1
|
Mazaheri Y, Shavali-Gilani P, Shariatifar N, Bakhtiyari A, Hadian Z, Akbari N, Abdoli N, Sadighara P. Effectiveness of various methods to reduce aflatoxin M1 levels in milk, a systematic review. Food Chem X 2024; 23:101737. [PMID: 39263340 PMCID: PMC11388292 DOI: 10.1016/j.fochx.2024.101737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024] Open
Abstract
The numerous strategies have been conducted worldwide to mitigate the presence of these hazardous toxins. In this systematic study, these researches are summarized. The search of this study was done with keywords aflatoxin M1, AFM1, reduce, decrease, mitigation, prevent, prevention, and milk in databases without a time limit. A total of 49 manuscripts were carefully reviewed, and their data were extracted. Some interventions focused on modifying animal rations, aiming to reduce AFM1 in milk. Some were applied directly to the animals. In this method, which was done more than other research interventions, some toxin binders are used as feed additives. The third type of intervention consisted of measures that were taken directly on the milk itself. Among the three types of interventions, the use of toxin binders in animal feed was more practical and effective.
Collapse
Affiliation(s)
- Yeganeh Mazaheri
- Department of Environmental Health Engineering, Division of Food Safety and Hygiene, School of Public health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Shavali-Gilani
- Department of Environmental Health Engineering, Division of Food Safety and Hygiene, School of Public health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nabi Shariatifar
- Department of Environmental Health Engineering, Division of Food Safety and Hygiene, School of Public health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Bakhtiyari
- Department of Environmental Health Engineering, Division of Food Safety and Hygiene, School of Public health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Hadian
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Akbari
- Department of Environmental Health Engineering, Division of Food Safety and Hygiene, School of Public health, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Abdoli
- Iranian Food and drug administration, Tehran, Iran
- Ministry of Health and Medical Education, Tehran, Iran
| | - Parisa Sadighara
- Department of Environmental Health Engineering, Division of Food Safety and Hygiene, School of Public health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Fumagalli F, Ottoboni M, Pinotti L, Cheli F. Integrated Mycotoxin Management System in the Feed Supply Chain: Innovative Approaches. Toxins (Basel) 2021; 13:572. [PMID: 34437443 PMCID: PMC8402322 DOI: 10.3390/toxins13080572] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Exposure to mycotoxins is a worldwide concern as their occurrence is unavoidable and varies among geographical regions. Mycotoxins can affect the performance and quality of livestock production and act as carriers putting human health at risk. Feed can be contaminated by various fungal species, and mycotoxins co-occurrence, and modified and emerging mycotoxins are at the centre of modern mycotoxin research. Preventing mould and mycotoxin contamination is almost impossible; it is necessary for producers to implement a comprehensive mycotoxin management program to moderate these risks along the animal feed supply chain in an HACCP perspective. The objective of this paper is to suggest an innovative integrated system for handling mycotoxins in the feed chain, with an emphasis on novel strategies for mycotoxin control. Specific and selected technologies, such as nanotechnologies, and management protocols are reported as promising and sustainable options for implementing mycotoxins control, prevention, and management. Further research should be concentrated on methods to determine multi-contaminated samples, and emerging and modified mycotoxins.
Collapse
Affiliation(s)
- Francesca Fumagalli
- Department of Health, Animal Science and Food Safety, “Carlo Cantoni” University of Milan, 20134 Milan, Italy; (M.O.); (L.P.); (F.C.)
| | - Matteo Ottoboni
- Department of Health, Animal Science and Food Safety, “Carlo Cantoni” University of Milan, 20134 Milan, Italy; (M.O.); (L.P.); (F.C.)
| | - Luciano Pinotti
- Department of Health, Animal Science and Food Safety, “Carlo Cantoni” University of Milan, 20134 Milan, Italy; (M.O.); (L.P.); (F.C.)
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20134 Milan, Italy
| | - Federica Cheli
- Department of Health, Animal Science and Food Safety, “Carlo Cantoni” University of Milan, 20134 Milan, Italy; (M.O.); (L.P.); (F.C.)
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20134 Milan, Italy
| |
Collapse
|
3
|
Awuchi CG, Ondari EN, Ogbonna CU, Upadhyay AK, Baran K, Okpala COR, Korzeniowska M, Guiné RPF. Mycotoxins Affecting Animals, Foods, Humans, and Plants: Types, Occurrence, Toxicities, Action Mechanisms, Prevention, and Detoxification Strategies-A Revisit. Foods 2021; 10:1279. [PMID: 34205122 PMCID: PMC8228748 DOI: 10.3390/foods10061279] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 01/05/2023] Open
Abstract
Mycotoxins are produced by fungi and are known to be toxic to humans and animals. Common mycotoxins include aflatoxins, ochratoxins, zearalenone, patulin, sterigmatocystin, citrinin, ergot alkaloids, deoxynivalenol, fumonisins, trichothecenes, Alternaria toxins, tremorgenic mycotoxins, fusarins, 3-nitropropionic acid, cyclochlorotine, sporidesmin, etc. These mycotoxins can pose several health risks to both animals and humans, including death. As several mycotoxins simultaneously occur in nature, especially in foods and feeds, the detoxification and/or total removal of mycotoxins remains challenging. Moreover, given that the volume of scientific literature regarding mycotoxins is steadily on the rise, there is need for continuous synthesis of the body of knowledge. To supplement existing information, knowledge of mycotoxins affecting animals, foods, humans, and plants, with more focus on types, toxicity, and prevention measures, including strategies employed in detoxification and removal, were revisited in this work. Our synthesis revealed that mycotoxin decontamination, control, and detoxification strategies cut across pre-and post-harvest preventive measures. In particular, pre-harvest measures can include good agricultural practices, fertilization/irrigation, crop rotation, using resistant varieties of crops, avoiding insect damage, early harvesting, maintaining adequate humidity, and removing debris from the preceding harvests. On the other hand, post-harvest measures can include processing, chemical, biological, and physical measures. Additionally, chemical-based methods and other emerging strategies for mycotoxin detoxification can involve the usage of chitosan, ozone, nanoparticles, and plant extracts.
Collapse
Affiliation(s)
- Chinaza Godswill Awuchi
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda;
- School of Natural and Applied Sciences, Kampala International University, Kampala P.O. Box 20000, Uganda
| | - Erick Nyakundi Ondari
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda;
| | - Chukwuka U. Ogbonna
- Department of Biochemistry, Federal University of Agriculture Abeokuta, Abeokuta P.M.B. 2240, Ogun State, Nigeria;
| | - Anjani K. Upadhyay
- School of Biotechnology, KIIT University, Bhubaneswar 751019, Odisha, India;
| | - Katarzyna Baran
- Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (K.B.); (M.K.)
| | - Charles Odilichukwu R. Okpala
- Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (K.B.); (M.K.)
| | - Małgorzata Korzeniowska
- Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (K.B.); (M.K.)
| | - Raquel P. F. Guiné
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| |
Collapse
|
4
|
Zhou J, Li Y, Liu Z, Qian W, Chen Y, Qi Y, Wang A. Induction of anti-Zearalenone immune response with mimotopes identified from a phage display peptide library. Toxicon 2021; 199:1-6. [PMID: 34033860 DOI: 10.1016/j.toxicon.2021.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/25/2022]
Abstract
Zearalenone (ZEN), a type of non-steroidal estrogenic mycotoxin, is mainly produced by several species of Fusarium molds. It is ubiquitous in contaminated grains and grain products all over the world, posing a serious threat to animal and human health. This study aims to screen the mimotopes of ZEN from a phage display random 12-mer peptide library and explore their immunogenicity. A monoclonal antibody (mAb) against ZEN was employed as the target for mimotope selection from a phage display random peptide library. After four rounds of panning, six mimotopes that could specifically bind to ZEN mAb were obtained. In order to explore the immunogenicity of these mimotopes, Balb/c mice were immunized with phages Z8, Z21, Z35, Z8:Z21:Z35(1:1:1) and the conjugate of ZEN-bovine serum albumin (ZEN-BSA), respectively. The titers of antibodies in the mice immunized with mimotopes were 1:3200 (Z8), 1:3200 (Z21), 1:6400 (Z35), 1:6400 (1:1:1 mixture of Z8, Z21 and Z35), and the binding between serum antibodies and ZEN-OVA could be blocked by ZEN standards. These results demonstrated that the mimotopes of ZEN could induce specific antibodies against ZEN, suggesting that these displayed peptides were immunogenic.
Collapse
Affiliation(s)
- Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Yanghui Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Zhanxiang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Wenjing Qian
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Yanhua Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
5
|
Zhou J, Chen F, Li J, Li C, Qi Y, Liu H, Zhang G, Wang A. Biopanning the mimotopes of aflatoxin B1 and their immunogenicity. ARQ BRAS MED VET ZOO 2020. [DOI: 10.1590/1678-4162-11372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- J. Zhou
- Academy of Life Sciences of Zhengzhou University, China
| | - F. Chen
- Wowen&infants Hospital of Zhengzhou, China
| | - J. Li
- Academy of Life Sciences of Zhengzhou University, China
| | - C. Li
- Academy of Life Sciences of Zhengzhou University, China
| | - Y. Qi
- Academy of Life Sciences of Zhengzhou University, China
| | - H. Liu
- Academy of Life Sciences of Zhengzhou University, China
| | - G. Zhang
- Academy of Life Sciences of Zhengzhou University, China
| | | |
Collapse
|
6
|
Kemboi DC, Antonissen G, Ochieng PE, Croubels S, Okoth S, Kangethe EK, Faas J, Lindahl JF, Gathumbi JK. A Review of the Impact of Mycotoxins on Dairy Cattle Health: Challenges for Food Safety and Dairy Production in Sub-Saharan Africa. Toxins (Basel) 2020; 12:E222. [PMID: 32252249 PMCID: PMC7232242 DOI: 10.3390/toxins12040222] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/22/2020] [Accepted: 03/29/2020] [Indexed: 12/31/2022] Open
Abstract
Mycotoxins are secondary metabolites of fungi that contaminate food and feed and have a significant negative impact on human and animal health and productivity. The tropical condition in Sub-Saharan Africa (SSA) together with poor storage of feed promotes fungal growth and subsequent mycotoxin production. Aflatoxins (AF) produced by Aspergillus species, fumonisins (FUM), zearalenone (ZEN), T-2 toxin (T-2), and deoxynivalenol (DON) produced by Fusarium species, and ochratoxin A (OTA) produced by Penicillium and Aspergillus species are well-known mycotoxins of agricultural importance. Consumption of feed contaminated with these toxins may cause mycotoxicoses in animals, characterized by a range of clinical signs depending on the toxin, and losses in the animal industry. In SSA, contamination of dairy feed with mycotoxins has been frequently reported, which poses a serious constraint to animal health and productivity, and is also a hazard to human health since some mycotoxins and their metabolites are excreted in milk, especially aflatoxin M1. This review describes the major mycotoxins, their occurrence, and impact in dairy cattle diets in SSA highlighting the problems related to animal health, productivity, and food safety and the up-to-date post-harvest mitigation strategies for the prevention and reduction of contamination of dairy feed.
Collapse
Affiliation(s)
- David Chebutia Kemboi
- Department of Pathology, Parasitology and Microbiology, Faculty of Veterinary Medicine, University of Nairobi, PO Box 29053, 00100 Nairobi, Kenya;
- Department of Animal Science, Chuka University, P.O Box 109-00625 Chuka, Kenya
| | - Gunther Antonissen
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (G.A.); (P.E.O.); (S.C.)
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Phillis E. Ochieng
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (G.A.); (P.E.O.); (S.C.)
- Department of Food Sciences, University of Liège, Faculty of Veterinary Medicine, Avenue de Cureghem 10, 4000 Liège, Belgium
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (G.A.); (P.E.O.); (S.C.)
| | - Sheila Okoth
- School of Biological Sciences, University of Nairobi, P.O Box 30197-00100 Nairobi, Kenya;
| | | | - Johannes Faas
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria;
| | - Johanna F. Lindahl
- Department of Biosciences, International Livestock Research Institute (ILRI), P.O Box 30709, 00100 Nairobi, Kenya
- Department of Medical Biochemistry and Microbiology, Uppsala University, P.O Box 582, 751 23 Uppsala, Sweden
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O Box 7054, 750 07 Uppsala, Sweden
| | - James K. Gathumbi
- Department of Pathology, Parasitology and Microbiology, Faculty of Veterinary Medicine, University of Nairobi, PO Box 29053, 00100 Nairobi, Kenya;
| |
Collapse
|
7
|
Wambacq E, Vanhoutte I, Audenaert K, De Gelder L, Haesaert G. Occurrence, prevention and remediation of toxigenic fungi and mycotoxins in silage: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2284-2302. [PMID: 26676761 DOI: 10.1002/jsfa.7565] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/07/2015] [Accepted: 12/07/2015] [Indexed: 06/05/2023]
Abstract
Ruminants are considered to be less sensitive towards mycotoxins than monogastric animals because rumen microbiota have mycotoxin-detoxifying capacities. Therefore the effect of mycotoxins towards ruminants has been studied to a lesser extent compared with monogastric animals. Worldwide, a high proportion of the ruminant diet consists of silages made of forage crops (i.e. all parts of the crop above the stubble are harvested). In practice, silages are often contaminated with multiple mycotoxins. Exposure to a cocktail of mycotoxins can hamper animal production and have severe health consequences. In this article the different aspects associated with mycotoxin contamination of silage are reviewed 'from seed to feed'. An overview is given on the occurrence of toxigenic fungal species and their concomitant mycotoxins in forage crops before and after ensiling. The mycotoxin load of visually non-mouldy samples and mouldy hot spots within the same silo is also compared. Subsequently, this review delves into different problem-solving strategies. A logical first step is prevention of mould growth and mycotoxin production in the field, during harvest and during ensiling. If prevention should fail, several remediation strategies are available. These are listed, mainly focusing on the possibilities of microbial degradation of mycotoxins in vivo in silage. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Eva Wambacq
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, V. Vaerwyckweg 1, B-9000, Ghent, Belgium
| | - Ilse Vanhoutte
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, V. Vaerwyckweg 1, B-9000, Ghent, Belgium
| | - Kris Audenaert
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, V. Vaerwyckweg 1, B-9000, Ghent, Belgium
| | - Leen De Gelder
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, V. Vaerwyckweg 1, B-9000, Ghent, Belgium
| | - Geert Haesaert
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, V. Vaerwyckweg 1, B-9000, Ghent, Belgium
| |
Collapse
|
8
|
Giovati L, Magliani W, Ciociola T, Santinoli C, Conti S, Polonelli L. AFM₁ in Milk: Physical, Biological, and Prophylactic Methods to Mitigate Contamination. Toxins (Basel) 2015; 7:4330-49. [PMID: 26512694 PMCID: PMC4626737 DOI: 10.3390/toxins7104330] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/15/2015] [Accepted: 10/19/2015] [Indexed: 11/30/2022] Open
Abstract
Aflatoxins (AFs) are toxic, carcinogenic, immunosuppressive secondary metabolites produced by some Aspergillus species which colonize crops, including many dietary staple foods and feed components. AFB₁ is the prevalent and most toxic among AFs. In the liver, it is biotransformed into AFM₁, which is then excreted into the milk of lactating mammals, including dairy animals. AFM₁ has been shown to be cause of both acute and chronic toxicoses. The presence of AFM₁ in milk and dairy products represents a worldwide concern since even small amounts of this metabolite may be of importance as long-term exposure is concerned. Contamination of milk may be mitigated either directly, decreasing the AFM₁ content in contaminated milk, or indirectly, decreasing AFB₁ contamination in the feed of dairy animals. Current strategies for AFM₁ mitigation include good agricultural practices in pre-harvest and post-harvest management of feed crops (including storage) and physical or chemical decontamination of feed and milk. However, no single strategy offers a complete solution to the issue.
Collapse
Affiliation(s)
- Laura Giovati
- Department of Biomedical, Biotechnological, and Translational Sciences, Microbiology and Virology Unit, University of Parma, Parma 43125, Italy.
| | - Walter Magliani
- Department of Biomedical, Biotechnological, and Translational Sciences, Microbiology and Virology Unit, University of Parma, Parma 43125, Italy.
| | - Tecla Ciociola
- Department of Biomedical, Biotechnological, and Translational Sciences, Microbiology and Virology Unit, University of Parma, Parma 43125, Italy.
| | - Claudia Santinoli
- Department of Biomedical, Biotechnological, and Translational Sciences, Microbiology and Virology Unit, University of Parma, Parma 43125, Italy.
| | - Stefania Conti
- Department of Biomedical, Biotechnological, and Translational Sciences, Microbiology and Virology Unit, University of Parma, Parma 43125, Italy.
| | - Luciano Polonelli
- Department of Biomedical, Biotechnological, and Translational Sciences, Microbiology and Virology Unit, University of Parma, Parma 43125, Italy.
| |
Collapse
|
9
|
Gallo A, Giuberti G, Frisvad JC, Bertuzzi T, Nielsen KF. Review on Mycotoxin Issues in Ruminants: Occurrence in Forages, Effects of Mycotoxin Ingestion on Health Status and Animal Performance and Practical Strategies to Counteract Their Negative Effects. Toxins (Basel) 2015; 7:3057-111. [PMID: 26274974 PMCID: PMC4549740 DOI: 10.3390/toxins7083057] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 01/10/2023] Open
Abstract
Ruminant diets include cereals, protein feeds, their by-products as well as hay and grass, grass/legume, whole-crop maize, small grain or sorghum silages. Furthermore, ruminants are annually or seasonally fed with grazed forage in many parts of the World. All these forages could be contaminated by several exometabolites of mycotoxigenic fungi that increase and diversify the risk of mycotoxin exposure in ruminants compared to swine and poultry that have less varied diets. Evidence suggests the greatest exposure for ruminants to some regulated mycotoxins (aflatoxins, trichothecenes, ochratoxin A, fumonisins and zearalenone) and to many other secondary metabolites produced by different species of Alternaria spp. (e.g., AAL toxins, alternariols, tenuazonic acid or 4Z-infectopyrone), Aspergillus flavus (e.g., kojic acid, cyclopiazonic acid or β-nitropropionic acid), Aspergillus fuminatus (e.g., gliotoxin, agroclavine, festuclavines or fumagillin), Penicillium roqueforti and P. paneum (e.g., mycophenolic acid, roquefortines, PR toxin or marcfortines) or Monascus ruber (citrinin and monacolins) could be mainly related to forage contamination. This review includes the knowledge of mycotoxin occurrence reported in the last 15 years, with special emphasis on mycotoxins detected in forages, and animal toxicological issues due to their ingestion. Strategies for preventing the problem of mycotoxin feed contamination under farm conditions are discussed.
Collapse
Affiliation(s)
- Antonio Gallo
- Institute of Feed & Food Science and Nutrition, Università Cattolica del Sacro Cuore, Piacenza 29122, Italy.
| | - Gianluca Giuberti
- Institute of Feed & Food Science and Nutrition, Università Cattolica del Sacro Cuore, Piacenza 29122, Italy.
| | - Jens C Frisvad
- Department of Systems Biology, Technical University of Denmark, Building 221, Kgs. Lyngby DK-2800, Denmark.
| | - Terenzio Bertuzzi
- Institute of Feed & Food Science and Nutrition, Università Cattolica del Sacro Cuore, Piacenza 29122, Italy.
| | - Kristian F Nielsen
- Department of Systems Biology, Technical University of Denmark, Building 221, Kgs. Lyngby DK-2800, Denmark.
| |
Collapse
|
10
|
Giovati L, Gallo A, Masoero F, Cerioli C, Ciociola T, Conti S, Magliani W, Polonelli L. Vaccination of heifers with anaflatoxin improves the reduction of aflatoxin b1 carry over in milk of lactating dairy cows. PLoS One 2014; 9:e94440. [PMID: 24714096 PMCID: PMC3979841 DOI: 10.1371/journal.pone.0094440] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 03/17/2014] [Indexed: 11/18/2022] Open
Abstract
It was previously reported that injection of anaflatoxin B1 (AnAFB1) conjugated to keyhole limpet hemocyanin (KLH), together with Freund's adjuvant, was effective in inducing in cows a long lasting titer of anti-aflatoxin B1 (AFB1) antibodies (Abs), cross-reacting with other aflatoxins, which were able to hinder, proportionally to their titer, the secretion of aflatoxin M1 (AFM1) into the milk of cows continuously fed with AFB1. According to anti-AFB1 Ab titer, 50% of the vaccinated cows were recognized as high responder animals. In an attempt to prepare a more effective formulation for vaccination of cows, it was compared the immunogenicity, in Holstein Friesian heifers, of AnAFB1 covalently conjugated to KLH or to recombinant diphtheria toxin (CRM197) molecules, and injected together with various adjuvants. This study demonstrated that injection of AnAFB1 conjugated to KLH and mixed with complete (priming) and incomplete Freund's adjuvant (boosters), as in the previous schedule of immunization, was the most effective regimen for inducing Ab responses against AFB1, although pre-calving administration could increase the effectiveness of vaccination, resulting in 100% high responder animals. After one booster dose at the beginning of the milk production cycle, anti-AFB1 Ab titers were comparable to those recorded at the end of the immunization schedule, and proved to be effective in reducing significantly AFB1 carry over, as AFM1, from feed to milk. Pre-calving vaccination of dairy heifers with conjugated AnAFB1, adjuvated with complete and incomplete Freund's adjuvant, may represent the most effective tool for preventing the public health hazard constituted by milk and cheese contaminated with aflatoxins.
Collapse
Affiliation(s)
- Laura Giovati
- Unità di Microbiologia e Virologia, Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Università degli Studi, Parma, Italy
| | - Antonio Gallo
- Istituto di Scienze degli Alimenti e della Nutrizione, Facoltà di Agraria, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Francesco Masoero
- Istituto di Scienze degli Alimenti e della Nutrizione, Facoltà di Agraria, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Carla Cerioli
- Istituto di Scienze degli Alimenti e della Nutrizione, Facoltà di Agraria, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Tecla Ciociola
- Unità di Microbiologia e Virologia, Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Università degli Studi, Parma, Italy
| | - Stefania Conti
- Unità di Microbiologia e Virologia, Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Università degli Studi, Parma, Italy
| | - Walter Magliani
- Unità di Microbiologia e Virologia, Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Università degli Studi, Parma, Italy
| | - Luciano Polonelli
- Unità di Microbiologia e Virologia, Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Università degli Studi, Parma, Italy
| |
Collapse
|
11
|
Shephard G, Berthiller F, Burdaspal P, Crews C, Jonker M, Krska R, Lattanzio V, MacDonald S, Malone R, Maragos C, Sabino M, Solfrizzo M, van Egmond H, Whitaker T. Developments in mycotoxin analysis: an update for 2011-2012. WORLD MYCOTOXIN J 2013. [DOI: 10.3920/wmj2012.1492] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review highlights developments in mycotoxin analysis and sampling over a period between mid-2011 and mid- 2012. It covers the major mycotoxins aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxin, patulin, trichothecenes, and zearalenone. A section on mycotoxins in botanicals and spices is also included. Methods for mycotoxin determination continue to be developed using a wide range of analytical systems ranging from rapid immunochemical-based methods to the latest advances in mass spectrometry. This review follows the format of previous reviews in this series (i.e. sections on individual mycotoxins), but due to the rapid spread and developments in the field of multimycotoxin methods by liquid chromatography-tandem mass spectrometry, a separate section has been devoted to advances in this area of research.
Collapse
Affiliation(s)
- G.S. Shephard
- PROMEC Unit, Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa
| | - F. Berthiller
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, Christian Doppler Laboratory for Mycotoxin-Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Strasse 20, 3430 Tulln, Austria
| | - P.A. Burdaspal
- Spanish Food Safety and Nutrition Agency, National Centre for Food, km 5.100, 28220 Majadahonda (Madrid), Spain
| | - C. Crews
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - M.A. Jonker
- Cluster Natural Toxins and Pesticides, RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - R. Krska
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, Christian Doppler Laboratory for Mycotoxin-Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Strasse 20, 3430 Tulln, Austria
| | - V.M.T. Lattanzio
- National Research Council, Institute of Sciences of Food Production, Via Amendola 122/o, 700126 Bari, Italy
| | - S. MacDonald
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Drive, Washington, MO 63090, USA
| | - C. Maragos
- USDA, ARS National Center for Agricultural Utilization Research, 1815 N. University St, Peoria, IL 61604, USA
| | - M. Sabino
- Instituto Adolfo Lutz, Av Dr Arnaldo 355, 01246-902 São Paulo/SP, Brazil
| | - M. Solfrizzo
- National Research Council, Institute of Sciences of Food Production, Via Amendola 122/o, 700126 Bari, Italy
| | - H.P. van Egmond
- Cluster Natural Toxins and Pesticides, RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - T.B. Whitaker
- Biological and Agricultural Engineering Department, N.C. State University, P.O. Box 7625, Raleigh, NC 27695-7625, USA
| |
Collapse
|
12
|
Schellenberger MT, Grova N, Farinelle S, Willième S, Revets D, Muller CP. Immunogenicity of a promiscuous T cell epitope peptide based conjugate vaccine against benzo[a]pyrene: redirecting antibodies to the hapten. PLoS One 2012; 7:e38329. [PMID: 22666501 PMCID: PMC3364213 DOI: 10.1371/journal.pone.0038329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/04/2012] [Indexed: 12/19/2022] Open
Abstract
The prototype polycyclic aromatic hydrocarbon benzo[a]pyrene (B[a]P) is an environmental pollutant and food contaminant of epidemiological importance. To protect against adverse effects of this ubiquitous carcinogen, we developed an immunoprophylactic strategy based on a B[a]P-protein conjugate vaccine to induce B[a]P specific antibodies (Grova et al., Vaccine. 2009;27:4142-51). Here, we investigated in mice the efficacy of B[a]P-peptide conjugates based on promiscuous T cell epitopes (TCE) into further improve this approach. We showed that B[a]P-peptide conjugates induced very different levels of hapten-specific antibodies with variable functional efficacy, depending on the carrier. In some cases peptide carriers induced a more efficient antibody response against B[a]P than tetanus toxoid as a protein carrier, with the capacity to sequester more B[a]P in the blood. Reducing the carrier size to a single TCE can dramatically shift the antibody bias from the carrier to the B[a]P. Conjugates based on the TCE FIGITEL induced the best anti-hapten response and no antibodies against the carrier peptide. Some peptide conjugates increased the selectivity of the antibodies for the activated metabolite 7,8-diol-B[a]P and B[a]P by one or two orders of magnitude. The antibody efficacy was also demonstrated in their ability to sequester B[a]P in the blood and modulate its faecal excretion (15-56%). We further showed that pre-existing immunity to the carrier from which the TCE was derived did not reduce the immunogenicity of the peptide conjugate. In conclusion, we showed that a vaccination against B[a]P using promiscuous TCEs of tetanus toxin as carriers is feasible even in case of a pre-existing immunity to the toxoid and that some TCE epitopes dramatically redirect the antibody response to the hapten. Further studies to demonstrate a long-term protection of an immunoprophylactic immunisation against B[a]P are warranted.
Collapse
Affiliation(s)
- Mario T Schellenberger
- Centre de Recherche Public-Santé/National Public Health Laboratory, Institute of Immunology, Luxembourg, Grand Duchy of Luxembourg
| | | | | | | | | | | |
Collapse
|