1
|
Wang F, Han R, Chen S. An Overlooked and Underrated Endemic Mycosis-Talaromycosis and the Pathogenic Fungus Talaromyces marneffei. Clin Microbiol Rev 2023; 36:e0005122. [PMID: 36648228 PMCID: PMC10035316 DOI: 10.1128/cmr.00051-22] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Talaromycosis is an invasive mycosis endemic in tropical and subtropical Asia and is caused by the pathogenic fungus Talaromyces marneffei. Approximately 17,300 cases of T. marneffei infection are diagnosed annually, and the reported mortality rate is extremely high (~1/3). Despite the devastating impact of talaromycosis on immunocompromised individuals, particularly HIV-positive persons, and the increase in reported occurrences in HIV-uninfected persons, diagnostic and therapeutic approaches for talaromycosis have received far too little attention worldwide. In 2021, scientists living in countries where talaromycosis is endemic raised a global demand for it to be recognized as a neglected tropical disease. Therefore, T. marneffei and the infectious disease induced by this fungus must be treated with concern. T. marneffei is a thermally dimorphic saprophytic fungus with a complicated mycological growth process that may produce various cell types in its life cycle, including conidia, hyphae, and yeast, all of which are associated with its pathogenicity. However, understanding of the pathogenic mechanism of T. marneffei has been limited until recently. To achieve a holistic view of T. marneffei and talaromycosis, the current knowledge about talaromycosis and research breakthroughs regarding T. marneffei growth biology are discussed in this review, along with the interaction of the fungus with environmental stimuli and the host immune response to fungal infection. Importantly, the future research directions required for understanding this serious infection and its causative pathogenic fungus are also emphasized to identify solutions that will alleviate the suffering of susceptible individuals worldwide.
Collapse
Affiliation(s)
- Fang Wang
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - RunHua Han
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shi Chen
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Department of Burn and Plastic Surgery, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
2
|
Peng L, Shi YB, Zheng L, Hu LQ, Weng XB. Clinical features of patients with talaromycosis marneffei and microbiological characteristics of the causative strains. J Clin Lab Anal 2022; 36:e24737. [PMID: 36268985 DOI: 10.1002/jcla.24737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Talaromyces marneffei (T. marneffei) is a temperature-dependent dimorphic fungus that is mainly prevalent in Southeast Asia and South China and often causes disseminated life-threatening infections. This study aimed to investigate the clinical features and improve the early diagnosis of talaromycosis marneffei in nonendemic areas. METHODS We retrospectively analyzed the medical records of six cases of T. marneffei infection. We describe the clinical manifestations, laboratory tests, and imaging manifestations of the six patients. RESULTS Talaromyces marneffei infection was confirmed by sputum culture, blood culture, tissue biopsy, and metagenomic next-generation sequencing (mNGS). In this study, there were five disseminated-type patients and two HIV patients. One patient died within 24 h, and the others demonstrated considerable improvement after definitive diagnosis. CONCLUSIONS Due to the lack of significant clinical presentations of talaromycosis marneffei, many cases may be easily misdiagnosed in nonendemic areas. It is particularly important to analyze the imaging manifestations and laboratory findings of infected patients. With the rapid development of molecular biology, mNGS may be a rapid and effective diagnostic method.
Collapse
Affiliation(s)
- Lei Peng
- School of Medicine, Ningbo University, Ningbo, China
| | - Yu-Bo Shi
- Department of Medical Laboratory, Ningbo First Hospital, Ningbo, China
| | - Lin Zheng
- Department of Medical Laboratory, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Li-Qing Hu
- Department of Medical Laboratory, Ningbo First Hospital, Ningbo, China
| | - Xing-Bei Weng
- School of Medicine, Ningbo University, Ningbo, China.,Department of Medical Laboratory, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
3
|
Talaromyces marneffei Infection: Virulence, Intracellular Lifestyle and Host Defense Mechanisms. J Fungi (Basel) 2022; 8:jof8020200. [PMID: 35205954 PMCID: PMC8880324 DOI: 10.3390/jof8020200] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 12/02/2022] Open
Abstract
Talaromycosis (Penicilliosis) is an opportunistic mycosis caused by the thermally dimorphic fungus Talaromyces (Penicillium) marneffei. Similar to other major causes of systemic mycoses, the extent of disease and outcomes are the results of complex interactions between this opportunistic human pathogen and a host’s immune response. This review will highlight the current knowledge regarding the dynamic interaction between T. marneffei and mammalian hosts, particularly highlighting important aspects of virulence factors, intracellular lifestyle and the mechanisms of immune defense as well as the strategies of the pathogen for manipulating and evading host immune cells.
Collapse
|
4
|
Abstract
The innate immune system is comprised of both cellular and humoral players that recognise and eradicate invading pathogens. Therefore, the interplay between retroviruses and innate immunity has emerged as an important component of viral pathogenesis. HIV-1 infection in humans that results in hematologic abnormalities and immune suppression is well represented by changes in the CD4/CD8 T cell ratio and consequent cell death causing CD4 lymphopenia. The innate immune responses by mucosal barriers such as complement, DCs, macrophages, and NK cells as well as cytokine/chemokine profiles attain great importance in acute HIV-1 infection, and thus, prevent mucosal capture and transmission of HIV-1. Conversely, HIV-1 has evolved to overcome innate immune responses through RNA-mediated rapid mutations, pathogen-associated molecular patterns (PAMPs) modification, down-regulation of NK cell activity and complement receptors, resulting in increased secretion of inflammatory factors. Consequently, epithelial tissues lining up female reproductive tract express innate immune sensors including anti-microbial peptides responsible for forming primary barriers and have displayed an effective potent anti-HIV activity during phase I/II clinical trials.
Collapse
|
5
|
Li YY, Yang SH, Wang RR, Tang JT, Wang HM, Kuang YQ. Effects of CD4 cell count and antiretroviral therapy on mucocutaneous manifestations among HIV/AIDS patients in Yunnan, China. Int J Dermatol 2019; 59:308-313. [PMID: 31846069 DOI: 10.1111/ijd.14725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 10/09/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The affecting factors of mucocutaneous manifestations in human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) patients remain unclear in China. METHODS A retrospective analysis was conducted among HIV/AIDS patients in Yunnan, China. The demographic data, mucocutaneous manifestations, CD4 cell counts, and antiretroviral therapy (ART) regimens were collected. The effects of CD4 cell count and ART on the spectrum of mucocutaneous manifestations were evaluated. RESULTS Among 508 HIV/AIDS patients, 86.0% of cases showed mucocutaneous manifestations. The average CD4 cell count (176 cells/μl) of the patients with manifestations was significantly lower than those without manifestations (328 cells/μl) (P < 0.001). Diseases such as herpes zoster, oral candidiasis, condyloma acuminatum, genital herpes, oral leukoplakia, talaromycosis, cryptococcosis, and HIV-PPE (pruritic papular eruption) were represented quite frequently in patients with CD4 cell count <200 cells/μl (P < 0.05), but eczema was suffered by those with CD4 cell count ≥200 cells/μl (P < 0.05). ART could decline the incidence of herpes zoster, oral candidiasis, condyloma acuminatum, genital herpes, oral leukoplakia, talaromycosis, and cryptococcosis (P < 0.05). CONCLUSIONS Mucocutaneous manifestations are closely related to the CD4 cell count and can be used as early predictors of HIV/AIDS and immune status in clinic. ART could reduce the incidence of certain mucocutaneous manifestations.
Collapse
Affiliation(s)
- Yu-Ye Li
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Shi-Han Yang
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Rui-Rui Wang
- School of Pharmaceutical Sciences, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Jun-Ting Tang
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Hong-Mei Wang
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yi-Qun Kuang
- Institute of Infection and Immunity, Henan University & Center for Translational Medicine, Huaihe Clinical College, Huaihe Hospital of Henan University, Kaifeng, 475000, China.,NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| |
Collapse
|
6
|
Chen Y, Huang A, Ao W, Wang Z, Yuan J, Song Q, Wei D, Ye H. Proteomic analysis of serum proteins from HIV/AIDS patients with Talaromyces marneffei infection by TMT labeling-based quantitative proteomics. Clin Proteomics 2018; 15:40. [PMID: 30598657 PMCID: PMC6302400 DOI: 10.1186/s12014-018-9219-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Talaromyces marneffei (TM) is an emerging pathogenic fungus that can cause a fatal systemic mycosis in patients infected with human immunodeficiency virus (HIV). Although global awareness regarding HIV/TM coinfection is increasing little is known about the mechanism that mediates the rapid progression to HIV/AIDS disease in coinfected individuals. The aim of this study was to analyze the serum proteome of HIV/TM coinfected patients and to identify the associated protein biomarkers for TM in patients with HIV/AIDS. METHODS We systematically used multiplexed isobaric tandem mass tag labeling combined with liquid chromatography mass spectrometry (LC-MS/MS) to screen for differentially expressed proteins in the serum samples from HIV/TM-coinfected patients. RESULTS Of a total data set that included 1099 identified proteins, approximately 86% of the identified proteins were quantified. Among them, 123 proteins were at least 1.5-fold up-or downregulated in the serum between HIV/TM-coinfected and HIV-mono-infected patients. Furthermore, our results indicate that two selected proteins (IL1RL1 and THBS1) are potential biomarkers for distinguishing HIV/TM-coinfected patients. CONCLUSIONS This is the first report to provide a global proteomic profile of serum samples from HIV/TM-coinfected patients. Our data provide insights into the proteins that are involved as host response factors during infection. These data shed new light on the molecular mechanisms that are dysregulated and contribute to the pathogenesis of HIV/TM coinfection. IL1RL1 and THBS1 are promising diagnostic markers for HIV/TM-coinfected patients although further large-scale studies are needed. Thus, quantitative proteomic analysis revealed molecular differences between the HIV/TM-coinfected and HIV-mono-infected individuals, and might provide fundamental information for further detailed investigations.
Collapse
Affiliation(s)
- Yahong Chen
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| | - Aiqiong Huang
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| | - Wen Ao
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| | - Zhengwu Wang
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| | - Jinjin Yuan
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| | - Qing Song
- Shanxi Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, 710072 People’s Republic of China
| | - Dahai Wei
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- The First Affiliated Hospital of Jiaxing University, 1882 Zhonghuan Road, Jiaxing, 314001 People’s Republic of China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 People’s Republic of China
| | - Hanhui Ye
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| |
Collapse
|
7
|
Wang H, Li Z, Niu J, Xu Y, Ma L, Lu A, Wang X, Qian Z, Huang Z, Jin X, Leng Q, Wang J, Zhong J, Sun B, Meng G. Antiviral effects of ferric ammonium citrate. Cell Discov 2018; 4:14. [PMID: 29619244 PMCID: PMC5871618 DOI: 10.1038/s41421-018-0013-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022] Open
Abstract
Iron is an essential nutrient for cell survival and is crucial for DNA replication, mitochondrial function and erythropoiesis. However, the immunological role of iron in viral infections has not been well defined. Here we found the iron salt ferric ammonium citrate (FAC) inhibited Influenza A virus, HIV virus, Zika virus, and Enterovirus 71 (EV71) infections. Of note, both iron ion and citrate ion were required for the antiviral capability of FAC, as other iron salts and citrates did not exhibit viral inhibition. Mechanistically, FAC inhibited viral infection through inducing viral fusion and blocking endosomal viral release. These were further evidenced by the fact that FAC induced liposome aggregation and intracellular vesicle fusion, which was associated with a unique iron-dependent cell death. Our results demonstrate a novel antiviral function of FAC and suggest a therapeutic potential for iron in the control of viral infections.
Collapse
Affiliation(s)
- Hongbin Wang
- 1CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Zheng Li
- 1CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Junling Niu
- 1CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Yongfen Xu
- 1CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Li Ma
- 1CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Ailing Lu
- 1CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Xun Wang
- 2Shanghai Blood Center, 200051 Shanghai, China
| | - Zhikang Qian
- 1CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Zhong Huang
- 1CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Xia Jin
- 1CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Qibin Leng
- 1CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Jianhua Wang
- 1CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Jin Zhong
- 1CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Bing Sun
- 1CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Guangxun Meng
- 1CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031 Shanghai, China
| |
Collapse
|
8
|
Ren XX, Ma L, Sun WW, Kuang WD, Li TS, Jin X, Wang JH. Dendritic cells maturated by co-culturing with HIV-1 latently infected Jurkat T cells or stimulating with AIDS-associated pathogens secrete TNF-α to reactivate HIV-1 from latency. Virulence 2017; 8:1732-1743. [PMID: 28762863 DOI: 10.1080/21505594.2017.1356535] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Elucidation of mechanisms underlying the establishment, maintenance of and reactivation from HIV-1 latency is essential for the development of therapeutic strategies aimed at eliminating HIV-1 reservoirs. Microbial translocation, as a consequence of HIV-1-induced deterioration of host immune system, is known to result in a systemic immune activation and transient outbursts of HIV-1 viremia in chronic HIV-1 infection. How these microbes cause the robust HIV-1 reactivation remains elusive. Dendritic cells (DCs) have previously been shown to reactivate HIV-1 from latency; however, the precise role of DCs in reactivating HIV-1 from latently infected T-cell remains obscure. In this study, by using HIV-1 latently infected Jurkat T cells, we demonstrated that AIDS-associated pathogens as represented by Mycobacterium bovis (M. bovis) Bacillus Calmette-Guérin (BCG) and bacterial component lipopolysaccharide (LPS) were unable to directly reactivate HIV-1 from Jurkat T cells; instead, they mature DCs to secrete TNF-α to accomplish this goal. Moreover, we found that HIV-1 latently infected Jurkat T cells could also mature DCs and enhance their TNF-α production during co-culture in a CD40-CD40L-signaling-dependent manner. This in turn led to viral reactivation from Jurkat T cells. Our results reveal how DCs help AIDS-associated pathogens to trigger HIV-1 reactivation from latency.
Collapse
Affiliation(s)
- Xiao-Xin Ren
- a Jiangsu Key Laboratory of Infection and Immunity , Institutes of Biology and Medical Sciences, Soochow University , Suzhou , China.,b Key Laboratory of Molecular Virology and Immunology , Institut Pasteur of Shanghai, Chinese Academy of Sciences , Shanghai , China
| | - Li Ma
- a Jiangsu Key Laboratory of Infection and Immunity , Institutes of Biology and Medical Sciences, Soochow University , Suzhou , China.,b Key Laboratory of Molecular Virology and Immunology , Institut Pasteur of Shanghai, Chinese Academy of Sciences , Shanghai , China
| | - Wei-Wei Sun
- b Key Laboratory of Molecular Virology and Immunology , Institut Pasteur of Shanghai, Chinese Academy of Sciences , Shanghai , China.,c University of Chinese Academy of Sciences , Beijing , China
| | - Wen-Dong Kuang
- b Key Laboratory of Molecular Virology and Immunology , Institut Pasteur of Shanghai, Chinese Academy of Sciences , Shanghai , China.,c University of Chinese Academy of Sciences , Beijing , China
| | - Tai-Sheng Li
- d Department of Infectious Diseases , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing , China
| | - Xia Jin
- b Key Laboratory of Molecular Virology and Immunology , Institut Pasteur of Shanghai, Chinese Academy of Sciences , Shanghai , China
| | - Jian-Hua Wang
- b Key Laboratory of Molecular Virology and Immunology , Institut Pasteur of Shanghai, Chinese Academy of Sciences , Shanghai , China.,c University of Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
9
|
Yang FC, Kuang WD, Li C, Sun WW, Qu D, Wang JH. Toll-Interacting Protein Suppresses HIV-1 Long-Terminal-Repeat-Driven Gene Expression and Silences the Post-Integrational Transcription of Viral Proviral DNA. PLoS One 2015; 10:e0125563. [PMID: 25915421 PMCID: PMC4411168 DOI: 10.1371/journal.pone.0125563] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/24/2015] [Indexed: 12/13/2022] Open
Abstract
Toll-interacting protein (Tollip) is a host adaptor protein for negatively regulating Toll-like receptor 2-, 4-, and IL-1R (interleukin-1 receptor)-mediated signaling. We found that Tollip expression could be induced in MDDCs (monocyte-derived dendritic cells) by HIV-1 particles and recombinant gp120 glycoprotein. Hence, we investigated the role of Tollip in modulating HIV-1 infection. We found that Tollip expression suppressed NF-κB-dependent HIV-1 long terminal repeat (LTR)-driven transcription and thus inhibited HIV-1 infection. Our protein truncation experiments proved that the intact C-terminus of Tollip was required for inhibition of both NF-κB activity and HIV-1 LTR-driven gene expression. Intriguingly, Tollip silenced the post-integrational transcription of HIV-1 proviral DNA, indicating the potential role of Tollip in maintaining viral persistence. Our results reveal the novel role of host factor Tollip in modulating HIV-1 infection, and may suggest the hijacking of Tollip as the negative regulator of the TLR pathway and even the downstream signaling, by HIV-1 for maintaining persistent infection. Further elucidation of the mechanisms by which HIV-1 induces Tollip expression and identification of the role of Tollip in modulating HIV-1 latency will facilitate the understanding of host regulation in viral replication and benefit the exploration of novel strategies for combating HIV-1 infection.
Collapse
Affiliation(s)
- Fu-Chun Yang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Wen-Dong Kuang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Chuan Li
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Wei-Wei Sun
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Di Qu
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Hua Wang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
10
|
Ma L, Shen CJ, Cohen ÉA, Xiong SD, Wang JH. miRNA-1236 inhibits HIV-1 infection of monocytes by repressing translation of cellular factor VprBP. PLoS One 2014; 9:e99535. [PMID: 24932481 PMCID: PMC4059663 DOI: 10.1371/journal.pone.0099535] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 05/15/2014] [Indexed: 01/07/2023] Open
Abstract
Primary monocytes are refractory to HIV-1 infection and become permissive upon differentiation into monocyte-derived dendritic cells (MDDCs) or macrophages. Multiple mechanisms have been proposed to interpret HIV-1 restriction in monocytes. Human cellular miRNAs can modulate HIV-1 infection by targeting either conserved regions of the HIV-1 genome or host gene transcripts. We have recently reported that the translation of host protein pur-alpha is repressed by abundant cellular miRNAs to inhibit HIV-1 infection in monocytes. Here, we report that the transcript of another cellular factor, VprBP [Vpr (HIV-1)-binding protein], was repressed by cellular miRNA-1236, which contributes to HIV-1 restriction in monocytes. Transfection of miR-1236 inhibitors enhanced translation of VprBP in monocytes and significantly promoted viral infection; exogenous input of synthesized miR-1236 mimics into MDDCs suppressed translation of VprBP, and, accordingly, significantly impaired viral infection. Our data emphasize the role of miRNA in modulating differentiation-dependent susceptibility of the host cell to HIV-1 infection. Understanding the modulation of HIV-1 infection by cellular miRNAs may provide key small RNAs or the identification of new important protein targets regulated by miRNAs for the development of antiviral strategies.
Collapse
Affiliation(s)
- Li Ma
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology & Medical Sciences, Soochow University, Suzhou, China
- Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Chan-Juan Shen
- Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Éric A. Cohen
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | - Si-Dong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology & Medical Sciences, Soochow University, Suzhou, China
| | - Jian-Hua Wang
- Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
11
|
Armstrong-James D, Meintjes G, Brown GD. A neglected epidemic: fungal infections in HIV/AIDS. Trends Microbiol 2014; 22:120-7. [PMID: 24530175 DOI: 10.1016/j.tim.2014.01.001] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/02/2014] [Accepted: 01/08/2014] [Indexed: 11/17/2022]
Abstract
Invasive fungal infections (IFIs) are a major cause of HIV-related mortality globally. Despite widespread rollout of combined antiretroviral therapy, there are still up to 1 million deaths annually from IFIs, accounting for 50% of all AIDS-related death. A historic failure to focus efforts on the IFIs that kill so many HIV patients has led to fundamental flaws in the management of advanced HIV infection. This review, based on the EMBO AIDS-Related Mycoses Workshop in Cape Town in July 2013, summarizes the current state of the-art in AIDS-related mycoses, and the key action points required to improve outcomes from these devastating infections.
Collapse
Affiliation(s)
- Darius Armstrong-James
- Imperial Fungal Diseases Group, Imperial College London, Department of Infectious Diseases and Immunity, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.
| | - Graeme Meintjes
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Gordon D Brown
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925 Cape Town, South Africa; Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
12
|
Rodriguez Rodrigues C, Remes Lenicov F, Jancic C, Sabatté J, Cabrini M, Ceballos A, Merlotti A, Gonzalez H, Ostrowski M, Geffner J. Candida albicans delays HIV-1 replication in macrophages. PLoS One 2013; 8:e72814. [PMID: 24009706 PMCID: PMC3751824 DOI: 10.1371/journal.pone.0072814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 07/21/2013] [Indexed: 11/19/2022] Open
Abstract
Macrophages are one of the most important HIV-1 target cells. Unlike CD4(+) T cells, macrophages are resistant to the cytophatic effect of HIV-1. They are able to produce and harbor the virus for long periods acting as a viral reservoir. Candida albicans (CA) is a commensal fungus that colonizes the portals of HIV-1 entry, such as the vagina and the rectum, and becomes an aggressive pathogen in AIDS patients. In this study, we analyzed the ability of CA to modulate the course of HIV-1 infection in human monocyte-derived macrophages. We found that CA abrogated HIV-1 replication in macrophages when it was evaluated 7 days after virus inoculation. A similar inhibitory effect was observed in monocyte-derived dendritic cells. The analysis of the mechanisms responsible for the inhibition of HIV-1 production in macrophages revealed that CA efficiently sequesters HIV-1 particles avoiding its infectivity. Moreover, by acting on macrophages themselves, CA diminishes their permissibility to HIV-1 infection by reducing the expression of CD4, enhancing the production of the CCR5-interacting chemokines CCL3/MIP-1α, CCL4/MIP-1β, and CCL5/RANTES, and stimulating the production of interferon-α and the restriction factors APOBEC3G, APOBEC3F, and tetherin. Interestingly, abrogation of HIV-1 replication was overcome when the infection of macrophages was evaluated 2-3 weeks after virus inoculation. However, this reactivation of HIV-1 infection could be silenced by CA when added periodically to HIV-1-challenged macrophages. The induction of a silent HIV-1 infection in macrophages at the periphery, where cells are continuously confronted with CA, might help HIV-1 to evade the immune response and to promote resistance to antiretroviral therapy.
Collapse
Affiliation(s)
- Christian Rodriguez Rodrigues
- Instituto de Investigaciones Médicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Federico Remes Lenicov
- Instituto de Investigaciones Médicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Carolina Jancic
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Juan Sabatté
- Instituto de Investigaciones Médicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Mercedes Cabrini
- Instituto de Investigaciones Médicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Ana Ceballos
- Instituto de Investigaciones Médicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Antonela Merlotti
- Instituto de Investigaciones Médicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Heidi Gonzalez
- Instituto de Investigaciones Médicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Matías Ostrowski
- Instituto de Investigaciones Médicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Jorge Geffner
- Instituto de Investigaciones Médicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
13
|
Liu W, Qin Y, Bai L, Lan K, Wang JH. Kaposi's-sarcoma-associated-herpesvirus-activated dendritic cells promote HIV-1 trans-infection and suppress CD4+ T cell proliferation. Virology 2013; 440:150-9. [DOI: 10.1016/j.virol.2013.02.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/05/2013] [Accepted: 02/20/2013] [Indexed: 12/27/2022]
|
14
|
Rinaldo CR. HIV-1 Trans Infection of CD4(+) T Cells by Professional Antigen Presenting Cells. SCIENTIFICA 2013; 2013:164203. [PMID: 24278768 PMCID: PMC3820354 DOI: 10.1155/2013/164203] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/09/2013] [Indexed: 06/02/2023]
Abstract
Since the 1990s we have known of the fascinating ability of a complex set of professional antigen presenting cells (APCs; dendritic cells, monocytes/macrophages, and B lymphocytes) to mediate HIV-1 trans infection of CD4(+) T cells. This results in a burst of virus replication in the T cells that is much greater than that resulting from direct, cis infection of either APC or T cells, or trans infection between T cells. Such APC-to-T cell trans infection first involves a complex set of virus subtype, attachment, entry, and replication patterns that have many similarities among APC, as well as distinct differences related to virus receptors, intracellular trafficking, and productive and nonproductive replication pathways. The end result is that HIV-1 can sequester within the APC for several days and be transmitted via membrane extensions intracellularly and extracellularly to T cells across the virologic synapse. Virus replication requires activated T cells that can develop concurrently with the events of virus transmission. Further research is essential to fill the many gaps in our understanding of these trans infection processes and their role in natural HIV-1 infection.
Collapse
Affiliation(s)
- Charles R. Rinaldo
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| |
Collapse
|
15
|
Qin Y, Li YY, Jiang AP, Jiang JF, Wang JH. Stimulation of Cryptococcus neoformans isolated from skin lesion of AIDS patient matures dendritic cells and promotes HIV-1 trans-infection. Biochem Biophys Res Commun 2012; 423:709-14. [PMID: 22704932 DOI: 10.1016/j.bbrc.2012.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 06/05/2012] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) play a pivotal role in host defense against invaded pathogens including fungi, while DCs are targeted by fungi for deleterious regulation of the host immune response. A few studies have reported fungal modulation of DC function in these immunocompromised AIDS patients. Cryptococcus neoformans (C. neoformans) is referred as one of the opportunistic fungi of AIDS. Here, we isolated native C. neoformans from an AIDS patient and investigated its effects on DC activation and function. Stimulation of C. neoformans matured DCs, and enhanced DC-mediated HIV-1 trans-infection; moreover, C. neoformans-stimulated DCs promoted the activation of resting T cells and provided more susceptible targets for HIV-1 infection. Microbial translocation has been proposed as the cause of systemic immune activation in chronic HIV-1 infection. Understanding the potential effects of pathogens on HIV-1-DC interactions could help elucidate viral pathogenesis and provide a new insight for against the spread of HIV.
Collapse
Affiliation(s)
- Yan Qin
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | |
Collapse
|
16
|
Cellular and viral mechanisms of HIV-1 transmission mediated by dendritic cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:109-30. [PMID: 22975873 DOI: 10.1007/978-1-4614-4433-6_4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) play a key role in the initial infection and cell-to-cell transmission events that occur upon HIV-1 infection. DCs interact closely with CD4(+) T cells, the main target of HIV-1 replication. HIV-1 challenged DCs and target CD4(+) T cells form a virological synapse that allows highly efficient transmission of HIV-1 to the target CD4(+) T cells, in the absence of productive HIV-1 replication in the DCs. Immature and subsets of mature DCs show distinct patterns of HIV-1 replication and cell-to-cell transmission, depending upon the maturation stimulus that is used. The cellular and viral mechanisms that promote formation of the virological synapse have been the subject of intense study and the most recent progress is discussed here. Characterizing the cellular and viral factors that affect DC-mediated cell-to-cell transmission of HIV-1 to CD4(+) T cells is vitally important to understanding, and potentially blocking, the initial dissemination of HIV-1 in vivo.
Collapse
|