1
|
Ashby M, Moore R, King S, Newbrook K, Flannery J, Batten C. Designing a Multiplex PCR-xMAP Assay for the Detection and Differentiation of African Horse Sickness Virus, Serotypes 1-9. Microorganisms 2024; 12:932. [PMID: 38792762 PMCID: PMC11124020 DOI: 10.3390/microorganisms12050932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
African horse sickness is a severe and often fatal disease affecting all species of equids. The aetiological agent, African horse sickness virus (AHSV), can be differentiated into nine serotypes. The identification of AHSV serotypes is vital for disease management, as this can influence vaccine selection and help trace disease incursion routes. In this study, we report the development and optimisation of a novel, molecular-based assay that utilises multiplex PCR and microsphere-based technology to expedite detection and differentiation of multiple AHSV serotypes in one assay. We demonstrated the ability of this assay to identify all nine AHSV serotypes, with detection limits ranging from 1 to 277 genome copies/µL depending on the AHSV serotype. An evaluation of diagnostic sensitivity and specificity revealed a sensitivity of 88% and specificity of 100%. This method can serotype up to 42 samples per run and can be completed in approximately 4-6 h. It provides a powerful tool to enhance the rapidity and efficiency of AHSV serotype detection, thereby facilitating the generation of epidemiological data that can help understand and control the incidence of AHSV worldwide.
Collapse
Affiliation(s)
- Martin Ashby
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (R.M.); (S.K.); (K.N.); (C.B.)
| | - Rebecca Moore
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (R.M.); (S.K.); (K.N.); (C.B.)
| | - Simon King
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (R.M.); (S.K.); (K.N.); (C.B.)
| | - Kerry Newbrook
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (R.M.); (S.K.); (K.N.); (C.B.)
| | - John Flannery
- Department of Pharmaceutical Sciences and Biotechnology, Technological University of the Shannon, Athlone Campus, N37HD68 Athlone, Ireland;
| | - Carrie Batten
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (R.M.); (S.K.); (K.N.); (C.B.)
| |
Collapse
|
2
|
Villalba R, Tena-Tomás C, Ruano MJ, Valero-Lorenzo M, López-Herranz A, Cano-Gómez C, Agüero M. Development and Validation of Three Triplex Real-Time RT-PCR Assays for Typing African Horse Sickness Virus: Utility for Disease Control and Other Laboratory Applications. Viruses 2024; 16:470. [PMID: 38543834 PMCID: PMC10974454 DOI: 10.3390/v16030470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 05/23/2024] Open
Abstract
The African horse sickness virus (AHSV) belongs to the Genus Orbivirus, family Sedoreoviridae, and nine serotypes of the virus have been described to date. The AHSV genome is composed of ten linear segments of double-stranded (ds) RNA, numbered in decreasing size order (Seg-1 to Seg-10). Genome segment 2 (Seg-2) encodes outer-capsid protein VP2, the most variable AHSV protein and the primary target for neutralizing antibodies. Consequently, Seg-2 determines the identity of the virus serotype. An African horse sickness (AHS) outbreak in an AHS-free status country requires identifying the serotype as soon as possible to implement a serotype-specific vaccination program. Considering that nowadays 'polyvalent live attenuated' is the only commercially available vaccination strategy to control the disease, field and vaccine strains of different serotypes could co-circulate. Additionally, in AHS-endemic countries, more than one serotype is often circulating at the same time. Therefore, a strategy to rapidly determine the virus serotype in an AHS-positive sample is strongly recommended in both epidemiological situations. The main objective of this study is to describe the development and validation of three triplex real-time RT-PCR (rRT-PCR) methods for rapid AHSV serotype detection. Samples from recent AHS outbreaks in Kenia (2015-2017), Thailand (2020), and Nigeria (2023), and from the AHS outbreak in Spain (1987-1990), were included in the study for the validation of these methods.
Collapse
Affiliation(s)
- Rubén Villalba
- Laboratorio Central de Veterinaria, Ministry of Agriculture, Fisheries and Food, 28110 Algete, Spain; (R.V.); (M.J.R.); (M.V.-L.); (A.L.-H.); (C.C.-G.)
| | | | - María José Ruano
- Laboratorio Central de Veterinaria, Ministry of Agriculture, Fisheries and Food, 28110 Algete, Spain; (R.V.); (M.J.R.); (M.V.-L.); (A.L.-H.); (C.C.-G.)
| | - Marta Valero-Lorenzo
- Laboratorio Central de Veterinaria, Ministry of Agriculture, Fisheries and Food, 28110 Algete, Spain; (R.V.); (M.J.R.); (M.V.-L.); (A.L.-H.); (C.C.-G.)
| | - Ana López-Herranz
- Laboratorio Central de Veterinaria, Ministry of Agriculture, Fisheries and Food, 28110 Algete, Spain; (R.V.); (M.J.R.); (M.V.-L.); (A.L.-H.); (C.C.-G.)
| | - Cristina Cano-Gómez
- Laboratorio Central de Veterinaria, Ministry of Agriculture, Fisheries and Food, 28110 Algete, Spain; (R.V.); (M.J.R.); (M.V.-L.); (A.L.-H.); (C.C.-G.)
| | - Montserrat Agüero
- Laboratorio Central de Veterinaria, Ministry of Agriculture, Fisheries and Food, 28110 Algete, Spain; (R.V.); (M.J.R.); (M.V.-L.); (A.L.-H.); (C.C.-G.)
| |
Collapse
|
3
|
Bunpapong N, Charoenkul K, Nasamran C, Chamsai E, Udom K, Boonyapisitsopa S, Tantilertcharoen R, Kesdangsakonwut S, Techakriengkrai N, Suradhat S, Thanawongnuwech R, Amonsin A. African Horse Sickness Virus Serotype 1 on Horse Farm, Thailand, 2020. Emerg Infect Dis 2021; 27:2208-2211. [PMID: 34287126 PMCID: PMC8314833 DOI: 10.3201/eid2708.210004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To investigate an outbreak of African horse sickness (AHS) on a horse farm in northeastern Thailand, we used whole-genome sequencing to detect and characterize the virus. The viruses belonged to serotype 1 and contained unique amino acids (95V,166S, 660I in virus capsid protein 2), suggesting a single virus introduction to Thailand.
Collapse
|
4
|
McVey DS, Drolet BS, Ruder MG, Wilson WC, Nayduch D, Pfannenstiel R, Cohnstaedt LW, MacLachlan NJ, Gay CG. Orbiviruses: A North American Perspective. Vector Borne Zoonotic Dis 2016; 15:335-8. [PMID: 26086554 DOI: 10.1089/vbz.2014.1699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Orbiviruses are members of the Reoviridae family and include bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV). These viruses are the cause of significant regional disease outbreaks among livestock and wildlife in the United States, some of which have been characterized by significant morbidity and mortality. Competent vectors are clearly present in most regions of the globe; therefore, all segments of production livestock are at risk for serious disease outbreaks. Animals with subclinical infections also serve as reservoirs of infection and often result in significant trade restrictions. The economic and explicit impacts of BTV and EHDV infections are difficult to measure, but infections are a cause of economic loss for producers and loss of natural resources (wildlife). In response to United States Animal Health Association (USAHA) Resolution 16, the US Department of Agriculture (USDA), in collaboration with the Department of the Interior (DOI), organized a gap analysis workshop composed of international experts on Orbiviruses. The workshop participants met at the Arthropod-Borne Animal Diseases Research Unit in Manhattan, KS, May 14-16, 2013, to assess the available scientific information and status of currently available countermeasures to effectively control and mitigate the impact of an outbreak of an emerging Orbivirus with epizootic potential, with special emphasis given to BTV and EHDV. In assessing the threats, workshop participants determined that available countermeasures are somewhat effective, but several weaknesses were identified that affect their ability to prevent and control disease outbreaks effectively.
Collapse
Affiliation(s)
- D Scott McVey
- 1 US Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Diseases Research Unit , Manhattan, Kansas
| | - Barbara S Drolet
- 1 US Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Diseases Research Unit , Manhattan, Kansas
| | - Mark G Ruder
- 1 US Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Diseases Research Unit , Manhattan, Kansas
| | - William C Wilson
- 1 US Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Diseases Research Unit , Manhattan, Kansas
| | - Dana Nayduch
- 1 US Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Diseases Research Unit , Manhattan, Kansas
| | - Robert Pfannenstiel
- 1 US Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Diseases Research Unit , Manhattan, Kansas
| | - Lee W Cohnstaedt
- 1 US Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Diseases Research Unit , Manhattan, Kansas
| | - N James MacLachlan
- 2 Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California , Davis, California
| | - Cyril G Gay
- 3 US Department of Agriculture, Agricultural Research Service, National Program 103-Animal Health , Beltsville, Maryland
| |
Collapse
|
5
|
Genetic characterization of the tick-borne orbiviruses. Viruses 2015; 7:2185-209. [PMID: 25928203 PMCID: PMC4452902 DOI: 10.3390/v7052185] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/18/2015] [Accepted: 04/21/2015] [Indexed: 12/24/2022] Open
Abstract
The International Committee for Taxonomy of Viruses (ICTV) recognizes four species of tick-borne orbiviruses (TBOs): Chenuda virus, Chobar Gorge virus, Wad Medani virus and Great Island virus (genus Orbivirus, family Reoviridae). Nucleotide (nt) and amino acid (aa) sequence comparisons provide a basis for orbivirus detection and classification, however full genome sequence data were only available for the Great Island virus species. We report representative genome-sequences for the three other TBO species (virus isolates: Chenuda virus (CNUV); Chobar Gorge virus (CGV) and Wad Medani virus (WMV)). Phylogenetic comparisons show that TBOs cluster separately from insect-borne orbiviruses (IBOs). CNUV, CGV, WMV and GIV share low level aa/nt identities with other orbiviruses, in ‘conserved’ Pol, T2 and T13 proteins/genes, identifying them as four distinct virus-species. The TBO genome segment encoding cell attachment, outer capsid protein 1 (OC1), is approximately half the size of the equivalent segment from insect-borne orbiviruses, helping to explain why tick-borne orbiviruses have a ~1 kb smaller genome.
Collapse
|
6
|
Bachanek-Bankowska K, Maan S, Castillo-Olivares J, Manning NM, Maan NS, Potgieter AC, Di Nardo A, Sutton G, Batten C, Mertens PPC. Real time RT-PCR assays for detection and typing of African horse sickness virus. PLoS One 2014; 9:e93758. [PMID: 24721971 PMCID: PMC3983086 DOI: 10.1371/journal.pone.0093758] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 03/05/2014] [Indexed: 12/25/2022] Open
Abstract
Although African horse sickness (AHS) can cause up to 95% mortality in horses, naïve animals can be protected by vaccination against the homologous AHSV serotype. Genome segment 2 (Seg-2) encodes outer capsid protein VP2, the most variable of the AHSV proteins. VP2 is also a primary target for AHSV specific neutralising antibodies, and consequently determines the identity of the nine AHSV serotypes. In contrast VP1 (the viral polymerase) and VP3 (the sub-core shell protein), encoded by Seg-1 and Seg-3 respectively, are highly conserved, representing virus species/orbivirus-serogroup-specific antigens. We report development and evaluation of real-time RT-PCR assays targeting AHSV Seg-1 or Seg-3, that can detect any AHSV type (virus species/serogroup-specific assays), as well as type-specific assays targeting Seg-2 of the nine AHSV serotypes. These assays were evaluated using isolates of different AHSV serotypes and other closely related orbiviruses, from the ‘Orbivirus Reference Collection’ (ORC) at The Pirbright Institute. The assays were shown to be AHSV virus-species-specific, or type-specific (as designed) and can be used for rapid, sensitive and reliable detection and identification (typing) of AHSV RNA in infected blood, tissue samples, homogenised Culicoides, or tissue culture supernatant. None of the assays amplified cDNAs from closely related heterologous orbiviruses, or from uninfected host animals or cell cultures.
Collapse
Affiliation(s)
| | - Sushila Maan
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Javier Castillo-Olivares
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Nicola M. Manning
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Narender Singh Maan
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Abraham C. Potgieter
- Deltamune (Pty) Ltd, Lyttelton, Centurion, South Africa
- Department of Biochemistry, Centre for Human Metabonomics, North-West University, Private Bag X6001, Potchefstroom, South Africa
| | - Antonello Di Nardo
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Geoff Sutton
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Carrie Batten
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Peter P. C. Mertens
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Belaganahalli MN, Maan S, Maan NS, Nomikou K, Guimera M, Brownlie J, Tesh R, Attoui H, Mertens PPC. Full genome sequencing of Corriparta virus, identifies California mosquito pool virus as a member of the Corriparta virus species. PLoS One 2013; 8:e70779. [PMID: 24015178 PMCID: PMC3754974 DOI: 10.1371/journal.pone.0070779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 06/21/2013] [Indexed: 11/19/2022] Open
Abstract
The species Corriparta virus (CORV), within the genus Orbivirus, family Reoviridae, currently contains six virus strains: corriparta virus MRM1 (CORV-MRM1); CS0109; V654; V370; Acado virus and Jacareacanga virus. However, lack of neutralization assays, or reference genome sequence data has prevented further analysis of their intra-serogroup/species relationships and identification of individual serotypes. We report whole-genome sequence data for CORV-MRM1, which was isolated in 1960 in Australia. Comparisons of the conserved, polymerase (VP1), sub-core-shell 'T2' and core-surface 'T13' proteins encoded by genome segments 1, 2 and 8 (Seg-1, Seg-2 and Seg-8) respectively, show that this virus groups with the other mosquito borne orbiviruses. However, highest levels of nt/aa sequence identity (75.9%/91.6% in Seg-2/T2: 77.6%/91.7% in Seg-8/T13, respectively) were detected between CORV-MRM1 and California mosquito pool virus (CMPV), an orbivirus isolated in the USA in 1974, showing that they belong to the same virus species. The data presented here identify CMPV as a member of the Corriparta virus species and will facilitate identification of additional CORV isolates, diagnostic assay design and epidemiological studies.
Collapse
Affiliation(s)
- Manjunatha N. Belaganahalli
- The Vector-Borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Sushila Maan
- The Vector-Borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Narender S. Maan
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Kyriaki Nomikou
- The Vector-Borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Marc Guimera
- The Vector-Borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Joe Brownlie
- Department of Pathology and Infectious Diseases, Royal Veterinary College, North Mymms, Hatfield, Herts, United Kingdom
| | - Robert Tesh
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Houssam Attoui
- The Vector-Borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Peter P. C. Mertens
- The Vector-Borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| |
Collapse
|
8
|
Aklilu N, Batten C, Gelaye E, Jenberie S, Ayelet G, Wilson A, Belay A, Asfaw Y, Oura C, Maan S, Bachanek-Bankowska K, Mertens PPC. African horse sickness outbreaks caused by multiple virus types in Ethiopia. Transbound Emerg Dis 2012; 61:185-92. [PMID: 23083078 DOI: 10.1111/tbed.12024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Indexed: 12/01/2022]
Abstract
African horse sickness (AHS) is associated with high morbidity and mortality in equids, especially horses. A retrospective analysis was carried out concerning 737 AHS outbreaks that occurred during 2007-2010 in Ethiopia. A total of ten outbreaks were investigated in the study period. All four forms of the disease (pulmonary, cardiac, horse sickness fever and the combined form) were observed, with the cardiac form being the most prevalent. Multiple African horse sickness virus serotypes (AHSV-2, AHSV-4, AHSV-6, AHSV-8 and AHSV-9) were detected by molecular methods (type-specific real-time RT-PCR assays), and fourteen isolates were derived from blood and tissue samples collected during 2009-2010. This is the first report of AHSV-4, AHSV-6 or AHSV-8 in Ethiopia.
Collapse
Affiliation(s)
- N Aklilu
- Society for the Protection of Animals Abroad (SPANA) Ethiopia Project, College of Veterinary Medicine and Agriculture, Addis Ababa University, Debre Zeit, Ethiopia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Belaganahalli MN, Maan S, Maan NS, Nomikou K, Pritchard I, Lunt R, Kirkland PD, Attoui H, Brownlie J, Mertens PPC. Full genome sequencing and genetic characterization of Eubenangee viruses identify Pata virus as a distinct species within the genus Orbivirus. PLoS One 2012; 7:e31911. [PMID: 22438872 PMCID: PMC3305294 DOI: 10.1371/journal.pone.0031911] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/16/2012] [Indexed: 12/31/2022] Open
Abstract
Eubenangee virus has previously been identified as the cause of Tammar sudden death syndrome (TSDS). Eubenangee virus (EUBV), Tilligery virus (TILV), Pata virus (PATAV) and Ngoupe virus (NGOV) are currently all classified within the Eubenangee virus species of the genus Orbivirus, family Reoviridae. Full genome sequencing confirmed that EUBV and TILV (both of which are from Australia) show high levels of aa sequence identity (>92%) in the conserved polymerase VP1(Pol), sub-core VP3(T2) and outer core VP7(T13) proteins, and are therefore appropriately classified within the same virus species. However, they show much lower amino acid (aa) identity levels in their larger outer-capsid protein VP2 (<53%), consistent with membership of two different serotypes - EUBV-1 and EUBV-2 (respectively). In contrast PATAV showed significantly lower levels of aa sequence identity with either EUBV or TILV (with <71% in VP1(Pol) and VP3(T2), and <57% aa identity in VP7(T13)) consistent with membership of a distinct virus species. A proposal has therefore been sent to the Reoviridae Study Group of ICTV to recognise 'Pata virus' as a new Orbivirus species, with the PATAV isolate as serotype 1 (PATAV-1). Amongst the other orbiviruses, PATAV shows closest relationships to Epizootic Haemorrhagic Disease virus (EHDV), with 80.7%, 72.4% and 66.9% aa identity in VP3(T2), VP1(Pol), and VP7(T13) respectively. Although Ngoupe virus was not available for these studies, like PATAV it was isolated in Central Africa, and therefore seems likely to also belong to the new species, possibly as a distinct 'type'. The data presented will facilitate diagnostic assay design and the identification of additional isolates of these viruses.
Collapse
Affiliation(s)
| | - Sushila Maan
- Vector-borne Viral Diseases Programme, Institute for Animal Health, Woking, Surrey, United Kingdom
| | - Narender S. Maan
- Vector-borne Viral Diseases Programme, Institute for Animal Health, Woking, Surrey, United Kingdom
| | - Kyriaki Nomikou
- Vector-borne Viral Diseases Programme, Institute for Animal Health, Woking, Surrey, United Kingdom
| | - Ian Pritchard
- Australian Animal Health Laboratory, CSIRO, Geelong, Victoria, Australia
| | - Ross Lunt
- Australian Animal Health Laboratory, CSIRO, Geelong, Victoria, Australia
| | - Peter D. Kirkland
- Elizabeth Macarthur Agricultural Institute, Camden, New South Wales, Australia
| | - Houssam Attoui
- Vector-borne Viral Diseases Programme, Institute for Animal Health, Woking, Surrey, United Kingdom
| | - Joe Brownlie
- Department of Pathology and Infectious Diseases, Royal Veterinary College, North Mymms, Hatfield, Herts, United Kingdom
| | - Peter P. C. Mertens
- Vector-borne Viral Diseases Programme, Institute for Animal Health, Woking, Surrey, United Kingdom
| |
Collapse
|