1
|
Dersch S, Graumann PL. Adaptation of Bacillus subtilis MreB Filaments to Osmotic Stress Depends on Influx of Potassium Ions. Microorganisms 2024; 12:1309. [PMID: 39065078 PMCID: PMC11279060 DOI: 10.3390/microorganisms12071309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The circumferential motion of MreB filaments plays a key role in cell shape maintenance in many bacteria. It has recently been shown that filament formation of MreB filaments in Bacillus subtilis is influenced by stress conditions. In response to osmotic upshift, MreB molecules were released from filaments, as seen by an increase in freely diffusive molecules, and the peptidoglycan synthesis pattern became less organized, concomitant with slowed-down cell extension. In this study, biotic and abiotic factors were analysed with respect to a possible function in the adaptation of MreB filaments to stress conditions. We show that parallel to MreB, its interactor RodZ becomes more diffusive following osmotic stress, but the remodeling of MreB filaments is not affected by a lack of RodZ. Conversely, mutant strains that prevent efficient potassium influx into cells following osmotic shock show a failure to disassemble MreB filaments, accompanied by less perturbed cell wall extension than is observed in wild type cells. Because potassium ions are known to negatively affect MreB polymerization in vitro, our data indicate that polymer disassembly is directly mediated by the physical consequences of the osmotic stress response. The lack of an early potassium influx response strongly decreases cell survival following stress application, suggesting that the disassembly of MreB filaments may ensure slowed-down cell wall extension to allow for efficient adaptation to new osmotic conditions.
Collapse
Affiliation(s)
| | - Peter L. Graumann
- Centre for Synthetic Microbiology (SYNMIKRO), Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany;
| |
Collapse
|
2
|
Sloan R, Surber J, Roy EJ, Hartig E, Morgenstein RM. Enzyme 1 of the phosphoenolpyruvate:sugar phosphotransferase system is involved in resistance to MreB disruption in wild-type and ∆envC cells. Mol Microbiol 2022; 118:588-600. [PMID: 36199205 PMCID: PMC9671846 DOI: 10.1111/mmi.14988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 01/12/2023]
Abstract
Cell wall synthesis in bacteria is determined by two protein complexes: the elongasome and divisome. The elongasome is coordinated by the actin homolog MreB while the divisome is organized by the tubulin homolog FtsZ. While these two systems must coordinate with each other to ensure that elongation and division are coregulated, this cross talk has been understudied. Using the MreB depolymerizing agent, A22, we found that multiple gene deletions result in cells exhibiting increased sensitivity to MreB depolymerization. One of those genes encodes for EnvC, a part of the divisome that is responsible for splitting daughter cells after the completion of cytokinesis through the activation of specific amidases. Here we show this increased sensitivity to A22 works through two known amidase targets of EnvC: AmiA and AmiB. In addition, suppressor analysis revealed that mutations in enzyme 1 of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) can suppress the effects of A22 in both wild-type and envC deletion cells. Together this work helps to link elongation, division, and metabolism.
Collapse
Affiliation(s)
- Ryan Sloan
- Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterOklahomaUSA
| | - Jacob Surber
- Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterOklahomaUSA
| | - Emma J. Roy
- Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterOklahomaUSA
| | - Ethan Hartig
- Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterOklahomaUSA
| | - Randy M. Morgenstein
- Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterOklahomaUSA
| |
Collapse
|
3
|
Vélez M. How Does the Spatial Confinement of FtsZ to a Membrane Surface Affect Its Polymerization Properties and Function? Front Microbiol 2022; 13:757711. [PMID: 35592002 PMCID: PMC9111741 DOI: 10.3389/fmicb.2022.757711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/27/2022] [Indexed: 11/15/2022] Open
Abstract
FtsZ is the cytoskeletal protein that organizes the formation of the septal ring and orchestrates bacterial cell division. Its association to the membrane is essential for its function. In this mini-review I will address the question of how this association can interfere with the structure and dynamic properties of the filaments and argue that its dynamics could also remodel the underlying lipid membrane through its activity. Thus, lipid rearrangement might need to be considered when trying to understand FtsZ’s function. This new element could help understand how FtsZ assembly coordinates positioning and recruitment of the proteins forming the septal ring inside the cell with the activity of the machinery involved in peptidoglycan synthesis located in the periplasmic space.
Collapse
Affiliation(s)
- Marisela Vélez
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
4
|
Garner EC. Toward a Mechanistic Understanding of Bacterial Rod Shape Formation and Regulation. Annu Rev Cell Dev Biol 2021; 37:1-21. [PMID: 34186006 DOI: 10.1146/annurev-cellbio-010521-010834] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the most common bacterial shapes is a rod, yet we have a limited understanding of how this simple shape is constructed. While only six proteins are required for rod shape, we are just beginning to understand how they self-organize to build the micron-sized enveloping structures that define bacterial shape out of nanometer-sized glycan strains. Here, we detail and summarize the insights gained over the last 20 years into this complex problem that have been achieved with a wide variety of different approaches. We also explain and compare both current and past models of rod shape formation and maintenance and then highlight recent insights into how the Rod complex might be regulated. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA;
| |
Collapse
|
5
|
Harne S, Duret S, Pande V, Bapat M, Béven L, Gayathri P. MreB5 Is a Determinant of Rod-to-Helical Transition in the Cell-Wall-less Bacterium Spiroplasma. Curr Biol 2020; 30:4753-4762.e7. [PMID: 32976813 DOI: 10.1016/j.cub.2020.08.093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/05/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022]
Abstract
In most rod-shaped bacteria, the spatial coordination of cell wall synthesis machinery by MreBs is the main theme for shape determination and maintenance in cell-walled bacteria [1-9]. However, how rod or spiral shapes are achieved and maintained in cell-wall-less bacteria is currently unknown. Spiroplasma, a helical Mollicute that lacks cell wall synthesis genes, encodes five MreB paralogs and a unique cytoskeletal protein fibril [10, 11]. Here, we show that MreB5, one of the five MreB paralogs, contributes to cell elongation and is essential for the transition from rod-to-helical shape in Spiroplasma. Comparative genomic and proteomic characterization of a helical and motile wild-type Spiroplasma strain and a non-helical, non-motile natural variant helped delineate the specific roles of MreB5. Moreover, complementation of the non-helical strain with MreB5 restored its helical shape and motility by a kink-based mechanism described for Spiroplasma [12]. Earlier studies had proposed that length changes in fibril filaments are responsible for the change in handedness of the helical cell and kink propagation during motility [13]. Through structural and biochemical characterization, we identify that MreB5 exists as antiparallel double protofilaments that interact with fibril and the membrane, and thus potentially assists in kink propagation. In summary, our study provides direct experimental evidence for MreB in maintaining cell length, helical shape, and motility-revealing the role of MreB in sculpting the cell in the absence of a cell wall.
Collapse
Affiliation(s)
- Shrikant Harne
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sybille Duret
- INRAE, University of Bordeaux, UMR 1332 BFP, Villenave d'Ornon, Bordeaux, France
| | - Vani Pande
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Mrinmayee Bapat
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Laure Béven
- INRAE, University of Bordeaux, UMR 1332 BFP, Villenave d'Ornon, Bordeaux, France.
| | - Pananghat Gayathri
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| |
Collapse
|
6
|
Dersch S, Reimold C, Stoll J, Breddermann H, Heimerl T, Defeu Soufo HJ, Graumann PL. Polymerization of Bacillus subtilis MreB on a lipid membrane reveals lateral co-polymerization of MreB paralogs and strong effects of cations on filament formation. BMC Mol Cell Biol 2020; 21:76. [PMID: 33148162 PMCID: PMC7641798 DOI: 10.1186/s12860-020-00319-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/18/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND MreB is a bacterial ortholog of actin and forms mobile filaments underneath the cell membrane, perpendicular to the long axis of the cell, which play a crucial role for cell shape maintenance. We wished to visualize Bacillus subtilis MreB in vitro and therefore established a protocol to obtain monomeric protein, which could be polymerized on a planar membrane system, or associated with large membrane vesicles. RESULTS Using a planar membrane system and electron microscopy, we show that Bacillus subtilis MreB forms bundles of filaments, which can branch and fuse, with an average width of 70 nm. Fluorescence microscopy of non-polymerized YFP-MreB, CFP-Mbl and mCherry-MreBH proteins showed uniform binding to the membrane, suggesting that 2D diffusion along the membrane could facilitate filament formation. After addition of divalent magnesium and calcium ions, all three proteins formed highly disordered sheets of filaments that could split up or merge, such that at high protein concentration, MreB and its paralogs generated a network of filaments extending away from the membrane. Filament formation was positively affected by divalent ions and negatively by monovalent ions. YFP-MreB or CFP-Mbl also formed filaments between two adjacent membranes, which frequently has a curved appearance. New MreB, Mbl or MreBH monomers could add to the lateral side of preexisting filaments, and MreB paralogs co-polymerized, indicating direct lateral interaction between MreB paralogs. CONCLUSIONS Our data show that B. subtilis MreB paralogs do not easily form ordered filaments in vitro, possibly due to extensive lateral contacts, but can co-polymerise. Monomeric MreB, Mbl and MreBH uniformly bind to a membrane, and form irregular and frequently split up filamentous structures, facilitated by the addition of divalent ions, and counteracted by monovalent ions, suggesting that intracellular potassium levels may be one important factor to counteract extensive filament formation and filament splitting in vivo.
Collapse
Affiliation(s)
- Simon Dersch
- Centre for Synthetic Microbiology (SYNMIKRO) Hans-Meerwein Strasse 6, Philipps-Universität Marburg, 35032, Marburg, Germany.,Fachbereich Chemie, Hans-Meerwein Strasse, Philipps-Universität Marburg, 35032, Marburg, Germany
| | - Christian Reimold
- Centre for Synthetic Microbiology (SYNMIKRO) Hans-Meerwein Strasse 6, Philipps-Universität Marburg, 35032, Marburg, Germany.,Fachbereich Chemie, Hans-Meerwein Strasse, Philipps-Universität Marburg, 35032, Marburg, Germany
| | - Joshua Stoll
- Centre for Synthetic Microbiology (SYNMIKRO) Hans-Meerwein Strasse 6, Philipps-Universität Marburg, 35032, Marburg, Germany.,Fachbereich Chemie, Hans-Meerwein Strasse, Philipps-Universität Marburg, 35032, Marburg, Germany
| | | | - Thomas Heimerl
- Centre for Synthetic Microbiology (SYNMIKRO) Hans-Meerwein Strasse 6, Philipps-Universität Marburg, 35032, Marburg, Germany.,Fachbereich Biologie, Karl-von-Frisch-Straße 10, Philipps-Universität Marburg, 35032, Marburg, Germany
| | - Hervé Joel Defeu Soufo
- Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110, Freiburg, Germany
| | - Peter L Graumann
- Centre for Synthetic Microbiology (SYNMIKRO) Hans-Meerwein Strasse 6, Philipps-Universität Marburg, 35032, Marburg, Germany. .,Fachbereich Chemie, Hans-Meerwein Strasse, Philipps-Universität Marburg, 35032, Marburg, Germany.
| |
Collapse
|
7
|
Abstract
The construction of the bacterial cell envelope is a fundamental topic, as it confers its integrity to bacteria and is consequently the target of numerous antibiotics. MreB is an essential protein suspected to regulate the cell wall synthetic machineries. Despite two decades of study, its localization remains the subject of controversies, its description ranging from helical filaments spanning the entire cell to small discrete entities. The true structure of these filaments is important because it impacts the model describing how the machineries building the cell wall are associated, how they are coordinated at the scale of the entire cell, and how MreB mediates this regulation. Our results shed light on this debate, revealing the size of native filaments in B. subtilis during growth. They argue against models where MreB filament size directly affects the speed of synthesis of the cell wall and where MreB would coordinate distant machineries along the side wall. The actin-like MreB protein is a key player of the machinery controlling the elongation and maintenance of the cell shape of most rod-shaped bacteria. This protein is known to be highly dynamic, moving along the short axis of cells, presumably reflecting the movement of cell wall synthetic machineries during the enzymatic assembly of the peptidoglycan mesh. The ability of MreB proteins to form polymers is not debated, but their structure, length, and conditions of establishment have remained unclear and the subject of conflicting reports. Here we analyze various strains of Bacillus subtilis, the model for Gram-positive bacteria, and we show that MreB forms subdiffraction-limited, less than 200 nm-long nanofilaments on average during active growth, while micron-long filaments are a consequence of artificial overaccumulation of the protein. Our results also show the absence of impact of the size of the filaments on their speed, orientation, and other dynamic properties conferring a large tolerance to B. subtilis toward the levels and consequently the lengths of MreB polymers. Our data indicate that the density of mobile filaments remains constant in various strains regardless of their MreB levels, suggesting that another factor determines this constant.
Collapse
|
8
|
Abstract
Spatial organization is a hallmark of all living systems. Even bacteria, the smallest forms of cellular life, display defined shapes and complex internal organization, showcasing a highly structured genome, cytoskeletal filaments, localized scaffolding structures, dynamic spatial patterns, active transport, and occasionally, intracellular organelles. Spatial order is required for faithful and efficient cellular replication and offers a powerful means for the development of unique biological properties. Here, we discuss organizational features of bacterial cells and highlight how bacteria have evolved diverse spatial mechanisms to overcome challenges cells face as self-replicating entities.
Collapse
|
9
|
Single-Molecule Tracking of DNA Translocases in Bacillus subtilis Reveals Strikingly Different Dynamics of SftA, SpoIIIE, and FtsA. Appl Environ Microbiol 2018; 84:AEM.02610-17. [PMID: 29439991 DOI: 10.1128/aem.02610-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/30/2018] [Indexed: 11/20/2022] Open
Abstract
Like many bacteria, Bacillus subtilis possesses two DNA translocases that affect chromosome segregation at different steps. Prior to septum closure, nonsegregated DNA is moved into opposite cell halves by SftA, while septum-entrapped DNA is rescued by SpoIIIE. We have used single-molecule fluorescence microscopy and tracking (SMT) experiments to describe the dynamics of the two different DNA translocases, the cell division protein FtsA and the glycolytic enzyme phosphofructokinase (PfkA), in real time. SMT revealed that about 30% of SftA molecules move through the cytosol, while a fraction of 70% is septum bound and static. In contrast, only 35% of FtsA molecules are static at midcell, while SpoIIIE molecules diffuse within the membrane and show no enrichment at the septum. Several lines of evidence suggest that FtsA plays a role in septal recruitment of SftA: an ftsA deletion results in a significant reduction in septal SftA recruitment and a decrease in the average dwell time of SftA molecules. FtsA can recruit SftA to the membrane in a heterologous eukaryotic system, suggesting that SftA may be partially recruited via FtsA. Therefore, SftA is a component of the division machinery, while SpoIIIE is not, and it is otherwise a freely diffusive cytosolic enzyme in vivo Our developed SMT script is a powerful technique to determine if low-abundance proteins are membrane bound or cytosolic, to detect differences in populations of complex-bound and unbound/diffusive proteins, and to visualize the subcellular localization of slow- and fast-moving molecules in live cells.IMPORTANCE DNA translocases couple the late events of chromosome segregation to cell division and thereby play an important role in the bacterial cell cycle. The proteins fall into one of two categories, integral membrane translocases or nonintegral translocases. We show that the membrane-bound translocase SpoIIIE moves slowly throughout the cell membrane in B. subtilis and does not show a clear association with the division septum, in agreement with the idea that it binds membrane-bound DNA, which can occur through cell division across nonsegregated chromosomes. In contrast, SftA behaves like a soluble protein and is recruited to the division septum as a component of the division machinery. We show that FtsA contributes to the recruitment of SftA, revealing a dual role of FtsA at the division machinery, but it is not the only factor that binds SftA. Our work represents a detailed in vivo study of DNA translocases at the single-molecule level.
Collapse
|
10
|
Hussain S, Wivagg CN, Szwedziak P, Wong F, Schaefer K, Izoré T, Renner LD, Holmes MJ, Sun Y, Bisson-Filho AW, Walker S, Amir A, Löwe J, Garner EC. MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis. eLife 2018; 7:32471. [PMID: 29469806 PMCID: PMC5854468 DOI: 10.7554/elife.32471] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/21/2018] [Indexed: 12/26/2022] Open
Abstract
MreB is essential for rod shape in many bacteria. Membrane-associated MreB filaments move around the rod circumference, helping to insert cell wall in the radial direction to reinforce rod shape. To understand how oriented MreB motion arises, we altered the shape of Bacillus subtilis. MreB motion is isotropic in round cells, and orientation is restored when rod shape is externally imposed. Stationary filaments orient within protoplasts, and purified MreB tubulates liposomes in vitro, orienting within tubes. Together, this demonstrates MreB orients along the greatest principal membrane curvature, a conclusion supported with biophysical modeling. We observed that spherical cells regenerate into rods in a local, self-reinforcing manner: rapidly propagating rods emerge from small bulges, exhibiting oriented MreB motion. We propose that the coupling of MreB filament alignment to shape-reinforcing peptidoglycan synthesis creates a locally-acting, self-organizing mechanism allowing the rapid establishment and stable maintenance of emergent rod shape. Many bacteria are surrounded by both a cell membrane and a cell wall – a rigid outer covering made of sugars and short protein chains. The cell wall often determines which of a variety of shapes – such as rods or spheres – the bacteria grow into. One protein required to form the rod shape is called MreB. This protein forms filaments that bind to the bacteria’s cell membrane and associate with the enzymes that build the cell wall. Together, these filament-enzyme complexes rotate around the cell to build and reinforce the cell wall in a hoop-like manner. But how do the MreB filaments know how to move around the circumference of the rod, instead of moving in any other direction? Using a technique called total internal reflection microscopy to study how MreB filaments move across bacteria cells, Hussain, Wivagg et al. show that the filaments sense the shape of a bacterium by orienting along the direction of greatest curvature. As a result, the filaments in rod-shaped cells orient and move around the rod, while in spherical bacteria they move in all directions. However, spherical bacteria can regenerate into rods from small surface ‘bulges’. The MreB filaments in the bulges move in an oriented way, helping them to generate the rod shape. Hussain, Wivagg et al. also found that forcing cells that lack a cell wall into a rod shape caused the MreB filaments bound to the cell membrane to orient and circle around the rod. This shows that the organization of the filaments is sufficient to shape the cell wall. In the future, determining what factors control the activity of the MreB filaments and the enzymes they associate with might reveal new targets for antibiotics that disrupt the cell wall and so kill the bacteria. This will require higher resolution microscopes to be used to examine the cell wall in more detail. The activity of all the proteins involved in building cell walls will also need to be extensively characterized.
Collapse
Affiliation(s)
- Saman Hussain
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Carl N Wivagg
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Piotr Szwedziak
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Felix Wong
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, United States
| | - Kaitlin Schaefer
- Department of Microbiology and Immunology, Harvard University, Cambridge, United States
| | - Thierry Izoré
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Lars D Renner
- Leibniz Institute of Polymer Research, Dresden, Germany
| | - Matthew J Holmes
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Yingjie Sun
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | | | - Suzanne Walker
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Ariel Amir
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, United States
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| |
Collapse
|
11
|
Muchová K, Chromiková Z, Valenčíková R, Barák I. Interaction of the Morphogenic Protein RodZ with the Bacillus subtilis Min System. Front Microbiol 2018; 8:2650. [PMID: 29403445 PMCID: PMC5778138 DOI: 10.3389/fmicb.2017.02650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/19/2017] [Indexed: 12/01/2022] Open
Abstract
Vegetative cell division in Bacillus subtilis takes place precisely at the middle of the cell to ensure that two viable daughter cells are formed. The first event in cell division is the positioning of the FtsZ Z-ring at the correct site. This is controlled by the coordinated action of both negative and positive regulators. The existence of positive regulators has been inferred, but none have presently been identified in B. subtilis. Noc and the Min system belong to negative regulators; Noc prevents division from occurring over the chromosomes, and the Min system inhibits cell division at the poles. Here we report that the morphogenic protein, RodZ, an essential cell shape determinant, is also required for proper septum positioning during vegetative growth. In rodZ mutant cells, the vegetative septum is positioned off center, giving rise to small, round, DNA-containing cells. Searching for the molecular mechanism giving rise to this phenotype led us to discover that RodZ directly interacts with MinJ. We hypothesize that RodZ may aid the Min system in preventing non-medial vegetative division.
Collapse
Affiliation(s)
| | | | | | - Imrich Barák
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
12
|
Abstract
Bacillus subtilis is the best described member of the Gram positive bacteria. It is a typical rod shaped bacterium and grows by elongation in its long axis, before dividing at mid cell to generate two similar daughter cells. B. subtilis is a particularly interesting model for cell cycle studies because it also carries out a modified, asymmetrical division during endospore formation, which can be simply induced by starvation. Cell growth occurs strictly by elongation of the rod, which maintains a constant diameter at all growth rates. This process involves expansion of the cell wall, requiring intercalation of new peptidoglycan and teichoic acid material, as well as controlled hydrolysis of existing wall material. Actin-like MreB proteins are the key spatial regulators that orchestrate the plethora of enzymes needed for cell elongation, many of which are thought to assemble into functional complexes called elongasomes. Cell division requires a switch in the orientation of cell wall synthesis and is organised by a tubulin-like protein FtsZ. FtsZ forms a ring-like structure at the site of impending division, which is specified by a range of mainly negative regulators. There it recruits a set of dedicated division proteins to form a structure called the divisome, which brings about the process of division. During sporulation, both the positioning and fine structure of the division septum are altered, and again, several dedicated proteins that contribute specifically to this process have been identified. This chapter summarises our current understanding of elongation and division in B. subtilis, with particular emphasis on the cytoskeletal proteins MreB and FtsZ, and highlights where the major gaps in our understanding remain.
Collapse
|
13
|
van Beilen J, Blohmke CJ, Folkerts H, de Boer R, Zakrzewska A, Kulik W, Vaz FM, Brul S, Ter Beek A. RodZ and PgsA Play Intertwined Roles in Membrane Homeostasis of Bacillus subtilis and Resistance to Weak Organic Acid Stress. Front Microbiol 2016; 7:1633. [PMID: 27818647 PMCID: PMC5073135 DOI: 10.3389/fmicb.2016.01633] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/30/2016] [Indexed: 11/16/2022] Open
Abstract
Weak organic acids like sorbic and acetic acid are widely used to prevent growth of spoilage organisms such as Bacilli. To identify genes involved in weak acid stress tolerance we screened a transposon mutant library of Bacillus subtilis for sorbic acid sensitivity. Mutants of the rodZ (ymfM) gene were found to be hypersensitive to the lipophilic weak organic acid. RodZ is involved in determining the cell's rod-shape and believed to interact with the bacterial actin-like MreB cytoskeleton. Since rodZ lies upstream in the genome of the essential gene pgsA (phosphatidylglycerol phosphate synthase) we hypothesized that expression of the latter might also be affected in rodZ mutants and hence contribute to the phenotype observed. We show that both genes are co-transcribed and that both the rodZ::mini-Tn10 mutant and a conditional pgsA mutant, under conditions of minimal pgsA expression, were sensitive to sorbic and acetic acid. Both strains displayed a severely altered membrane composition. Compared to the wild-type strain, phosphatidylglycerol and cardiolipin levels were lowered and the average acyl chain length was elongated. Induction of rodZ expression from a plasmid in our transposon mutant led to no recovery of weak acid susceptibility comparable to wild-type levels. However, pgsA overexpression in the same mutant partly restored sorbic acid susceptibility and fully restored acetic acid sensitivity. A construct containing both rodZ and pgsA as on the genome led to some restored growth as well. We propose that RodZ and PgsA play intertwined roles in membrane homeostasis and tolerance to weak organic acid stress.
Collapse
Affiliation(s)
- Johan van Beilen
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Christoph J. Blohmke
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Hendrik Folkerts
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Richard de Boer
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Anna Zakrzewska
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Wim Kulik
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands
| | - Fred M. Vaz
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands
| | - Stanley Brul
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Alexander Ter Beek
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| |
Collapse
|
14
|
El Andari J, Altegoer F, Bange G, Graumann PL. Bacillus subtilis Bactofilins Are Essential for Flagellar Hook- and Filament Assembly and Dynamically Localize into Structures of Less than 100 nm Diameter underneath the Cell Membrane. PLoS One 2015; 10:e0141546. [PMID: 26517549 PMCID: PMC4627819 DOI: 10.1371/journal.pone.0141546] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/10/2015] [Indexed: 11/19/2022] Open
Abstract
Bactofilins are a widely conserved protein family implicated in cell shape maintenance and in bacterial motility. We show that the bactofilins BacE and BacF from Bacillus subtilis are essential for motility. The proteins are required for the establishment of flagellar hook- and filament structures, but apparently not for the formation of basal bodies. Functional YFP fusions to BacE and to BacF localize as discrete assemblies at the B. subtilis cell membrane, and have a diameter of 60 to 70 nm. BacF assemblies are relatively static, and partially colocalize with flagellar basal bodies, while BacE assemblies are fewer per cell than those of BacF and are highly mobile. Tracking of BacE foci showed that the assemblies arrest at a single point for a few hundred milliseconds, showing that a putative interaction with flagellar structures would be transient and fast. When overexpressed or expressed in a heterologous cell system, bactofilins can form filamentous structures, and also form multimers as purified proteins. Our data reveal a propensity for bactofilins to form filaments, however, in B. subtilis cells, bactofilins assemble into defined size assemblies that show a dynamic localization pattern and play a role in flagellar assembly.
Collapse
Affiliation(s)
- Jihad El Andari
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, and Department of Chemistry, Philipps Universität Marburg, Marburg, Germany
- University of Freiburg, Faculty of Biology, Schaenzlestrasse 1, D–79104, Freiburg, Germany
| | - Florian Altegoer
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, and Department of Chemistry, Philipps Universität Marburg, Marburg, Germany
| | - Gert Bange
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, and Department of Chemistry, Philipps Universität Marburg, Marburg, Germany
- * E-mail: (PLG); (GB)
| | - Peter L. Graumann
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, and Department of Chemistry, Philipps Universität Marburg, Marburg, Germany
- * E-mail: (PLG); (GB)
| |
Collapse
|
15
|
Wu H, Iwai N, Nakano T, Ooi Y, Ishihara S, Sano K. Route of intrabacterial nanotransportation system for CagA in Helicobacter pylori. Med Mol Morphol 2015; 48:191-203. [PMID: 25707504 DOI: 10.1007/s00795-015-0097-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 02/05/2015] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori (H. pylori) possesses an intrabacterial nanotransportation system (ibNoTS) for transporting CagA and urease within the bacterial cytoplasm; this system is controlled by the extrabacterial environment. The transportation routes of the system have not yet been studied in detail. In this study, we demonstrated by immunoelectron microscopy that CagA localizes closely with the MreB filament in the bacterium, and MreB polymerization inhibitor A22 obstructs ibNoTS for CagA. These findings indicate that the route of ibNoTS for CagA is closely associated with the MreB filament. Because these phenomena were not observed in ibNoTS for urease, the route of ibNoTS for CagA is different from that of ibNoTS for urease as previously suggested. We propose that the route of ibNoTS for CagA is associated with the MreB filament in H. pylori.
Collapse
Affiliation(s)
- Hong Wu
- Project Team for Study of Nanotransportation System, Central Research Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan. .,Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.
| | - Noritaka Iwai
- Project Team for Study of Nanotransportation System, Central Research Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.,Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Takashi Nakano
- Project Team for Study of Nanotransportation System, Central Research Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.,Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | - Yukimasa Ooi
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.,Infection Control Office, Osaka Medical College Hospital, Osaka, Japan
| | - Sonoko Ishihara
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | - Kouichi Sano
- Project Team for Study of Nanotransportation System, Central Research Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.,Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
16
|
Translation elongation factor EF-Tu modulates filament formation of actin-like MreB protein in vitro. J Mol Biol 2015; 427:1715-27. [PMID: 25676310 DOI: 10.1016/j.jmb.2015.01.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/02/2015] [Accepted: 01/27/2015] [Indexed: 11/20/2022]
Abstract
EF-Tu has been shown to interact with actin-like protein MreB and to affect its localization in Escherichia coli and in Bacillus subtilis cells. We have purified YFP-MreB in an active form, which forms filaments on glass slides in vitro and was active in dynamic light-scattering assays, polymerizing in milliseconds after addition of magnesium. Purified EF-Tu enhanced the amount of MreB filaments, as seen by sedimentation assays, the speed of filament formation and the length of MreB filaments in vitro. EF-Tu had the strongest impact on MreB filaments in a 1:1 ratio, and EF-Tu co-sedimented with MreB filaments, revealing a stoichiometric interaction between both proteins. This was supported by cross-linking assays where 1:1 species were well detectable. When expressed in E. coli cells, B. subtilis MreB formed filaments and induced the formation of co-localizing B. subtilis EF-Tu structures, indicating that MreB can direct the positioning of EF-Tu structures in a heterologous cell system. Fluorescence recovery after photobleaching analysis showed that MreB filaments have a higher turnover in B. subtilis cells than in E. coli cells, indicating different filament kinetics in homologous or heterologous cell systems. The data show that MreB can direct the localization of EF-Tu in vivo, which in turn positively affects the formation and dynamics of MreB filaments. Thus, EF-Tu is a modulator of the activity of a bacterial actin-like protein.
Collapse
|
17
|
Reimold C, Defeu Soufo HJ, Dempwolff F, Graumann PL. Motion of variable-length MreB filaments at the bacterial cell membrane influences cell morphology. Mol Biol Cell 2013; 24:2340-9. [PMID: 23783036 PMCID: PMC3727927 DOI: 10.1091/mbc.e12-10-0728] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 06/04/2013] [Accepted: 06/07/2013] [Indexed: 01/09/2023] Open
Abstract
The maintenance of rod-cell shape in many bacteria depends on actin-like MreB proteins and several membrane proteins that interact with MreB. Using superresolution microscopy, we show that at 50-nm resolution, Bacillus subtilis MreB forms filamentous structures of length up to 3.4 μm underneath the cell membrane, which run at angles diverging up to 40° relative to the cell circumference. MreB from Escherichia coli forms at least 1.4-μm-long filaments. MreB filaments move along various tracks with a maximal speed of 85 nm/s, and the loss of ATPase activity leads to the formation of extended and static filaments. Suboptimal growth conditions lead to formation of patch-like structures rather than extended filaments. Coexpression of wild-type MreB with MreB mutated in the subunit interface leads to formation of shorter MreB filaments and a strong effect on cell shape, revealing a link between filament length and cell morphology. Thus MreB has an extended-filament architecture with the potential to position membrane proteins over long distances, whose localization in turn may affect the shape of the cell wall.
Collapse
Affiliation(s)
- Christian Reimold
- Mikrobiologie, Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | | | - Felix Dempwolff
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, 35043 Marburg, Germany
| | - Peter L. Graumann
- Mikrobiologie, Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, 35043 Marburg, Germany
| |
Collapse
|
18
|
Muchová K, Chromiková Z, Barák I. Control of Bacillus subtilis cell shape by RodZ. Environ Microbiol 2013; 15:3259-71. [PMID: 23879732 DOI: 10.1111/1462-2920.12200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 06/18/2013] [Accepted: 06/21/2013] [Indexed: 01/10/2023]
Abstract
The bacterial cell wall ensures the structural integrity of the cell and is the main determinant of cell shape. In Bacillus subtilis, three cytoskeletal proteins, MreB, MreBH and Mbl, are thought to play a crucial role in maintaining the rod cell shape. These proteins are thought to be linked with the transmembrane proteins MreC, MreD and RodA, the peptidoglycan hydrolases, and the penicillin-binding proteins that are essential for peptidoglycan elongation. Recently, a well-conserved membrane protein RodZ was discovered in most Gram-negative and Gram-positive bacteria. This protein seems to be an additional member of the elongation complex. Here, we examine the role of RodZ in B. subtilis cells. Our results indicate that RodZ is an essential protein and that downregulation of RodZ expression causes the formation of shorter and rounder cells. We also found a direct interaction between RodZ and the cytoskeletal and morphogenetic proteins MreB, MreBH, Mbl and MreD. Taken together, we demonstrated that RodZ is an important part of the cell shape determining network in B. subtilis.
Collapse
Affiliation(s)
- Katarína Muchová
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | |
Collapse
|
19
|
Dempwolff F, Wischhusen HM, Specht M, Graumann PL. The deletion of bacterial dynamin and flotillin genes results in pleiotrophic effects on cell division, cell growth and in cell shape maintenance. BMC Microbiol 2012; 12:298. [PMID: 23249255 PMCID: PMC3551649 DOI: 10.1186/1471-2180-12-298] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 12/07/2012] [Indexed: 11/24/2022] Open
Abstract
Background In eukaryotic cells, dynamin and flotillin are involved in processes such as endocytosis and lipid raft formation, respectively. Dynamin is a GTPase that exerts motor-like activity during the pinching off of vesicles, while flotillins are coiled coil rich membrane proteins with no known enzymatic activity. Bacteria also possess orthologs of both classes of proteins, but their function has been unclear. Results We show that deletion of the single dynA or floT genes lead to no phenotype or a mild defect in septum formation in the case of the dynA gene, while dynA floT double mutant cells were highly elongated and irregularly shaped, although the MreB cytoskeleton appeared to be normal. DynA colocalizes with FtsZ, and the dynA deletion strain shows aberrant FtsZ rings in a subpopulation of cells. The mild division defect of the dynA deletion is exacerbated by an additional deletion in ezrA, which affects FtsZ ring formation, and also by the deletion of a late division gene (divIB), indicating that DynA affects several steps in cell division. DynA and mreB deletions generated a synthetic defect in cell shape maintenance, showing that MreB and DynA play non-epistatic functions in cell shape maintenance. TIRF microscopy revealed that FloT forms many dynamic membrane assemblies that frequently colocalize with the division septum. The deletion of dynA did not change the pattern of localization of FloT, and vice versa, showing that the two proteins play non redundant roles in a variety of cellular processes. Expression of dynamin or flotillin T in eukaryotic S2 cells revealed that both proteins assemble at the cell membrane. While FloT formed patch structures, DynA built up tubulated structures extending away from the cells. Conclusions Bacillus subtilis dynamin ortholog DynA plays a role during cell division and in cell shape maintenance. It shows a genetic link with flotillin T, with both proteins playing non-redundant functions at the cell membrane, where they assemble even in the absence of any bacterial cofactor.
Collapse
Affiliation(s)
- Felix Dempwolff
- Mikrobiologie, Fachbereich für Biologie, University of Freiburg, Schänzlestraße 1, Freiburg 79104, Germany
| | | | | | | |
Collapse
|
20
|
Swulius MT, Jensen GJ. The helical MreB cytoskeleton in Escherichia coli MC1000/pLE7 is an artifact of the N-Terminal yellow fluorescent protein tag. J Bacteriol 2012; 194:6382-6. [PMID: 22904287 PMCID: PMC3497537 DOI: 10.1128/jb.00505-12] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/31/2012] [Indexed: 02/06/2023] Open
Abstract
Based on fluorescence microscopy, the actin homolog MreB has been thought to form extended helices surrounding the cytoplasm of rod-shaped bacterial cells. The presence of these and other putative helices has come to dominate models of bacterial cell shape regulation, chromosome segregation, polarity, and motility. Here we use electron cryotomography to show that MreB does in fact form extended helices and filaments in Escherichia coli when yellow fluorescent protein (YFP) is fused to its N terminus but native (untagged) MreB expressed to the same levels does not. In contrast, mCherry fused to an internal loop (MreB-RFP(SW)) does not induce helices. The helices are therefore an artifact of the placement of the fluorescent protein tag. YFP-MreB helices were also clearly distinguishable from the punctate, "patchy" localization patterns of MreB-RFP(SW), even by standard light microscopy. The many interpretations in the literature of such punctate patterns as helices should therefore be reconsidered.
Collapse
Affiliation(s)
| | - Grant J. Jensen
- Division of Biology
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
21
|
Abstract
In the past decade, systems biology has revealed great metabolic and regulatory complexity even in seemingly simple microbial systems. Metabolic engineering aims to control this complexity in order to establish sustainable and economically viable production routes for valuable chemicals. Recent advances in systems-level data generation and modeling of cellular metabolism and regulation together with tremendous progress in synthetic biology will provide the tools to put biotechnologists on the fast track for implementing novel production processes. Great potential lies in the reduction of cellular complexity by orthogonalization of metabolic modules. Here, we review recent advances that will eventually enable metabolic engineers to predict, design, and build streamlined microbial cell factories with reduced time and effort.
Collapse
Affiliation(s)
- Joerg Mampel
- B.R.A.I.N. AG (Biotechnology Research and Information Network), Darmstaedter Strasse 34-36, D-64673 Zwingenberg, Germany.
| | | | | | | |
Collapse
|
22
|
Synthetic motility and cell shape defects associated with deletions of flotillin/reggie paralogs in Bacillus subtilis and interplay of these proteins with NfeD proteins. J Bacteriol 2012; 194:4652-61. [PMID: 22753055 DOI: 10.1128/jb.00910-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Flotillin/reggie proteins are membrane-associated proteins present in all kinds of cells and belong to the family of proteins carrying the SPFH (stomatin, prohibitin, flotillin, and HflK/HflC) domain. In addition to this domain of unknown function, flotillin proteins are characterized by the flotillin domain, which is rich in heptad repeats. Bacterial flotillin orthologs have recently been shown to be part of lipid rafts, like their eukaryotic counterparts, and to be involved in signaling events. Double deletions of floT and the gene encoding the second flotillin-like protein in Bacillus subtilis, floA, show strong synthetic defects in cell morphology, motility, and transformation efficiency. The lack of FloT resulted in a marked defect in motility. Using total internal reflection fluorescence (TIRF) microscopy, we show that both proteins localize in characteristic focal structures within the cell membrane, which move in a highly dynamic and random manner but localize independently of each other. Thus, flotillin paralogs act in a spatially distinct manner. Flotillin domains in both FloA and FloT are essential for focal assemblies and for the proper function of flotillins. Both flotillin genes are situated next to genes encoding NfeD proteins. FloT dramatically affects the localization of NfeD2: FloT apparently recruits NfeD2 into the focal assemblies, documenting a close interaction between flotillins and NfeDs in bacteria. In contrast, the localization of NfeD1b is not affected by FloA, FloT, or NfeD2. FloA does not show a spatial connection with the upstream-encoded NfeD1b (YqeZ). Our work establishes that bacterial flotillin-like proteins have overlapping functions in a variety of membrane-associated processes and that flotillin domain-mediated assembly and NfeD proteins play important roles in setting up the flotillin raft-like structures in vivo.
Collapse
|