL-1 expression is localised to the stromal compartment reminiscent of SPARC. In direct contrast to SPARC, however, FSTL-1 expression is reduced in pancreatic cancer. Consistent with this, FSTL-1 inhibited pancreatic cancer cell proliferation. The complexity of SPARC family proteins is further revealed by the detection of multiple cell-type specific isoforms that arise due to a combination of post-translational modification and alternative splicing. Identification of splice variants lacking a signal peptide suggests the existence of novel intracellular isoforms. This study underlines the importance of addressing the complexity of the SPARC family and provides a new framework to explain their controversial and contradictory effects. We also demonstrate for the first time that FSTL-1 suppresses pancreatic cancer cell growth.
Collapse
Affiliation(s)
- Katrina Viloria
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames, UK
| | - Amanda Munasinghe
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames, UK
| | - Sharan Asher
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames, UK
| | - Roberto Bogyere
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames, UK
| | - Lucy Jones
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames, UK
| | - Natasha J. Hill
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames, UK
| |
Collapse
|
7
|
Jovic S, Shikhagaie M, Mörgelin M, Erjefält JS, Kjellström S, Egesten A. Osteopontin is increased in cystic fibrosis and can skew the functional balance between ELR-positive and ELR-negative CXC-chemokines. J Cyst Fibros 2015; 14:453-63. [DOI: 10.1016/j.jcf.2014.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 12/13/2022]
|
8
|
Inflammatory and repair pathways induced in human bronchoalveolar lavage cells with ozone inhalation. PLoS One 2015; 10:e0127283. [PMID: 26035830 PMCID: PMC4452717 DOI: 10.1371/journal.pone.0127283] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 04/14/2015] [Indexed: 02/07/2023] Open
Abstract
Background Inhalation of ambient levels of ozone causes airway inflammation and epithelial injury. Methods To examine the responses of airway cells to ozone-induced oxidative injury, 19 subjects (7 with asthma) were exposed to clean air (0ppb), medium (100ppb), and high (200ppb) ambient levels of ozone for 4h on three separate occasions in a climate-controlled chamber followed by bronchoscopy with bronchoalveolar lavage (BAL) 24h later. BAL cell mRNA expression was examined using Affymetrix GeneChip Microarray. The role of a differentially expressed gene (DEG) in epithelial injury was evaluated in an in vitro model of injury [16HBE14o- cell line scratch assay]. Results Ozone exposure caused a dose-dependent up-regulation of several biologic pathways involved in inflammation and repair including chemokine and cytokine secretion, activity, and receptor binding; metalloproteinase and endopeptidase activity; adhesion, locomotion, and migration; and cell growth and tumorigenesis regulation. Asthmatic subjects had 1.7- to 3.8-fold higher expression of many DEGs suggestive of increased proinflammatory and matrix degradation and remodeling signals. The most highly up-regulated gene was osteopontin, the protein level of which in BAL fluid increased in a dose-dependent manner after ozone exposure. Asthmatic subjects had a disproportionate increase in non-polymerized osteopontin with increasing exposure to ozone. Treatment with polymeric, but not monomeric, osteopontin enhanced the migration of epithelial cells and wound closure in an α9β1 integrin-dependent manner. Conclusions Expression profiling of BAL cells after ozone exposure reveals potential regulatory genes and pathways activated by oxidative stress. One DEG, osteopontin, promotes epithelial wound healing in an in vitro model of injury.
Collapse
|
9
|
Prados J, Melguizo C, Roldan H, Alvarez PJ, Ortiz R, Arias JL, Aranega A. RNA interference in the treatment of colon cancer. BioDrugs 2014; 27:317-27. [PMID: 23553339 DOI: 10.1007/s40259-013-0019-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Colorectal cancer is the third most common cancer in both men and women and has shown a progressive increase over the past 20 years. Current chemotherapy has major limitations, and a novel therapeutic approach is required. Given that neoplastic transformation of colon epithelial cells is a consequence of genetic and epigenetic alterations, RNA interference (RNAi) has been proposed as a new therapeutic strategy that offers important advantages over conventional treatments, with high specificity and potency and low toxicity. RNAi has been employed as an effective tool to study the function of genes, preventing their expression and leading to the development of new approaches to cancer treatment. In malignancies, including colon cancer, RNAi is being used for "silencing" genes that are deregulated by different processes such as gene amplification, mutation, or overexpression and may be the cause of oncogenesis. This strategy not only provides information on the involvement of certain genes in colon cancer, but also opens up a new perspective for its treatment. However, most studies have used adenovirus or lentivirus vectors to transport RNAi into tumor cells or tumors in animal models, because several technical obstacles must be overcome before RNAi can be used in the clinical setting. The aim of this study was to review current knowledge on the use of RNAi techniques in the treatment of colon cancer.
Collapse
Affiliation(s)
- Jose Prados
- Institute of Biopathology and Regenerative Medicine, University of Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Bains W. Transglutaminse 2 and EGGL, the protein cross-link formed by transglutaminse 2, as therapeutic targets for disabilities of old age. Rejuvenation Res 2013; 16:495-517. [PMID: 23968147 PMCID: PMC3869435 DOI: 10.1089/rej.2013.1452] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/22/2013] [Indexed: 12/17/2022] Open
Abstract
Aging of the extracellular matrix (ECM), the protein matrix that surrounds and penetrates the tissues and binds the body together, contributes significantly to functional aging of tissues. ECM proteins become increasingly cross-linked with age, and this cross-linking is probably important in the decline of the ECM's function. This article reviews the role of ε-(γ-glutamyl)-lysine (EGGL), a cross-link formed by transglutaminase enzymes, and particularly the widely expressed isozyme transglutaminase 2 (TG2), in the aging ECM. There is little direct data on EGGL accumulation with age, and no direct evidence of a role of EGGL in the aging of the ECM with pathology. However, several lines of circumstantial evidence suggest that EGGL accumulates with age, and its association with pathology suggests that this might reflect degradation of ECM function. TG activity increases with age in many circumstances. ECM protein turnover is such that some EGGL made by TG is likely to remain in place for years, if not decades, in healthy tissue, and both EGGL and TG levels are enhanced by age-related diseases. If further research shows EGGL does accumulate with age, removing it could be of therapeutic benefit. Also reviewed is the blockade of TG and active removal of EGGL as therapeutic strategies, with the conclusion that both have promise. EGGL removal may have benefit for acute fibrotic diseases, such as tendinopathy, and for treating generalized decline in ECM function with old age. Extracellular TG2 and EGGL are therefore therapeutic targets both for specific and more generalized diseases of aging.
Collapse
Affiliation(s)
- William Bains
- SRF Laboratory, Department of Chemical Engineering and Biotechnology, University of Cambridge , Cambridge, United Kingdom
| |
Collapse
|
11
|
Gimba ER, Tilli TM. Human osteopontin splicing isoforms: known roles, potential clinical applications and activated signaling pathways. Cancer Lett 2012; 331:11-7. [PMID: 23246372 DOI: 10.1016/j.canlet.2012.12.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/04/2012] [Accepted: 12/04/2012] [Indexed: 12/18/2022]
Abstract
Human osteopontin is subject to alternative splicing, which generates three isoforms, termed OPNa, OPNb and OPNc. These variants show specific expression and roles in different cell contexts. We present an overview of current knowledge of the expression profile of human OPN splicing isoforms (OPN-SIs), their tissue-specific roles, and the pathways mediating their functional properties in different pathophysiological conditions. We also describe their putative application as biomarkers, and their potential use as therapeutic targets by using antibodies, oligonucleotides or siRNA molecules. This synthesis provides new clues for a better understanding of human OPN splice variants, their roles in normal and pathological conditions, and their possible clinical applications.
Collapse
Affiliation(s)
- E R Gimba
- Universidade Federal Fluminense/Polo Universitário de Rio das Ostras, Rua Recife s/n, CEP: 28890-000, Rio das Ostras, RJ, Brazil.
| | | |
Collapse
|