1
|
Kenneally C, Murphy CP, Sleator RD, Culligan EP. Turbidimetric bioassays: A solution to antimicrobial activity detection in asymptomatic bacteriuria isolates against uropathogenic Escherichia coli. Microbiologyopen 2024; 13:e1411. [PMID: 38706434 PMCID: PMC11070844 DOI: 10.1002/mbo3.1411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Traditional bacteriocin screening methods often face limitations due to diffusion-related challenges in agar matrices, which can prevent the peptides from reaching their target organism. Turbidimetric techniques offer a solution to these issues, eliminating diffusion-related problems and providing an initial quantification of bacteriocin efficacy in producer organisms. This study involved screening the cell-free supernatant (CFS) from eight uncharacterized asymptomatic bacteriuria (ABU) isolates and Escherichia coli 83972 for antimicrobial activity against clinical uropathogenic E. coli (UPEC) strains using turbidimetric growth methods. ABU isolates exhibiting activity against five or more UPEC strains were further characterized (PUTS 37, PUTS 58, PUTS 59, S-07-4, and SK-106-1). The inhibition of the CFS by proteinase K suggested that the antimicrobial activity was proteinaceous in nature, potentially bacteriocins. The activity of E. coli PUTS 58 and SK-106-1 was enhanced in an artificial urine medium, with both inhibiting all eight UPECs. A putative microcin H47 operon was identified in E. coli SK-106-1, along with a previously identified microcin V and colicin E7 in E. coli PUTS 37 and PUTS 58, respectively. These findings indicate that ABU bacteriocin-producers could serve as viable prophylactics and therapeutics in the face of increasing antibiotic resistance among uropathogens.
Collapse
Affiliation(s)
- Ciara Kenneally
- Department of Biological SciencesMunster Technological University, BishopstownCorkIreland
| | - Craig P. Murphy
- Department of Biological SciencesMunster Technological University, BishopstownCorkIreland
| | - Roy D. Sleator
- Department of Biological SciencesMunster Technological University, BishopstownCorkIreland
| | - Eamonn P. Culligan
- Department of Biological SciencesMunster Technological University, BishopstownCorkIreland
| |
Collapse
|
2
|
Excision and integration of unconventional circularizable structures involving the erm(B) gene in enterococci. Vet Microbiol 2022; 273:109542. [PMID: 35969915 DOI: 10.1016/j.vetmic.2022.109542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/22/2022]
Abstract
Traditionally, insertion sequences (ISs) play a major role in disseminating antimicrobial resistance genes (ARGs) in bacteria through transposition and translocation, forming regions that contain multiple ARGs flanked by single or multiple copies of IS. In addition, unconventional circularizable structures (UCSs), lacking recombinase genes but being surrounded by directly repeated sequences (DRs) of various sizes which do not contain transposase genes, were reported to be involved in the dissemination of ARGs. In this study, a novel UCS was identified on plasmid pE508-2 in E. faecalis E508, which carried a 24,411 bp multiresistance gene cluster, consisting of the resistance genes aphA3, lnu(B), lsa(E), spw, aac(A)-aph(D), lnu(B), dfrG, and two copies of aadE flanked by copies of erm(B). PCR assays revealed that three types of UCSs with lengths of 7235, 16,437, and 23,673 bp were formed, each of which contained the respective resistance genes and one copy of erm(B). Using erm(B)-negative and -positive strains, we demonstrated that erm(B)-carrying UCSs failed to transfer into an erm(B)-negative strain, but could integrate into an erm(B)-positive strain in a new site adjacent to a pre-existing erm(B) gene by natural transformation. Database searches revealed that erm(B)-flanked multiresistance gene regions, which might be able to form the respective UCSs, are present among various bacteria from different sources in various countries. In summary, this study experimentally demonstrated the excision and integration of UCS involving structures that include erm(B). The widespread presence of these UCSs in various Gram-positive bacteria highlights its role in the dissemination of ARGs among bacterial pathogens.
Collapse
|
3
|
Yu R, Chen Z, Li D, Schwarz S, Wang X, Du XD. Studies on the Transmission of a Tigecycline Resistance-Mediating tet(A) Gene Variant from Enterobacter hormaechei via a Two-Step Recombination Process. Microbiol Spectr 2022; 10:e0049622. [PMID: 35579466 PMCID: PMC9241890 DOI: 10.1128/spectrum.00496-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
To investigate the contribution of a tet(A) variant to tigecycline resistance in Enterobacter hormaechei and the recombination events that occurred during transmission of this variant. MICs were determined by broth microdilution. E. hormaechei G17 was characterized by PCR, transfer assay, S1-PFGE, Southern blot hybridization, and WGS analysis. A tet(A) variant conferring resistance to tigecycline was present in E. hormaechei G17. This strain harbored two resistance plasmids (pG17-1, 264,084 bp and pG17-2, 68,610 bp) and its E. coli transformant Tm-G17TGC one resistance plasmid (pTm-G17, 93,013 bp). The comparative analysis of pG17-1, pG17-2, and pTm-G17 showed that a tet(A) variant-carrying multiresistance gene cluster (~23 kb) originating from pG17-1 had integrated into pG17-2, forming the novel plasmid pTm-G17. In a first step, this multiresistance gene cluster was excised from pG17-1 by recombination of homologous sequences, including △TnAs1 at both termini, thereby generating an unconventional circularizable structure (UCS). In a second step, this UCS integrated into pG17-2 via recombination between homologous sequences, including IS26 present on both, the UCS and pG17-2, thereby giving rise to the new plasmid pTm-G17. In summary, a tet(A) variant conferring resistance to tigecycline was reported in E. hormaechei. Transfer of a tet(A) variant-carrying multiresistance gene cluster between plasmids occurred in a two-step recombination process, in which homologous sequences, including either △TnAs1 or IS26, were involved. IMPORTANCE Tigecycline is an important last-resort broad spectrum antimicrobial agent. This study describes the two-step recombination processes resulting in the transfer of the tet(A) variant gene between different plasmids in E. hormaechei, which depicts the role of recombination processes in the generation of UCSs and new plasmids, both carrying a tet(A) variant conferring resistance to tigecycline. Such processes enhance the dissemination of resistance genes, which is of particular relevance for resistance genes, such as the tet(A) variant. The presence and transmission of a tet(A) variant in E. hormaechei will compromise the efficacy of tigecycline treatment for E. hormaechei associated infection.
Collapse
Affiliation(s)
- Runhao Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Zheng Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Danyang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Xinwei Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| |
Collapse
|
4
|
Zhang F, Wu S, Huang J, Yang R, Zhang J, Lei T, Dai J, Ding Y, Xue L, Wang J, Chen M, Wu Q. Presence and Characterization of a Novel cfr-Carrying Tn 558 Transposon Derivative in Staphylococcus delphini Isolated From Retail Food. Front Microbiol 2021; 11:598990. [PMID: 33519738 PMCID: PMC7843796 DOI: 10.3389/fmicb.2020.598990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance has become a major public health threat. Food-related Staphylococcus species have received much attention due to their multidrug resistance. The cfr gene associated with multidrug resistance has been consistently detected in food-derived Staphylococcus species. In this retrospective study, we examined the prevalence of cfr-positive Staphylococcus strains isolated from poultry meat in different geographical areas of China from 2011 to 2016. Two cfr-positive Staphylococcus delphini strains were identified from poultry meat in China. Comparative and whole-genome analyses were performed to characterize the genetic features and overall antimicrobial resistance genes in the two S. delphini isolates 245-1 and 2794-1. Whole-genome sequencing showed that they both harbored a novel 20,258-bp cfr-carrying Tn558 transposon derivative on their chromosomes. The Tn558 derivative harbors multiple antimicrobial resistance genes, including the transferable multiresistance gene cfr, chloramphenicol resistance gene fexA, aminoglycoside resistance genes aacA-aphD and aadD, and bleomycin resistance gene ble. Surprisingly, within the Tn558 derivative, an active unconventional circularizable structure containing various resistance genes and a copy of a direct repeat sequence was identified by two-step PCR. Furthermore, core genome phylogenetic analysis revealed that the cfr-positive S. delphini strains were most closely related to S. delphini 14S03313-1 isolated from Japan in 2017 and 14S03319-1 isolated from Switzerland in 2017. This study is the first report of S. delphini harboring a novel cfr-carrying Tn558 derivative isolated from retail food. This finding raises further concerns regarding the potential threat to food safety and public health safety. The occurrence and dissemination of similar cfr-carrying transposons from diverse Staphylococcus species need further surveillance.
Collapse
Affiliation(s)
- Feng Zhang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Runshi Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Tao Lei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jingsha Dai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
5
|
Massip C, Oswald E. Siderophore-Microcins in Escherichia coli: Determinants of Digestive Colonization, the First Step Toward Virulence. Front Cell Infect Microbiol 2020; 10:381. [PMID: 32974212 PMCID: PMC7472721 DOI: 10.3389/fcimb.2020.00381] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Siderophore-microcins are antimicrobial peptides produced by enterobacteria, especially Escherichia coli and Klebsiella pneumoniae strains. The antibiotic peptide is post-translationally modified by the linkage of a siderophore moiety. Therefore, it can enter and kill phylogenetically related bacteria by a “Trojan Horse” stratagem, by mimicking the iron–siderophore complexes. Consequently, these antimicrobial peptides are key determinants of bacterial competition within the intestinal niche, which is the reservoir for pathogenic E. coli. The most frequent extraintestinal infections caused by E. coli are urinary tract infections. Uropathogenic E. coli (UPEC) can produce many virulence factors, including siderophore-microcins. Siderophore-microcins are chromosomally encoded by small genomic islands that exhibit conserved organization. In UPEC, the siderophore-microcin gene clusters and biosynthetic pathways differ from the “archetypal” models described in fecal strains. The gene cluster is shorter. Thus, active siderophore-microcin production requires proteins from two other genomic islands that also code for virulence factors. This functional and modular synergy confers a strong selective advantage for the domination of the colonic niche, which is the first step toward infection. This optimization of genetic resources might favor the selection of additional virulence factors, which are essential in the subsequent steps of pathogenesis in E. coli infection.
Collapse
Affiliation(s)
- Clémence Massip
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,Service de Bactériologie-Hygiène, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,Service de Bactériologie-Hygiène, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| |
Collapse
|
6
|
Joerger RD. Salmonella enterica's "Choice": Itaconic Acid Degradation or Bacteriocin Immunity Genes. Genes (Basel) 2020; 11:genes11070797. [PMID: 32679707 PMCID: PMC7397319 DOI: 10.3390/genes11070797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 11/30/2022] Open
Abstract
Itaconic acid is an immunoregulatory metabolite produced by macrophages in response to pathogen invasion. It also exhibits antibacterial activity because it is an uncompetitive inhibitor of isocitrate lyase, whose activity is required for the glyoxylate shunt to be operational. Some bacteria, such as Yersinia pestis, encode enzymes that can degrade itaconic acid and therefore eliminate this metabolic inhibitor. Studies, primarily with Salmonella enterica subspecies enterica serovar Typhimurium, have demonstrated the presence of similar genes in this pathogen and the importance of these genes for the persistence of the pathogen in murine hosts. This minireview demonstrates that, based on Blast searches of 1063 complete Salmonella genome sequences, not all Salmonella serovars possess these genes. It is also shown that the growth of Salmonella isolates that do not possess these genes is sensitive to the acid under glucose-limiting conditions. Interestingly, most of the serovars without the three genes, including serovar Typhi, harbor DNA at the corresponding genomic location that encodes two open reading frames that are similar to bacteriocin immunity genes. It is hypothesized that these genes could be important for Salmonella that finds itself in strong competition with other Enterobacteriacea in the intestinal tract—for example, during inflammation.
Collapse
Affiliation(s)
- Rolf D Joerger
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
7
|
Massip C, Chagneau CV, Boury M, Oswald E. The synergistic triad between microcin, colibactin, and salmochelin gene clusters in uropathogenic Escherichia coli. Microbes Infect 2020; 22:144-147. [PMID: 31954842 DOI: 10.1016/j.micinf.2020.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 01/12/2023]
Abstract
A functional synergy was previously demonstrated between microcin, salmochelin and colibactin islands in Escherichia coli strains from B2 phylogroup. We aimed to determine this association prevalence in uropathogenic E. coli, and whether it was predictive of the infection severity in a collection of 225 E. coli strains from urinary samples. The high prevalence of this triad, even if it wasn't correlated with infection severity, suggested that it might not be a virulence factor per se within the urinary tract, but would promote its colonization. This triad would enable the strain to dominate the rectal reservoir with a minimal genetic cost.
Collapse
Affiliation(s)
- Clémence Massip
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France; CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| | | | - Michèle Boury
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France; CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France.
| |
Collapse
|
8
|
Cameron A, Zaheer R, Adator EH, Barbieri R, Reuter T, McAllister TA. Bacteriocin Occurrence and Activity in Escherichia coli Isolated from Bovines and Wastewater. Toxins (Basel) 2019; 11:toxins11080475. [PMID: 31443193 PMCID: PMC6723558 DOI: 10.3390/toxins11080475] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
The increasing prevalence of antimicrobial resistant (AMR) E. coli and related Enterobacteriaceae is a serious problem necessitating new mitigation strategies and antimicrobial agents. Bacteriocins, functionally diverse toxins produced by most microbes, have long been studied for their antimicrobial potential. Bacteriocins have once again received attention for their role as probiotic traits that could mitigate pathogen burden and AMR bacteria in livestock. Here, bacteriocins were identified by activity screening and whole-genome sequencing of bacteriocin-producers capable of inhibiting bovine and wastewater E. coli isolates enriched for resistance to cephalosporins. Producers were tested for activity against shiga toxin-producing E. coli (STEC), AMR E. coli, and related enteric pathogens. Multiple bacteriocins were found in 14 out of 90 E. coli isolates tested. Based on alignment within BACTIBASE, colicins M, B, R, Ia, Ib, S4, E1, E2, and microcins V, J25, and H47, encoded by identical, variant, or truncated genes were identified. Although some bacteriocin-producers exhibited activity against AMR and STEC E. coli in agar-based assays, most did not. Despite this idiosyncrasy, liquid co-cultures of all bacteriocinogenic isolates with luciferase-expressing generic (K12) or STEC E. coli (EDL933) resulted in inhibited growth or reduced viability. These abundant toxins may have real potential as next-generation control strategies in livestock production systems but separating the bacteriocin from its immunity gene may be necessary for such a strategy to be effective.
Collapse
Affiliation(s)
- Andrew Cameron
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Emelia H Adator
- Department of Food Science and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ruth Barbieri
- Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Tim Reuter
- Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada.
| |
Collapse
|
9
|
TosR-Mediated Regulation of Adhesins and Biofilm Formation in Uropathogenic Escherichia coli. mSphere 2018; 3:3/3/e00222-18. [PMID: 29769381 PMCID: PMC5956150 DOI: 10.1128/msphere.00222-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023] Open
Abstract
Uropathogenic Escherichia coli strains utilize a variety of adherence factors that assist in colonization of the host urinary tract. TosA (type one secretion A) is a nonfimbrial adhesin that is predominately expressed during murine urinary tract infection (UTI), binds to kidney epithelial cells, and promotes survival during invasive infections. The tosRCBDAEF operon encodes the secretory machinery necessary for TosA localization to the E. coli cell surface, as well as the transcriptional regulator TosR. TosR binds upstream of the tos operon and in a concentration-dependent manner either induces or represses tosA expression. TosR is a member of the PapB family of fimbrial regulators that can participate in cross talk between fimbrial operons. TosR also binds upstream of the pap operon and suppresses PapA production. However, the scope of TosR-mediated cross talk is understudied and may be underestimated. To quantify the global effects of TosR-mediated regulation on the E. coli CFT073 genome, we induced expression of tosR, collected mRNA, and performed high-throughput RNA sequencing (RNA-Seq). These findings show that production of TosR affected the expression of genes involved with adhesins, including P, F1C, and Auf fimbriae, nitrate-nitrite transport, microcin secretion, and biofilm formation.IMPORTANCE Uropathogenic E. coli strains cause the majority of UTIs, which are the second most common bacterial infection in humans. During a UTI, bacteria adhere to cells within the urinary tract, using a number of different fimbrial and nonfimbrial adhesins. Biofilms can also develop on the surfaces of catheters, resulting in complications such as blockage. In this work, we further characterized the regulator TosR, which links both adhesin production and biofilm formation and likely plays a crucial function during UTI and disseminated infection.
Collapse
|
10
|
Azpiroz MF, Laviña M. Analysis of RecA-independent recombination events between short direct repeats related to a genomic island and to a plasmid in Escherichia coli K12. PeerJ 2017; 5:e3293. [PMID: 28503377 PMCID: PMC5426353 DOI: 10.7717/peerj.3293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/10/2017] [Indexed: 02/03/2023] Open
Abstract
RecA-independent recombination events between short direct repeats, leading to deletion of the intervening sequences, were found to occur in two genetic models in the Escherichia coli K12 background. The first model was a small E. coli genomic island which had been shown to be mobile in its strain of origin and, when cloned, also in the E. coli K12 context. However, it did not encode a site-specific recombinase as mobile genomic islands usually do. It was then deduced that the host cells should provide the recombination function. This latter was searched for by means of a PCR approach to detect the island excision in E. coli K12 mutants affected in a number of recombination functions, including the 16 E. coli K12 site-specific recombinases, the RecET system, and multiple proteins that participate in the RecA-dependent pathways of homologous recombination. None of these appeared to be involved in the island excision. The second model, analyzed in a RecA deficient context, was a plasmid construction containing a short direct repeat proceeding from Saccharomyces cerevisiae, which flanked the cat gene. The excision of this gene by recombination of the DNA repeats was confirmed by PCR and through the detection, recovery and characterization of the plasmid deleted form. In sum, we present new evidence on the occurrence of RecA-independent recombination events in E. coli K12. Although the mechanism underlying these processes is still unknown, their existence suggests that RecA-independent recombination may confer mobility to other genetic elements, thus contributing to genome plasticity.
Collapse
Affiliation(s)
- María F Azpiroz
- Fisiología y Genética Bacterianas, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Magela Laviña
- Fisiología y Genética Bacterianas, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
11
|
Böhnlein C, Kabisch J, Meske D, Franz CMAP, Pichner R. Fitness of Enterohemorrhagic Escherichia coli (EHEC)/Enteroaggregative E. coli O104:H4 in Comparison to That of EHEC O157: Survival Studies in Food and In Vitro. Appl Environ Microbiol 2016; 82:6326-6334. [PMID: 27542931 PMCID: PMC5066349 DOI: 10.1128/aem.01796-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/10/2016] [Indexed: 11/20/2022] Open
Abstract
In 2011, one of the world's largest outbreaks of hemolytic-uremic syndrome (HUS) occurred, caused by a rare Escherichia coli serotype, O104:H4, that shared the virulence profiles of Shiga toxin-producing E. coli (STEC)/enterohemorrhagic E. coli (EHEC) and enteroaggregative E. coli (EAEC). The persistence and fitness factors of the highly virulent EHEC/EAEC O104:H4 strain, grown either in food or in vitro, were compared with those of E. coli O157 outbreak-associated strains. The log reduction rates of the different EHEC strains during the maturation of fermented sausages were not significantly different. Both the O157:NM and O104:H4 serotypes could be shown by qualitative enrichment to be present after 60 days of sausage storage. Moreover, the EHEC/EAEC O104:H4 strain appeared to be more viable than E. coli O157:H7 under conditions of decreased pH and in the presence of sodium nitrite. Analysis of specific EHEC strains in experiments with an EHEC inoculation cocktail showed a dominance of EHEC/EAEC O104:H4, which could be isolated from fermented sausages for 60 days. Inhibitory activities of EHEC/EAEC O104:H4 toward several E. coli strains, including serotype O157 strains, could be determined. Our study suggests that EHEC/EAEC O104:H4 is well adapted to the multiple adverse conditions occurring in fermented raw sausages. Therefore, it is strongly recommended that STEC strain cocktails composed of several serotypes, instead of E. coli O157:H7 alone, be used in food risk assessments. The enhanced persistence of EHEC/EAEC O104:H4 as a result of its robustness, as well as the production of bacteriocins, may account for its extraordinary virulence potential. IMPORTANCE In 2011, a severe outbreak caused by an EHEC/EAEC serovar O104:H4 strain led to many HUS sequelae. In this study, the persistence of the O104:H4 strain was compared with those of other outbreak-relevant STEC strains under conditions of fermented raw sausage production. Both O157:NM and O104:H4 strains could survive longer during the production of fermented sausages than E. coli O157:H7 strains. E. coli O104:H4 was also shown to be well adapted to the multiple adverse conditions encountered in fermented sausages, and the secretion of a bacteriocin may explain the competitive advantage of this strain in an EHEC strain cocktail. Consequently, this study strongly suggests that enhanced survival and persistence, and the presumptive production of a bacteriocin, may explain the increased virulence of the O104:H4 outbreak strain. Furthermore, this strain appears to be capable of surviving in a meat product, suggesting that meat should not be excluded as a source of potential E. coli O104:H4 infection.
Collapse
Affiliation(s)
- Christina Böhnlein
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Jan Kabisch
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Diana Meske
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Rohtraud Pichner
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany Department of Nutritional, Food, and Consumer Sciences, University of Applied Sciences, Fulda, Germany
| |
Collapse
|
12
|
Tansirichaiya S, Mullany P, Roberts AP. PCR-based detection of composite transposons and translocatable units from oral metagenomic DNA. FEMS Microbiol Lett 2016; 363:fnw195. [PMID: 27521260 PMCID: PMC5024762 DOI: 10.1093/femsle/fnw195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2016] [Indexed: 12/29/2022] Open
Abstract
A composite transposon is a mobile genetic element consisting of two insertion sequences (ISs) flanking a segment of cargo DNA often containing antibiotic resistance (AR) genes. Composite transposons can move as a discreet unit. There have been recently several reports on a novel mechanism of movement of an IS26-based composite transposon through the formation of a translocatable unit (TU), carrying the internal DNA segment of a composite transposon and one copy of a flanking IS. In this study, we determined the presence of composite transposons and TUs in human oral metagenomic DNA using PCR primers from common IS elements. Analysis of resulting amplicons showed four different IS1216 composite transposons and one IS257 composite transposon in our metagenomic sample. As our PCR strategy would also detect TUs, PCR was carried out to detect circular TUs predicted to originate from these composite transposons. We confirmed the presence of two novel TUs, one containing an experimentally proven antiseptic resistance gene and another containing a putative universal stress response protein (UspA) encoding gene. This is the first report of a PCR strategy to amplify the DNA segment on composite transposons and TUs in metagenomic DNA. This can be used to identify AR genes associated with a variety of mobile genetic elements from metagenomes. Using a PCR approach, we have detected composite transposons and TUs directly from human oral metagenomic DNA.
Collapse
Affiliation(s)
- Supathep Tansirichaiya
- Department of Microbial Diseases, University College London, Eastman Dental Institute, 256 Gray's Inn Road, London WC1×8LD, UK
| | - Peter Mullany
- Department of Microbial Diseases, University College London, Eastman Dental Institute, 256 Gray's Inn Road, London WC1×8LD, UK
| | - Adam P Roberts
- Department of Microbial Diseases, University College London, Eastman Dental Institute, 256 Gray's Inn Road, London WC1×8LD, UK
| |
Collapse
|
13
|
Bihannic M, Ghanbarpour R, Auvray F, Cavalié L, Châtre P, Boury M, Brugère H, Madec JY, Oswald E. Identification and detection of three new F17 fimbrial variants in Escherichia coli strains isolated from cattle. Vet Res 2014; 45:76. [PMID: 25106491 PMCID: PMC4267768 DOI: 10.1186/s13567-014-0076-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/17/2014] [Indexed: 01/13/2023] Open
Abstract
F17 fimbriae are produced by pathogenic Escherichia coli involved in diarrhea and septicemia outbreaks in calves and lambs. These proteins result from the expression of four different clustered genes, namely f17A, f17D, f17C and f17G, encoding a pilin protein, a periplasmic protein, an anchor protein and an adhesin protein, respectively. Several variants of f17A and f17G genes have been reported and found genetically associated with typical virulence factors of bovine pathogenic E. coli strains. In this study, a new F17e-A variant, closely related to F17b-A, was identified from a collection of 58 E. coli isolates from diarrheic calves in Iran. While highly prevalent in Iranian F17-producing clinical isolates from calves, this variant was rare among E. coli from a French healthy adult bovine population, suggesting a possible association with virulence. The f17Ae gene was also found in the genome of the Shiga-like toxin variant Stx1d-producing bovine E. coli strain MHI813, and belonged to a gene cluster also encoding a new F17-G3 variant, which greatly differed from F17-G1 and F17-G2. This gene cluster was located on a pathogenicity island integrated in the tRNA pheV gene. The gene coding for a third new F17f-A variant corresponding to a combination of F17c-A and F17d-A was also identified on the pVir68 plasmid in the bovine pathogenic E. coli strain 6.0900. In conclusion, we identified three new F17-A and F17-G variants in cattle E. coli, which may also have significant impact on the development of new diagnostics and vaccination tools.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, Anses Lyon, Lyon, France.
| | | |
Collapse
|
14
|
Unconventional circularizable bacterial genetic structures carrying antibiotic resistance determinants. Antimicrob Agents Chemother 2013; 57:2440-1. [PMID: 23580584 DOI: 10.1128/aac.02548-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Comparative genomics of recent Shiga toxin-producing Escherichia coli O104:H4: short-term evolution of an emerging pathogen. mBio 2013; 4:e00452-12. [PMID: 23341549 PMCID: PMC3551546 DOI: 10.1128/mbio.00452-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The large outbreak of diarrhea and hemolytic uremic syndrome (HUS) caused by Shiga toxin-producing Escherichia coli O104:H4 in Europe from May to July 2011 highlighted the potential of a rarely identified E. coli serogroup to cause severe disease. Prior to the outbreak, there were very few reports of disease caused by this pathogen and thus little known of its diversity and evolution. The identification of cases of HUS caused by E. coli O104:H4 in France and Turkey after the outbreak and with no clear epidemiological links raises questions about whether these sporadic cases are derived from the outbreak. Here, we report genome sequences of five independent isolates from these cases and results of a comparative analysis with historical and 2011 outbreak isolates. These analyses revealed that the five isolates are not derived from the outbreak strain; however, they are more closely related to the outbreak strain and each other than to isolates identified prior to the 2011 outbreak. Over the short time scale represented by these closely related organisms, the majority of genome variation is found within their mobile genetic elements: none of the nine O104:H4 isolates compared here contain the same set of plasmids, and their prophages and genomic islands also differ. Moreover, the presence of closely related HUS-associated E. coli O104:H4 isolates supports the contention that fully virulent O104:H4 isolates are widespread and emphasizes the possibility of future food-borne E. coli O104:H4 outbreaks. In the summer of 2011, a large outbreak of bloody diarrhea with a high rate of severe complications took place in Europe, caused by a previously rarely seen Escherichia coli strain of serogroup O104:H4. Identification of subsequent infections caused by E. coli O104:H4 raised questions about whether these new cases represented ongoing transmission of the outbreak strain. In this study, we sequenced the genomes of isolates from five recent cases and compared them with historical isolates. The analyses reveal that, in the very short term, evolution of the bacterial genome takes place in parts of the genome that are exchanged among bacteria, and these regions contain genes involved in adaptation to local environments. We show that these recent isolates are not derived from the outbreak strain but are very closely related and share many of the same disease-causing genes, emphasizing the concern that these bacteria may cause future severe outbreaks.
Collapse
|
16
|
Streptococcus pneumoniae transposon Tn1545/Tn6003 changes to Tn6002 due to spontaneous excision in circular form of the erm(B)- and aphA3-containing macrolide-aminoglycoside-streptothricin (MAS) element. Antimicrob Agents Chemother 2012; 56:5994-7. [PMID: 22890760 DOI: 10.1128/aac.01487-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The macrolide-aminoglycoside-streptothricin (MAS) element, an ∼4.2-kb insertion containing erm(B) and aphA3 resistance determinants, distinguishes Streptococcus pneumoniae transposon Tn1545/Tn6003 from Tn6002. Here, it is shown to be an unstable genetic element that, although it lacks recombinase genes, can exploit long, erm(B)-containing direct repeats acting as att sites for spontaneous excision that may result in loss. Consequent to excision, which is RecA independent, Tn1545/Tn6003 changes to Tn6002. In pneumococcal populations harboring Tn1545/Tn6003, the latter appears to coexist with Tn6002.
Collapse
|
17
|
Characterization of a Streptococcus suis tet(O/W/32/O)-carrying element transferable to major streptococcal pathogens. Antimicrob Agents Chemother 2012; 56:4697-702. [PMID: 22710115 DOI: 10.1128/aac.00629-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mosaic tetracycline resistance determinants are a recently discovered class of hybrids of ribosomal protection tet genes. They may show different patterns of mosaicism, but their final size has remained unaltered. Initially thought to be confined to a small group of anaerobic bacteria, mosaic tet genes were then found to be widespread. In the genus Streptococcus, a mosaic tet gene [tet(O/W/32/O)] was first discovered in Streptococcus suis, an emerging drug-resistant pig and human pathogen. In this study, we report the molecular characterization of a tet(O/W/32/O) gene-carrying mobile element from an S. suis isolate. tet(O/W/32/O) was detected, in tandem with tet(40), in a circular 14,741-bp genetic element (39.1% G+C; 17 open reading frames [ORFs] identified). The novel element, which we designated 15K, also carried the macrolide resistance determinant erm(B) and an aminoglycoside resistance four-gene cluster including aadE (streptomycin) and aphA (kanamycin). 15K appeared to be an unstable genetic element that, in the absence of recombinases, is capable of undergoing spontaneous excision under standard growth conditions. In the integrated form, 15K was found inside a 54,879-bp integrative and conjugative element (ICE) (50.5% G+C; 55 ORFs), which we designated ICESsu32457. An ∼1.3-kb segment that apparently served as the att site for excision of the unstable 15K element was identified. The novel ICE was transferable at high frequency to recipients from pathogenic Streptococcus species (S. suis, Streptococcus pyogenes, Streptococcus pneumoniae, and Streptococcus agalactiae), suggesting that the multiresistance 15K element can successfully spread within streptococcal populations.
Collapse
|
18
|
Poey ME, Albini M, Saona G, Laviña M. Virulence profiles in uropathogenic Escherichia coli isolated from pregnant women and children with urinary tract abnormalities. Microb Pathog 2012; 52:292-301. [PMID: 22406645 DOI: 10.1016/j.micpath.2012.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 11/26/2022]
Abstract
Uropathogenic Escherichia coli is the leading etiologic agent of urinary tract infections, encompassing a highly heterogeneous group of strains. Although many putative urovirulence factors have been described, none of them appear in all uropathogenic E. coli strains, a fact that suggests that this group would be composed of different pathogenic subgroups. In this work, a study was performed on two collections of E. coli isolates proceeding from urine cultures from two groups of patients with urinary tract infection: pregnant women and children with urinary tract abnormalities. The isolates were analyzed for their virulence content and for their phylogeny by means of PCR determinations and of phenotypic assays. Associations among the virulence traits analyzed were searched for and this approach led to the identification of five urovirulence profiles. From a total of 230 isolates, 123 (53%) could be assigned to one of these profiles. A few loci appeared as markers of these profiles so that their presence allowed predicting the general virulence content of the strains. It is presumed that these conserved associations among the virulence functions would be devoted to ensure the coherence of the bacterial pathogenic strategy. In addition, three profiles appeared with significantly different frequencies depending on the host of origin of the isolates, indicating the existence of a correlation between the virulence content of the strains and their host specificity.
Collapse
Affiliation(s)
- María Eloisa Poey
- Sección Fisiología y Genética Bacterianas, Facultad de Ciencias Montevideo, Iguá 4225, Montevideo 11.400, Uruguay.
| | | | | | | |
Collapse
|
19
|
Huang Q, Cheng X, Cheung MK, Kiselev SS, Ozoline ON, Kwan HS. High-density transcriptional initiation signals underline genomic islands in bacteria. PLoS One 2012; 7:e33759. [PMID: 22448273 PMCID: PMC3309015 DOI: 10.1371/journal.pone.0033759] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/21/2012] [Indexed: 02/07/2023] Open
Abstract
Genomic islands (GIs), frequently associated with the pathogenicity of bacteria and having a substantial influence on bacterial evolution, are groups of "alien" elements which probably undergo special temporal-spatial regulation in the host genome. Are there particular hallmark transcriptional signals for these "exotic" regions? We here explore the potential transcriptional signals that underline the GIs beyond the conventional views on basic sequence composition, such as codon usage and GC property bias. It showed that there is a significant enrichment of the transcription start positions (TSPs) in the GI regions compared to the whole genome of Salmonella enterica and Escherichia coli. There was up to a four-fold increase for the 70% GIs, implying high-density TSPs profile can potentially differentiate the GI regions. Based on this feature, we developed a new sliding window method GIST, Genomic-island Identification by Signals of Transcription, to identify these regions. Subsequently, we compared the known GI-associated features of the GIs detected by GIST and by the existing method Islandviewer to those of the whole genome. Our method demonstrates high sensitivity in detecting GIs harboring genes with biased GI-like function, preferred subcellular localization, skewed GC property, shorter gene length and biased "non-optimal" codon usage. The special transcriptional signals discovered here may contribute to the coordinate expression regulation of foreign genes. Finally, by using GIST, we detected many interesting GIs in the 2011 German E. coli O104:H4 outbreak strain TY-2482, including the microcin H47 system and gene cluster ycgXEFZ-ymgABC that activates the production of biofilm matrix. The aforesaid findings highlight the power of GIST to predict GIs with distinct intrinsic features to the genome. The heterogeneity of cumulative TSPs profiles may not only be a better identity for "alien" regions, but also provide hints to the special evolutionary course and transcriptional regulation of GI regions.
Collapse
Affiliation(s)
- Qianli Huang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xuanjin Cheng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Man Kit Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sergey S. Kiselev
- Institute of Cell Biophysics, Russian Academy of Sciences, Moscow, Russia
| | - Olga N. Ozoline
- Institute of Cell Biophysics, Russian Academy of Sciences, Moscow, Russia
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|