1
|
Yilmaz H, Yaradir E, Tunca S. Expression of Multiple Copies of the Lon Protease Gene Resulted in Increased Antibiotic Production, Osmotic and UV Stress Resistance in Streptomyces coelicolor A3(2). Curr Microbiol 2024; 82:43. [PMID: 39690306 DOI: 10.1007/s00284-024-04021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024]
Abstract
The genus Streptomyces is a group of gram-positive bacteria that exhibit a distinctive growth pattern characterised by elongated, branched hyphae. Streptomyces coelicolor A3(2), which produces at least five different antibiotics, is a model organism that is widely used in genetic studies. There are very few studies in Streptomyces on the ATP-dependent Lon protease, which has very important functions in every organism and is particularly responsible for protein homeostasis. The aim of this study was to construct and characterize a recombinant S. coelicolor strain expressing the lon gene on a multicopy plasmid. For this purpose, the lon gene was first cloned in Escherichia coli under the control of the glycerol-inducible promoter of pSPG, and its expression in S. coelicolor A3(2) cells was demonstrated by RT-qPCR. In contrast with the initial hypothesis, increased lon expression did not affect cell growth seriously. Instead, it increased the cell's tolerance to osmotic and UV stress and led to a significant increase in antibiotic production. The recombinant strain produced 27 times more actinorhodin and 43 times more undecylprodigiosin than the wild-type strain after 120 h of fermentation. To our knowledge, this is the first study to demonstrate the effects of expression of the lon gene on a high copy number plasmid in Streptomyces.
Collapse
Affiliation(s)
- Halil Yilmaz
- Faculty of Science, Molecular Biology and Genetics Department, Gebze Technical University, Gebze, 41400, Kocaeli, Türkiye
| | - Emine Yaradir
- Faculty of Science, Molecular Biology and Genetics Department, Gebze Technical University, Gebze, 41400, Kocaeli, Türkiye
| | - Sedef Tunca
- Faculty of Science, Molecular Biology and Genetics Department, Gebze Technical University, Gebze, 41400, Kocaeli, Türkiye.
| |
Collapse
|
2
|
Zhang C, Zhang Z, Cheng Y, Ni N, Tong S, Da W, Liu C, Diao Q, Chen Z, Xin B, Zeng H, Zeng X, Xu D. Transcriptional Analysis Revealing the Improvement of ε-Poly-L-lysine Production from Intracellular ROS Elevation after Botrytis cinerea Induction. J Fungi (Basel) 2024; 10:324. [PMID: 38786679 PMCID: PMC11122054 DOI: 10.3390/jof10050324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
Gray mold, caused by Botrytis cinerea, poses significant threats to various crops, while it can be remarkably inhibited by ε-poly-L-lysine (ε-PL). A previous study found that B. cinerea extracts could stimulate the ε-PL biosynthesis of Streptomyces albulus, while it is unclear whether the impact of the B. cinerea signal on ε-PL biosynthesis is direct or indirect. This study evaluated the role of elevated reactive oxygen species (ROS) in efficient ε-PL biosynthesis after B. cinerea induction, and its underlying mechanism was disclosed with a transcriptome analysis. The microbial call from B. cinerea could arouse ROS elevation in cells, which fall in a proper level that positively influenced the ε-PL biosynthesis. A systematic transcriptional analysis revealed that this proper dose of intracellular ROS could induce a global transcriptional promotion on key pathways in ε-PL biosynthesis, including the embden-meyerhof-parnas pathway, the pentose phosphate pathway, the tricarboxylic acid cycle, the diaminopimelic acid pathway, ε-PL accumulation, cell respiration, and energy synthesis, in which sigma factor HrdD and the transcriptional regulators of TcrA, TetR, FurA, and MerR might be involved. In addition, the intracellular ROS elevation also resulted in a global modification of secondary metabolite biosynthesis, highlighting the secondary signaling role of intracellular ROS in ε-PL production. This work disclosed the transcriptional mechanism of efficient ε-PL production that resulted from an intracellular ROS elevation after B. cinerea elicitors' induction, which was of great significance in industrial ε-PL production as well as the biocontrol of gray mold disease.
Collapse
Affiliation(s)
- Chen Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China; (C.Z.); (Z.Z.); (Y.C.); (N.N.); (S.T.); (W.D.); (C.L.); (Q.D.); (Z.C.); (B.X.); (H.Z.)
- School of Life Sciences, Huaibei Normal University, Huaibei 235099, China
| | - Zhanyang Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China; (C.Z.); (Z.Z.); (Y.C.); (N.N.); (S.T.); (W.D.); (C.L.); (Q.D.); (Z.C.); (B.X.); (H.Z.)
- School of Life Sciences, Huaibei Normal University, Huaibei 235099, China
| | - Ya Cheng
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China; (C.Z.); (Z.Z.); (Y.C.); (N.N.); (S.T.); (W.D.); (C.L.); (Q.D.); (Z.C.); (B.X.); (H.Z.)
- School of Life Sciences, Huaibei Normal University, Huaibei 235099, China
| | - Ni Ni
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China; (C.Z.); (Z.Z.); (Y.C.); (N.N.); (S.T.); (W.D.); (C.L.); (Q.D.); (Z.C.); (B.X.); (H.Z.)
- School of Life Sciences, Huaibei Normal University, Huaibei 235099, China
| | - Siyu Tong
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China; (C.Z.); (Z.Z.); (Y.C.); (N.N.); (S.T.); (W.D.); (C.L.); (Q.D.); (Z.C.); (B.X.); (H.Z.)
- School of Life Sciences, Huaibei Normal University, Huaibei 235099, China
| | - Wangbao Da
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China; (C.Z.); (Z.Z.); (Y.C.); (N.N.); (S.T.); (W.D.); (C.L.); (Q.D.); (Z.C.); (B.X.); (H.Z.)
- School of Life Sciences, Huaibei Normal University, Huaibei 235099, China
| | - Chunyan Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China; (C.Z.); (Z.Z.); (Y.C.); (N.N.); (S.T.); (W.D.); (C.L.); (Q.D.); (Z.C.); (B.X.); (H.Z.)
- School of Life Sciences, Huaibei Normal University, Huaibei 235099, China
| | - Qiran Diao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China; (C.Z.); (Z.Z.); (Y.C.); (N.N.); (S.T.); (W.D.); (C.L.); (Q.D.); (Z.C.); (B.X.); (H.Z.)
- School of Life Sciences, Huaibei Normal University, Huaibei 235099, China
| | - Ziyan Chen
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China; (C.Z.); (Z.Z.); (Y.C.); (N.N.); (S.T.); (W.D.); (C.L.); (Q.D.); (Z.C.); (B.X.); (H.Z.)
- School of Life Sciences, Huaibei Normal University, Huaibei 235099, China
| | - Bingyue Xin
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China; (C.Z.); (Z.Z.); (Y.C.); (N.N.); (S.T.); (W.D.); (C.L.); (Q.D.); (Z.C.); (B.X.); (H.Z.)
- School of Life Sciences, Huaibei Normal University, Huaibei 235099, China
| | - Huawei Zeng
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China; (C.Z.); (Z.Z.); (Y.C.); (N.N.); (S.T.); (W.D.); (C.L.); (Q.D.); (Z.C.); (B.X.); (H.Z.)
- School of Life Sciences, Huaibei Normal University, Huaibei 235099, China
| | - Xin Zeng
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China; (C.Z.); (Z.Z.); (Y.C.); (N.N.); (S.T.); (W.D.); (C.L.); (Q.D.); (Z.C.); (B.X.); (H.Z.)
- School of Life Sciences, Huaibei Normal University, Huaibei 235099, China
| | - Dayong Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China; (C.Z.); (Z.Z.); (Y.C.); (N.N.); (S.T.); (W.D.); (C.L.); (Q.D.); (Z.C.); (B.X.); (H.Z.)
- School of Life Sciences, Huaibei Normal University, Huaibei 235099, China
| |
Collapse
|
3
|
Uesugi JHE, Dos Santos Caldas D, Coelho BBF, Prazes MCC, Omura LYE, Pismel JAR, Bezerra NV. Morphological diversity of actinobacteria isolated from oil palm compost (Elaeis guineensis). Braz J Microbiol 2024; 55:455-469. [PMID: 38010583 PMCID: PMC10920546 DOI: 10.1007/s42770-023-01178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
Composting is a natural process of decomposition of organic matter that occurs by the action of microorganisms such as fungi, bacteria, and actinobacteria. The actinobacteria are present throughout the process due to their resistance to different environmental conditions. They are Gram-positive, filamentous bacteria with a high capacity for producing secondary metabolites of biotechnological importance. Thus, the objective of this work was to isolate and characterize actinobacteria from industrial composting soil of oil palm (Elaeis guineensis) in the municipality of Igarapé-Açu, Pará. Ten samples of the material were collected and seeded on soy tryptone agar, Reasoner's 2A agar, and Columbia agar, using the serial dilution technique. For morphological characterization of the strains, Gram staining and microculture were performed, and for biochemical characterization, the motility, triple sugar iron, Simmons citrate, maltose, phenylalanine, catalase, and DNAse tests were performed. It was observed that compost actinobacteria have a great diversity in morphological and metabolic production, which may be associated with the substrate and cultivation conditions. Therefore, palm oil compost material represents a rich source of bacterial biodiversity, bringing new perspectives for the bioprospecting of actinobacteria of biotechnological importance in little explored environments.
Collapse
Affiliation(s)
- Juliana Hiromi Emin Uesugi
- Laboratory of Applied Microbiology and Genetics of Microorganisms, Pará State University, Tv. Perebebuí, 2623, Marco, Belém, PA, Brazil
| | - Daniel Dos Santos Caldas
- Laboratory of Applied Microbiology and Genetics of Microorganisms, Pará State University, Tv. Perebebuí, 2623, Marco, Belém, PA, Brazil.
| | - Brunna Beatrys Farias Coelho
- Laboratory of Applied Microbiology and Genetics of Microorganisms, Pará State University, Tv. Perebebuí, 2623, Marco, Belém, PA, Brazil
| | - Maria Clara Coelho Prazes
- Laboratory of Applied Microbiology and Genetics of Microorganisms, Pará State University, Tv. Perebebuí, 2623, Marco, Belém, PA, Brazil
| | - Lucas Yukio Emin Omura
- Laboratory of Applied Microbiology and Genetics of Microorganisms, Pará State University, Tv. Perebebuí, 2623, Marco, Belém, PA, Brazil
| | - José Alyson Rocha Pismel
- Laboratory of Applied Microbiology and Genetics of Microorganisms, Pará State University, Tv. Perebebuí, 2623, Marco, Belém, PA, Brazil
| | - Nilson Veloso Bezerra
- Laboratory of Applied Microbiology and Genetics of Microorganisms, Pará State University, Tv. Perebebuí, 2623, Marco, Belém, PA, Brazil
| |
Collapse
|
4
|
Zong G, Cao G, Fu J, Zhang P, Chen X, Yan W, Xin L, Wang Z, Xu Y, Zhang R. Novel mechanism of hydrogen peroxide for promoting efficient natamycin synthesis in Streptomyces. Microbiol Spectr 2023; 11:e0087923. [PMID: 37695060 PMCID: PMC10580950 DOI: 10.1128/spectrum.00879-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/21/2023] [Indexed: 09/12/2023] Open
Abstract
The mechanism of regulation of natamycin biosynthesis by Streptomyces in response to oxidative stress is unclear. Here, we first show cholesterol oxidase SgnE, which catalyzes the formation of H2O2 from sterols, triggered a series of redox-dependent interactions to stimulate natamycin production in S. gilvosporeus. In response to reactive oxygen species, residues Cys212 and Cys221 of the H2O2-sensing consensus sequence of OxyR were oxidized, resulting in conformational changes in the protein: OxyR extended its DNA-binding domain to interact with four motifs of promoter p sgnM . This acted as a redox-dependent switch to turn on/off gene transcription of sgnM, which encodes a cluster-situated regulator, by controlling the affinity between OxyR and p sgnM , thus regulating the expression of 12 genes in the natamycin biosynthesis gene cluster. OxyR cooperates with SgnR, another cluster-situated regulator and an upstream regulatory factor of SgnM, synergistically modulated natamycin biosynthesis by masking/unmasking the -35 region of p sgnM depending on the redox state of OxyR in response to the intracellular H2O2 concentration. IMPORTANCE Cholesterol oxidase SgnE is an indispensable factor, with an unclear mechanism, for natamycin biosynthesis in Streptomyces. Oxidative stress has been attributed to the natamycin biosynthesis. Here, we show that SgnE catalyzes the formation of H2O2 from sterols and triggers a series of redox-dependent interactions to stimulate natamycin production in S. gilvosporeus. OxyR, which cooperates with SgnR, acted as a redox-dependent switch to turn on/off gene transcription of sgnM, which encodes a cluster-situated regulator, by masking/unmasking its -35 region, to control the natamycin biosynthesis gene cluster. This work provides a novel perspective on the crosstalk between intracellular ROS homeostasis and natamycin biosynthesis. Application of these findings will improve antibiotic yields via control of the intracellular redox pressure in Streptomyces.
Collapse
Affiliation(s)
- Gongli Zong
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Guangxiang Cao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Jiafang Fu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Peipei Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Xi Chen
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Wenxiu Yan
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Lulu Xin
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Zhongxue Wang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, China
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Apel C, Levasseur M, Lejeune C, Korch SB, Guérard F, David M, Askora A, Litaudon M, Roussi F, Gakière B, Chaput J, Virolle MJ. Metabolic adjustments in response to ATP spilling by the small DX protein in a Streptomyces strain. Front Cell Dev Biol 2023; 11:1129009. [PMID: 36968208 PMCID: PMC10030506 DOI: 10.3389/fcell.2023.1129009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
ATP wasting is recognized as an efficient strategy to enhance metabolic activity and productivity of specific metabolites in several microorganisms. However, such strategy has been rarely implemented in Streptomyces species whereas antibiotic production by members of this genus is known to be triggered in condition of phosphate limitation that is correlated with a low ATP content. In consequence, to assess the effects of ATP spilling on the primary and specialized metabolisms of Streptomyces, the gene encoding the small synthetic protein DX, that has high affinity for ATP and dephosphorylates ATP into ADP, was cloned in the integrative vector pOSV10 under the control of the strong ErmE promoter. This construct and the empty vector were introduced into the species Streptomyces albogriseolus/viridodiastaticus yielding A37 and A36, respectively. A37 yielded higher biomass than A36 indicating that the DX-mediated ATP degradation resulted into a stimulation of A37 metabolism, consistently with what was reported in other microorganisms. The comparative analysis of the metabolomes of A36 and A37 revealed that A37 had a lower content in glycolytic and Tricarboxylic Acid Cycle intermediates as well as in amino acids than A36, these metabolites being consumed for biomass generation in A37. In contrast, the abundance of other molecules indicative either of energetic stress (ADP, AMP, UMP, ornithine and thymine), of activation (NAD and threonic acid) or inhibition (citramalic acid, fatty acids, TAG and L-alanine) of the oxidative metabolism, was higher in A37 than in A36. Furthermore, hydroxyl-pyrimidine derivatives and polycyclic aromatic polyketide antibiotics belonging to the angucycline class and thought to have a negative impact on respiration were also more abundantly produced by A37 than by A36. This comparative analysis thus revealed the occurrence in A37 of antagonistic metabolic strategies, namely, activation or slowing down of oxidative metabolism and respiration, to maintain the cellular energetic balance. This study thus demonstrated that DX constitutes an efficient biotechnological tool to enhance the expression of the specialized metabolic pathways present in the Streptomyces genomes that may include cryptic pathways. Its use thus might lead to the discovery of novel bioactive molecules potentially useful to human health.
Collapse
Affiliation(s)
- Cécile Apel
- Département de Chimie des Substances Naturelles et Chimie Médicinale, Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
| | - Marceau Levasseur
- Département de Chimie des Substances Naturelles et Chimie Médicinale, Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
| | - Clara Lejeune
- Département de Microbiologie, Institute for Integrative Biology of the Cell (I2BC), UMR 9198, Université Paris-Saclay, CEA, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
| | - Shaleen B. Korch
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Florence Guérard
- Plateforme SPOmics-Métabolome, Institut des Sciences des Plantes (IPS2), UMR 9213, Université Paris-Saclay, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
| | - Michelle David
- Département de Microbiologie, Institute for Integrative Biology of the Cell (I2BC), UMR 9198, Université Paris-Saclay, CEA, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
| | - Ahmed Askora
- Département de Microbiologie, Institute for Integrative Biology of the Cell (I2BC), UMR 9198, Université Paris-Saclay, CEA, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Marc Litaudon
- Département de Chimie des Substances Naturelles et Chimie Médicinale, Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
| | - Fanny Roussi
- Département de Chimie des Substances Naturelles et Chimie Médicinale, Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
| | - Bertrand Gakière
- Plateforme SPOmics-Métabolome, Institut des Sciences des Plantes (IPS2), UMR 9213, Université Paris-Saclay, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
| | - John Chaput
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Marie-Joelle Virolle
- Département de Microbiologie, Institute for Integrative Biology of the Cell (I2BC), UMR 9198, Université Paris-Saclay, CEA, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
- *Correspondence: Marie-Joelle Virolle,
| |
Collapse
|
6
|
Physiological analysis of the improved ε-polylysine production induced by reactive oxygen species. Appl Microbiol Biotechnol 2023; 107:881-896. [PMID: 36585512 DOI: 10.1007/s00253-022-12343-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Epsilon-poly-L-lysine (ε-PL) is produced by Streptomyces species in acidic and aerobic conditions, which inevitably induces rapid generation of reactive oxygen species (ROS). The devastating effects of ROS on biomolecules and cell vitality have been well-studied, while the positive effects of ROS are rarely reported. RESULTS In this study, we found that a proper dose of intracellular ROS (about 3.3 μmol H2O2 /g DCW) could induce a physiological modification to promote the ε-PL production (from 1.2 to 1.5 g/L). It resulted in larger sizes of colony and mycelial pellets as well as vibrant, aggregated, and more robust mycelia, which were of high capability of ROS detoxication. Physiological studies showed that appropriate doses of ROS activated the metabolism of the pentose phosphate pathway at both transcriptional and enzymatic levels, which was beneficial for biomass accumulation. The biosynthesis of lysine was also promoted in terms of transcriptional regulatory overexpression, increased transcription and enzymatic activity of key genes, larger pools of metabolites in the TCA cycle, replenishment pathway, and diaminoheptanedioic acid pathway. In addition, energy provision was ensured by activated metabolism of the TCA cycle, a larger pool of NADH, and higher activity of the electron transport system. Increased transcription of HrdD and pls further accelerated the ε-PL biosynthesis. SIGNIFICANCE These results indicated that ROS at proper intracellular dose could act as an inducing signal to activate the ε-PL biosynthesis, which laid a foundation for further process regulation to maintain optimal ROS dose in industrial ε-PL production and was of theoretical and practical significance. KEY POINTS • A proper dose of intracellular ROS positively influences the ε-PL production. • Proper dose of ROS enhanced the mycelial activity and antioxidative capability. • ROS increased lysine synthesis metabolism, energy provision and pls expression.
Collapse
|
7
|
Lejeune C, Sago L, Cornu D, Redeker V, Virolle MJ. A Proteomic Analysis Indicates That Oxidative Stress Is the Common Feature Triggering Antibiotic Production in Streptomyces coelicolor and in the pptA Mutant of Streptomyces lividans. Front Microbiol 2022; 12:813993. [PMID: 35392450 PMCID: PMC8981147 DOI: 10.3389/fmicb.2021.813993] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/30/2021] [Indexed: 11/29/2022] Open
Abstract
In most Streptomyces species, antibiotic production is triggered in phosphate limitation and repressed in phosphate proficiency. However, the model strain, Streptomyces coelicolor, escapes this general rule and produces actinorhoddin (ACT), a polyketide antibiotic, even more abundantly in phosphate proficiency than in phosphate limitation. ACT was shown to bear "anti-oxidant" properties suggesting that its biosynthesis is triggered by oxidative stress. Interestingly, Streptomyces lividans, a strain closely related to S. coelicolor, does not produce ACT in any phosphate condition whereas its pptA/sco4144 mutant produces ACT but only in phosphate limitation. In order to define the potentially common features of the ACT producing strains, these three strains were grown in condition of low and high phosphate availability, and a comparative quantitative analysis of their proteomes was carried out. The abundance of proteins of numerous pathways differed greatly between S. coelicolor and the S. lividans strains, especially those of central carbon metabolism and respiration. S. coelicolor is characterized by the high abundance of the complex I of the respiratory chain thought to generate reactive oxygen/nitrogen species and by a weak glycolytic activity causing a low carbon flux through the Pentose Phosphate Pathway resulting into the low generation of NADPH, a co-factor of thioredoxin reductases necessary to combat oxidative stress. Oxidative stress is thus predicted to be high in S. coelicolor. In contrast, the S. lividans strains had rather similar proteins abundance for most pathways except for the transhydrogenases SCO7622-23, involved in the conversion of NADPH into NADH. The poor abundance of these enzymes in the pptA mutant suggested a deficit in NADPH. Indeed, PptA is an accessory protein forcing polyphosphate into a conformation allowing their efficient use by various enzymes taking polyphosphate as a donor of phosphate and energy, including the ATP/Polyphosphate-dependent NAD kinase SCO1781. In phosphate limitation, this enzyme would mainly use polyphosphate to phosphorylate NAD into NADP, but this phosphorylation would be inefficient in the pptA mutant resulting in low NADP(H) levels and thus high oxidative stress. Altogether, our results indicated that high oxidative stress is the common feature triggering ACT biosynthesis in S. coelicolor and in the pptA mutant of S. lividans.
Collapse
Affiliation(s)
- Clara Lejeune
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Laila Sago
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - David Cornu
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Virginie Redeker
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
- Institut Francois Jacob, Molecular Imaging Center (MIRCen), Laboratory of Neurodegenerative Diseases, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Marie-Joelle Virolle
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| |
Collapse
|
8
|
Zong G, Fu J, Zhang P, Zhang W, Xu Y, Cao G, Zhang R. Use of elicitors to enhance or activate the antibiotic production in streptomyces. Crit Rev Biotechnol 2021; 42:1260-1283. [PMID: 34706600 DOI: 10.1080/07388551.2021.1987856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Streptomyces is the largest and most significant genus of Actinobacteria, comprising 961 species. These Gram-positive bacteria produce many versatile and important bioactive compounds; of these, antibiotics, specifically the enhancement or activation of their production, have received extensive research attention. Recently, various biotic and abiotic elicitors have been reported to modify the antibiotic metabolism of Streptomyces, which promotes the production of new antibiotics and bioactive metabolites for improvement in the yields of endogenous products. However, some elicitors that obviously contribute to secondary metabolite production have not yet received sufficient attention. In this study, we have reviewed the functions and mechanisms of chemicals, novel microbial metabolic elicitors, microbial interactions, enzymes, enzyme inhibitors, environmental factors, and novel combination methods regarding antibiotic production in Streptomyces. This review has aimed to identify potentially valuable elicitors for stimulating the production of latent antibiotics or enhancing the synthesis of subsistent antibiotics in Streptomyces. Future applications and challenges in the discovery of new antibiotics and enhancement of existing antibiotic production using elicitors are discussed.
Collapse
Affiliation(s)
- Gongli Zong
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Jiafang Fu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Peipei Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Wenchi Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Guangxiang Cao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
9
|
Wang D, Xu P, Sun J, Yuan J, Zhao J. Effects of ethanol stress on epsilon-poly-l-lysine (ε-PL) biosynthesis in Streptomyces albulus X-18. Enzyme Microb Technol 2021; 153:109907. [PMID: 34670188 DOI: 10.1016/j.enzmictec.2021.109907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023]
Abstract
The aim of the study was to reveal the effects of ethanol stress on the production of epsilon-poly-l-lysine (ε-PL) in Streptomyces albulus X-18. The results showed that biomass and the utilization of glucose were respectively increased by ethanol stress. The ε-PL yield was increased by 41.42 % in the shake flask and 37.02 % in 10 L fermenter with 1% (v/v) ethanol. The morphology of colonies and mycelia showed significant differences. The intracellular reactive oxygen species level was increased by about 100 %. The ratio of unsaturated fatty acids to saturated fatty acids in the cell membrane was increased by ethanol stress. Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) proteomic profile showed that 265 identified proteins were differentially expressed. The differentially expressed proteins (DEPs) were mainly involved in biological processes. The up-regulated DEPs were mainly involved in the redox reaction and stress response. The metabolic flux of l-Asp was shifted to l-Lys biosynthesis, and the DAP pathway was strengthened. Protein-protein interaction analysis showed that 30 DEPs interacted with l-Lys biosynthesis. The changes of ten proteins by Parallel Reaction Monitoring (PRM) were consistent with those by iTRAQ. The study provided valuable clues to better understand the mechanism of ε-PL biosynthesis improvement by ethanol stress.
Collapse
Affiliation(s)
- Dahong Wang
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, China; Henan Engineering Research Center of Food Microbiology, Luoyang, China.
| | - Peng Xu
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, China
| | - Jianrui Sun
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, China
| | - Jiangfeng Yuan
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, China; National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang, China
| | - Junfeng Zhao
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, China
| |
Collapse
|
10
|
Antifungal Efficacy of Redox-Active Natamycin against Some Foodborne Fungi-Comparison with Aspergillus fumigatus. Foods 2021; 10:foods10092073. [PMID: 34574183 PMCID: PMC8469148 DOI: 10.3390/foods10092073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 11/18/2022] Open
Abstract
The fungal antioxidant system is one of the targets of the redox-active polyene antifungal drugs, including amphotericin B (AMB), nystatin (NYS), and natamycin (NAT). Besides medical applications, NAT has been used in industry for preserving foods and crops. In this study, we investigated two parameters (pH and food ingredients) affecting NAT efficacy. In the human pathogen, Aspergillus fumigatus, NAT (2 to 16 μg mL−1) exerted higher activity at pH 5.6 than at pH 3.5 on a defined medium. In contrast, NAT exhibited higher activity at pH 3.5 than at pH 5.6 against foodborne fungal contaminants, Aspergillus flavus, Aspergillus parasiticus, and Penicillium expansum, with P. expansum being the most sensitive. In commercial food matrices (10 organic fruit juices), food ingredients differentially affected NAT antifungal efficacy. Noteworthily, NAT overcame tolerance of the A. fumigatus signaling mutants to the fungicide fludioxonil and exerted antifungal synergism with the secondary metabolite, kojic acid (KA). Altogether, NAT exhibited better antifungal activity at acidic pH against foodborne fungi; however, the ingredients from commercial food matrices presented greater impact on NAT efficacy compared to pH values. Comprehensive determination of parameters affecting NAT efficacy and improved food formulation will promote sustainable food/crop production, food safety, and public health.
Collapse
|
11
|
Li A, Okada BK, Rosen PC, Seyedsayamdost MR. Piperacillin triggers virulence factor biosynthesis via the oxidative stress response in Burkholderia thailandensis. Proc Natl Acad Sci U S A 2021; 118:e2021483118. [PMID: 34172579 PMCID: PMC8256049 DOI: 10.1073/pnas.2021483118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Natural products have been an important source of therapeutic agents and chemical tools. The recent realization that many natural product biosynthetic genes are silent or sparingly expressed during standard laboratory growth has prompted efforts to investigate their regulation and develop methods to induce their expression. Because it is difficult to intuit signals that induce a given biosynthetic locus, we recently implemented a forward chemical-genetic approach to identify such inducers. In the current work, we applied this approach to nine silent biosynthetic loci in the model bacterium Burkholderia thailandensis to systematically screen for elicitors from a library of Food and Drug Administration-approved drugs. We find that β-lactams, fluoroquinolones, antifungals, and, surprisingly, calcimimetics, phenothiazine antipsychotics, and polyaromatic antidepressants are the most effective global inducers of biosynthetic genes. Investigations into the mechanism of stimulation of the silent virulence factor malleicyprol by the β-lactam piperacillin allowed us to elucidate the underlying regulatory circuits. Low-dose piperacillin causes oxidative stress, thereby inducing redox-sensing transcriptional regulators, which activate malR, a pathway-specific positive regulator of the malleicyprol gene cluster. Malleicyprol is thus part of the OxyR and SoxR regulons in B. thailandensis, allowing the bacterium to initiate virulence in response to oxidative stress. Our work catalogs a diverse array of elicitors and a previously unknown regulatory input for secondary metabolism in B. thailandensis.
Collapse
Affiliation(s)
- Anran Li
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Bethany K Okada
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Paul C Rosen
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Mohammad R Seyedsayamdost
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544;
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| |
Collapse
|
12
|
Yuan F, Yin S, Xu Y, Xiang L, Wang H, Li Z, Fan K, Pan G. The Richness and Diversity of Catalases in Bacteria. Front Microbiol 2021; 12:645477. [PMID: 33815333 PMCID: PMC8017148 DOI: 10.3389/fmicb.2021.645477] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/18/2021] [Indexed: 11/13/2022] Open
Abstract
Catalases play a key role in the defense against oxidative stress in bacteria by catalyzing the decomposition of H2O2. In addition, catalases are also involved in multiple cellular processes, such as cell development and differentiation, as well as metabolite production. However, little is known about the abundance, diversity, and distribution of catalases in bacteria. In this study, we systematically surveyed and classified the homologs of three catalase families from 2,634 bacterial genomes. It was found that both of the typical catalase and Mn-catalase families could be divided into distinct groups, while the catalase-peroxidase homologs formed a tight family. The typical catalases are rich in all the analyzed bacterial phyla except Chlorobi, in which the catalase-peroxidases are dominant. Catalase-peroxidases are rich in many phyla, but lacking in Deinococcus-Thermus, Spirochetes, and Firmicutes. Mn-catalases are found mainly in Firmicutes and Deinococcus-Thermus, but are rare in many other phyla. Given the fact that catalases were reported to be involved in secondary metabolite biosynthesis in several Streptomyces strains, the distribution of catalases in the genus Streptomyces was given more attention herein. On average, there are 2.99 typical catalases and 0.99 catalase-peroxidases in each Streptomyces genome, while no Mn-catalases were identified. To understand detailed properties of catalases in Streptomyces, we characterized all the five typical catalases from S. rimosus ATCC 10970, the oxytetracycline-producing strain. The five catalases showed typical catalase activity, but possessed different catalytic properties. Our findings contribute to the more detailed classification of catalases and facilitate further studies about their physiological roles in secondary metabolite biosynthesis and other cellular processes, which might facilitate the yield improvement of valuable secondary metabolites in engineered bacteria.
Collapse
Affiliation(s)
- Fang Yuan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shouliang Yin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Yang Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lijun Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Haiyan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guohui Pan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
A Major Facilitator Superfamily (MFS) Efflux Pump, SCO4121, from Streptomyces coelicolor with Roles in Multidrug Resistance and Oxidative Stress Tolerance and Its Regulation by a MarR Regulator. Appl Environ Microbiol 2021; 87:AEM.02238-20. [PMID: 33483304 DOI: 10.1128/aem.02238-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Overexpression of efflux pumps is one of the major determinants of resistance in bacteria. Streptomyces species harbor a large array of efflux pumps that are transcriptionally silenced under laboratory conditions. However, their dissemination results in multidrug resistance in different clinical pathogens. In this study, we have identified an efflux pump from Streptomyces coelicolor, SCO4121, belonging to the major facilitator superfamily (MFS) family of transporters and characterized its role in antibiotic resistance. SCO4121 provided resistance to multiple dissimilar drugs upon overexpression in both native and heterologous hosts. Further, deletion of SCO4121 resulted in increased sensitivity toward ciprofloxacin and chloramphenicol, suggesting the pump to be a major transporter of these substrates. Apart from providing multidrug resistance, SCO4121 imparted increased tolerance against the strong oxidant HOCl. In wild-type Streptomyces coelicolor cells, these drugs were found to transcriptionally regulate the pump in a concentration-dependent manner. Additionally, we identified SCO4122, a MarR regulator that positively regulates SCO4121 in response to various drugs and the oxidant HOCl. Thus, through these studies we present the multiple roles of SCO4121 in S. coelicolor and highlight the intricate mechanisms via which it is regulated in response to antibiotics and oxidative stress.IMPORTANCE One of the key mechanisms of drug resistance in bacteria is overexpression of efflux pumps. Streptomyces species are a reservoir of a large number of efflux pumps, potentially to provide resistance to both endogenous and nonendogenous antibiotics. While many of these pumps are not expressed under standard laboratory conditions, they result in resistance to multiple drugs when spread to other bacterial pathogens through horizontal gene transfer. In this study, we have identified a widely conserved efflux pump SCO4121 from Streptomyces coelicolor with roles in both multidrug resistance and oxidative stress tolerance. We also report the presence of an adjacent MarR regulator, SCO4122, which positively regulates SCO4121 in the presence of diverse substrates in a redox-responsive manner. This study highlights that soil bacteria such as Streptomyces can reveal novel mechanisms of antibiotic resistance that may potentially emerge in clinically important bacteria.
Collapse
|
14
|
Oliveira R, Bush MJ, Pires S, Chandra G, Casas-Pastor D, Fritz G, Mendes MV. The novel ECF56 SigG1-RsfG system modulates morphological differentiation and metal-ion homeostasis in Streptomyces tsukubaensis. Sci Rep 2020; 10:21728. [PMID: 33303917 PMCID: PMC7730460 DOI: 10.1038/s41598-020-78520-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Extracytoplasmic function (ECF) sigma factors are key transcriptional regulators that prokaryotes have evolved to respond to environmental challenges. Streptomyces tsukubaensis harbours 42 ECFs to reprogram stress-responsive gene expression. Among them, SigG1 features a minimal conserved ECF σ2-σ4 architecture and an additional C-terminal extension that encodes a SnoaL_2 domain, which is characteristic for ECF σ factors of group ECF56. Although proteins with such domain organisation are widely found among Actinobacteria, the functional role of ECFs with a fused SnoaL_2 domain remains unknown. Our results show that in addition to predicted self-regulatory intramolecular amino acid interactions between the SnoaL_2 domain and the ECF core, SigG1 activity is controlled by the cognate anti-sigma protein RsfG, encoded by a co-transcribed sigG1-neighbouring gene. Characterisation of ∆sigG1 and ∆rsfG strains combined with RNA-seq and ChIP-seq experiments, suggests the involvement of SigG1 in the morphological differentiation programme of S. tsukubaensis. SigG1 regulates the expression of alanine dehydrogenase, ald and the WhiB-like regulator, wblC required for differentiation, in addition to iron and copper trafficking systems. Overall, our work establishes a model in which the activity of a σ factor of group ECF56, regulates morphogenesis and metal-ions homeostasis during development to ensure the timely progression of multicellular differentiation.
Collapse
Affiliation(s)
- Rute Oliveira
- Bioengineering and Synthetic Microbiology Group, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCBiology), ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Matthew J Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Sílvia Pires
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Jill Roberts Institute for IBD Research, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Delia Casas-Pastor
- Center for Synthetic Microbiology, Philipps-University Marburg, 35032, Marburg, Germany
| | - Georg Fritz
- School for Molecular Sciences, University of Western Australia, Perth, 6009, Australia
| | - Marta V Mendes
- Bioengineering and Synthetic Microbiology Group, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
15
|
The Onset of Tacrolimus Biosynthesis in Streptomyces tsukubaensis Is Dependent on the Intracellular Redox Status. Antibiotics (Basel) 2020; 9:antibiotics9100703. [PMID: 33076498 PMCID: PMC7602649 DOI: 10.3390/antibiotics9100703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
The oxidative stress response is a key mechanism that microorganisms have to adapt to changeling environmental conditions. Adaptation is achieved by a fine-tuned molecular response that extends its influence to primary and secondary metabolism. In the past, the role of the intracellular redox status in the biosynthesis of tacrolimus in Streptomyces tsukubaensis has been briefly acknowledged. Here, we investigate the impact of the oxidative stress response on tacrolimus biosynthesis in S. tsukubaensis. Physiological characterization of S. tsukubaensis showed that the onset of tacrolimus biosynthesis coincided with the induction of catalase activity. In addition, tacrolimus displays antioxidant properties and thus a controlled redox environment would be beneficial for its biosynthesis. In addition, S. tsukubaensis ∆ahpC strain, a strain defective in the H2O2-scavenging enzyme AhpC, showed increased production of tacrolimus. Proteomic and transcriptomic studies revealed that the tacrolimus over-production phenotype was correlated with a metabolic rewiring leading to increased availability of tacrolimus biosynthetic precursors. Altogether, our results suggest that the carbon source, mainly used for cell growth, can trigger the production of tacrolimus by modulating the oxidative metabolism to favour a low oxidizing intracellular environment and redirecting the metabolic flux towards the increase availability of biosynthetic precursors.
Collapse
|
16
|
Zhang J, Liang Q, Xu Z, Cui M, Zhang Q, Abreu S, David M, Lejeune C, Chaminade P, Virolle MJ, Xu D. The Inhibition of Antibiotic Production in Streptomyces coelicolor Over-Expressing the TetR Regulator SCO3201 IS Correlated With Changes in the Lipidome of the Strain. Front Microbiol 2020; 11:1399. [PMID: 32655536 PMCID: PMC7324645 DOI: 10.3389/fmicb.2020.01399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/29/2020] [Indexed: 12/25/2022] Open
Abstract
In condition of over-expression, SCO3201, a regulator of the TetR family was previously shown to strongly inhibit antibiotic production and morphological differentiation in Streptomyces coelicolor M145. In order to elucidate the molecular processes underlying this interesting, but poorly understood phenomenon, a comparative analysis of the lipidomes and transcriptomes of the strain over-expressing sco3201 and of the control strain containing the empty plasmid, was carried out. This study revealed that the strain over-expressing sco3201 had a higher triacylglycerol content and a lower phospholipids content than the control strain. This was correlated with up- and down- regulation of some genes involved in fatty acids biosynthesis (fab) and degradation (fad) respectively, indicating a direct or indirect control of the expression of these genes by SCO3201. In some instances, indirect control might involve TetR regulators, whose encoding genes present in close vicinity of genes involved in lipid metabolism, were shown to be differentially expressed in the two strains. Direct interaction of purified His6-SCO3201 with the promoter regions of four of such TetR regulators encoding genes (sco0116, sco0430, sco4167, and sco6792) was demonstrated. Furthermore, fasR (sco2386), encoding the activator of the main fatty acid biosynthetic operon, sco2386-sco2390, has been shown to be an illegitimate positive regulatory target of SCO3201. Altogether our data demonstrated that the sco3201 over-expressing strain accumulates TAG and suggested that degradation of fatty acids was reduced in this strain. This is expected to result into a reduced acetyl-CoA availability that would impair antibiotic biosynthesis either directly or indirectly.
Collapse
Affiliation(s)
- Jun Zhang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Department of Ecology, School of Life Sciences and Technology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Qiting Liang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Department of Ecology, School of Life Sciences and Technology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Zhongheng Xu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Department of Ecology, School of Life Sciences and Technology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Miao Cui
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Department of Ecology, School of Life Sciences and Technology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Qizhong Zhang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Department of Ecology, School of Life Sciences and Technology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Sonia Abreu
- Université Paris-Saclay, Lipides, Systèmes Analytiques et Biologiques, Châtenay-Malabry, France
| | - Michelle David
- Group “Energetic Metabolism of Streptomyces”, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, INRA, University Paris-Saclay, Gif-sur-Yvette, France
| | - Clara Lejeune
- Group “Energetic Metabolism of Streptomyces”, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, INRA, University Paris-Saclay, Gif-sur-Yvette, France
| | - Pierre Chaminade
- Université Paris-Saclay, Lipides, Systèmes Analytiques et Biologiques, Châtenay-Malabry, France
| | - Marie-Joelle Virolle
- Group “Energetic Metabolism of Streptomyces”, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, INRA, University Paris-Saclay, Gif-sur-Yvette, France
| | - Delin Xu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Department of Ecology, School of Life Sciences and Technology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan University, Guangzhou, China
| |
Collapse
|
17
|
David M, Lejeune C, Abreu S, Thibessard A, Leblond P, Chaminade P, Virolle MJ. Negative Correlation between Lipid Content and Antibiotic Activity in Streptomyces: General Rule and Exceptions. Antibiotics (Basel) 2020; 9:E280. [PMID: 32466356 PMCID: PMC7344866 DOI: 10.3390/antibiotics9060280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022] Open
Abstract
Streptomycetes are well known antibiotic producers and are among the rare prokaryotes able to store carbon as lipids. Previous comparative studies of the weak antibiotic producer Streptomyces lividans with its ppk mutant and with Streptomyces coelicolor, which both produce antibiotics, suggested the existence of a negative correlation between total lipid content and the ability to produce antibiotics. To determine whether such a negative correlation can be generalized to other Streptomyces species, fifty-four strains were picked randomly and grown on modified R2YE medium, limited in phosphate, with glucose or glycerol as the main carbon source. The total lipid content and antibiotic activity against Micrococcus luteus were assessed for each strain. This study revealed that the ability to accumulate lipids was not evenly distributed among strains and that glycerol was more lipogenic than glucose and had a negative impact on antibiotic biosynthesis. Furthermore, a statistically significant negative Pearson correlation between lipid content and antibiotic activity could be established for most strains, but a few strains escape this general law. These exceptions are likely due to limits and biases linked to the type of test used to determine antibiotic activity, which relies exclusively on Micrococcus luteus sensitivity. They are characterized either by high lipid content and high antibiotic activity or by low lipid content and undetectable antibiotic activity against Micrococcus luteus. Lastly, the comparative genomic analysis of two strains with contrasting lipid content, and both named Streptomyces antibioticus (DSM 41,481 and DSM 40,868, which we found to be phylogenetically related to Streptomyces lavenduligriseus), indicated that some genetic differences in various pathways related to the generation/consumption of acetylCoA could be responsible for such a difference.
Collapse
Affiliation(s)
- Michelle David
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (M.D.); (C.L.)
| | - Clara Lejeune
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (M.D.); (C.L.)
| | - Sonia Abreu
- Lipides, Systèmes Analytiques et Biologiques, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (S.A.); (P.C.)
| | | | - Pierre Leblond
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France; (A.T.); (P.L.)
| | - Pierre Chaminade
- Lipides, Systèmes Analytiques et Biologiques, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (S.A.); (P.C.)
| | - Marie-Joelle Virolle
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (M.D.); (C.L.)
| |
Collapse
|
18
|
Millan-Oropeza A, Henry C, Lejeune C, David M, Virolle MJ. Expression of genes of the Pho regulon is altered in Streptomyces coelicolor. Sci Rep 2020; 10:8492. [PMID: 32444655 PMCID: PMC7244524 DOI: 10.1038/s41598-020-65087-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/24/2020] [Indexed: 12/30/2022] Open
Abstract
Most currently used antibiotics originate from Streptomycetes and phosphate limitation is an important trigger of their biosynthesis. Understanding the molecular processes underpinning such regulation is of crucial importance to exploit the great metabolic diversity of these bacteria and get a better understanding of the role of these molecules in the physiology of the producing bacteria. To contribute to this field, a comparative proteomic analysis of two closely related model strains, Streptomyces lividans and Streptomyces coelicolor was carried out. These strains possess identical biosynthetic pathways directing the synthesis of three well-characterized antibiotics (CDA, RED and ACT) but only S. coelicolor expresses them at a high level. Previous studies established that the antibiotic producer, S. coelicolor, is characterized by an oxidative metabolism and a reduced triacylglycerol content compared to the none producer, S. lividans, characterized by a glycolytic metabolism. Our proteomic data support these findings and reveal that these drastically different metabolic features could, at least in part, due to the weaker abundance of proteins of the two component system PhoR/PhoP in S. coelicolor compared to S. lividans. In condition of phosphate limitation, PhoR/PhoP is known to control positively and negatively, respectively, phosphate and nitrogen assimilation and our study revealed that it might also control the expression of some genes of central carbon metabolism. The tuning down of the regulatory role of PhoR/PhoP in S. coelicolor is thus expected to be correlated with low and high phosphate and nitrogen availability, respectively and with changes in central carbon metabolic features. These changes are likely to be responsible for the observed differences between S. coelicolor and S. lividans concerning energetic metabolism, triacylglycerol biosynthesis and antibiotic production. Furthermore, a novel view of the contribution of the bio-active molecules produced in this context, to the regulation of the energetic metabolism of the producing bacteria, is proposed and discussed.
Collapse
Affiliation(s)
- Aaron Millan-Oropeza
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
- PAPPSO, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Céline Henry
- PAPPSO, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Clara Lejeune
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Michelle David
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Marie-Joelle Virolle
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
19
|
Marie-Joelle Virolle. Antibiotics (Basel) 2020; 9:antibiotics9020083. [PMID: 32069930 PMCID: PMC7168255 DOI: 10.3390/antibiotics9020083] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/15/2022] Open
Abstract
Antibiotics are often considered as weapons conferring a competitive advantage to their producers in their ecological niche. However, since these molecules are produced in specific environmental conditions, notably phosphate limitation that triggers a specific metabolic state, they are likely to play important roles in the physiology of the producing bacteria that have been overlooked. Our recent experimental data as well as careful analysis of the scientific literature led us to propose that, in conditions of moderate to severe phosphate limitation—conditions known to generate energetic stress—antibiotics play crucial roles in the regulation of the energetic metabolism of the producing bacteria. A novel classification of antibiotics into types I, II, and III, based on the nature of the targets of these molecules and on their impact on the cellular physiology, is proposed. Type I antibiotics are known to target cellular membranes, inducing energy spilling and cell lysis of a fraction of the population to provide nutrients, and especially phosphate, to the surviving population. Type II antibiotics inhibit respiration through different strategies, to reduce ATP generation in conditions of low phosphate availability. Lastly, Type III antibiotics that are known to inhibit ATP consuming anabolic processes contribute to ATP saving in conditions of phosphate starvation.
Collapse
|
20
|
Penicillin and cephalosporin biosyntheses are also regulated by reactive oxygen species. Appl Microbiol Biotechnol 2020; 104:1773-1783. [PMID: 31900551 DOI: 10.1007/s00253-019-10330-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022]
Abstract
In an earlier work on lovastatin production by Aspergillus terreus, we found that reactive oxygen species (ROS) concentration increased to high levels precisely at the start of the production phase (idiophase) and that these levels were sustained during all idiophase. Moreover, it was shown that ROS regulate lovastatin biosynthesis. ROS regulation has also been reported for aflatoxins. It has been suggested that, due to their antioxidant activity, aflatoxins are regulated and synthesized like a second line of defense against oxidative stress. To study the possible ROS regulation of other industrially important secondary metabolites, we analyzed the relationship between ROS and penicillin biosynthesis by Penicillium chrysogenum and cephalosporin biosynthesis by Acremonium chrysogenum. Results revealed a similar ROS accumulation in idiophase in penicillin and cephalosporin fermentations. Moreover, when intracellular ROS concentrations were decreased by the addition of antioxidants to the cultures, penicillin and cephalosporin production were drastically reduced. When intracellular ROS were increased by the addition of exogenous ROS (H2O2) to the cultures, proportional increments in penicillin and cephalosporin biosyntheses were obtained. It was also shown that lovastatin, penicillin, and cephalosporin are not antioxidants. Taken together, our results provide evidence that ROS regulation is a general mechanism controlling secondary metabolism in fungi.
Collapse
|
21
|
Ni H, Xiong Z, Mohsin A, Guo M, Petkovic H, Chu J, Zhuang Y. Study on a two-component signal transduction system RimA1A2 that negatively regulates oxytetracycline biosynthesis in Streptomyces rimosus M4018. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
22
|
Mishra B, Chand S, Singh Sangwan N. ROS management is mediated by ascorbate-glutathione-α-tocopherol triad in co-ordination with secondary metabolic pathway under cadmium stress in Withania somnifera. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:620-629. [PMID: 31035173 DOI: 10.1016/j.plaphy.2019.03.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Being static, plants are frequently exposed to various essential and non-essential heavy metals from the surroundings. This exposure results in considerable ROS generation leading to oxidative stress, the primary response of the plants under heavy metal stress. Withania somnifera is a reputed Indian medicinal plant in Ayurveda, having various pharmacological activities due to the presence of withanolides. The present study deals with the understanding endurance of oxidative stress caused by heavy metal exposure and its management through antioxidant partners in synchronization with secondary metabolites in W. somnifera. The quantitative assessment of enzymatic/non-enzymatic antioxidants revealed significant participation of ascorbate-glutathione-α-tocopherol triad in ROS management. Higher activities of glutathione reductase (GR), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR) resulted in glutathione and ascorbate accumulation. In addition, superoxide dismutase (SOD), glutathione peroxidase (GPX) and peroxidase (POD) were contributed considerably in ROS homeostasis maintenance. In-situ localization and assays related to ROS generation/scavenging revealed key management of ROS status under Cd stress. Higher antioxidative and reducing power activity attributed to the tolerance capability to the plant. Increased expression of withanolide biosynthetic pathway genes such as WsHMGR, WsDXS, WsDXR and WsCAS correlated with enhanced withanolides. The present study indicated the crucial role of the ascorbate-glutathione-α-tocopherol triad in co-ordination with withanolide biosynthesis in affording the oxidative stress, possibly through a cross-talk between the antioxidant machinery and secondary metabolite biosynthesis. The knowledge may be useful in providing the guidelines for developing abiotic stress resistance in plants using conventional and molecular approaches.
Collapse
Affiliation(s)
- Bhawana Mishra
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226015, India; Academy of Scientific and Innovative Research (AcSIR), AcSIR Campus, CSIR-Human Resource Development Centre Campus, Sector-19, Kamla Nehru Nagar, Ghaziabad, 201002, U.P., India
| | - Sukhmal Chand
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Neelam Singh Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226015, India; Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India.
| |
Collapse
|
23
|
Huang Y, Zhang X, Zhao C, Zhuang X, Zhu L, Guo C, Song Y. Improvement of Spinosad Production upon Utilization of Oils and Manipulation of β-Oxidation in a High-Producing Saccharopolyspora spinosa Strain. J Mol Microbiol Biotechnol 2018; 28:53-64. [PMID: 29730661 DOI: 10.1159/000487854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/20/2018] [Indexed: 11/19/2022] Open
Abstract
Spinosad, a member of polyketide-derived macrolides produced in the actinomycete Saccharopolyspora spinosa, has been developed as a broad-spectrum and effective insecticide. The β-oxidation pathway could be an important source of building blocks for the biosynthesis of spinosad, thus the effect of vegetable oils on the production of spinosad in a high-yield strain was investigated. The spinosad production increased significantly with the addition of strawberry seed oil (511.64 mg/L) and camellia oil (520.07 mg/L) compared to the control group without oil (285.76 mg/L) and soybean oil group (398.11 mg/L). It also revealed that the addition of oils would affect the expression of genes involved in fatty acid metabolism, precursor supply, and oxidative stress. The genetically engineered strain, in which fadD1 and fadE genes of Streptomyces coelicolor were inserted, produced spinosad up to 784.72 mg/L in the medium containing camellia oil, while a higher spinosad production level (843.40 mg/L) was detected with the addition of 0.01 mM of thiourea.
Collapse
Affiliation(s)
- Ying Huang
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaolin Zhang
- Academy of State Administration of Grain, Beijing, China
| | - Chen Zhao
- Academy of State Administration of Grain, Beijing, China
| | - Xuhui Zhuang
- Academy of State Administration of Grain, Beijing, China
| | - Lin Zhu
- Academy of State Administration of Grain, Beijing, China
| | - Chao Guo
- Academy of State Administration of Grain, Beijing, China
| | - Yuan Song
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Ge J, Wang C, Huang S, Du R, Liu K, Song G, Ping W. Biosynthesis regulation of natamycin production from Streptomyces natalensis HDMNTE-01 enhanced by response surface methodology. Prep Biochem Biotechnol 2017; 47:939-944. [PMID: 28816611 DOI: 10.1080/10826068.2017.1365244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Natamycin has been widely applied in medical treatments and food protection widely due to its effective inhibition to the growth of yeast and mold. As polyene macrolide antibiotic, the biosynthesis pathway of natamycin is relatively clear. To regulate the biosynthesis of natamycin, additions of precursors affecting cell growth and natamycin production were investigated. The results showed that 0.003% (w/v) potassium ferrocyanide and sodium propionate: n-butanol at a ratio of 4:1 was added into the broth at 0 and 24 hr, respectively, and they contributed to yield natamycin, reaching 1.62 g L-1 (174.6% higher than control). Furthermore, response surface methodology was undertaken to enhance natamycin production by Streptomyces natalensis HDMNTE-01 (a wild strain). The optimum conditions determined were: glucose 3.97%; soya peptone 2%; yeast extract 0.5%; original pH 7.0; inoculum volume 6%; growth in a 250-mL flask containing 24.68 mL of medium; shaken (220 rpm) at 28°C for 4 days. Under the optimized conditions, the yield was 2.81 g L-1 natamycin in 5-L fermentor when the fermentation was processed.
Collapse
Affiliation(s)
- Jingping Ge
- a Key Laboratory of Microbiology, College of Life Science , Heilongjiang University , Harbin , P. R. China
| | - Changli Wang
- a Key Laboratory of Microbiology, College of Life Science , Heilongjiang University , Harbin , P. R. China
| | - Shoufeng Huang
- a Key Laboratory of Microbiology, College of Life Science , Heilongjiang University , Harbin , P. R. China
| | - Renpeng Du
- a Key Laboratory of Microbiology, College of Life Science , Heilongjiang University , Harbin , P. R. China
| | - Kun Liu
- a Key Laboratory of Microbiology, College of Life Science , Heilongjiang University , Harbin , P. R. China
| | - Gang Song
- a Key Laboratory of Microbiology, College of Life Science , Heilongjiang University , Harbin , P. R. China
| | - Wenxiang Ping
- a Key Laboratory of Microbiology, College of Life Science , Heilongjiang University , Harbin , P. R. China
| |
Collapse
|
25
|
Wang D, Wei L, Zhang Y, Zhang M, Gu S. Physicochemical and microbial responses of Streptomyces natalensis HW-2 to fungal elicitor. Appl Microbiol Biotechnol 2017; 101:6705-6712. [DOI: 10.1007/s00253-017-8440-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/30/2017] [Accepted: 07/17/2017] [Indexed: 12/19/2022]
|
26
|
Feng J, Jiang J, Liu Y, Li W, Azat R, Zheng X, Zhou WW. Significance of oxygen carriers and role of liquid paraffin in improving validamycin A production. ACTA ACUST UNITED AC 2016; 43:1365-72. [DOI: 10.1007/s10295-016-1822-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/30/2016] [Indexed: 11/28/2022]
Abstract
Abstract
Validamycin A (Val-A) synthesized by Streptomyces hygroscopicus 5008 is widely used as a high-efficient antibiotic to protect plants from sheath blight disease. A novel fermentation strategy was introduced to stimulate Val-A production by adding oxygen carriers. About 58 % increase in Val-A production was achieved using liquid paraffin. Further, biomass, carbon source, metabolic genes, and metabolic enzymes were studied. It was also found that the supplementation of liquid paraffin increased the medium dissolved oxygen and intracellular oxidative stress level. The expression of the global regulators afsR and soxR sensitive to ROS, ugp catalyzing synthesis of Val-A precursor, and Val-A structural genes was enhanced. The change of the activities of glucose-6-phosphate dehydrogenase and glyceraldehyde 3-phosphate dehydrogenase was observed, which reflected the redirection of carbon metabolic flux. Based on these results, liquid paraffin addition as an oxygen carrier could be a useful technique in industrial production of Val-A and our study revealed a redox-based secondary metabolic regulation in S. hygroscopicus 5008, which provided a new insight into the regulation of the biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Jinsong Feng
- grid.13402.34 000000041759700X College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing Zhejiang University 310058 Hangzhou Zhejiang China
| | - Jing Jiang
- grid.13402.34 000000041759700X College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing Zhejiang University 310058 Hangzhou Zhejiang China
| | - Yan Liu
- grid.13402.34 000000041759700X College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing Zhejiang University 310058 Hangzhou Zhejiang China
| | - Wei Li
- grid.13402.34 000000041759700X College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing Zhejiang University 310058 Hangzhou Zhejiang China
| | - Ramila Azat
- grid.13402.34 000000041759700X College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing Zhejiang University 310058 Hangzhou Zhejiang China
| | - Xiaodong Zheng
- grid.13402.34 000000041759700X College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing Zhejiang University 310058 Hangzhou Zhejiang China
| | - Wen-Wen Zhou
- grid.13402.34 000000041759700X College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing Zhejiang University 310058 Hangzhou Zhejiang China
| |
Collapse
|
27
|
Aparicio JF, Barreales EG, Payero TD, Vicente CM, de Pedro A, Santos-Aberturas J. Biotechnological production and application of the antibiotic pimaricin: biosynthesis and its regulation. Appl Microbiol Biotechnol 2015; 100:61-78. [PMID: 26512010 PMCID: PMC4700089 DOI: 10.1007/s00253-015-7077-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/06/2015] [Accepted: 10/11/2015] [Indexed: 12/27/2022]
Abstract
Pimaricin (natamycin) is a small polyene macrolide antibiotic used worldwide. This efficient antimycotic and antiprotozoal agent, produced by several soil bacterial species of the genus Streptomyces, has found application in human therapy, in the food and beverage industries and as pesticide. It displays a broad spectrum of activity, targeting ergosterol but bearing a particular mode of action different to other polyene macrolides. The biosynthesis of this only antifungal agent with a GRAS status has been thoroughly studied, which has permitted the manipulation of producers to engineer the biosynthetic gene clusters in order to generate several analogues. Regulation of its production has been largely unveiled, constituting a model for other polyenes and setting the leads for optimizing the production of these valuable compounds. This review describes and discusses the molecular genetics, uses, mode of action, analogue generation, regulation and strategies for increasing pimaricin production yields.
Collapse
Affiliation(s)
- Jesús F Aparicio
- Area of Microbiology, Faculty of Biology, Universidad de León, 24071, León, Spain.
| | - Eva G Barreales
- Area of Microbiology, Faculty of Biology, Universidad de León, 24071, León, Spain
| | - Tamara D Payero
- Area of Microbiology, Faculty of Biology, Universidad de León, 24071, León, Spain
| | - Cláudia M Vicente
- Dynamique des Génomes et Adaptation Microbienne, UMR 1128, INRA, Université de Lorraine, 54506, Vandoeuvre-lès-Nancy, France
| | - Antonio de Pedro
- Area of Microbiology, Faculty of Biology, Universidad de León, 24071, León, Spain
| | - Javier Santos-Aberturas
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
28
|
Beites T, Oliveira P, Rioseras B, Pires SDS, Oliveira R, Tamagnini P, Moradas-Ferreira P, Manteca Á, Mendes MV. Streptomyces natalensis programmed cell death and morphological differentiation are dependent on oxidative stress. Sci Rep 2015; 5:12887. [PMID: 26256439 PMCID: PMC4530454 DOI: 10.1038/srep12887] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/14/2015] [Indexed: 12/03/2022] Open
Abstract
Streptomyces are aerobic Gram-positive bacteria characterized by a complex life cycle that includes hyphae differentiation and spore formation. Morphological differentiation is triggered by stressful conditions and takes place in a pro-oxidant environment, which sets the basis for an involvement of the oxidative stress response in this cellular process. Characterization of the phenotypic traits of Streptomyces natalensis ΔkatA1 (mono-functional catalase) and ΔcatR (Fur-like repressor of katA1 expression) strains in solid medium revealed that both mutants had an impaired morphological development process. The sub-lethal oxidative stress caused by the absence of KatA1 resulted in the formation of a highly proliferative and undifferentiated vegetative mycelium, whereas de-repression of CatR regulon, from which KatA1 is the only known representative, resulted in the formation of scarce aerial mycelium. Both mutant strains had the transcription of genes associated with aerial mycelium formation and biosynthesis of the hyphae hydrophobic layer down-regulated. The first round of the programmed cell death (PCD) was inhibited in both strains which caused the prevalence of the transient primary mycelium (MI) over secondary mycelium (MII). Our data shows that the first round of PCD and morphological differentiation in S. natalensis is dependent on oxidative stress in the right amount at the right time.
Collapse
Affiliation(s)
- Tiago Beites
- 1] i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Paulo Oliveira
- 1] i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Beatriz Rioseras
- rea de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Sílvia D S Pires
- 1] i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal [3] ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Rute Oliveira
- 1] i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Paula Tamagnini
- 1] i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal [3] Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Porto, Portugal
| | - Pedro Moradas-Ferreira
- 1] i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal [3] ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ángel Manteca
- rea de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Marta V Mendes
- 1] i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
29
|
AllR Controls the Expression of Streptomyces coelicolor Allantoin Pathway Genes. Appl Environ Microbiol 2015; 81:6649-59. [PMID: 26187964 DOI: 10.1128/aem.02098-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/10/2015] [Indexed: 11/20/2022] Open
Abstract
Streptomyces species are native inhabitants of soil, a natural environment where nutrients can be scarce and competition fierce. They have evolved ways to metabolize unusual nutrients, such as purines and its derivatives, which are highly abundant in soil. Catabolism of these uncommon carbon and nitrogen sources needs to be tightly regulated in response to nutrient availability and environmental stimulus. Recently, the allantoin degradation pathway was characterized in Streptomyces coelicolor. However, there are questions that remained unanswered, particularly regarding pathway regulation. Here, using a combination of proteomics and genetic approaches, we identified the negative regulator of the allantoin pathway, AllR. In vitro studies confirmed that AllR binds to the promoter regions of allantoin catabolic genes and determined the AllR DNA binding motif. In addition, effector studies showed that allantoic acid, and glyoxylate, to a lesser extent, inhibit the binding of AllR to the DNA. Inactivation of AllR repressor leads to the constitutive expression of the AllR regulated genes and intriguingly impairs actinorhodin and undecylprodigiosin production. Genetics and proteomics analysis revealed that among all genes from the allantoin pathway that are upregulated in the allR mutant, the hyi gene encoding a hydroxypyruvate isomerase (Hyi) is responsible of the impairment of antibiotic production.
Collapse
|
30
|
Miranda RU, Gómez-Quiroz LE, Mendoza M, Pérez-Sánchez A, Fierro F, Barrios-González J. Reactive oxygen species regulate lovastatin biosynthesis in Aspergillus terreus during submerged and solid-state fermentations. Fungal Biol 2014; 118:979-89. [DOI: 10.1016/j.funbio.2014.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/14/2014] [Accepted: 09/15/2014] [Indexed: 12/19/2022]
|
31
|
Genome-wide analysis of the regulation of pimaricin production in Streptomyces natalensis by reactive oxygen species. Appl Microbiol Biotechnol 2014; 98:2231-41. [PMID: 24413916 DOI: 10.1007/s00253-013-5455-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 12/20/2022]
Abstract
To investigate the molecular mechanisms that interplay between oxygen metabolism and secondary metabolism in Streptomyces natalensis, we compared the transcriptomes of the strains CAM.02 (ΔsodF), pimaricin under-producer phenotype, and CAM.04 (ΔahpCD), pimaricin over-producer phenotype, with that of the wild type at late exponential and stationary growth phases. Microarray data interpretation was supported by characterization of the mutant strains regarding enzymatic activities, phosphate uptake, oxygen consumption and pimaricin production.Both mutant strains presented a delay in the transcription activation of the PhoRP system and pimaricin biosynthetic gene cluster that correlated with the delayed inorganic phosphate (Pi) depletion in the medium and late onset of pimaricin production, respectively. The carbon flux of both mutants was also altered: a re-direction from glycolysis to the pentose phosphate pathway (PPP) in early exponential phase followed by a transcriptional activation of both pathways in subsequent growth phases was observed. Mutant behavior diverged at the respiratory chain/tricarboxylic acid cycle (TCA) and the branched chain amino acid (BCAA) metabolism. CAM.02 (ΔsodF) presented an impaired TCA cycle and an inhibition of the BCAA biosynthesis and degradation pathways. Conversely, CAM.04 (ΔahpCD) presented a global activation of BCAA metabolism.The results highlight the cellular NADPH/NADH ratio and the availability of biosynthetic precursors via the BCAA metabolism as the main pimaricin biosynthetic bottlenecks under oxidative stress conditions. Furthermore, new evidences are provided regarding a crosstalk between phosphate metabolism and oxidative stress in Streptomyces.
Collapse
|
32
|
Wang D, Yuan J, Gu S, Shi Q. Influence of fungal elicitors on biosynthesis of natamycin by Streptomyces natalensis HW-2. Appl Microbiol Biotechnol 2013; 97:5527-34. [DOI: 10.1007/s00253-013-4786-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 02/07/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
|
33
|
Investigation of proteomic responses of Streptomyces lydicus to pitching ratios for improving streptolydigin production. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-012-0173-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Santos-Aberturas J, Vicente CM, Payero TD, Martín-Sánchez L, Cañibano C, Martín JF, Aparicio JF. Hierarchical control on polyene macrolide biosynthesis: PimR modulates pimaricin production via the PAS-LuxR transcriptional activator PimM. PLoS One 2012; 7:e38536. [PMID: 22693644 PMCID: PMC3367932 DOI: 10.1371/journal.pone.0038536] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 05/07/2012] [Indexed: 11/18/2022] Open
Abstract
Control of polyene macrolide production in Streptomyces natalensis is mediated by the transcriptional activator PimR. This regulator combines an N-terminal domain corresponding to the Streptomyces antibiotic regulatory protein (SARP) family of transcriptional activators with a C-terminal half homologous to guanylate cyclases and large ATP-binding regulators of the LuxR family. The PimR SARP domain (PimR(SARP)) was expressed in Escherichia coli as a glutathione S-transferase (GST)-fused protein. Electrophoretic mobility shift assays showed that GST-PimR(SARP) binds a single target, the intergenic region between the regulatory genes pimR and pimMs in the pimaricin cluster. The PimR(SARP)-binding site was investigated by DNaseI protection studies, revealing that it contains three heptameric direct repeats adjusting to the consensus 5'-CGGCAAG-3'. Transcription start points of pimM and pimR promoters were identified by 5'-RACE, revealing that unlike other SARPs, PimR(SARP) does not interact with the -35 region of its target promoter. Quantitative transcriptional analysis of these regulatory genes on mutants on each of them has allowed the identification of the pimM promoter as the transcriptional target for PimR. Furthermore, the constitutive expression of pimM restored pimaricin production in a pimaricin-deficient strain carrying a deletion mutant of pimR. These results reveal that PimR exerts its positive effect on pimaricin production by controlling pimM expression level, a regulator whose gene product activates transcription from eight different promoters of pimaricin structural genes directly.
Collapse
Affiliation(s)
- Javier Santos-Aberturas
- Area of Microbiology, Faculty of Biology, University of León, León, Spain
- Institute of Biotechnology INBIOTEC, Parque Científico de León, León, Spain
| | - Cláudia M. Vicente
- Institute of Biotechnology INBIOTEC, Parque Científico de León, León, Spain
| | - Tamara D. Payero
- Area of Microbiology, Faculty of Biology, University of León, León, Spain
- Institute of Biotechnology INBIOTEC, Parque Científico de León, León, Spain
| | | | - Carmen Cañibano
- Institute of Biotechnology INBIOTEC, Parque Científico de León, León, Spain
| | - Juan F. Martín
- Institute of Biotechnology INBIOTEC, Parque Científico de León, León, Spain
| | - Jesús F. Aparicio
- Area of Microbiology, Faculty of Biology, University of León, León, Spain
- Institute of Biotechnology INBIOTEC, Parque Científico de León, León, Spain
- * E-mail:
| |
Collapse
|