1
|
Sun KN, Huang F, Wang MY, Wu J, Hu CJ, Liu XF. IL-21 Enhances the Immune Protection Induced by the Vibrio vulnificus Hemolysin A Protein. Inflammation 2022; 45:1496-1506. [PMID: 35129769 DOI: 10.1007/s10753-022-01632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 11/05/2022]
Abstract
We previously reported that the Vibrio vulnificus hemolysin A (VvhA) protein elicited good immune protection and could effectively control V. vulnificus infection in mice. However, its molecular mechanism remains unknown. We hypothesized that hemolysin A induces an immunoprotective response via IL-21 regulation. To demonstrate this, IL-21 expression in mice was regulated by injecting either specific antibodies or rIL-21, and the immune response was evaluated by flow cytometry. Our results suggested that IL-21 enhances immune protection by inducing a T follicular helper cell and germinal center B cell response. We used RNA-seq to explore molecular mechanisms and identified 10 upregulated and 32 downregulated genes involved in IL-21-upregulated protection. Gene Ontology analysis and pathway analysis of the differentially expressed genes were also performed. Our findings indicate that IL-21 can enhance the immune protection effect of the VvhA protein and may serve as a novel strategy for enhancing the immune protection effect of protein vaccines.
Collapse
Affiliation(s)
- Ke-Na Sun
- Department of Laboratory Medicine, the 960th Hospital of the PLA Joint Logistics Support Force, Ji'nan, Shandong Province, 250031, People's Republic of China
| | - Fei Huang
- Department of Laboratory Medicine, the 960th Hospital of the PLA Joint Logistics Support Force, Ji'nan, Shandong Province, 250031, People's Republic of China
| | - Ming-Yi Wang
- Department of Clinical Lab, Weihai Municipal Hospital Affiliated To Dalian Medical University, Weihai, Shandong Province, 264200, People's Republic of China
| | - Jing Wu
- Department of Laboratory Medicine, the 960th Hospital of the PLA Joint Logistics Support Force, Ji'nan, Shandong Province, 250031, People's Republic of China
| | - Cheng-Jin Hu
- Department of Laboratory Medicine, the 960th Hospital of the PLA Joint Logistics Support Force, Ji'nan, Shandong Province, 250031, People's Republic of China
| | - Xiao-Fei Liu
- Department of Laboratory Medicine, the 960th Hospital of the PLA Joint Logistics Support Force, Ji'nan, Shandong Province, 250031, People's Republic of China.
| |
Collapse
|
2
|
Yuan Y, Feng Z, Wang J. Vibrio vulnificus Hemolysin: Biological Activity, Regulation of vvhA Expression, and Role in Pathogenesis. Front Immunol 2020; 11:599439. [PMID: 33193453 PMCID: PMC7644469 DOI: 10.3389/fimmu.2020.599439] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
The Vibrio vulnificus (V. vulnificus) hemolysin (VVH) is a pore-forming cholesterol-dependent cytolysin (CDC). Although there has been some debate surrounding the in vivo virulence effects of the VVH, it is becoming increasingly clear that it drives different cellular outcomes and is involved in the pathogenesis of V. vulnificus. This minireview outlines recent advances in our understanding of the regulation of vvhA gene expression, the biological activity of the VVH and its role in pathogenesis. An in-depth examination of the role of the VVH in V. vulnificus pathogenesis will help reveal the potential targets for therapeutic and preventive interventions to treat fatal V. vulnificus septicemia in humans. Future directions in VVH research will also be discussed.
Collapse
Affiliation(s)
- Yuan Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Zihan Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| |
Collapse
|
3
|
Kashimoto T, Sugiyama H, Kawamidori K, Yamazaki K, Kado T, Matsuda K, Kodama T, Mukai T, Ueno S. Vibiro vulnificus hemolysin associates with gangliosides. BMC Microbiol 2020; 20:69. [PMID: 32228455 PMCID: PMC7106661 DOI: 10.1186/s12866-020-01755-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 03/20/2020] [Indexed: 12/28/2022] Open
Abstract
Background Vibrio vulnificus hemolysin (VVH) is a pore-forming toxin secreted by Vibrio vulnificus. Cellular cholesterol was believed to be the receptor for VVH, because cholesterol could bind to VVH and preincubation with cholesterol inhibited cytotoxicity. It has been reported that specific glycans such as N-acetyl-D-galactosamine and N-acetyl-D-lactosamine bind to VVH, however, it has not been known whether these glycans could inhibit the cytotoxicity of VVH without oligomer formation. Thus, to date, binding mechanisms of VVH to cellular membrane, including specific receptors have not been elucidated. Results We show here that VVH associates with ganglioside GM1a, Fucosyl-GM1, GD1a, GT1c, and GD1b by glycan array. Among them, GM1a could pulldown VVH. Moreover, the GD1a inhibited the cytotoxicity of VVH without the formation of oligomers. Conclusion This is the first report of a molecule able to inhibit the binding of VVH to target cells without oligomerization of VVH.
Collapse
Affiliation(s)
- Takashige Kashimoto
- Laboratory of Veterinary Public Health, School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan.
| | - Hiroyuki Sugiyama
- Laboratory of Veterinary Public Health, School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Keigo Kawamidori
- Laboratory of Veterinary Public Health, School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Kohei Yamazaki
- Laboratory of Veterinary Public Health, School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Takehiro Kado
- Laboratory of Veterinary Public Health, School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Kaho Matsuda
- Laboratory of Veterinary Public Health, School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Toshio Kodama
- Department of Bacterial Infections, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Takao Mukai
- Laboratory of Biomolecular Science, School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23-35-1, Towada, Aomori, Japan
| | - Shunji Ueno
- Laboratory of Veterinary Public Health, School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| |
Collapse
|
4
|
Li G, Wang MY. The role of Vibrio vulnificus virulence factors and regulators in its infection-induced sepsis. Folia Microbiol (Praha) 2019; 65:265-274. [PMID: 31840198 DOI: 10.1007/s12223-019-00763-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022]
Abstract
Due to the development of Marine aquaculture, infections caused by Vibrio vulnificus are common all over the world. Symptoms of V. vulnificus infection vary from gastrointestinal illness to septicemia. After infection with V. vulnificus, some patients showed gastrointestinal symptoms, including vomiting, fever, diarrhea, and so on. Others appeared wound infection at the site of contact with bacteria, and even developed sepsis. Once it develops into sepsis, the prognosis of patients is very poor. However, its underlying pathogenic mechanism remains largely undetermined. Growing evidence shows that it can induce primary septicemia mainly via essential virulence factors and regulators. Therefore, it is important to identify the factors that play roles in sepsis. In this review, we systematically expounded the role of V. vulnificus virulence factors and regulators in its infection-induced sepsis in order to provide useful information for the treatment and prevention of V. vulnificus.
Collapse
Affiliation(s)
- Gang Li
- Weihai Clinical Medical School, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China.,Weihai Municipal Hospital, Weihai, 264200, China
| | - Ming-Yi Wang
- Weihai Clinical Medical School, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China. .,Weihai Municipal Hospital, Weihai, 264200, China.
| |
Collapse
|
5
|
Wang MY, Liu XF, Xia J, Li Y, Geng JL, Hu CJ. Vibrio vulnificus VvhA induces Th1 and Tfh cells to proliferate against Vibrio vulnificus in a mouse model of infection. Future Microbiol 2017; 12:953-965. [PMID: 28816516 DOI: 10.2217/fmb-2017-0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM To characterize the roles of VvhA in host's acquired immune response to Vibrio vulnificus infection. MATERIALS & METHODS The recombinant VvhA fusion protein was used to immunize mice and the anti-VvhA polyclonal antibody was produced in vivo for prophylactic and therapeutic efficacy assay. The roles of VvhA in T helper (Th) cells differentiation were analyzed by vvhA-deleted mutant during the early phase of infection, while the ratio of Th2 and T follicular helper (Tfh) cells were examined in VvhA immunization. RESULTS Anti-VvhA antibody exhibited neutralization activity against V. vulnificus. Wild-type strain induced higher level of Th1 cells than the mutant, and the concentrations of IgG2a and IFN-γ were increased during the early phase of infection. The spontaneous development of Tfh was observed in immunized model, and the serum IL-21 was increased. CONCLUSION V. vulnificus VvhA elicited cellular and humoral immune responses by Th1 and Tfh cells to provide protection against VvhA.
Collapse
Affiliation(s)
- Ming-Yi Wang
- Department of Laboratory Medicine, General Hospital of Jinan Military Region of PLA, Jinan, Shandong, 250031, PR China.,Department of Central Lab, Weihai Municipal Hospital Affiliated to Dalian Medical University, Weihai, Shandong, 264200, PR China
| | - Xiao-Fei Liu
- Department of Laboratory Medicine, General Hospital of Jinan Military Region of PLA, Jinan, Shandong, 250031, PR China
| | - Jun Xia
- Department of Medical Administration, Weihai Health & Family Planning Commission, Weihai, Shandong, 264200, PR China
| | - Yu Li
- Department of Central Lab, Weihai Municipal Hospital Affiliated to Dalian Medical University, Weihai, Shandong, 264200, PR China
| | - Jian-Li Geng
- Department of Central Lab, Weihai Municipal Hospital Affiliated to Dalian Medical University, Weihai, Shandong, 264200, PR China
| | - Cheng-Jin Hu
- Department of Laboratory Medicine, General Hospital of Jinan Military Region of PLA, Jinan, Shandong, 250031, PR China
| |
Collapse
|
6
|
Kashimoto T, Akita T, Kado T, Yamazaki K, Ueno S. Both polarity and aromatic ring in the side chain of tryptophan 246 are involved in binding activity of Vibrio vulnificus hemolysin to target cells. Microb Pathog 2017; 109:71-77. [PMID: 28546115 DOI: 10.1016/j.micpath.2017.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/13/2017] [Accepted: 05/19/2017] [Indexed: 11/26/2022]
Abstract
Vibrio vulnificus secretes a hemolysin/cytolysin (VVH) that induces cytolysis against a variety of mammalian cells by forming pores on the cellular membrane. VVH is known to bind to the cellular membrane as a monomer, and then convert to a pore-forming oligomer. However, the structural basis for binding of this toxin to target cells remains unknown. We show here that the polarity and indole ring on the side chain of Trp 246 (W246) of VVH, which sits on a bottom loop, participates in binding to cellular membrane. To clarify the binding mechanisms of VVH, we generated a series of W246 point mutants that were substituted with Arg (W246R), Ala (W246A), or Tyr (W246Y), and tested their binding and cytotoxicity on Chinese hamster ovary (CHO) cells. At a final concentration of 1 μg/ml of VVH, wild type (Wt), W246A and W246Y could bind and induce cytotoxicity to CHO cells, whereas W246R could not. The cytotoxic activity of W246A was significantly lower than that of Wt. These findings indicate that both the polarity and indole ring on the side chain of W246 were involved in the binding of this toxin to the target cellular membrane. The indole ring plays a particularly important role in toxin binding.
Collapse
Affiliation(s)
- Takashige Kashimoto
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori, Japan.
| | - Tomoe Akita
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori, Japan
| | - Takehiro Kado
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori, Japan
| | - Kohei Yamazaki
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori, Japan
| | - Shunji Ueno
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori, Japan
| |
Collapse
|
7
|
Lee SJ, Jung YH, Song EJ, Jang KK, Choi SH, Han HJ. Vibrio vulnificus VvpE Stimulates IL-1β Production by the Hypomethylation of the IL-1β Promoter and NF-κB Activation via Lipid Raft–Dependent ANXA2 Recruitment and Reactive Oxygen Species Signaling in Intestinal Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:2282-2293. [DOI: 10.4049/jimmunol.1500951] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
An inflammatory response is a hallmark of necrosis evoked by bacterial pathogens. Vibrio vulnificus, VvpE, is an elastase that is responsible for tissue necrosis and inflammation; however, the molecular mechanism by which it regulates host cell death has not been characterized. In the present study, we investigate the cellular mechanism of VvpE with regard to host cell death and the inflammatory response of human intestinal epithelial (INT-407) cells. The recombinant protein (r)VvpE (50 pg/ml) caused cytotoxicity mainly via necrosis coupled with IL-1β production. The necrotic cell death induced by rVvpE is highly susceptible to the knockdown of annexin A (ANXA)2 and the sequestration of membrane cholesterol. We found that rVvpE induces the recruitment of NADPH oxidase 2 and neutrophil cytosolic factor 1 into membrane lipid rafts coupled with ANXA2 to facilitate the production of reactive oxygen species (ROS). The bacterial signaling of rVvpE through ROS production is uniquely mediated by the phosphorylation of redox-sensitive transcription factor NF-κB. The silencing of NF-κB inhibited IL-1β production during necrosis. rVvpE induced hypomethylation and region-specific transcriptional occupancy by NF-κB in the IL-1β promoter and has the ability to induce pyroptosis via NOD-, LRR-, and pyrin domain–containing 3 inflammasome. In a mouse model of V. vulnificus infection, the mutation of the vvpE gene from V. vulnificus negated the proinflammatory responses and maintained the physiological levels of the proliferation and migration of enterocytes. These results demonstrate that VvpE induces the hypomethylation of the IL-1β promoter and the transcriptional regulation of NF-κB through lipid raft–dependent ANXA2 recruitment and ROS signaling to promote IL-1β production in intestinal epithelial cells.
Collapse
Affiliation(s)
- Sei-Jung Lee
- *Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-741, South Korea
- †Brain Korea 21 Program for Leading Universities and Students (BK21 PLUS) Creative Veterinary Research Center, Seoul National University, Seoul 151-741, South Korea; and
| | - Young Hyun Jung
- *Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-741, South Korea
- †Brain Korea 21 Program for Leading Universities and Students (BK21 PLUS) Creative Veterinary Research Center, Seoul National University, Seoul 151-741, South Korea; and
| | - Eun Ju Song
- *Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-741, South Korea
- †Brain Korea 21 Program for Leading Universities and Students (BK21 PLUS) Creative Veterinary Research Center, Seoul National University, Seoul 151-741, South Korea; and
| | - Kyung Ku Jang
- ‡Department of Agricultural Biotechnology, National Research Laboratory of Molecular Microbiology and Toxicology, and Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921, South Korea
| | - Sang Ho Choi
- ‡Department of Agricultural Biotechnology, National Research Laboratory of Molecular Microbiology and Toxicology, and Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921, South Korea
| | - Ho Jae Han
- *Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-741, South Korea
- †Brain Korea 21 Program for Leading Universities and Students (BK21 PLUS) Creative Veterinary Research Center, Seoul National University, Seoul 151-741, South Korea; and
| |
Collapse
|
8
|
Vibrio vulnificus VvhA induces NF-κB-dependent mitochondrial cell death via lipid raft-mediated ROS production in intestinal epithelial cells. Cell Death Dis 2015; 6:1655. [PMID: 25695598 PMCID: PMC4669806 DOI: 10.1038/cddis.2015.19] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/07/2015] [Accepted: 01/07/2015] [Indexed: 01/29/2023]
Abstract
The Gram-negative bacterium Vibrio vulnificus produces hemolysin (VvhA), which induces cytotoxicity in mammalian cells. However, our understanding of the cytotoxic mechanism and the modes of action of VvhA are still fragmentary and incomplete. The recombinant protein (r) VvhA (50 pg/ml) significantly induces necrotic cell death and apoptosis in human intestinal epithelial (INT-407) cells. The apoptotic cell death induced by rVvhA is highly susceptible to the sequestration of cholesterol by methyl-β-cyclodextrin, whereas for necrotic cell death, this shows a marginal effect. We found that rVvhA induces the aggregation of lipid raft components coupled with NADPH oxidase enzymes, in which rVvhA increased the interaction of NADPH oxidase 2 (NOX2, gp91phox) with a cytosolic protein NCF1 (p47phox) to facilitate the production of reactive oxygen species (ROS). rVvhA uniquely stimulated a conventional PKC isoform PKCα and induced the phosphorylation of both ERK and JNK, which are responsible for the activation of transcription factor NF-κB. rVvhA induced an NF-κB-dependent imbalance of the Bcl-2/Bax ratio, the release of mitochondrial cytochrome c, and caspase-3/-9 activation during its promotion of apoptotic cell death. In addition, rVvhA has the ability to inhibit the expression of cell cycle-related proteins, such as CDK2, CDK4, cyclin D1, and cyclin E. These results demonstrate that rVvhA induces NF-κB-dependent mitochondrial cell death via lipid raft-mediated ROS production by the distinct activation of PKCα and ERK/JNK in intestinal epithelial cells.
Collapse
|
9
|
In vivo efficacy of the combination of ciprofloxacin and cefotaxime against Vibrio vulnificus sepsis. PLoS One 2014; 9:e101118. [PMID: 24978586 PMCID: PMC4076242 DOI: 10.1371/journal.pone.0101118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/03/2014] [Indexed: 12/18/2022] Open
Abstract
Objectives The invivo efficacy of a cefotaxime-ciprofloxacin combination against Vibrio vulnificus and the effects on rtxA1 expression of commonly used antibiotics are unknown. Methods In vitro time-kill studies were performed to evaluate synergism. Female BALB/c mice were injected subcutaneously with 1×107 or 1×108 cfu of V. vulnificus. Antibiotic therapy was initiated at 2 h after inoculation in the following four therapy groups: cefotaxime; ciprofloxacin; cefotaxime-plus-ciprofloxacin; and cefotaxime-plus-minocycline. The cytotoxicity of V. vulnificus for HeLa cells was measured using the lactate dehydrogenase assay; rtxA1 transcription was measured in a transcriptional reporter strain using a β-galactosidase assay. Results In vitro time-kill assays exhibited synergism between cefotaxime and ciprofloxacin. In the animal experiments, the 96-h survival rate for the cefotaxime-plus-ciprofloxacin group (85%; 17/20) was significantly higher than that of the cefotaxime-plus-minocycline (35%; 7/20) and cefotaxime alone (0%; 0/20) groups (P<0.05 for both). Bacterial counts in the liver and spleen were significantly lower in the cefotaxime-plus-ciprofloxacin group 24 and 48 h after treatment, relative to the other groups. At sub-inhibitory concentrations, ciprofloxacin inhibited more effectively rtxA1 transcription and mammalian cell cytotoxicity than either minocycline or cefotaxime (P<0.05 for both). Conclusions Ciprofloxacin is more effective at reducing rtxA1 transcription and subsequent cytotoxicity than either minocycline or cefotaxime, and the combination of ciprofloxacin and cefotaxime was more effective in clearing V. vulnificus invivo than previously used regimens. These data suggest that the combination of ciprofloxacin and cefotaxime is an effective option for the treatment of V. vulnificus sepsis in humans.
Collapse
|
10
|
Sugiyama H, Kashimoto T, Ueno S, Susa N. Inhibition of binding of Vibrio vulnificus hemolysin (VVH) by MβCD. J Vet Med Sci 2012; 75:649-52. [PMID: 23238452 DOI: 10.1292/jvms.12-0387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vibrio vulnificus secrets a pore-forming toxin called Vibrio vulnificus hemolysin (VVH). In this study, we showed that methyl-beta-cyclodextrin (MβCD), an oligosaccharide, decreased binding of VVH to Chinese hamster ovary (CHO) cells, resulting in inhibition of its cytotoxicity. When the VVH was incubated with MβCD, cytotoxicity of the toxin was inhibited from 100.3 ± 7.2% to 19.6 ± 5.3%. Binding analysis showed that the amount of VVH on the cells was decreased from 101.4 ± 9.2% to 18.1 ± 8.0% only when MβCD was present in the culture media. Our results indicate that the inhibition of cytotoxicity of VVH by MβCD was due to a decrease in the amount of toxin binding to CHO cells.
Collapse
Affiliation(s)
- Hiroyuki Sugiyama
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, 23-35-1 Higashi, Towada, Aomori 034-8628, Japan
| | | | | | | |
Collapse
|