1
|
Cui J, Yao X, Ni Z, Zhao H, Yang Y, Xu H, Lu Z, Zhu P. Identification of salivary proteins in the rice leaf folder Cnaphalocrocis medinalis by transcriptome and LC-MS/MS analyses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 174:104191. [PMID: 39393440 DOI: 10.1016/j.ibmb.2024.104191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Salivary proteins in the oral secretion (OS) of chewing insects play a crucial role in insect-plant interactions during feeding. The rice leaf folder Cnaphalocrocis medinalis, a notorious pest in global rice production, triggers defense responses during feeding, but little is known about its salivary proteins. In this study, we confirmed that C. medinalis releases OS during feeding. By employing transcriptomic analysis and liquid chromatography-tandem mass spectroscopy (LC-MS/MS), we examined the salivary proteins from labial salivary glands and OS from C. medinalis. A total of 14,397 genes were expressed at the RNA level and 229 salivary proteins were identified. Comparative analysis with other 25 arthropod species revealed that 43 proteins were unique to C. medinalis. Expression pattern analysis revealed that most of the selected genes were highly expressed in the gut and the larval stages (4th-5th instar). These findings provide a comprehensive resource for future functional studies of salivary proteins, offering new insights into the molecular mechanisms by which C. medinalis modulates plant defenses and potential applications in pest management.
Collapse
Affiliation(s)
- Jiarong Cui
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xianjing Yao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhihan Ni
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongfeng Zhao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yajun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China.
| | - Zhongxian Lu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Pingyang Zhu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
2
|
Pavithran S, Murugan M, Mannu J, Yogendra K, Balasubramani V, Sanivarapu H, Harish S, Natesan S. Identification of salivary proteins of the cowpea aphid Aphis craccivora by transcriptome and LC-MS/MS analyses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104060. [PMID: 38123026 DOI: 10.1016/j.ibmb.2023.104060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Aphid salivary proteins mediate the interaction between aphids and their host plants. Moreover, these proteins facilitate digestion, detoxification of secondary metabolites, as well as activation and suppression of plant defenses. The cowpea aphid, Aphis craccivora, is an important sucking pest of leguminous crops worldwide. Although aphid saliva plays an important role in aphid plant interactions, knowledge of the cowpea aphid salivary proteins is limited. In this study, we performed transcriptomic and LC-MS/MS analyses to identify the proteins present in the salivary glands and saliva of A. craccivora. A total of 1,08,275 assembled transcripts were identified in the salivary glands of aphids. Of all these assembled transcripts, 53,714 (49.11%) and 53,577 (49.48%) transcripts showed high similarity to known proteins in the Nr and UniProt databases, respectively. A total of 2159 proteins were predicted as secretory proteins from the salivary gland transcriptome dataset, which contain digestive enzymes, detoxification enzymes, previously known effectors and elicitors, and potential proteins whose functions have yet to be determined. The proteomic analysis of aphid saliva resulted in the identification of 171 proteins. Tissue-specific expression of selected genes using RT-PCR showed that three genes were expressed only in the salivary glands. Overall, our results provide a comprehensive repertoire of cowpea aphid salivary proteins from the salivary gland and saliva, which will be a good resource for future effector functional studies and might also be useful for sustainable aphid management.
Collapse
Affiliation(s)
- Shanmugasundram Pavithran
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Marimuthu Murugan
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| | - Jayakanthan Mannu
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Kalenahalli Yogendra
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Venkatasamy Balasubramani
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Hemalatha Sanivarapu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Sankarasubramanian Harish
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Senthil Natesan
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| |
Collapse
|
3
|
Lin DJ, Zhang YX, Fang Y, Gao SJ, Wang R, Wang JD. The effect of chlorogenic acid, a potential botanical insecticide, on gene transcription and protein expression of carboxylesterases in the armyworm (Mythimna separata). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105575. [PMID: 37666601 DOI: 10.1016/j.pestbp.2023.105575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 09/06/2023]
Abstract
Chlorogenic acid (CGA) is a potential botanical insecticide metabolite that naturally occurs in various plants. Our previous studies revealed CGA is sufficient to control the armyworm Mythimna separata. In this study, we conducted a proteomic analysis of saliva collected from M. separata following exposure to CGA and found that differentially expressed proteins (DEPs) treated with CGA for 6 h and 24 h were primarily enriched in glutathione metabolism and the pentose phosphate pathway. Notably, we observed six carboxylesterase (CarE) proteins that were enriched at both time points. Additionally, these corresponding genes were expressed at levels 5.05 to 130.25 times higher in our laboratory-selected resistance strains. We also noted a significant increase in the enzyme activity of carboxylesterase following treatments with varying CGA concentrations. Finally, we confirmed that knockdown of MsCarE14, MsCarE28, and MsCCE001h decreased the susceptibility to CGA in resistance strain, indicating three CarE genes play crucial roles in CGA detoxification. This study presents the first report on the salivary proteomics of M. separata, offering valuable insights into the role of salivary proteins. Moreover, the determination of CarE mediated susceptibility change to CGA provides new targets for agricultural pest control and highlights the potential insecticide resistance mechanism for pest resistance management.
Collapse
Affiliation(s)
- Dong-Jiang Lin
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ya-Xin Zhang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yong Fang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agriculture Science, Changsha 410125, China
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ran Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Jin-da Wang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
4
|
Hassanyar AK, Nie H, Li Z, Lin Y, Huang J, Woldegiorgis ST, Hussain M, Feng W, Zhang Z, Yu K, Su S. Discovery of SNP Molecular Markers and Candidate Genes Associated with Sacbrood Virus Resistance in Apis cerana cerana Larvae by Whole-Genome Resequencing. Int J Mol Sci 2023; 24:ijms24076238. [PMID: 37047210 PMCID: PMC10094193 DOI: 10.3390/ijms24076238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Sacbrood virus (SBV) is a significant problem that impedes brood development in both eastern and western honeybees. Whole-genome sequencing has become an important tool in researching population genetic variations. Numerous studies have been conducted using multiple techniques to suppress SBV infection in honeybees, but the genetic markers and molecular mechanisms underlying SBV resistance have not been identified. To explore single nucleotide polymorphisms (SNPs), insertions, deletions (Indels), and genes at the DNA level related to SBV resistance, we conducted whole-genome resequencing on 90 Apis cerana cerana larvae raised in vitro and challenged with SBV. After filtering, a total of 337.47 gigabytes of clean data and 31,000,613 high-quality SNP loci were detected in three populations. We used ten databases to annotate 9359 predicted genes. By combining population differentiation index (FST) and nucleotide polymorphisms (π), we examined genome variants between resistant (R) and susceptible (S) larvae, focusing on site integrity (INT < 0.5) and minor allele frequency (MAF < 0.05). A selective sweep analysis with the top 1% and top 5% was used to identify significant regions. Two SNPs on the 15th chromosome with GenBank KZ288474.1_322717 (Guanine > Cytosine) and KZ288479.1_95621 (Cytosine > Thiamine) were found to be significantly associated with SBV resistance based on their associated allele frequencies after SNP validation. Each SNP was authenticated in 926 and 1022 samples, respectively. The enrichment and functional annotation pathways from significantly predicted genes to SBV resistance revealed immune response processes, signal transduction mechanisms, endocytosis, peroxisomes, phagosomes, and regulation of autophagy, which may be significant in SBV resistance. This study presents novel and useful SNP molecular markers that can be utilized as assisted molecular markers to select honeybees resistant to SBV for breeding and that can be used as a biocontrol technique to protect honeybees from SBV.
Collapse
|
5
|
Borges AR, Teixeira ADD, Martínez LC, Dos Santos MH, Serrão JE. Protein and volatile contents in the mandibular gland of the sugarcane borer Diatraea saccharalis (Lepidoptera: Crambidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21904. [PMID: 35419839 DOI: 10.1002/arch.21904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/02/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The sugarcane borer Diatraea saccharalis (Lepidoptera: Crambidae) is an important sugarcane pest and mechanical injuries caused through the mandibles can allow pathogen infections. The mandibles of D. saccharalis, as well as other insects, are associated with mandibular glands with a possible function in food intake and mouthparts lubrication; however, the chemical composition of the secretion is poorly known and its elucidation is important for the comprehensive understanding of plant-insect interactions. This study characterized some proteins and volatiles in the mandibular glands of D. saccharalis larvae. MALDI-TOF/TOF mass spectrometry allowed the identification of 24 predicted proteins within 10 functional classes, including the transport and metabolism of carbohydrates, lipids, amino acids, and nucleotides; Posttranslational protein modifications; energy conversion; intracellular trafficking; transcription; translation; and cytoskeleton function. Metabolites identified from GC/MS analysis revealed the presence of hydrocarbons classified as alcohols, ether, alkanes, and esters with differences in their relative abundance. Linolenic acid, the most abundant metabolite found in this gland, when conjugated with amino acids, can be an elicitor in the plant-herbivore interaction. The results suggest the occurrence of digestive and defensive biochemical components, which may contribute to understanding of the multifunctional roles of the mandibular gland secretion of D. saccharalis larvae during feeding activity.
Collapse
Affiliation(s)
- Alex R Borges
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Luis Carlos Martínez
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Marcelo H Dos Santos
- Department of Chemistry, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - José Eduardo Serrão
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
6
|
Zheng S, Luo J, Zhu X, Gao X, Hua H, Cui J. Transcriptomic analysis of salivary gland and proteomic analysis of oral secretion in Helicoverpa armigera under cotton plant leaves, gossypol, and tannin stresses. Genomics 2022; 114:110267. [PMID: 35032617 DOI: 10.1016/j.ygeno.2022.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/26/2022]
Abstract
Gossypol and tannin are involved in important chemical defense processes in cotton plants. In this study, we used transcriptomics and proteomics to explore the changes in salivary gland functional genes and oral secretion (OS) proteins after feeding with artificial diet (containing gossypols and tannins) and cotton plant leaves. We found that dietary cotton plant leaves, gossypols and tannins exerted adverse impacts on the genes that regulated the functions of peptidase, GTPase, glycosyl hydrolases in the salivary glands of the Helicoverpa armigera (H. armigera). However, GST, UGT, hydrolases, and lipase genes were up-regulated to participate in the detoxification and digestive of H. armigera. The oral secretory proteins of H. armigera were significantly inhibited under the stress of gossypol and tannin, such as enzyme activity, but some proteins (such as PZC71358.1) were up-regulated and involved in immune and digestive functions. The combined analysis of transcriptomics and metabolomics showed a weak correlation, and the genes and proteins involved were mainly in digestive enzyme activities. Our work clarifies the deleterious physiological impacts of gossypols and tannins on H. armigera and reveals the mechanism by which H. armigera effectively mitigate the phytotoxic effects through detoxification and immune systems.
Collapse
Affiliation(s)
- Shuaichao Zheng
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junyu Luo
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Xiangzhen Zhu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Xueke Gao
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
| | - Hongxia Hua
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
| |
Collapse
|
7
|
Wang XY, Cai DZ, Li X, Bai SF, Yan FM. Identification and Physicochemical Properties of the Novel Hemolysin(s) From Oral Secretions of Helicoverpa armigera (Lepidoptera: Noctuidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:12. [PMID: 34750634 PMCID: PMC8575691 DOI: 10.1093/jisesa/ieab082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Hemolysins cause the lysis of invading organisms, representing major humoral immunity used by invertebrates. Hemolysins have been discovered in hemolymph of Helicoverpa armigera larvae as immune factors. As oral immunity is great important to clear general pathogens, we presumed that hemolysins may be present in oral secretions (OS). To confirm this hypothesis, we conducted four testing methods to identify hemolysin(s) in larval OS of H. armigera, and analyzed physicochemical properties of the hemolysin in comparison with hemolytic melittin of Apis mellifera (L.) (Hymenoptera: Apidae) venom. We found hemolysin(s) from OS of H. armigera for the first time, and further identified in other lepidopteran herbivores. It could be precipitated by ammonium sulfate, which demonstrates that the hemolytic factor is proteinaceous. Labial gland showed significantly higher hemolytic activity than gut tissues, suggesting that hemolysin of OS is mainly derived from saliva secreted by labial glands. Physicochemical properties of hemolysin in caterpillar's OS were different from bee venom. It was noteworthy that hemolytic activity of OS was only partially inhibited even at 100°C. Hemolytic activity of OS was not inhibited by nine tested carbohydrates contrary to bee venom melittin. Moreover, effects of metal ions on hemolytic activity were different between OS and bee venom. We conclude that there is at least a novel hemolysin in OS of herbivorous insects with proposed antibacterial function, and its hemolytic mechanism may be different from melittin. Our study enriches understanding of the potential role of hemolysins in insect immunity and provides useful data to the field of herbivorous insect-pathogen research.
Collapse
Affiliation(s)
- Xiong-Ya Wang
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Dong-Zhang Cai
- Department of Conservation of Natural Resources, National Nature Reserve Administration of Henan Jigongshan Mountain, Xinyang, Henan, 464000, China
| | - Xin Li
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Su-Fen Bai
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Feng-Ming Yan
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| |
Collapse
|
8
|
Prajapati VK, Varma M, Vadassery J. In silico identification of effector proteins from generalist herbivore Spodoptera litura. BMC Genomics 2020; 21:819. [PMID: 33225897 PMCID: PMC7681983 DOI: 10.1186/s12864-020-07196-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/27/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The common cutworm, Spodoptera litura Fabricius is a leaf and fruit feeding generalist insect of the order Lepidoptera and a destructive agriculture pest. The broad host range of the herbivore is due to its ability to downregulate plant defense across different plants. The identity of Spodoptera litura released effectors that downregulate plant defense are largely unknown. The current study aims to identify genes encoding effector proteins from salivary glands of S. litura (Fab.). RESULTS Head and salivary glands of Spodoptera litura were used for de-novo transcriptome analysis and effector prediction. Eight hundred ninety-nine proteins from the head and 330 from salivary gland were identified as secretory proteins. Eight hundred eight proteins from the head and 267 from salivary gland proteins were predicted to be potential effector proteins. CONCLUSIONS This study is the first report on identification of potential effectors from Spodoptera litura salivary glands.
Collapse
Affiliation(s)
- Vinod Kumar Prajapati
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Mahendra Varma
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
- Present Address-Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
| | - Jyothilakshmi Vadassery
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
9
|
Lawrence SD, Novak NG, Shao J, Ghosh SKB, Blackburn MB. Cabbage looper (Trichoplusia ni Hübner) labial glands contain unique bacterial flora in contrast with their alimentary canal, mandibular glands, and Malpighian tubules. Microbiologyopen 2020; 9:e994. [PMID: 31990149 PMCID: PMC7142365 DOI: 10.1002/mbo3.994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/05/2022] Open
Abstract
In recent years, several studies have examined the gut microbiome of lepidopteran larvae and how factors such as host plant affect it, and in turn, how gut bacteria affect host plant responses to herbivory. In addition, other studies have detailed how secretions of the labial (salivary) glands can alter host plant defense responses. We examined the gut microbiome of the cabbage looper (Trichoplusia ni) feeding on collards (Brassica oleracea) and separately analyzed the microbiomes of various organs that open directly into the alimentary canal, including the labial glands, mandibular glands, and the Malpighian tubules. In this study, the gut microbiome of T. ni was found to be generally consistent with those of other lepidopteran larvae in prior studies. The greatest diversity of bacteria appeared in the Firmicutes, Actinobacteria, Proteobacteria, and Bacteriodetes. Well‐represented genera included Staphylococcus, Streptococcus, Corynebacterium, Pseudomonas, Diaphorobacter, Methylobacterium, Flavobacterium, and Cloacibacterium. Across all organs, two amplicon sequence variants (ASVs) associated with the genera Diaphorobacter and Cloacibacterium appeared to be most abundant. In terms of the most prevalent ASVs, the alimentary canal, Malpighian tubules, and mandibular glands appeared to have similar complements of bacteria, with relatively few significant differences evident. However, aside from the Diaphorobacter and Cloacibacterium ASVs common to all the organs, the labial glands appeared to possess a distinctive complement of bacteria which was absent or poorly represented in the other organs. Among these were representatives of the Pseudomonas, Flavobacterium, Caulobacterium, Anaerococcus, and Methylobacterium. These results suggest that the labial glands present bacteria with different selective pressures than those occurring in the mandibular gland, Malpighian tubules and the alimentary canal. Given the documented effects that labial gland secretions and the gut microbiome can exert on host plant defenses, the effects exerted by the bacteria inhabiting the labial glands themselves deserve further study.
Collapse
Affiliation(s)
- Susan D Lawrence
- Invasive Insect Biocontrol and Behavior Lab, USDA-ARS, Beltsville, Maryland
| | - Nicole G Novak
- Invasive Insect Biocontrol and Behavior Lab, USDA-ARS, Beltsville, Maryland
| | | | - Saikat Kumar B Ghosh
- School of Medicine, Center for Inflammatory and Vascular Diseases, University of Maryland, Baltimore, Maryland
| | | |
Collapse
|
10
|
An effector from cotton bollworm oral secretion impairs host plant defense signaling. Proc Natl Acad Sci U S A 2019; 116:14331-14338. [PMID: 31221756 PMCID: PMC6628814 DOI: 10.1073/pnas.1905471116] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Insects have evolved effectors to conquer plant defense. Most known insect effectors are isolated from sucking insects, and examples from chewing insects are limited. Moreover, the targets of insect effectors in host plants remain unknown. Here, we address a chewing insect effector and its working mechanism. Cotton bollworm (Helicoverpa armigera) is a lepidopteran insect widely existing in nature and severely affecting crop productivity. We isolated an effector named HARP1 from H. armigera oral secretion (OS). HARP1 was released from larvae to plant leaves during feeding and entered into the plant cells through wounding sites. Expression of HARP1 in Arabidopsis mitigated the global expression of wounding and jasmonate (JA) responsive genes and rendered the plants more susceptible to insect feeding. HARP1 directly interacted with JASMONATE-ZIM-domain (JAZ) repressors to prevent the COI1-mediated JAZ degradation, thus blocking JA signaling transduction. HARP1-like proteins have conserved function as effectors in noctuidae, and these types of effectors might contribute to insect adaptation to host plants during coevolution.
Collapse
|
11
|
Rivera-Vega LJ, Stanley BA, Stanley A, Felton GW. Proteomic analysis of labial saliva of the generalist cabbage looper (Trichoplusia ni) and its role in interactions with host plants. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:97-103. [PMID: 29505761 DOI: 10.1016/j.jinsphys.2018.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 05/13/2023]
Abstract
Insect saliva is one of the first secretions to come in contact with plants during feeding. The composition and role of caterpillar saliva has not been as thoroughly studied as that of sucking insects. This study focuses on characterizing the proteome of the cabbage looper (Trichoplusia ni) saliva using iTRAQ labeling and LC-MS/MS. We also measured how the saliva proteome changed when larvae were reared on different diets - cabbage, tomato, and an artificial pinto bean diet. We identified 254 proteins in the saliva out of which 63 were differentially expressed. A large percentage (56%) of the proteins identified function in protein metabolism, followed by proteins involved in vesicle transport (6%) and oxidoreductase activity (5%), among other categories. Several proteins identified are antioxidants or reactive oxygen species (ROS) scavengers. Among these ROS scavengers, we identified a catalase and further analyzed its gene expression and enzymatic activity. We also applied commercial, purified catalase on tomato and measured the activity of defensive proteins - trypsin proteinase inhibitor, polyphenol oxidase and peroxidase. Catalase gene expression was significantly higher in the salivary glands of larvae fed on tomato. Also, catalase suppressed the induction of tomato trypsin proteinase inhibitor levels, but not the induction of polyphenol oxidase or peroxidase. These results add to our understanding of proteomic plasticity in saliva and its role in herbivore offense against plant defenses.
Collapse
Affiliation(s)
- Loren J Rivera-Vega
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Bruce A Stanley
- Section of Research Resources, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Anne Stanley
- Section of Research Resources, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Gary W Felton
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
12
|
Rivera-Vega LJ, Galbraith DA, Grozinger CM, Felton GW. Host plant driven transcriptome plasticity in the salivary glands of the cabbage looper (Trichoplusia ni). PLoS One 2017; 12:e0182636. [PMID: 28792546 PMCID: PMC5549731 DOI: 10.1371/journal.pone.0182636] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 07/22/2017] [Indexed: 02/03/2023] Open
Abstract
Generalist herbivores feed on a wide array of plants and need to adapt to varying host qualities and defenses. One of the first insect derived secretions to come in contact with the plant is the saliva. Insect saliva is potentially involved in both the pre-digestion of the host plant as well as induction/suppression of plant defenses, yet how the salivary glands respond to changes in host plant at the transcriptional level is largely unknown. The objective of this study was to determine how the labial salivary gland transcriptome varies according to the host plant on which the insect is feeding. In order to determine this, cabbage looper (Trichoplusia ni) larvae were reared on cabbage, tomato, and pinto bean artificial diet. Labial glands were dissected from fifth instar larvae and used to extract RNA for RNASeq analysis. Assembly of the resulting sequencing reads resulted in a transcriptome library for T. ni salivary glands consisting of 14,037 expressed genes. Feeding on different host plant diets resulted in substantial remodeling of the gland transcriptomes, with 4,501 transcripts significantly differentially expressed across the three treatment groups. Gene expression profiles were most similar between cabbage and artificial diet, which corresponded to the two diets on which larvae perform best. Expression of several transcripts involved in detoxification processes were differentially expressed, and transcripts involved in the spliceosome pathway were significantly downregulated in tomato-reared larvae. Overall, this study demonstrates that the transcriptomes of the salivary glands of the cabbage looper are strongly responsive to diet. It also provides a foundation for future functional studies that can help us understand the role of saliva of chewing insects in plant-herbivore interactions.
Collapse
Affiliation(s)
- Loren J. Rivera-Vega
- Department of Entomology, Pennsylvania State University, University Park, PA, United States of America
- * E-mail:
| | - David A. Galbraith
- Department of Entomology, Pennsylvania State University, University Park, PA, United States of America
| | - Christina M. Grozinger
- Department of Entomology, Pennsylvania State University, University Park, PA, United States of America
| | - Gary W. Felton
- Department of Entomology, Pennsylvania State University, University Park, PA, United States of America
| |
Collapse
|
13
|
Yang L, Wang X, Bai S, Li X, Gu S, Wang CZ, Li X. Expressional divergence of insect GOX genes: From specialist to generalist glucose oxidase. JOURNAL OF INSECT PHYSIOLOGY 2017; 100:21-27. [PMID: 28512014 DOI: 10.1016/j.jinsphys.2017.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
Insect herbivores often secrete glucose oxidase (GOX) onto plants to counteract plant defenses and potential pathogens. Whether generalist herbivores always have significantly higher GOX activities than their specialist counterparts at any comparable stage or conditions and how this is realized remain unknown. To address these two general questions, we subjected larvae of a pair of sister species differed mainly in host range, the generalist Helicoverpa armigera and its specialist counterpart Helicoverpa assulta, to the same sets of stage, protein to digestible carbohydrate (P:C) ratio, allelochemical or host plant treatments for simultaneous analyses of GOX transcripts and activities in their labial glands. GOX activity and transcripts are upregulated concurrently with food ingestion and body growth, downregulated with stopping ingestion and wandering for pupation in both species. The three tested host plants upregulated GOX transcripts, and to a lesser extent, GOX activity in both species. There were significant differences in both GOX transcripts and activity elicited by allelochemicals, but only in GOX transcripts by P:C ratios in both species. GOX activities were higher in H. armigera than H. assulta in all the comparable treatments, but GOX transcripts were significantly higher either in generalists or in specialists, depending on the developmental stages, host plants, P:C ratio and allelochemicals they encounter. These data indicate that the greater GOX activity in generalist herbivores is not achieved by greater transcription rate, but by greater transcript stability, greater translation rate, better enzyme stability and/or their combination.
Collapse
Affiliation(s)
- Lihong Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Xiongya Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Sufen Bai
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| | - Xin Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Shaohua Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, The Chinese Academy of Sciences, Beijing 100101, China
| | - Xianchun Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Entomology and BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
14
|
Acevedo FE, Stanley BA, Stanley A, Peiffer M, Luthe DS, Felton GW. Quantitative proteomic analysis of the fall armyworm saliva. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 86:81-92. [PMID: 28591565 DOI: 10.1016/j.ibmb.2017.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/22/2017] [Accepted: 06/02/2017] [Indexed: 06/07/2023]
Abstract
Lepidopteran larvae secrete saliva on plant tissues during feeding. Components in the saliva may aid in food digestion, whereas other components are recognized by plants as cues to elicit defense responses. Despite the ecological and economical importance of these plant-feeding insects, knowledge of their saliva composition is limited to a few species. In this study, we identified the salivary proteins of larvae of the fall armyworm (FAW), Spodoptera frugiperda; determined qualitative and quantitative differences in the salivary proteome of the two host races-corn and rice strains-of this insect; and identified changes in total protein concentration and relative protein abundance in the saliva of FAW larvae associated with different host plants. Quantitative proteomic analyses were performed using labeling with isobaric tags for relative and absolute quantification followed by liquid chromatography-tandem mass spectrometry. In total, 98 proteins were identified (>99% confidence) in the FAW saliva. These proteins were further categorized into five functional groups: proteins potentially involved in (1) plant defense regulation, (2) herbivore offense, (3) insect immunity, (4) detoxification, (5) digestion, and (6) other functions. Moreover, there were differences in the salivary proteome between the FAW strains that were identified by label-free proteomic analyses. Thirteen differentially identified proteins were present in each strain. There were also differences in the relative abundance of eleven salivary proteins between the two FAW host strains as well as differences within each strain associated with different diets. The total salivary protein concentration was also different for the two strains reared on different host plants. Based on these results, we conclude that the FAW saliva contains a complex mixture of proteins involved in different functions that are specific for each strain and its composition can change plastically in response to diet type.
Collapse
Affiliation(s)
- Flor E Acevedo
- Department of Entomology, The Pennsylvania State University, 501 Agricultural Sciences and Industries Building, University Park, PA 16802, USA.
| | - Bruce A Stanley
- Section of Research Resources, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Anne Stanley
- Section of Research Resources, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Michelle Peiffer
- Department of Entomology, The Pennsylvania State University, 501 Agricultural Sciences and Industries Building, University Park, PA 16802, USA.
| | - Dawn S Luthe
- Department of Plant Science, Pennsylvania State University, 216 Agricultural Sciences and Industries Building, University Park, PA 16802, USA.
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, 501 Agricultural Sciences and Industries Building, University Park, PA 16802, USA.
| |
Collapse
|
15
|
Rivera-Vega LJ, Acevedo FE, Felton GW. Genomics of Lepidoptera saliva reveals function in herbivory. CURRENT OPINION IN INSECT SCIENCE 2017; 19:61-69. [PMID: 28521944 DOI: 10.1016/j.cois.2017.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/17/2016] [Accepted: 01/11/2017] [Indexed: 06/07/2023]
Abstract
Lepidoptera herbivores deposit copious amounts of saliva when feeding. Their saliva is produced by the paired mandibular and labial glands and evidence indicates that it may play an important role in allowing an herbivore to establish on its host plant. Genomic studies of Lepidoptera saliva are beginning to reveal the role of saliva in herbivory. Molecules involved in digestion, detoxification, immunity, defense against plant secondary chemicals, chemoreception and so on have been identified using high throughput genomic tools. These genomic tools have also revealed changes that occur in Lepidoptera saliva when caterpillars feed on different host plants. However, there are other factors either biotic or abiotic (e.g., larval stage, larval health, temperature, water stress, etc.) that might also affect its composition. Though further functional and ecological studies are still necessary to fully understand the role of Lepidoptera saliva on herbivory, here we review current trends.
Collapse
Affiliation(s)
- Loren J Rivera-Vega
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, United States
| | - Flor E Acevedo
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, United States
| | - Gary W Felton
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
16
|
Jonckheere W, Dermauw W, Zhurov V, Wybouw N, Van den Bulcke J, Villarroel CA, Greenhalgh R, Grbić M, Schuurink RC, Tirry L, Baggerman G, Clark RM, Kant MR, Vanholme B, Menschaert G, Van Leeuwen T. The Salivary Protein Repertoire of the Polyphagous Spider Mite Tetranychus urticae: A Quest for Effectors. Mol Cell Proteomics 2016; 15:3594-3613. [PMID: 27703040 PMCID: PMC5141274 DOI: 10.1074/mcp.m116.058081] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 08/11/2016] [Indexed: 11/06/2022] Open
Abstract
The two-spotted spider mite Tetranychus urticae is an extremely polyphagous crop pest. Alongside an unparalleled detoxification potential for plant secondary metabolites, it has recently been shown that spider mites can attenuate or even suppress plant defenses. Salivary constituents, notably effectors, have been proposed to play an important role in manipulating plant defenses and might determine the outcome of plant-mite interactions. Here, the proteomic composition of saliva from T. urticae lines adapted to various host plants-bean, maize, soy, and tomato-was analyzed using a custom-developed feeding assay coupled with nano-LC tandem mass spectrometry. About 90 putative T. urticae salivary proteins were identified. Many are of unknown function, and in numerous cases belonging to multimembered gene families. RNAseq expression analysis revealed that many genes coding for these salivary proteins were highly expressed in the proterosoma, the mite body region that includes the salivary glands. A subset of genes encoding putative salivary proteins was selected for whole-mount in situ hybridization, and were found to be expressed in the anterior and dorsal podocephalic glands. Strikingly, host plant dependent expression was evident for putative salivary proteins, and was further studied in detail by micro-array based genome-wide expression profiling. This meta-analysis revealed for the first time the salivary protein repertoire of a phytophagous chelicerate. The availability of this salivary proteome will assist in unraveling the molecular interface between phytophagous mites and their host plants, and may ultimately facilitate the development of mite-resistant crops. Furthermore, the technique used in this study is a time- and resource-efficient method to examine the salivary protein composition of other small arthropods for which saliva or salivary glands cannot be isolated easily.
Collapse
Affiliation(s)
- Wim Jonckheere
- From the ‡Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
- §Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Wannes Dermauw
- From the ‡Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium;
| | - Vladimir Zhurov
- ¶Department of Biology, The University of Western Ontario, London, ON, Canada N6A5B7
| | - Nicky Wybouw
- §Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Jan Van den Bulcke
- ‖UGCT - Woodlab-UGent, Department of Forest and Water Management, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Carlos A Villarroel
- **Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
- ‡‡Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Robert Greenhalgh
- §§Department of Biology, University of Utah, Salt Lake City 257 South 1400 East Utah 84112
| | - Mike Grbić
- ¶Department of Biology, The University of Western Ontario, London, ON, Canada N6A5B7
- ¶¶Instituto de Ciencias de la Vid y el Vino, 26006 Logrono, Spain
| | - Rob C Schuurink
- **Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Luc Tirry
- From the ‡Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Geert Baggerman
- ‖‖Center for Proteomics (CFP), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Richard M Clark
- §§Department of Biology, University of Utah, Salt Lake City 257 South 1400 East Utah 84112
- Center for Cell and Genome Science, University of Utah, Salt Lake City 257 South 1400 East Utah 84122
| | - Merijn R Kant
- ‡‡Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Bartel Vanholme
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Gerben Menschaert
- Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Thomas Van Leeuwen
- From the ‡Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium;
- §Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| |
Collapse
|
17
|
Liu X, Zhou H, Zhao J, Hua H, He Y. Identification of the secreted watery saliva proteins of the rice brown planthopper, Nilaparvata lugens (Stål) by transcriptome and Shotgun LC-MS/MS approach. JOURNAL OF INSECT PHYSIOLOGY 2016; 89:60-9. [PMID: 27080912 DOI: 10.1016/j.jinsphys.2016.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 05/26/2023]
Abstract
The rice brown planthopper, Nilaparvata lugens (Stål), a major rice insect pest in Asia, is a vascular bundle-feeder that ejects gelling and watery saliva during the feeding process. Although major proteins in the salivary glands of N. lugens have been identified using 2D PAGE, very little is known about the secreted saliva of this insect. In this study, we identified the major proteins in the secreted watery saliva of N. lugens, via collecting from a sucrose diet that adult planthoppers had fed upon through a membrane of stretched parafilm, and using shotgun LC-MS/MS analysis with reference to transcriptome database of salivary glands of N. lugens. A total of 107 proteins were identified in the watery saliva of N. lugens, over 80% of which showed significant similarity to known proteins. When annotated by the Blast2GO suite, 29 proteins had catalytic activity and 24 proteins were binding proteins. The saliva enzymes included oxidoreductases, hydrolases, phosphatases, peptidases (proteases), kinases, transferases, and lyases. Binding proteins in N. lugens watery saliva included ATP-binding, lipophorin, calcium-binding, actin-binding and DNA-, RNA-, and chromatin-binding proteins. Other non-enzymatic proteins, such as ubiquitins, heat shock proteins, ribosomal proteins, and immunoglobulin proteins were also found in N. lugens watery saliva. This is the first study to identify, characterize and list the proteins in watery saliva of N. lugens, which might be involved in planthopper-rice interactions.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Hubei Insect Resources Utilisation and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanyu Zhou
- Hubei Insect Resources Utilisation and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Zhao
- Hubei Insect Resources Utilisation and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongxia Hua
- Hubei Insect Resources Utilisation and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yueping He
- Hubei Insect Resources Utilisation and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
18
|
Showmaker KC, Bednářová A, Gresham C, Hsu CY, Peterson DG, Krishnan N. Insight into the Salivary Gland Transcriptome of Lygus lineolaris (Palisot de Beauvois). PLoS One 2016; 11:e0147197. [PMID: 26789269 PMCID: PMC4720363 DOI: 10.1371/journal.pone.0147197] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 12/30/2015] [Indexed: 12/11/2022] Open
Abstract
The tarnished plant bug (TPB), Lygus lineolaris (Palisot de Beauvois) is a polyphagous, phytophagous insect that has emerged as a major pest of cotton, alfalfa, fruits, and vegetable crops in the eastern United States and Canada. Using its piercing-sucking mouthparts, TPB employs a “lacerate and flush” feeding strategy in which saliva injected into plant tissue degrades cell wall components and lyses cells whose contents are subsequently imbibed by the TPB. It is known that a major component of TPB saliva is the polygalacturonase enzymes that degrade the pectin in the cell walls. However, not much is known about the other components of the saliva of this important pest. In this study, we explored the salivary gland transcriptome of TPB using Illumina sequencing. After in silico conversion of RNA sequences into corresponding polypeptides, 25,767 putative proteins were discovered. Of these, 19,540 (78.83%) showed significant similarity to known proteins in the either the NCBI nr or Uniprot databases. Gene ontology (GO) terms were assigned to 7,512 proteins, and 791 proteins in the sialotranscriptome of TPB were found to collectively map to 107 Kyoto Encyclopedia of Genes and Genomes (KEGG) database pathways. A total of 3,653 Pfam domains were identified in 10,421 sialotranscriptome predicted proteins resulting in 12,814 Pfam annotations; some proteins had more than one Pfam domain. Functional annotation revealed a number of salivary gland proteins that potentially facilitate degradation of host plant tissues and mitigation of the host plant defense response. These transcripts/proteins and their potential roles in TPB establishment are described.
Collapse
Affiliation(s)
- Kurt C. Showmaker
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, Mississippi, 39762, United States of America
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, 39762, United States of America
| | - Andrea Bednářová
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, 39762, United States of America
- Institute of Entomology, Biology Centre, Academy of Sciences, Branišovská 31, 370 05 České Budĕjovice, Czech Republic
| | - Cathy Gresham
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, Mississippi, 39762, United States of America
| | - Chuan-Yu Hsu
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, Mississippi, 39762, United States of America
| | - Daniel G. Peterson
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, Mississippi, 39762, United States of America
- Department of Plant & Soil Sciences, Mississippi State University, Mississippi State, Mississippi, 39762, United States of America
| | - Natraj Krishnan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, 39762, United States of America
- * E-mail:
| |
Collapse
|
19
|
Guiguet A, Dubreuil G, Harris MO, Appel HM, Schultz JC, Pereira MH, Giron D. Shared weapons of blood- and plant-feeding insects: Surprising commonalities for manipulating hosts. JOURNAL OF INSECT PHYSIOLOGY 2016; 84:4-21. [PMID: 26705897 DOI: 10.1016/j.jinsphys.2015.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 05/04/2023]
Abstract
Insects that reprogram host plants during colonization remind us that the insect side of plant-insect story is just as interesting as the plant side. Insect effectors secreted by the salivary glands play an important role in plant reprogramming. Recent discoveries point to large numbers of salivary effectors being produced by a single herbivore species. Since genetic and functional characterization of effectors is an arduous task, narrowing the field of candidates is useful. We present ideas about types and functions of effectors from research on blood-feeding parasites and their mammalian hosts. Because of their importance for human health, blood-feeding parasites have more tools from genomics and other - omics than plant-feeding parasites. Four themes have emerged: (1) mechanical damage resulting from attack by blood-feeding parasites triggers "early danger signals" in mammalian hosts, which are mediated by eATP, calcium, and hydrogen peroxide, (2) mammalian hosts need to modulate their immune responses to the three "early danger signals" and use apyrases, calreticulins, and peroxiredoxins, respectively, to achieve this, (3) blood-feeding parasites, like their mammalian hosts, rely on some of the same "early danger signals" and modulate their immune responses using the same proteins, and (4) blood-feeding parasites deploy apyrases, calreticulins, and peroxiredoxins in their saliva to manipulate the "danger signals" of their mammalian hosts. We review emerging evidence that plant-feeding insects also interfere with "early danger signals" of their hosts by deploying apyrases, calreticulins and peroxiredoxins in saliva. Given emerging links between these molecules, and plant growth and defense, we propose that these effectors interfere with phytohormone signaling, and therefore have a special importance for gall-inducing and leaf-mining insects, which manipulate host-plants to create better food and shelter.
Collapse
Affiliation(s)
- Antoine Guiguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France; Département de Biologie, École Normale Supérieure de Lyon, 69007 Lyon, France
| | - Géraldine Dubreuil
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France
| | - Marion O Harris
- Department of Entomology, North Dakota State University, Fargo, ND 58105, USA; Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France
| | - Heidi M Appel
- Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Jack C Schultz
- Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Marcos H Pereira
- Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France; Laboratório de Fisiologia de Insectos Hematófagos, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France.
| |
Collapse
|
20
|
Tanentzap AJ, Vicari M, Bazely DR. Ungulate saliva inhibits a grass-endophyte mutualism. Biol Lett 2015; 10:rsbl.2014.0460. [PMID: 25055816 DOI: 10.1098/rsbl.2014.0460] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Fungal endophytes modify plant-herbivore interactions by producing toxic alkaloids that deter herbivory. However, studies have neglected the direct effects herbivores may have on endophytes. Antifungal properties and signalling effectors in herbivore saliva suggest that evolutionary pressures may select for animals that mitigate the effects of endophyte-produced alkaloids. Here, we tested whether saliva of moose (Alces alces) and European reindeer (Rangifer tarandus) reduced hyphal elongation and production of ergot alkaloids by the foliar endophyte Epichloë festucae associated with the globally distributed red fescue Festuca rubra. Both moose and reindeer saliva reduced the growth of isolated endophyte hyphae when compared with a treatment of distilled water. Induction of the highly toxic alkaloid ergovaline was also inhibited in plants from the core of F. rubra's distribution when treated with moose saliva following simulated grazing. In genotypes from the southern limit of the species' distribution, ergovaline was constitutively expressed, as predicted where growth is environmentally limited. Our results now present the first evidence, to our knowledge, that ungulate saliva can combat plant defences produced by a grass-endophyte mutualism.
Collapse
Affiliation(s)
- Andrew J Tanentzap
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Mark Vicari
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | - Dawn R Bazely
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
21
|
Acevedo FE, Rivera-Vega LJ, Chung SH, Ray S, Felton GW. Cues from chewing insects - the intersection of DAMPs, HAMPs, MAMPs and effectors. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:80-6. [PMID: 26123394 DOI: 10.1016/j.pbi.2015.05.029] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/22/2015] [Accepted: 05/22/2015] [Indexed: 05/04/2023]
Abstract
Chewing herbivores cause massive damage when crushing plant tissues with their mandibles, thus releasing a vast array of cues that may be perceived by the plant to mobilize defenses. Besides releasing damage cues in wounded tissues, herbivores deposit abundant cues from their saliva, regurgitant and feces that trigger herbivore specific responses in plants. Herbivores can manipulate the perception mechanisms and defense signals to suppress plant defenses by secreting effectors and/or by exploiting their associated oral microbes. Recent studies indicate that both the composition of herbivore cues and the plant's ability to recognize them are highly dependent upon the specific plant-herbivore system. There is a growing amount of work on identifying herbivore elicitors and effectors, but the most significant bottleneck in the discipline is the identification and characterization of plant receptors that perceive these herbivore-specific cues.
Collapse
Affiliation(s)
- Flor E Acevedo
- Department of Entomology, Penn State University, University Park, PA 16802, USA
| | - Loren J Rivera-Vega
- Department of Entomology, Penn State University, University Park, PA 16802, USA
| | - Seung Ho Chung
- Department of Entomology, Cornell University, Ithaca, NY 14850, USA
| | - Swayamjit Ray
- Department of Plant Science, Plant Biology Graduate Program, Penn State University, University Park, PA 16802, USA
| | - Gary W Felton
- Department of Entomology, Penn State University, University Park, PA 16802, USA.
| |
Collapse
|
22
|
Perera OP, Shelby KS, Popham HJR, Gould F, Adang MJ, Jurat-Fuentes JL. Generation of a Transcriptome in a Model Lepidopteran Pest, Heliothis virescens, Using Multiple Sequencing Strategies for Profiling Midgut Gene Expression. PLoS One 2015; 10:e0128563. [PMID: 26047101 PMCID: PMC4457788 DOI: 10.1371/journal.pone.0128563] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 04/29/2015] [Indexed: 02/04/2023] Open
Abstract
Heliothine pests such as the tobacco budworm, Heliothis virescens (F.), pose a significant threat to production of a variety of crops and ornamental plants and are models for developmental and physiological studies. The efforts to develop new control measures for H. virescens, as well as its use as a relevant biological model, are hampered by a lack of molecular resources. The present work demonstrates the utility of next-generation sequencing technologies for rapid molecular resource generation from this species for which lacks a sequenced genome. In order to amass a de novo transcriptome for this moth, transcript sequences generated from Illumina, Roche 454, and Sanger sequencing platforms were merged into a single de novo transcriptome assembly. This pooling strategy allowed a thorough sampling of transcripts produced under diverse environmental conditions, developmental stages, tissues, and infections with entomopathogens used for biological control, to provide the most complete transcriptome to date for this species. Over 138 million reads from the three platforms were assembled into the final set of 63,648 contigs. Of these, 29,978 had significant BLAST scores indicating orthologous relationships to transcripts of other insect species, with the top-hit species being the monarch butterfly (Danaus plexippus) and silkworm (Bombyx mori). Among identified H. virescens orthologs were immune effectors, signal transduction pathways, olfactory receptors, hormone biosynthetic pathways, peptide hormones and their receptors, digestive enzymes, and insecticide resistance enzymes. As an example, we demonstrate the utility of this transcriptomic resource to study gene expression profiling of larval midguts and detect transcripts of putative Bacillus thuringiensis (Bt) Cry toxin receptors. The substantial molecular resources described in this study will facilitate development of H. virescens as a relevant biological model for functional genomics and for new biological experimentation needed to develop efficient control efforts for this and related Noctuid pest moths.
Collapse
Affiliation(s)
- Omaththage P. Perera
- Southern Insect Management Research Unit, USDA, Agricultural Research Service, Stoneville, MS, 38776, United States of America
| | - Kent S. Shelby
- Biological Control of Insects Research Laboratory, USDA, Agricultural Research Service, Columbia, Missouri, 65203, United States of America
| | - Holly J. R. Popham
- Biological Control of Insects Research Laboratory, USDA, Agricultural Research Service, Columbia, Missouri, 65203, United States of America
| | - Fred Gould
- Dept. Entomology, North Carolina State University, Raleigh, NC, 27607, United States of America
| | - Michael J. Adang
- Dept. Entomology, University of Georgia, Athens, GA, 30602, United States of America
| | - Juan Luis Jurat-Fuentes
- Dept. Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, United States of America
| |
Collapse
|
23
|
Gog L, Vogel H, Hum-Musser SM, Tuter J, Musser RO. Larval Helicoverpa zea Transcriptional, Growth and Behavioral Responses to Nicotine and Nicotiana tabacum. INSECTS 2014; 5:668-88. [PMID: 26462833 PMCID: PMC4592579 DOI: 10.3390/insects5030668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/18/2014] [Accepted: 09/01/2014] [Indexed: 11/16/2022]
Abstract
The polyphagous feeding habits of the corn earworm, Helicoverpa zea (Boddie), underscore its status as a major agricultural pest with a wide geographic distribution and host plant repertoire. To study the transcriptomic response to toxins in diet, we conducted a microarray analysis of H. zea caterpillars feeding on artificial diet, diet laced with nicotine and Nicotiana tabacum (L.) plants. We supplemented our analysis with growth and aversion bioassays. The transcriptome reflects an abundant expression of proteases, chitin, cytochrome P450 and immune-related genes, many of which are shared between the two experimental treatments. However, the tobacco treatment tended to elicit stronger transcriptional responses than nicotine-laced diet. The salivary factor glucose oxidase, known to suppress nicotine induction in the plant, was upregulated by H. zea in response to tobacco but not to nicotine-laced diet. Reduced caterpillar growth rates accompanied the broad regulation of genes associated with growth, such as juvenile hormone epoxide hydrolase. The differential expression of chemosensory proteins, such as odorant binding-protein-2 precursor, as well as the neurotransmitter nicotinic-acetylcholine-receptor subunit 9, highlights candidate genes regulating aversive behavior towards nicotine. We suggest that an observed coincidental rise in cannibalistic behavior and regulation of proteases and protease inhibitors in H. zea larvae signify a compensatory response to induced plant defenses.
Collapse
Affiliation(s)
- Linus Gog
- Department of Biological Sciences, Western Illinois University, Waggoner Hall 358, Macomb, IL 61455, USA; E-Mails: (L.G.); (S.M.H.-M.); (J.T.)
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Jena 07745, Germany; E-Mail:
| | - Sue M. Hum-Musser
- Department of Biological Sciences, Western Illinois University, Waggoner Hall 358, Macomb, IL 61455, USA; E-Mails: (L.G.); (S.M.H.-M.); (J.T.)
| | - Jason Tuter
- Department of Biological Sciences, Western Illinois University, Waggoner Hall 358, Macomb, IL 61455, USA; E-Mails: (L.G.); (S.M.H.-M.); (J.T.)
| | - Richard O. Musser
- Department of Biological Sciences, Western Illinois University, Waggoner Hall 358, Macomb, IL 61455, USA; E-Mails: (L.G.); (S.M.H.-M.); (J.T.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-309-298-1096; Fax: +1-309-298-2270
| |
Collapse
|
24
|
Nayduch D, Lee MB, Saski CA. The reference transcriptome of the adult female biting midge (Culicoides sonorensis) and differential gene expression profiling during teneral, blood, and sucrose feeding conditions. PLoS One 2014; 9:e98123. [PMID: 24866149 PMCID: PMC4035326 DOI: 10.1371/journal.pone.0098123] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/28/2014] [Indexed: 11/18/2022] Open
Abstract
Unlike other important vectors such as mosquitoes and sandflies, genetic and genomic tools for Culicoides biting midges are lacking, despite the fact that they vector a large number of arboviruses and other pathogens impacting humans and domestic animals world-wide. In North America, female Culicoides sonorensis midges are important vectors of bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV), orbiviruses that cause significant disease in livestock and wildlife. Libraries of tissue-specific transcripts expressed in response to feeding and oral orbivirus challenge in C. sonorensis have previously been reported, but extensive genome-wide expression profiling in the midge has not. Here, we successfully used deep sequencing technologies to construct the first adult female C. sonorensis reference transcriptome, and utilized genome-wide expression profiling to elucidate the genetic response to blood and sucrose feeding over time. The adult female midge unigene consists of 19,041 genes, of which less than 7% are differentially expressed during the course of a sucrose meal, while up to 52% of the genes respond significantly in blood-fed midges, indicating hematophagy induces complex physiological processes. Many genes that were differentially expressed during blood feeding were associated with digestion (e.g. proteases, lipases), hematophagy (e.g., salivary proteins), and vitellogenesis, revealing many major metabolic and biological factors underlying these critical processes. Additionally, key genes in the vitellogenesis pathway were identified, which provides the first glimpse into the molecular basis of anautogeny for C. sonorensis. This is the first extensive transcriptome for this genus, which will serve as a framework for future expression studies, RNAi, and provide a rich dataset contributing to the ultimate goal of informing a reference genome assembly and annotation. Moreover, this study will serve as a foundation for subsequent studies of genome-wide expression analyses during early orbivirus infection and dissecting the molecular mechanisms behind vector competence in midges.
Collapse
Affiliation(s)
- Dana Nayduch
- USDA-ARS, Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Manhattan, Kansas, Unites States of America
| | - Matthew B. Lee
- USDA-ARS, Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Manhattan, Kansas, Unites States of America
| | - Christopher A. Saski
- Clemson University Genomics Institute, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
25
|
Shabab M, Khan SA, Vogel H, Heckel DG, Boland W. OPDA isomerase GST16 is involved in phytohormone detoxification and insect development. FEBS J 2014; 281:2769-83. [PMID: 24730650 DOI: 10.1111/febs.12819] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 02/16/2014] [Accepted: 04/11/2014] [Indexed: 01/21/2023]
Abstract
12-Oxophytodienoic acid (OPDA), a well-known phytohormone of the jasmonate family, has a reactive α,β-unsaturated carbonyl structure which easily adds cellular nucleophiles (Michael addition), making OPDA potentially toxic for herbivores. The glutathione S-transferase GST16 inactivates 12-OPDA in the insect gut by isomerization to inactive iso-OPDA. Quantitative tissue expression analysis showed that HarmGST16 transcripts were present in most larval tissues, including those of the midgut, fatbody and Malpighian tubules. Activity assays confirmed the presence of an active enzyme. Interestingly, feeding different diets to Helicoverpa armigera influenced gst16 expression levels in various tissues, and larvae fed wild-type tobacco leaves had reduced gst16 mRNA levels. The temporal expression of HarmGST16 during larval development was high in the second instar and reduced during the third, fourth and fifth instars. Plant-mediated RNA interference silencing of HarmGST16 retarded larval growth of H. armigera. Injecting cis-OPDA into the hemolymph of larvae caused premature pupation. This result, as well as the finding that GST16 influenced the growth of insects, suggests that GST16 may play an important role in larval development.
Collapse
|
26
|
Chuang WP, Ray S, Acevedo FE, Peiffer M, Felton GW, Luthe DS. Herbivore cues from the fall armyworm (Spodoptera frugiperda) larvae trigger direct defenses in maize. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:461-70. [PMID: 24329171 DOI: 10.1094/mpmi-07-13-0193-r] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In addition to feeding damage, herbivores release cues that are recognized by plants to elicit defenses. Caterpillar oral secretions have been shown to trigger herbivore defense responses in several different plant species. In this study, the effects of two fall armyworm (Spodoptera frugiperda) oral secretions (saliva and regurgitant) on caterpillar defense responses in maize (Zea mays) were examined. Only minute amounts of regurgitant were deposited on the maize leaf during larval feeding bouts and its application to leaves failed to induce the expression of several herbivore defense genes. On the other hand, caterpillars consistently deposited saliva on leaves during feeding and the expression of several maize defense genes significantly increased in response to saliva application and larval feeding. However, feeding by ablated caterpillars with impaired salivation did not induce these defenses. Furthermore, bioassays indicated that feeding by unablated caterpillars significantly enhanced defenses when compared with that of ablated caterpillars. Another critical finding was that the maize genotype and stage of development affected the expression of defense genes in response to wounding and regurgitant treatments. These results demonstrate that fall armyworm saliva contains elicitors that trigger herbivore defenses in maize.
Collapse
|
27
|
Stafford-Banks CA, Rotenberg D, Johnson BR, Whitfield AE, Ullman DE. Analysis of the salivary gland transcriptome of Frankliniella occidentalis. PLoS One 2014; 9:e94447. [PMID: 24736614 PMCID: PMC3988053 DOI: 10.1371/journal.pone.0094447] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/16/2014] [Indexed: 12/20/2022] Open
Abstract
Saliva is known to play a crucial role in insect feeding behavior and virus transmission. Currently, little is known about the salivary glands and saliva of thrips, despite the fact that Frankliniella occidentalis (Pergande) (the western flower thrips) is a serious pest due to its destructive feeding, wide host range, and transmission of tospoviruses. As a first step towards characterizing thrips salivary gland functions, we sequenced the transcriptome of the primary salivary glands of F. occidentalis using short read sequencing (Illumina) technology. A de novo-assembled transcriptome revealed 31,392 high quality contigs with an average size of 605 bp. A total of 12,166 contigs had significant BLASTx or tBLASTx hits (E≤1.0E-6) to known proteins, whereas a high percentage (61.24%) of contigs had no apparent protein or nucleotide hits. Comparison of the F. occidentalis salivary gland transcriptome (sialotranscriptome) against a published F. occidentalis full body transcriptome assembled from Roche-454 reads revealed several contigs with putative annotations associated with salivary gland functions. KEGG pathway analysis of the sialotranscriptome revealed that the majority (18 out of the top 20 predicted KEGG pathways) of the salivary gland contig sequences match proteins involved in metabolism. We identified several genes likely to be involved in detoxification and inhibition of plant defense responses including aldehyde dehydrogenase, metalloprotease, glucose oxidase, glucose dehydrogenase, and regucalcin. We also identified several genes that may play a role in the extra-oral digestion of plant structural tissues including β-glucosidase and pectin lyase; and the extra-oral digestion of sugars, including α-amylase, maltase, sucrase, and α-glucosidase. This is the first analysis of a sialotranscriptome for any Thysanopteran species and it provides a foundational tool to further our understanding of how thrips interact with their plant hosts and the viruses they transmit.
Collapse
Affiliation(s)
- Candice A. Stafford-Banks
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Dorith Rotenberg
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Brian R. Johnson
- Department of Entomology, University of California, Davis Davis, California, United States of America
| | - Anna E. Whitfield
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Diane E. Ullman
- Department of Entomology, University of California, Davis Davis, California, United States of America
| |
Collapse
|
28
|
Peiffer M, Felton GW. Insights into the saliva of the brown marmorated stink bug Halyomorpha halys (Hemiptera: Pentatomidae). PLoS One 2014; 9:e88483. [PMID: 24586332 PMCID: PMC3935659 DOI: 10.1371/journal.pone.0088483] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/07/2014] [Indexed: 01/31/2023] Open
Abstract
We examined the salivary gland structure of the brown marmorated stink bug (Pentatomidae: Halyomorpha halys) and developed methods for independent collection of watery saliva and sheath saliva. This stink bug has become a serious invasive pest of agriculture in the United States and its saliva is largely responsible for the damage it causes. We determined by protein gel analysis and shotgun proteomics that the suite of proteins comprising the sheath and watery saliva are very distinct. Our results indicate that a substantial amount of sheath proteins are derived from tomato when stink bugs feed on tomato fruit. Consequently, the sheath saliva is comprised of both insect and plant-derived proteins. Both sheath and watery saliva possessed amylase activities, but polyphenol oxidase and glucose oxidase activities were not detected in either saliva. Peroxidase activity was only detected in salivary sheaths, but only when stink bugs fed on tomato. Proteomic analysis indicated that the peroxidase was likely of plant origin. We also determined that sheath saliva, but not watery saliva elicited the jasmonate inducible defense gene proteinase inhibitor 2 (Pin2), but this induction was only observed when sheaths had been collected from tomato. This indicates that the eliciting factor of the saliva is likely of plant origin. Lastly, neither watery or sheath saliva affected the expression of the salicylate inducible gene pathogenesis related gene (Pr1a-P4).
Collapse
Affiliation(s)
- Michelle Peiffer
- Department of Entomology, Penn State University, University Park, Pennsylvania, United States of America
| | - Gary W. Felton
- Department of Entomology, Penn State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
29
|
Dawkar VV, Chikate YR, Lomate PR, Dholakia BB, Gupta VS, Giri AP. Molecular Insights into Resistance Mechanisms of Lepidopteran Insect Pests against Toxicants. J Proteome Res 2013; 12:4727-37. [DOI: 10.1021/pr400642p] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Vishal V. Dawkar
- Plant Molecular
Biology Unit,
Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008 (MS), India
| | - Yojana R. Chikate
- Plant Molecular
Biology Unit,
Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008 (MS), India
| | - Purushottam R. Lomate
- Plant Molecular
Biology Unit,
Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008 (MS), India
| | - Bhushan B. Dholakia
- Plant Molecular
Biology Unit,
Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008 (MS), India
| | - Vidya S. Gupta
- Plant Molecular
Biology Unit,
Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008 (MS), India
| | - Ashok P. Giri
- Plant Molecular
Biology Unit,
Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008 (MS), India
| |
Collapse
|
30
|
Li H, Zhang H, Guan R, Miao X. Identification of differential expression genes associated with host selection and adaptation between two sibling insect species by transcriptional profile analysis. BMC Genomics 2013; 14:582. [PMID: 23984865 PMCID: PMC3765734 DOI: 10.1186/1471-2164-14-582] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/14/2013] [Indexed: 02/03/2023] Open
Abstract
Background Cotton bollworm (Helicoverpa armigera) and oriental tobacco budworm (Helicoverpa assulta) are noctuid sibling species. Under artificial manipulation, they can mate and produce fertile offspring. As serious agricultural insect pests, cotton bollworms are euryphagous insects, but oriental tobacco budworms are oligophagous insects. To identify the differentially expressed genes that affect host recognition and host adaptation between the two species, we constructed digital gene expression tag profiles for four developmental stages of the two species. High-throughput sequencing results indicated that we have got more than 23 million 17nt clean tags from both species, respectively. The number of unique clean tags was nearly same in both species (approximately 357,000). Results According to the gene annotation results, we identified 83 and 68 olfaction related transcripts from H. armigera and H. assulta, respectively. At the same time, 1137 and 1138 transcripts of digestion enzymes were identified from the two species. Among the olfaction related transcripts, more odorant binding protein and G protein-coupled receptor were identified in H. armigera than in H. assulta. Among the digestion enzymes, there are more detoxification enzyme, e.g. P450, carboxypeptidase and ATPase in H. assulta than in H. armigera. These differences partially explain that because of the narrow host plant range of H. assulta, more detoxification enzymes would help them increase the food detoxification and utilization efficiency. Conclusions This study supplied some differentially expressed genes affecting host selection and adaptation between the two sibling species. These genes will be useful information for studying on the evolution of host plant selection. It also provides some important target genes for insect species-specific control by RNAi technology.
Collapse
Affiliation(s)
- Haichao Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | | | | | | |
Collapse
|
31
|
Afshar K, Dube FF, Najafabadi HS, Bonneil E, Thibault P, Salavati R, Bede JC. Insights into the insect salivary gland proteome: diet-associated changes in caterpillar labial salivary proteins. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:351-366. [PMID: 23353727 DOI: 10.1016/j.jinsphys.2013.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 01/05/2013] [Accepted: 01/07/2013] [Indexed: 06/01/2023]
Abstract
The primary function of salivary glands is fluid and protein secretion during feeding. Compared to mammalian systems, little is known about salivary protein secretion processes and the effect of diet on the salivary proteome in insect models. Therefore, the effect of diet nutritional quality on caterpillar labial salivary gland proteins was investigated using an unbiased global proteomic approach by nanoLC/ESI/tandem MS. Caterpillars of the beet armyworm, Spodoptera exigua Hübner, were fed one of three diets: an artificial diet containing their self-selected protein to carbohydrate (p:c) ratio (22p:20c), an artificial diet containing a higher nutritional content but the same p:c ratio (33p:30c) or the plant Medicago truncatula Gaertn. As expected, most identified proteins were associated with secretory processes and not influenced by diet. However, some diet-specific differences were observed. Nutrient stress-associated proteins, such as peptidyl-propyl cis-trans isomerase and glucose-regulated protein94/endoplasmin, and glyceraldehyde 3-phosphate dehydrogenase were identified in the labial salivary glands of caterpillars fed nutritionally poor diets, suggesting a link between nutritional status and vesicular exocytosis. Heat shock proteins and proteins involved in endoplasmic reticulum-associated protein degradation were also abundant in the labial salivary glands of these caterpillars. In comparison, proteins associated with development, such as arylphorin, were found in labial salivary glands of caterpillars fed 33p:30c. These results suggest that caterpillars fed balanced or nutritionally-poor diets have accelerated secretion pathways compared to those fed a protein-rich diet.
Collapse
Affiliation(s)
- Khashayar Afshar
- Department of Plant Science, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, Qc, Canada H9X 3V9.
| | | | | | | | | | | | | |
Collapse
|
32
|
Musser RO, Hum-Musser SM, Lee HK, DesRochers BL, Williams SA, Vogel H. Caterpillar Labial Saliva Alters Tomato Plant Gene Expression. J Chem Ecol 2012; 38:1387-401. [DOI: 10.1007/s10886-012-0198-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 09/07/2012] [Accepted: 09/25/2012] [Indexed: 01/06/2023]
|
33
|
Celorio-Mancera MDLP, Sundmalm SM, Vogel H, Rutishauser D, Ytterberg AJ, Zubarev RA, Janz N. Chemosensory proteins, major salivary factors in caterpillar mandibular glands. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:796-805. [PMID: 22885177 DOI: 10.1016/j.ibmb.2012.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 07/19/2012] [Accepted: 07/24/2012] [Indexed: 06/01/2023]
Abstract
Research in the field of insect-host plant interactions has indicated that constituents of insect saliva play an important role in digestion and affect host chemical defense responses. However, most efforts have focused on studying the composition and function of regurgitant or saliva produced in the labial glands. Acknowledging the need for understanding the role of the mandibular glands in herbivory, we sought to make a qualitative and semi-quantitative comparison of soluble luminal protein fractions between mandibular and labial glands of Vanessa gonerilla butterfly larvae. Amylase and lysozyme were inspected as possible major enzymatic activities in the mandibular glands aiding in pre-digestion and antimicrobial defense. Although detected, neither of these enzymatic activities was prominent in the luminal protein preparation of a particular type of gland. Proteins isolated from the glands were identified by mass spectrometry and by searching an EST-library database generated for four other nymphalid butterfly species, in addition to the public NCBI database. The identified proteins were also quantified from the data using "Quanty", an in-house program. The proteomic analysis detected chemosensory proteins as the most abundant luminal proteins in the mandibular glands. In comparison to these proteins, the relative amounts of amylase and lysozyme were much lower in both gland types. Therefore, we speculate that the primary role of the mandibular glands in Lepidopteran larvae is chemoreception which may include the detection of microorganisms on plant surfaces, host plant recognition and communication with conspecifics.
Collapse
|
34
|
Tian D, Peiffer M, Shoemaker E, Tooker J, Haubruge E, Francis F, Luthe DS, Felton GW. Salivary glucose oxidase from caterpillars mediates the induction of rapid and delayed-induced defenses in the tomato plant. PLoS One 2012; 7:e36168. [PMID: 22558369 PMCID: PMC3340365 DOI: 10.1371/journal.pone.0036168] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/02/2012] [Indexed: 01/09/2023] Open
Abstract
Caterpillars produce oral secretions that may serve as cues to elicit plant defenses, but in other cases these secretions have been shown to suppress plant defenses. Ongoing work in our laboratory has focused on the salivary secretions of the tomato fruitworm, Helicoverpa zea. In previous studies we have shown that saliva and its principal component glucose oxidase acts as an effector by suppressing defenses in tobacco. In this current study, we report that saliva elicits a burst of jasmonic acid (JA) and the induction of late responding defense genes such as proteinase inhibitor 2 (Pin2). Transcripts encoding early response genes associated with the JA pathway were not affected by saliva. We also observed a delayed response to saliva with increased densities of Type VI glandular trichomes in newly emerged leaves. Proteomic analysis of saliva revealed glucose oxidase (GOX) was the most abundant protein identified and we confirmed that it plays a primary role in the induction of defenses in tomato. These results suggest that the recognition of GOX in tomato may represent a case for effector-triggered immunity. Examination of saliva from other caterpillar species indicates that saliva from the noctuids Spodoptera exigua and Heliothis virescens also induced Pin2 transcripts.
Collapse
Affiliation(s)
- Donglan Tian
- Department of Entomology, Center for Chemical Ecology, Penn State University, University Park, Pennsylvania, United States of America
| | - Michelle Peiffer
- Department of Entomology, Center for Chemical Ecology, Penn State University, University Park, Pennsylvania, United States of America
| | - Erica Shoemaker
- Department of Entomology, Center for Chemical Ecology, Penn State University, University Park, Pennsylvania, United States of America
| | - John Tooker
- Department of Entomology, Center for Chemical Ecology, Penn State University, University Park, Pennsylvania, United States of America
| | - Eric Haubruge
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Liege, Belgium
| | - Frederic Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Liege, Belgium
| | - Dawn S. Luthe
- Department of Entomology, Center for Chemical Ecology, Penn State University, University Park, Pennsylvania, United States of America
- Department of Crop and Soil Science, Center for Chemical Ecology, Penn State University, University Park, Pennsylvania, United States of America
| | - Gary W. Felton
- Department of Entomology, Center for Chemical Ecology, Penn State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|