1
|
Canet G, Zussy C, Vitalis M, Morin F, Chevallier N, Hunt H, Claeysen S, Blaquière M, Marchi N, Planel E, Meijer OC, Desrumaux C, Givalois L. Advancing Alzheimer's disease pharmacotherapy: efficacy of glucocorticoid modulation with dazucorilant (CORT113176) in preclinical mouse models. Br J Pharmacol 2025; 182:1930-1956. [PMID: 39891319 DOI: 10.1111/bph.17457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/08/2024] [Accepted: 11/24/2024] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND AND PURPOSE Exposure to chronic stress and high levels of glucocorticoid hormones in adulthood has been associated with cognitive deficits and increased risk of Alzheimer's disease (AD). Dazucorilant has recently emerged as a selective glucocorticoid receptor (NR3C1) modulator, exhibiting efficacy in counteracting amyloid-β toxicity in an acute model of AD. We aim to assess the therapeutic potential of dazucorilant in reversing amyloid and tau pathologies through the inhibition of glucocorticoid receptor pathological activity, and providing additional evidence for its consideration in AD treatment. EXPERIMENTAL APPROACH The efficacy of dazucorilant was evaluated in two transgenic mouse models of amyloid pathology. The slowly progressing J20 and the aggressively pathological 5xFAD mice. Behavioural analysis was conducted to evaluate welfare, cognitive performances and anxiety levels. The activity of the glucocorticoid receptor system, neuroinflammation, amyloid burden and tau phosphorylation were examined in hippocampi. KEY RESULTS In both AD models, chronic treatment with dazucorilant improved working and long-term spatial memories along with the inhibition of glucocorticoid receptor-dependent pathogenic processes and the normalization of plasma glucocorticoid levels. Dazucorilant treatment also resulted in a reduction in tau hyperphosphorylation and amyloid production and aggregation. Additionally, dazucorilant seemed to mediate a specific re-localization of activated glial cells onto amyloid plaques in J20 mice, suggesting a restoration of physiological neuroinflammatory processes. CONCLUSION AND IMPLICATIONS Dazucorilant exhibited sustained disease-modifying effects in two AD models. Given that this compound has demonstrated safety and tolerability in human subjects, our results provide pre-clinical support for conducting clinical trials to evaluate its potential in AD.
Collapse
Affiliation(s)
- Geoffrey Canet
- MMDN, Univ Montpellier, EPHE-PSL, INSERM, Montpellier, France
- Faculty of Medicine, Department of Psychiatry and Neurosciences, CR-CHUQ, Laval University, Québec City, Quebec, Canada
| | - Charleine Zussy
- MMDN, Univ Montpellier, EPHE-PSL, INSERM, Montpellier, France
| | - Mathieu Vitalis
- MMDN, Univ Montpellier, EPHE-PSL, INSERM, Montpellier, France
| | - Françoise Morin
- Faculty of Medicine, Department of Psychiatry and Neurosciences, CR-CHUQ, Laval University, Québec City, Quebec, Canada
| | | | - Hazel Hunt
- Corcept Therapeutics, Menlo Park, California, USA
| | | | | | - Nicola Marchi
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Emmanuel Planel
- Faculty of Medicine, Department of Psychiatry and Neurosciences, CR-CHUQ, Laval University, Québec City, Quebec, Canada
| | - Onno C Meijer
- Einthoven Laboratory, Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Catherine Desrumaux
- MMDN, Univ Montpellier, EPHE-PSL, INSERM, Montpellier, France
- LIPSTIC LabEx, Dijon, France
| | - Laurent Givalois
- MMDN, Univ Montpellier, EPHE-PSL, INSERM, Montpellier, France
- Faculty of Medicine, Department of Psychiatry and Neurosciences, CR-CHUQ, Laval University, Québec City, Quebec, Canada
- CNRS, Paris, France
| |
Collapse
|
2
|
Jin Z, Yan B, Zhang L, Wang C. Biological therapy in chronic rhinosinusitis with nasal polyps. Expert Rev Clin Immunol 2025; 21:473-492. [PMID: 39862235 DOI: 10.1080/1744666x.2025.2459929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/17/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION Chronic rhinosinusitis with nasal polyps (CRSwNP) is a heterogeneous disease. High proportions of patients with CRSwNP characterized by type 2 inflammation fail to gain adequate control with conventional treatment. The application of biologics in clinics and assessments of novel biologics in clinical trials are blooming in expectations to fulfill the unmet medical needs of patients with CRSwNP with type 2 inflammation. AREAS COVERED After an extensive search of PubMed, Medline, and EMBASE for the most recent evidence, we thoroughly summarize current advances in biological therapies for treating patients with CRSwNP. EXPERT OPINION In recent years, biological therapy has been in the spotlight in clinical studies on CRSwNP. Biologics have proven to be efficacious in reducing nasal polyp size, alleviating CRSwNP-related symptoms, improving quality of life, and reducing the need for systemic corticosteroids or endoscopic sinus surgery for nasal polyps. The considerable efficacy and safety profile of biologics has offered patients with refractory CRSwNP another treatment option. However, some concerns remain to be addressed. Aspects such as the position of biological therapy in the management of CRSwNP, traits of patients suitable for certain biologics, etc. necessitate efforts to elucidate these unknowns in order to provide patients with tailored therapy.
Collapse
Affiliation(s)
- Zeyi Jin
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Bing Yan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Kobayashi Y, Hanh CH, Yagi N, Le NKT, Yun Y, Shimamura A, Fukui K, Mitani A, Suzuki K, Kanda A, Iwai H. CCL4 Affects Eosinophil Survival via the Shedding of the MUC1 N-Terminal Domain in Airway Inflammation. Cells 2024; 14:33. [PMID: 39791734 PMCID: PMC11719767 DOI: 10.3390/cells14010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025] Open
Abstract
Eosinophilic chronic rhinosinusitis (ECRS), a CRS with nasal polyps (CRSwNP), is characterized by eosinophilic infiltration with type 2 inflammation and is highly associated with bronchial asthma. Intractable ECRS with poorly controlled asthma is recognized as a difficult-to-treat eosinophilic airway inflammation. Although eosinophils are activated and coincubation with airway epithelial cells prolongs their survival, the interaction mechanism between eosinophils and epithelial cells is unclear. This study examined the effect of eosinophils on mucin glycoprotein 1 (MUC1), a member of membrane-bound mucin, in the airway epithelial cells, to elucidate the mechanisms of the eosinophil-airway epithelial cell interaction. Nasal polyp samples from patients with CRSwNP and BEAS-2B airway epithelial cells, coincubated with purified eosinophils, were stained with two MUC1 antibodies. To confirm the involvement of CCL4, an anti-CCL4 neutralizing antibody or recombinant CCL4 was used as needed. The immunofluorescence results revealed a negative correlation between the expression of full-length MUC1 and eosinophil count in nasal polyps. In BEAS-2B coincubated with eosinophils, full-length MUC1, but not the C-terminal domain, was reduced, and eosinophil survival was prolonged, which was concomitant with CCL4 increase, whereas the anti-CCL4 neutralizing antibody decreased these reactions. The survival of eosinophils that contacted recombinant MUC1 without the N-terminal domain was prolonged, and recombinant CCL4 increased the expression of metalloproteases. Increased CCL4 induces the contact between eosinophils and airway epithelial cells by shedding the MUC1 N-terminal domain and enhances eosinophil survival in eosinophilic airway inflammation. This novel mechanism may be a therapeutic target for difficult-to-treat eosinophilic airway inflammation.
Collapse
Affiliation(s)
- Yoshiki Kobayashi
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
- Allergy Center, Kansai Medical University Hospital, Osaka 573-1010, Japan
| | - Chu Hong Hanh
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
| | - Naoto Yagi
- Third Department of Internal Medicine, Kansai Medical University, Osaka 573-1010, Japan;
| | - Nhi Kieu Thi Le
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
| | - Yasutaka Yun
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
- Allergy Center, Kansai Medical University Hospital, Osaka 573-1010, Japan
| | - Akihiro Shimamura
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
| | - Kenta Fukui
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
| | - Akitoshi Mitani
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
| | - Kensuke Suzuki
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
| | - Akira Kanda
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
- Allergy Center, Kansai Medical University Hospital, Osaka 573-1010, Japan
| | - Hiroshi Iwai
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
| |
Collapse
|
4
|
Antoniu S, Rascu S. Protein phosphatase 2A activators under investigation for smoking-related chronic obstructive pulmonary disease and related disorders. Expert Opin Investig Drugs 2024; 33:1135-1142. [PMID: 39394816 DOI: 10.1080/13543784.2024.2416982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/14/2024]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is characterized by progressive inflammation during therapy. Cystic fibrosis (CF), alpha-one antitrypsin deficiency (AATD), and non-CF bronchiectasis are also chronic respiratory disorders with inflammation and progression that share many similarities with COPD. Therefore, various anti-inflammatory approaches are currently being investigated, and protein phosphatase 2A (PP2A) activators may represent one such approach. AREAS COVERED Systematic review of papers published from 2000-to date on the anti-inflammatory role of endogenous PP2A, the consequences of its inhibition by smoking, and the beneficial effects of its activation in COPD. EXPERT OPINION PP2A activation is a plausible therapeutic approach in COPD and related disorders, such as CF, AATD, and non-CF bronchiectasis, although the available evidence is still mostly experimental. Metformin repurposing and consideration of inhalation for some of the molecules discussed in this study are promising approaches.
Collapse
Affiliation(s)
- Sabina Antoniu
- Department Medicine II/Nursing, University of Medicine and Pharmacy, Grigore T Popa Iasi, Iasi, Romania
| | - Setfan Rascu
- Faculty of Medicine, 3rd Department, University of Medicine and Pharmacy, Carol Davila Bucuresti, Bucuresti, Romania
| |
Collapse
|
5
|
Hassan M, Yasir M, Shahzadi S, Chun W, Kloczkowski A. Molecular Role of Protein Phosphatases in Alzheimer's and Other Neurodegenerative Diseases. Biomedicines 2024; 12:1097. [PMID: 38791058 PMCID: PMC11117500 DOI: 10.3390/biomedicines12051097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Alzheimer's disease (AD) is distinguished by the gradual loss of cognitive function, which is associated with neuronal loss and death. Accumulating evidence supports that protein phosphatases (PPs; PP1, PP2A, PP2B, PP4, PP5, PP6, and PP7) are directly linked with amyloid beta (Aβ) as well as the formation of the neurofibrillary tangles (NFTs) causing AD. Published data reported lower PP1 and PP2A activity in both gray and white matters in AD brains than in the controls, which clearly shows that dysfunctional phosphatases play a significant role in AD. Moreover, PP2A is also a major causing factor of AD through the deregulation of the tau protein. Here, we review recent advances on the role of protein phosphatases in the pathology of AD and other neurodegenerative diseases. A better understanding of this problem may lead to the development of phosphatase-targeted therapies for neurodegenerative disorders in the near future.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Reza MI, Kumar A, Pabelick CM, Britt RD, Prakash YS, Sathish V. Downregulation of protein phosphatase 2Aα in asthmatic airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2024; 326:L651-L659. [PMID: 38529552 PMCID: PMC11380972 DOI: 10.1152/ajplung.00050.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
Airway smooth muscle cell (ASM) is renowned for its involvement in airway hyperresponsiveness through impaired ASM relaxation and bronchoconstriction in asthma, which poses a significant challenge in the field. Recent studies have explored different targets in ASM to alleviate airway hyperresponsiveness, however, a sizeable portion of patients with asthma still experience poor control. In our study, we explored protein phosphatase 2 A (PP2A) in ASM as it has been reported to regulate cellular contractility by controlling intracellular calcium ([Ca2+]i), ion channels, and respective regulatory proteins. We obtained human ASM cells and lung tissues from healthy and patients with asthma and evaluated PP2A expression using RNA-Seq data, immunofluorescence, and immunoblotting. We further investigated the functional importance of PP2A by determining its role in bronchoconstriction using mouse bronchus and human ASM cell [Ca2+]i regulation. We found robust expression of PP2A isoforms in human ASM cells with PP2Aα being highly expressed. Interestingly, PP2Aα was significantly downregulated in asthmatic tissue and human ASM cells exposed to proinflammatory cytokines. Functionally, FTY720 (PP2A agonist) inhibited acetylcholine- or methacholine-induced bronchial contraction in mouse bronchus and further potentiated isoproterenol-induced bronchial relaxation. Mechanistically, FTY720 inhibited histamine-evoked [Ca2+]i response and myosin light chain (MLC) phosphorylation in the presence of interleukin-13 (IL-13) in human ASM cells. To conclude, we for the first time established PP2A signaling in ASM, which can be further explored to develop novel therapeutics to alleviate airway hyperresponsiveness in asthma.NEW & NOTEWORTHY This novel study deciphered the expression and function of protein phosphatase 2Aα (PP2Aα) in airway smooth muscle (ASM) during asthma and/or inflammation. We showed robust expression of PP2Aα in human ASM while its downregulation in asthmatic ASM. Similarly, we demonstrated reduced PP2Aα expression in ASM exposed to proinflammatory cytokines. PP2Aα activation inhibited bronchoconstriction of isolated mouse bronchi. In addition, we unveiled that PP2Aα activation inhibits the intracellular calcium release and myosin light chain phosphorylation in human ASM.
Collapse
Affiliation(s)
- Mohammad Irshad Reza
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Ashish Kumar
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Rodney D Britt
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States
| |
Collapse
|
7
|
Kobayashi Y, Chu HH, Bui DV, Yun Y, Nguyen LM, Mitani A, Suzuki K, Asako M, Kanda A, Iwai H. The Neutralization of the Eosinophil Peroxidase Antibody Accelerates Eosinophilic Mucin Decomposition. Cells 2023; 12:2746. [PMID: 38067174 PMCID: PMC10706369 DOI: 10.3390/cells12232746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Eosinophilic airway inflammation, complicated by bronchial asthma and eosinophilic chronic rhinosinusitis (ECRS), is difficult to treat. The disease may become refractory when eosinophilic mucin associated with eosinophil peroxidase (EPX) and autoantibodies fills in the paranasal sinus and small airway. This study investigated the functional role of an anti-EPX antibody in eosinophilic mucin of ECRS in eosinophilic airway inflammation. Eosinophilic mucin was obtained from patients with ECRS. The effects of the anti-EPX antibody on dsDNA release from eosinophils and eosinophilic mucin decomposition were evaluated. Immunofluorescence or enzyme-linked immunosorbent assays were performed to detect the anti-EPX antibody and its supernatant and serum levels in eosinophilic mucin, respectively. The serum levels of the anti-EPX antibody were positively correlated with sinus computed tomography score and fractionated exhaled nitrogen oxide. Patients with refractory ECRS had higher serum levels of the anti-EPX antibody than those without. However, dupilumab treatment decreased the serum levels of the anti-EPX antibody. Immunoglobulins (Igs) in the immunoprecipitate of mucin supernatants enhanced dsDNA release from eosinophils, whereas the neutralization of Igs against EPX stopped dsDNA release. Furthermore, EPX antibody neutralization accelerated mucin decomposition and restored corticosteroid sensitivity. Taken together, the anti-EPX antibody may be involved in the formulation of eosinophilic mucin and be used as a clinical marker and therapeutic target for intractable eosinophilic airway inflammation.
Collapse
Affiliation(s)
- Yoshiki Kobayashi
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Osaka 573-1010, Japan; (H.H.C.); (D.V.B.); (Y.Y.); (L.M.N.); (A.M.); (K.S.); (M.A.); (A.K.); (H.I.)
- Allergy Center, Kansai Medical University Hospital, Osaka 573-1010, Japan
| | - Hanh Hong Chu
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Osaka 573-1010, Japan; (H.H.C.); (D.V.B.); (Y.Y.); (L.M.N.); (A.M.); (K.S.); (M.A.); (A.K.); (H.I.)
| | - Dan Van Bui
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Osaka 573-1010, Japan; (H.H.C.); (D.V.B.); (Y.Y.); (L.M.N.); (A.M.); (K.S.); (M.A.); (A.K.); (H.I.)
| | - Yasutaka Yun
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Osaka 573-1010, Japan; (H.H.C.); (D.V.B.); (Y.Y.); (L.M.N.); (A.M.); (K.S.); (M.A.); (A.K.); (H.I.)
- Allergy Center, Kansai Medical University Hospital, Osaka 573-1010, Japan
| | - Linh Manh Nguyen
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Osaka 573-1010, Japan; (H.H.C.); (D.V.B.); (Y.Y.); (L.M.N.); (A.M.); (K.S.); (M.A.); (A.K.); (H.I.)
| | - Akitoshi Mitani
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Osaka 573-1010, Japan; (H.H.C.); (D.V.B.); (Y.Y.); (L.M.N.); (A.M.); (K.S.); (M.A.); (A.K.); (H.I.)
| | - Kensuke Suzuki
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Osaka 573-1010, Japan; (H.H.C.); (D.V.B.); (Y.Y.); (L.M.N.); (A.M.); (K.S.); (M.A.); (A.K.); (H.I.)
| | - Mikiya Asako
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Osaka 573-1010, Japan; (H.H.C.); (D.V.B.); (Y.Y.); (L.M.N.); (A.M.); (K.S.); (M.A.); (A.K.); (H.I.)
- Allergy Center, Kansai Medical University Hospital, Osaka 573-1010, Japan
| | - Akira Kanda
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Osaka 573-1010, Japan; (H.H.C.); (D.V.B.); (Y.Y.); (L.M.N.); (A.M.); (K.S.); (M.A.); (A.K.); (H.I.)
- Allergy Center, Kansai Medical University Hospital, Osaka 573-1010, Japan
| | - Hiroshi Iwai
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Osaka 573-1010, Japan; (H.H.C.); (D.V.B.); (Y.Y.); (L.M.N.); (A.M.); (K.S.); (M.A.); (A.K.); (H.I.)
| |
Collapse
|
8
|
Pillai M, Lafortune P, Dabo A, Yu H, Park SS, Taluru H, Ahmed H, Bobrow D, Sattar Z, Jundi B, Reece J, Ortega RR, Soto B, Yewedalsew S, Foronjy R, Wyman A, Geraghty P, Ohlmeyer M. Small-Molecule Activation of Protein Phosphatase 2A Counters Bleomycin-Induced Fibrosis in Mice. ACS Pharmacol Transl Sci 2023; 6:1659-1672. [PMID: 37974628 PMCID: PMC10644462 DOI: 10.1021/acsptsci.3c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 11/19/2023]
Abstract
The activity of protein phosphatase 2A (PP2A), a serine-threonine phosphatase, is reduced in the lung fibroblasts of idiopathic pulmonary fibrosis (IPF) patients. The objective of this study was to determine whether the reactivation of PP2A could reduce fibrosis and preserve the pulmonary function in a bleomycin (BLM) mouse model. Here, we present a new class of direct small-molecule PP2A activators, diarylmethyl-pyran-sulfonamide, exemplified by ATUX-1215. ATUX-1215 has improved metabolic stability and bioavailability compared to our previously described PP2A activators. Primary human lung fibroblasts were exposed to ATUX-1215 and an older generation PP2A activator in combination with TGFβ. ATUX-1215 treatment enhanced the PP2A activity, reduced the phosphorylation of ERK and JNK, and reduced the TGFβ-induced expression of ACTA2, FN1, COL1A1, and COL3A1. C57BL/6J mice were administered 5 mg/kg ATUX-1215 daily following intratracheal instillation of BLM. Three weeks later, forced oscillation and expiratory measurements were performed using the Scireq Flexivent System. ATUX-1215 prevented BLM-induced lung physiology changes, including the preservation of normal PV loop, compliance, tissue elastance, and forced vital capacity. PP2A activity was enhanced with ATUX-1215 and reduced collagen deposition within the lungs. ATUX-1215 also prevented the BLM induction of Acta2, Ccn2, and Fn1 gene expression. Treatment with ATUX-1215 reduced the phosphorylation of ERK, p38, JNK, and Akt and the secretion of IL-12p70, GM-CSF, and IL1α in BLM-treated animals. Delayed treatment with ATUX-1215 was also observed to slow the progression of lung fibrosis. In conclusion, our study indicates that the decrease in PP2A activity, which occurs in fibroblasts from the lungs of IPF subjects, could be restored with ATUX-1215 administration as an antifibrotic agent.
Collapse
Affiliation(s)
- Meshach Pillai
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Pascale Lafortune
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Abdoulaye Dabo
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Howard Yu
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Sangmi S. Park
- Department
of Cell Biology, The State University of
New York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Harsha Taluru
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Huma Ahmed
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Dylan Bobrow
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Zeeshan Sattar
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Bakr Jundi
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Joshua Reece
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Romy Rodriguez Ortega
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Brian Soto
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Selome Yewedalsew
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Robert Foronjy
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Anne Wyman
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Patrick Geraghty
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
- Department
of Cell Biology, The State University of
New York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | | |
Collapse
|
9
|
Soto B, Ahmed H, Pillai M, Park SS, Ploszaj M, Reece J, Taluru H, Bobrow D, Yu H, Lafortune P, Jundi B, Costanzo L, Dabo AJ, Foronjy RF, Mueller C, Ohlmeyer M, Geraghty P. Evaluating Novel Protein Phosphatase 2A Activators as Therapeutics for Emphysema. Am J Respir Cell Mol Biol 2023; 69:533-544. [PMID: 37526463 PMCID: PMC10633843 DOI: 10.1165/rcmb.2023-0105oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023] Open
Abstract
The activity of PP2A (protein phosphatase 2A), a serine-threonine phosphatase, is reduced by chronic cigarette smoke (SM) exposure and α-1 antitrypsin (AAT) deficiency, and chemical activation of PP2A reduces the loss of lung function in SM-exposed mice. However, the previously studied PP2A-activator tricyclic sulfonamide compound DBK-1154 has low stability to oxidative metabolism, resulting in fast clearance and low systemic exposure. Here we compare the utility of a new more stable PP2A activator, ATUX-792, versus DBK-1154 for the treatment of SM-induced emphysema. ATUX-792 was also tested in human bronchial epithelial cells and a mouse model of AAT deficiency, Serpina1a-e-knockout mice. Human bronchial epithelial cells were treated with ATUX-792 or DBK-1154, and cell viability, PP2A activity, and MAP (mitogen-activated protein) kinase phosphorylation status were examined. Wild-type mice received vehicle, DBK-1154, or ATUX-792 orally in the last 2 months of 4 months of SM exposure, and 8-month-old Serpina1a-e-knockout mice received ATUX-792 daily for 4 months. Forced oscillation and expiratory measurements and histology analysis were performed. Treatment with ATUX-792 or DBK-1154 resulted in PP2A activation, reduced MAP kinase phosphorylation, immune cell infiltration, reduced airspace enlargements, and preserved lung function. Using protein arrays and multiplex assays, PP2A activation was observed to reduce AAT-deficient and SM-induced release of CXCL5, CCL17, and CXCL16 into the airways, which coincided with reduced neutrophil lung infiltration. Our study indicates that suppression of the PP2A activity in two models of emphysema could be restored by next-generation PP2A activators to impact lung function.
Collapse
Affiliation(s)
| | | | | | - Sangmi S Park
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York
| | | | | | | | | | | | | | | | | | - Abdoulaye J Dabo
- Department of Medicine and
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York
| | - Robert F Foronjy
- Department of Medicine and
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York
| | - Christian Mueller
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
- Cummings School of Veterinary Medicine, Tufts University, Grafton, Massachusetts; and
| | | | - Patrick Geraghty
- Department of Medicine and
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York
| |
Collapse
|
10
|
Yu H, Zaveri S, Sattar Z, Schaible M, Perez Gandara B, Uddin A, McGarvey LR, Ohlmeyer M, Geraghty P. Protein Phosphatase 2A as a Therapeutic Target in Pulmonary Diseases. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1552. [PMID: 37763671 PMCID: PMC10535831 DOI: 10.3390/medicina59091552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
New disease targets and medicinal chemistry approaches are urgently needed to develop novel therapeutic strategies for treating pulmonary diseases. Emerging evidence suggests that reduced activity of protein phosphatase 2A (PP2A), a complex heterotrimeric enzyme that regulates dephosphorylation of serine and threonine residues from many proteins, is observed in multiple pulmonary diseases, including lung cancer, smoke-induced chronic obstructive pulmonary disease, alpha-1 antitrypsin deficiency, asthma, and idiopathic pulmonary fibrosis. Loss of PP2A responses is linked to many mechanisms associated with disease progressions, such as senescence, proliferation, inflammation, corticosteroid resistance, enhanced protease responses, and mRNA stability. Therefore, chemical restoration of PP2A may represent a novel treatment for these diseases. This review outlines the potential impact of reduced PP2A activity in pulmonary diseases, endogenous and exogenous inhibitors of PP2A, details the possible PP2A-dependent mechanisms observed in these conditions, and outlines potential therapeutic strategies for treatment. Substantial medicinal chemistry efforts are underway to develop therapeutics targeting PP2A activity. The development of specific activators of PP2A that selectively target PP2A holoenzymes could improve our understanding of the function of PP2A in pulmonary diseases. This may lead to the development of therapeutics for restoring normal PP2A responses within the lung.
Collapse
Affiliation(s)
- Howard Yu
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Sahil Zaveri
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Zeeshan Sattar
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Michael Schaible
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Brais Perez Gandara
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Anwar Uddin
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Lucas R. McGarvey
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | | | - Patrick Geraghty
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| |
Collapse
|
11
|
Milara J, Morell A, Roger I, Montero P, Cortijo J. Mechanisms underlying corticosteroid resistance in patients with asthma: a review of current knowledge. Expert Rev Respir Med 2023; 17:701-715. [PMID: 37658478 DOI: 10.1080/17476348.2023.2255124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/03/2023]
Abstract
INTRODUCTION Corticosteroids are the most cost-effective anti-inflammatory drugs available for the treatment of asthma. Despite their effectiveness, several asthmatic patients have corticosteroid resistance or insensitivity and exhibit a poor response. Corticosteroid insensitivity implies a poor prognosis due to challenges in finding alternative therapeutic options for asthma. AREAS COVERED In this review, we describe asthma phenotypes and endotypes, as well as their differential responsiveness to corticosteroids. In addition, we describe the mechanism of action of corticosteroids underlying their regulation of the expression of glucocorticoid receptors (GRs) and their anti-inflammatory effects. Furthermore, we summarize the mechanistic evidence underlying corticosteroid-insensitive asthma, which is mainly related to changes in GR gene expression, structure, and post-transcriptional modifications. Finally, various pharmacological strategies designed to reverse corticosteroid insensitivity are discussed. EXPERT OPINION Corticosteroid insensitivity is influenced by the asthma phenotype, endotype, and severity, and serves as an indication for biological therapy. The molecular mechanisms underlying corticosteroid-insensitive asthma have been used to develop targeted therapeutic strategies. However, the lack of clinical trials prevents the clinical application of these treatments.
Collapse
Affiliation(s)
- Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy department, University General Hospital of Valencia, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Anselm Morell
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Inés Roger
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy department, University General Hospital of Valencia, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
| |
Collapse
|
12
|
Matsumura Y. Inadequate therapeutic responses to glucocorticoid treatment in bronchial asthma. J Int Med Res 2023; 51:3000605231175746. [PMID: 37296513 DOI: 10.1177/03000605231175746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023] Open
Abstract
Bronchial asthma (BA) is a heterogeneous disease. Some patients benefit greatly from glucocorticoid (GC) treatment, whereas others are non-responders. This could be attributable to differences in pathobiology. Thus, predicting the responses to GC treatment in patients with BA is necessary to increase the success rates of GC therapy and avoid adverse effects. The sustained inflammation in BA decreases glucocorticoid receptor (GR, NR3C1) function. Meanwhile, GRβ overexpression might contribute to GC resistance. Important factors in decreased GR function include p38 mitogen-activated protein kinase-dependent GR phosphorylated at Ser226, reduced expression of histone deacetylase 2 following activation of the phosphatidylinositol 3-kinase-δ signaling pathway, and increased nuclear factor-kappa B activity. MicroRNAs, which are involved in GC sensitivity, are considered biomarkers of the response to inhaled GCs. Some studies revealed that inflammatory phenotypes and disease-related modifiable factors, including infections, the airway microbiome, mental stress, smoking, and obesity, regulate individual sensitivity to GCs. Therefore, future investigations are warranted to improve treatment outcomes.
Collapse
Affiliation(s)
- Yasuhiro Matsumura
- Department of Internal Medicine, Sasaki Foundation Kyoundo Hospital, Tokyo, Japan
| |
Collapse
|
13
|
He LX, Yang L, Liu T, Li YN, Huang TX, Zhang LL, Luo J, Liu CT. Group 3 innate lymphoid cells secret neutrophil chemoattractants and are insensitive to glucocorticoid via aberrant GR phosphorylation. Respir Res 2023; 24:90. [PMID: 36949482 PMCID: PMC10033286 DOI: 10.1186/s12931-023-02395-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Patients with neutrophil-mediated asthma have poor response to glucocorticoids. The roles and mechanisms of group 3 innate lymphoid cells (ILC3s) in inducing neutrophilic airway inflammation and glucocorticoid resistance in asthma have not been fully clarified. METHODS ILC3s in peripheral blood were measured by flow cytometry in patients with eosinophilic asthma (EA) and non-eosinophilic asthma (NEA). ILC3s were sorted and cultured in vitro for RNA sequencing. Cytokines production and signaling pathways in ILC3s after IL-1β stimulation and dexamethasone treatment were determined by real-time PCR, flow cytometry, ELISA and western blot. RESULTS The percentage and numbers of ILC3s in peripheral blood was higher in patients with NEA compared with EA, and negatively correlated with blood eosinophils. IL-1β stimulation significantly enhanced CXCL8 and CXCL1 production in ILC3s via activation of p65 NF-κB and p38/JNK MAPK signaling pathways. The expression of neutrophil chemoattractants from ILC3s was insensitive to dexamethasone treatment. Dexamethasone significantly increased phosphorylation of glucocorticoid receptor (GR) at Ser226 but only with a weak induction at Ser211 residues in ILC3s. Compared to human bronchial epithelial cell line (16HBE cells), the ratio of p-GR S226 to p-GR S211 (p-GR S226/S211) was significantly higher in ILC3s at baseline and after dexamethasone treatment. In addition, IL-1β could induce Ser226 phosphorylation and had a crosstalk effect to dexamethasone via NF-κB pathway. CONCLUSIONS ILC3s were elevated in patients with NEA, and associated with neutrophil inflammation by release of neutrophil chemoattractants and were glucocorticoid (GC) resistant. This paper provides a novel cellular and molecular mechanisms of neutrophil inflammation and GC-resistance in asthma. Trial registration The study has been prospectively registered in the World Health Organization International Clinical Trials Registry Platform (ChiCTR1900027125).
Collapse
Affiliation(s)
- Li Xiu He
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, China
| | - Ling Yang
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yi Na Li
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Xuan Huang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lan Lan Zhang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jian Luo
- Respiratory Medicine Unit and National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Nuffield Department of Medicine, Experimental Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| | - Chun Tao Liu
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Huang H, Wang W. Molecular mechanisms of glucocorticoid resistance. Eur J Clin Invest 2023; 53:e13901. [PMID: 36346177 DOI: 10.1111/eci.13901] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND As a powerful anti-inflammatory, immunosuppressive, and antiproliferative drug, glucocorticoid (GC) plays an important role in the treatment of various diseases. However, some patients may experience glucocorticoid resistance (GCR) in clinical, and its molecular mechanism have not been determined. METHODS The authors performed a review of the literature on GCR focusing on mutations in the NR3C1 gene and impaired glucocorticoid receptor (GR) signalling, using METSTR (2000 through May 2022) to identify original articles and reviews on this topic. The search terms included 'glucocorticoid resistance/insensitive', 'steroid resistance/insensitive', 'NR3C1', and 'glucocorticoid receptor'. RESULTS Primary GCR is mainly caused by NR3C1 gene mutation, and 31 NR3C1 gene mutations have been reported so far. Secondary GCR is caused by impaired GC signalling pathways, including decreased expression of GR, impaired nuclear translocation of GR, and impaired binding of GR to GC and GR to target genes. However, the current research is more on the expression level of GR, and there are relatively few studies on other mechanisms. In addition, methods for improving GC sensitivity are rarely reported. CONCLUSION The molecular mechanisms of GCR are complex and may differ in different diseases or different patients. In future studies, when exploring the mechanism of GCR, methods to improve GC sensitivity should also be investigated.
Collapse
Affiliation(s)
- Huanming Huang
- The Fourth Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, China
| | - Wenqing Wang
- The Fourth Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
15
|
Glucocorticoid Insensitivity in Asthma: The Unique Role for Airway Smooth Muscle Cells. Int J Mol Sci 2022; 23:ijms23168966. [PMID: 36012240 PMCID: PMC9408965 DOI: 10.3390/ijms23168966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Although most patients with asthma symptoms are well controlled by inhaled glucocorticoids (GCs), a subgroup of patients suffering from severe asthma respond poorly to GC therapy. Such GC insensitivity (GCI) represents a profound challenge in managing patients with asthma. Even though GCI in patients with severe asthma has been investigated by several groups using immune cells (peripheral blood mononuclear cells and alveolar macrophages), uncertainty exists regarding the underlying molecular mechanisms in non-immune cells, such as airway smooth cells (ASM) cells. In asthma, ASM cells are among the targets of GC therapy and have emerged as key contributors not only to bronchoconstriction but also to airway inflammation and remodeling, as implied by experimental and clinical evidence. We here summarize the current understanding of the actions/signaling of GCs in asthma, and specifically, GC receptor (GR) “site-specific phosphorylation” and its role in regulating GC actions. We also review some common pitfalls associated with studies investigating GCI and the inflammatory mediators linked to asthma severity. Finally, we discuss and contrast potential molecular mechanisms underlying the impairment of GC actions in immune cells versus non-immune cells such as ASM cells.
Collapse
|
16
|
Pan J, Zhou L, Zhang C, Xu Q, Sun Y. Targeting protein phosphatases for the treatment of inflammation-related diseases: From signaling to therapy. Signal Transduct Target Ther 2022; 7:177. [PMID: 35665742 PMCID: PMC9166240 DOI: 10.1038/s41392-022-01038-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammation is the common pathological basis of autoimmune diseases, metabolic diseases, malignant tumors, and other major chronic diseases. Inflammation plays an important role in tissue homeostasis. On one hand, inflammation can sense changes in the tissue environment, induce imbalance of tissue homeostasis, and cause tissue damage. On the other hand, inflammation can also initiate tissue damage repair and maintain normal tissue function by resolving injury and restoring homeostasis. These opposing functions emphasize the significance of accurate regulation of inflammatory homeostasis to ameliorate inflammation-related diseases. Potential mechanisms involve protein phosphorylation modifications by kinases and phosphatases, which have a crucial role in inflammatory homeostasis. The mechanisms by which many kinases resolve inflammation have been well reviewed, whereas a systematic summary of the functions of protein phosphatases in regulating inflammatory homeostasis is lacking. The molecular knowledge of protein phosphatases, and especially the unique biochemical traits of each family member, will be of critical importance for developing drugs that target phosphatases. Here, we provide a comprehensive summary of the structure, the "double-edged sword" function, and the extensive signaling pathways of all protein phosphatases in inflammation-related diseases, as well as their potential inhibitors or activators that can be used in therapeutic interventions in preclinical or clinical trials. We provide an integrated perspective on the current understanding of all the protein phosphatases associated with inflammation-related diseases, with the aim of facilitating the development of drugs that target protein phosphatases for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Jie Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Lisha Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Chenyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
17
|
Oxidative Stress Promotes Corticosteroid Insensitivity in Asthma and COPD. Antioxidants (Basel) 2021; 10:antiox10091335. [PMID: 34572965 PMCID: PMC8471691 DOI: 10.3390/antiox10091335] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Corticosteroid insensitivity is a key characteristic of patients with severe asthma and COPD. These individuals experience greater pulmonary oxidative stress and inflammation, which contribute to diminished lung function and frequent exacerbations despite the often and prolonged use of systemic, high dose corticosteroids. Reactive oxygen and nitrogen species (RONS) promote corticosteroid insensitivity by disrupting glucocorticoid receptor (GR) signaling, leading to the sustained activation of pro-inflammatory pathways in immune and airway structural cells. Studies in asthma and COPD models suggest that corticosteroids need a balanced redox environment to be effective and to reduce airway inflammation. In this review, we discuss how oxidative stress contributes to corticosteroid insensitivity and the importance of optimizing endogenous antioxidant responses to enhance corticosteroid sensitivity. Future studies should aim to identify how antioxidant-based therapies can complement corticosteroids to reduce the need for prolonged high dose regimens in patients with severe asthma and COPD.
Collapse
|
18
|
Kobayashi Y, Kanda A, Bui DV, Yun Y, Nguyen LM, Chu HH, Mitani A, Suzuki K, Asako M, Iwai H. Omalizumab Restores Response to Corticosteroids in Patients with Eosinophilic Chronic Rhinosinusitis and Severe Asthma. Biomedicines 2021; 9:biomedicines9070787. [PMID: 34356851 PMCID: PMC8301363 DOI: 10.3390/biomedicines9070787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
Eosinophilic chronic rhinosinusitis (ECRS), which is a subgroup of chronic rhinosinusitis with nasal polyps, is characterized by eosinophilic airway inflammation extending across both the upper and lower airways. Some severe cases are refractory even after endoscopic sinus surgery, likely because of local steroid insensitivity. Although real-life studies indicate that treatment with omalizumab for severe allergic asthma improves the outcome of coexistent ECRS, the underlying mechanisms of omalizumab in eosinophilic airway inflammation have not been fully elucidated. Twenty-five patients with ECRS and severe asthma who were refractory to conventional treatments and who received omalizumab were evaluated. Nineteen of twenty-five patients were responsive to omalizumab according to physician-assessed global evaluation of treatment effectiveness. In the responders, the levels of peripheral blood eosinophils and fractionated exhaled nitric oxide (a marker of eosinophilic inflammation) and of CCL4 and soluble CD69 (markers of eosinophil activation) were reduced concomitantly with the restoration of corticosteroid sensitivity. Omalizumab restored the eosinophil-peroxidase-mediated PP2A inactivation and steroid insensitivity in BEAS-2B. In addition, the local inflammation simulant model using BEAS-2B cells incubated with diluted serum from each patient confirmed omalizumab’s effects on restoration of corticosteroid sensitivity via PP2A activation; thus, omalizumab could be a promising therapeutic option for refractory eosinophilic airway inflammation with corticosteroid resistance.
Collapse
Affiliation(s)
- Yoshiki Kobayashi
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (A.K.); (D.V.B.); (Y.Y.); (L.M.N.); (H.H.C.); (A.M.); (K.S.); (M.A.); (H.I.)
- Allergy Center, Kansai Medical University Hospital, Hirakata, Osaka 573-1010, Japan
- Correspondence: ; Tel.: +81-72-804-2463
| | - Akira Kanda
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (A.K.); (D.V.B.); (Y.Y.); (L.M.N.); (H.H.C.); (A.M.); (K.S.); (M.A.); (H.I.)
- Allergy Center, Kansai Medical University Hospital, Hirakata, Osaka 573-1010, Japan
| | - Dan Van Bui
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (A.K.); (D.V.B.); (Y.Y.); (L.M.N.); (H.H.C.); (A.M.); (K.S.); (M.A.); (H.I.)
| | - Yasutaka Yun
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (A.K.); (D.V.B.); (Y.Y.); (L.M.N.); (H.H.C.); (A.M.); (K.S.); (M.A.); (H.I.)
| | - Linh Manh Nguyen
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (A.K.); (D.V.B.); (Y.Y.); (L.M.N.); (H.H.C.); (A.M.); (K.S.); (M.A.); (H.I.)
| | - Hanh Hong Chu
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (A.K.); (D.V.B.); (Y.Y.); (L.M.N.); (H.H.C.); (A.M.); (K.S.); (M.A.); (H.I.)
| | - Akitoshi Mitani
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (A.K.); (D.V.B.); (Y.Y.); (L.M.N.); (H.H.C.); (A.M.); (K.S.); (M.A.); (H.I.)
| | - Kensuke Suzuki
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (A.K.); (D.V.B.); (Y.Y.); (L.M.N.); (H.H.C.); (A.M.); (K.S.); (M.A.); (H.I.)
| | - Mikiya Asako
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (A.K.); (D.V.B.); (Y.Y.); (L.M.N.); (H.H.C.); (A.M.); (K.S.); (M.A.); (H.I.)
- Allergy Center, Kansai Medical University Hospital, Hirakata, Osaka 573-1010, Japan
| | - Hiroshi Iwai
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (A.K.); (D.V.B.); (Y.Y.); (L.M.N.); (H.H.C.); (A.M.); (K.S.); (M.A.); (H.I.)
| |
Collapse
|
19
|
Suzuki M, Suzuki T, Watanabe M, Hatakeyama S, Kimura S, Nakazono A, Honma A, Nakamaru Y, Vreugde S, Homma A. Role of intracellular zinc in molecular and cellular function in allergic inflammatory diseases. Allergol Int 2021; 70:190-200. [PMID: 33127267 DOI: 10.1016/j.alit.2020.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Zinc is an essential micronutrient in human body and a vital cofactor for the function of numerous proteins encoded by the human genome. Zinc has a critical role in maintaining many biochemical and physiological processes at the molecular, cellular, and multiple organ and systemic levels. The alteration of zinc homeostasis causes dysfunction of many organs and systems. In the immune system, zinc regulates the differentiation, proliferation and function of inflammatory cells, including T cells, eosinophils, and B cells, by modifying several signaling pathways such as NFκB signaling pathways and TCR signals. An adequate zinc level is essential for proper immune responses and decreased zinc levels were reported in many allergic inflammatory diseases, including atopic dermatitis, bronchial asthma, and chronic rhinosinusitis. Decreased zinc levels often enhance inflammatory activation. On the other hand, the inflammatory conditions alter the intracellular homeostasis of zinc, often decreasing zinc levels. These findings implied that there could be a vicious cycle between zinc deficiency and inflammatory conditions. In this review, we present recent evidence on the involvement of zinc in atopic dermatitis, bronchial asthma, and chronic rhinosinusitis, with insights into the involvement of zinc in the underlying molecular and cellular mechanisms related to these allergic inflammatory diseases.
Collapse
Affiliation(s)
- Masanobu Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan; Department of Surgery-Otorhinolaryngology Head and Neck Surgery, The Queen Elizabeth Hospital, The University of Adelaide, Australia
| | - Takayoshi Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Masashi Watanabe
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Shogo Kimura
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Akira Nakazono
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Aya Honma
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Yuji Nakamaru
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan.
| | - Sarah Vreugde
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, The Queen Elizabeth Hospital, The University of Adelaide, Australia
| | - Akihiro Homma
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
20
|
Mazhar S, Leonard D, Sosa A, Schlatzer D, Thomas D, Narla G. Challenges and Reinterpretation of Antibody-Based Research on Phosphorylation of Tyr 307 on PP2Ac. Cell Rep 2021; 30:3164-3170.e3. [PMID: 32130915 DOI: 10.1016/j.celrep.2020.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/20/2019] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Aberrant hyperphosphorylation of the protein phosphatase 2A catalytic subunit (PP2Ac) at Tyr307 has been associated with aggressive disease and poor clinical outcome in multiple cancers. However, the study of reversible phosphorylation at this site has relied entirely upon the use of antibodies-most prominently, the clone E155. Here, we provide evidence that the E155 and F-8 phospho-Tyr307 antibodies cannot differentiate between phosphorylated and unphosphorylated forms of PP2Ac. The form of PP2Ac bound by these antibodies in H358 cells is unphosphorylated at the C-terminal tail. Furthermore, these antibodies are sensitive to additional protein modifications that occur near Tyr307, including Thr304 phosphorylation and Leu309 methylation, when these post-translational modifications are present. Thus, studies that used these antibodies to report PP2Ac hyperphosphorylation require reinterpretation, as these antibodies cannot be reliably used as readouts for a single PP2Ac post-translational modification (PTM) change.
Collapse
Affiliation(s)
- Sahar Mazhar
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Daniel Leonard
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alejandro Sosa
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Daniela Schlatzer
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Dafydd Thomas
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
21
|
Patt M, Gysi J, Faresse N, Cidlowski JA, Odermatt A. Protein phosphatase 1 alpha enhances glucocorticoid receptor activity by a mechanism involving phosphorylation of serine-211. Mol Cell Endocrinol 2020; 518:110873. [PMID: 32585168 PMCID: PMC7606615 DOI: 10.1016/j.mce.2020.110873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/17/2020] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
Abstract
By acting as a ligand-dependent transcription factor the glucocorticoid receptor (GR) mediates the actions of glucocorticoids and regulates many physiological processes. An impaired regulation of glucocorticoid action has been associated with numerous disorders. Thus, the elucidation of underlying signaling pathways is essential to understand mechanisms of disrupted glucocorticoid function and contribution to diseases. This study found increased GR transcriptional activity upon overexpression of protein phosphatase 1 alpha (PP1α) in HEK-293 cells and decreased expression levels of GR-responsive genes following PP1α knockdown in the endogenous A549 cell model. Mechanistic investigations revealed reduced phosphorylation of GR-Ser211 following PP1α silencing and provided a first indication for an involvement of glycogen synthase kinase 3 (GSK-3). Thus, the present study identified PP1α as a novel post-translational activator of GR signaling, suggesting that disruption of PP1α function could lead to impaired glucocorticoid action and thereby contribute to diseases.
Collapse
Affiliation(s)
- Melanie Patt
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055, Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | - Joël Gysi
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | | | - John A Cidlowski
- Signal Transduction Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA.
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055, Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| |
Collapse
|
22
|
Cazzola M, Rogliani P, Calzetta L, Matera MG. Pharmacogenomic Response of Inhaled Corticosteroids for the Treatment of Asthma: Considerations for Therapy. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:261-271. [PMID: 32801837 PMCID: PMC7414974 DOI: 10.2147/pgpm.s231471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
There is a large interindividual variability in response to ICSs in asthma. About 70% of the variance in ICS response is likely due at least partially to genetically determined characteristics of target genes. In this article, we examine the effects on the ICS response of gene variations in the corticosteroid pathway, and in the pharmacokinetics of corticosteroids, and also those outside the corticosteroid pathway, which have the potential to influence corticosteroid activity. Although the available evidence indicates that responses to ICSs in asthma are influenced by different genetic variants, there are still deep uncertainties as to whether a real association between these genetic variants and corticosteroid response could also possibly exist because there are difficulties in reproducing pharmacogenetic findings. This explains at least partly the insufficient use of pharmacogenomic data when treating asthmatic patients, which creates a real limitation to the proper use of ICSs in an era of precision medicine that links the right patient to the right treatment. Knowing and dealing with the genetic factors that influence the therapeutic ICS response is a fundamental condition for prescribing the right dose of ICS to the right patient at the right time.
Collapse
Affiliation(s)
- Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Luigino Calzetta
- Unit of Respiratory Disease and Lung Function, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
23
|
Wu D, Gu B, Qian Y, Sun Y, Chen Y, Mao ZD, Shi YJ, Zhang Q. Long non-coding RNA growth arrest specific-5: a potential biomarker for early diagnosis of severe asthma. J Thorac Dis 2020; 12:1960-1971. [PMID: 32642099 PMCID: PMC7330345 DOI: 10.21037/jtd-20-213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The diagnosis of severe asthma (SA) is difficult due to a necessary long-term treatment history currently, while there are few studies on biomarkers in the diagnosis of SA. Long non-coding RNA (lncRNA) growth arrest specific-5 (GAS5) has the potential of playing this role because its binding with glucocorticoid receptor (GR). The purpose of this article is to explore the possibility of lncRNA GAS5 acting as a biomarker for early diagnosis of severe asthma (SA). Methods Peripheral blood was obtained from healthy volunteers, patients with non-severe asthma (nSA) and SA, and peripheral blood mononuclear cells (PBMCs) were separated. Twenty-four female BALB/c mice (aged 6 weeks) were randomly and averagely divided into 3 groups, i.e., control group, asthma group and dexamethasone group. The mice were sensitized and challenged with ovalbumin (OVA) and lipopolysaccharide (LPS) to establish a murine model of steroid-insensitive asthma. Human bronchial epithelial cells (HBECs) were cultured, transfected with miR-9 mimics, JNK1 inhibitor and treated with interleukin (IL)-2 + IL-4 and dexamethasone. Western blot was used to detect glucocorticoid receptor phosphorylation at serine 226 (GRser226), and quantitative real-time PCR was used to detect GAS5 level. Results The level of GAS5 in PBMCs from nSA group elevated 20-fold higher after dexamethasone treatment in vitro, while it reduced 15-fold lower in SA group (P<0.001). The expression of GRser226 in PBMCs from SA group was significantly higher than that from control group and nSA group after dexamethasone treatment (P<0.001). In the lung tissue of mice, the GAS5 level of dexamethasone group was lower than that of asthma group (P<0.001) and control group (P<0.05). Both treatment with IL-2 + IL-4 and transfection of miR-9 mimics could increase the expression of GRser226 in HBECs (P<0.001). The GAS5 level in HBECs after IL-2 + IL-4 + Dexamethasone treatment was lower than that in HBECs only treated with IL-2 + IL-4 (P<0.001). Similarly, dexamethasone treatment also decreased the level of GAS5 in HBECs transfected with miR-9 mimics (P<0.05). Moreover, transfecting with JNK1 inhibitor could reverse the expression of GAS5 in HBECs transfected with miR-9 mimics and treated with dexamethasone. However, the level of GAS5 in HBECs interfered with IL-2 + IL-4 + Dexamethasone was not affected by JNK1 inhibitor. Conclusions The expression of GAS5 is different in PBMCs between nSA and SA, and is affected by glucocorticoids treatment, which is due to GRser226 phosphorylation. GAS5 can be used as a potential biomarker for diagnosis of severe asthma by comparing GAS5 level in PBMCs from patients before and after glucocorticoids treatment in vitro.
Collapse
Affiliation(s)
- Di Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Bin Gu
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Yan Qian
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Yun Sun
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Yi Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Zheng-Dao Mao
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Yu-Jia Shi
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Qian Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| |
Collapse
|
24
|
Kobayashi Y, Kanda A, Yun Y, Bui DV, Suzuki K, Sawada S, Asako M, Iwai H. Reduced Local Response to Corticosteroids in Eosinophilic Chronic Rhinosinusitis with Asthma. Biomolecules 2020; 10:biom10020326. [PMID: 32085629 PMCID: PMC7072408 DOI: 10.3390/biom10020326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/19/2022] Open
Abstract
Eosinophilic chronic rhinosinusitis (ECRS), a subgroup of chronic rhinosinusitis with nasal polyps, is recognized as a refractory eosinophilic disorder characterized by both upper and lower airway inflammation. In some severe cases, disease control is poor, likely due to local steroid insensitivity. In this study, we focused on protein phosphatase 2A (PP2A), a key factor regulating glucocorticoid receptor (GR) nuclear translocation, and examined its association with local responses to corticosteroids in eosinophilic airway inflammation. Our results indicated reduced responses to corticosteroids in nasal epithelial cells from ECRS patients with asthma, which were also associated with decreased PP2A mRNA expression. Eosinophil peroxidase stimulates elevated PP2A phosphorylation levels, reducing PP2A protein expression and activity. In addition, mRNA levels of inflammatory mediators (TSLP, IL-25, IL-33, CCL4, CCL5, CCL11, and CCL26) associated with eosinophilic airway inflammation in epithelial cells were increased in nasal polyps (eosinophil-rich areas) compared with those in uncinate process tissues (eosinophil-poor areas) from the same patients. PP2A reduction by siRNA reduced GR nuclear translocation, whereas PP2A overexpression by plasmid transfection, or PP2A activation by formoterol, enhanced GR nuclear translocation. Collectively, our findings indicate that PP2A may represent a promising therapeutic target in refractory eosinophilic airway inflammation characterized by local steroid insensitivity.
Collapse
Affiliation(s)
- Yoshiki Kobayashi
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan (Y.Y.)
- Allergic Center, Kansai Medical University Hospital, Hirakata, Osaka 573-1010, Japan
- Correspondence: ; Tel.: +81-72-804-2463
| | - Akira Kanda
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan (Y.Y.)
- Allergic Center, Kansai Medical University Hospital, Hirakata, Osaka 573-1010, Japan
| | - Yasutaka Yun
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan (Y.Y.)
| | - Dan Van Bui
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan (Y.Y.)
| | - Kensuke Suzuki
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan (Y.Y.)
| | - Shunsuke Sawada
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan (Y.Y.)
| | - Mikiya Asako
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan (Y.Y.)
- Allergic Center, Kansai Medical University Hospital, Hirakata, Osaka 573-1010, Japan
| | - Hiroshi Iwai
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan (Y.Y.)
| |
Collapse
|
25
|
Nath S, Ohlmeyer M, Salathe MA, Poon J, Baumlin N, Foronjy RF, Geraghty P. Chronic Cigarette Smoke Exposure Subdues PP2A Activity by Enhancing Expression of the Oncogene CIP2A. Am J Respir Cell Mol Biol 2019; 59:695-705. [PMID: 30011381 DOI: 10.1165/rcmb.2018-0173oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Phosphatase activity of the major serine threonine phosphatase, protein phosphatase 2A (PP2A), is blunted in the airways of individuals with chronic obstructive pulmonary disease (COPD), which results in heightened inflammation and proteolytic responses. The objective of this study was to investigate how PP2A activity is modulated in COPD airways. PP2A activity and endogenous inhibitors of PP2A were investigated in animal and cell models of COPD. In primary human bronchial epithelial (HBE) cells isolated from smokers and donors with COPD, we observed enhanced expression of cancerous inhibitor of PP2A (CIP2A), an oncoprotein encoded by the KIAA1524 gene, compared with cells from nonsmokers. CIP2A expression was induced by chronic cigarette smoke exposure in mice that coincided with a reduction in PP2A activity, airspace enlargements, and loss of lung function, as determined by PP2A phosphatase activity, mean linear intercept analysis, and forced expiratory volume in 0.05 second/forced vital capacity. Modulating CIP2A expression in HBE cells by silencing RNA or chemically with erlotinib enhanced PP2A activity, reduced extracellular-signal-regulated kinase phosphorylation, and reduced the responses of matrix metalloproteinases 1 and 9 in HBE cells isolated from subjects with COPD. Enhanced epithelial growth factor receptor responses in cells from subjects with COPD were observed to modulate CIP2A expression levels. Our study indicates that chronic cigarette smoke induction of epithelial growth factor receptor signaling and CIP2A expression can impair PP2A responses that are associated with loss of lung function and enhancement of proteolytic responses. Augmenting PP2A activity by manipulating CIP2A expression may represent a feasible therapeutic approach to counter smoke-induced lung disease.
Collapse
Affiliation(s)
- Sridesh Nath
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | | | - Matthias A Salathe
- 3 Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami, Miami, Florida; and.,4 Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Justin Poon
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Nathalie Baumlin
- 3 Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami, Miami, Florida; and.,4 Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Robert F Foronjy
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and.,5 Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Patrick Geraghty
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and.,5 Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York
| |
Collapse
|
26
|
Doherty DF, Nath S, Poon J, Foronjy RF, Ohlmeyer M, Dabo AJ, Salathe M, Birrell M, Belvisi M, Baumlin N, Kim MD, Weldon S, Taggart C, Geraghty P. Protein Phosphatase 2A Reduces Cigarette Smoke-induced Cathepsin S and Loss of Lung Function. Am J Respir Crit Care Med 2019; 200:51-62. [PMID: 30641028 PMCID: PMC6603057 DOI: 10.1164/rccm.201808-1518oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/14/2019] [Indexed: 12/18/2022] Open
Abstract
Rationale: CTSS (cathepsin S) is a cysteine protease that is observed at higher concentrations in BAL fluid and plasma of subjects with chronic obstructive pulmonary disease (COPD). Objectives: To investigate whether CTSS is involved in the pathogenesis of cigarette smoke-induced COPD and determine whether targeting upstream signaling could prevent the disease. Methods: CTSS expression was investigated in animal and human tissue and cell models of COPD. Ctss-/- mice were exposed to long-term cigarette smoke and forced oscillation and expiratory measurements were recorded. Animals were administered chemical modulators of PP2A (protein phosphatase 2A) activity. Measurements and Main Results: Here we observed enhanced CTSS expression and activity in mouse lungs after exposure to cigarette smoke. Ctss-/- mice were resistant to cigarette smoke-induced inflammation, airway hyperresponsiveness, airspace enlargements, and loss of lung function. CTSS expression was negatively regulated by PP2A in human bronchial epithelial cells isolated from healthy nonsmokers and COPD donors and in monocyte-derived macrophages. Modulating PP2A expression or activity, with silencer siRNA or a chemical inhibitor or activator, during acute smoke exposure in mice altered inflammatory responses and CTSS expression and activity in the lung. Enhancement of PP2A activity prevented chronic smoke-induced COPD in mice. Conclusions: Our study indicates that the decrease in PP2A activity that occurs in COPD contributes to elevated CTSS expression in the lungs and results in impaired lung function. Enhancing PP2A activity represents a feasible therapeutic approach to reduce CTSS activity and counter smoke-induced lung disease.
Collapse
Affiliation(s)
- Declan F. Doherty
- Airway Innate Immunity Research Group, Centre for Experimental Medicine, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Sridesh Nath
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Justin Poon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Robert F. Foronjy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Cell Biology, State University of New York Downstate Medical Centre, Brooklyn, New York
| | - Michael Ohlmeyer
- Icahn School of Medicine at Mount Sinai, New York, New York
- Atux Iskay LLC, Plainsboro, New Jersey
| | - Abdoulaye J. Dabo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Cell Biology, State University of New York Downstate Medical Centre, Brooklyn, New York
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami, Miami, Florida
| | - Mark Birrell
- Respiratory Pharmacology Group, Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom; and
- Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, London, United Kingdom
| | - Maria Belvisi
- Respiratory Pharmacology Group, Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom; and
- Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, London, United Kingdom
| | - Nathalie Baumlin
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami, Miami, Florida
| | - Michael D. Kim
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami, Miami, Florida
| | - Sinéad Weldon
- Airway Innate Immunity Research Group, Centre for Experimental Medicine, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Clifford Taggart
- Airway Innate Immunity Research Group, Centre for Experimental Medicine, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Patrick Geraghty
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Cell Biology, State University of New York Downstate Medical Centre, Brooklyn, New York
| |
Collapse
|
27
|
Yan YX, Li YN. [Pathogenesis of steroid-resistant asthma and the influence of vitamin D]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:724-729. [PMID: 31315776 PMCID: PMC7389094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/22/2019] [Indexed: 11/04/2023]
Abstract
Glucocorticoid (GC) is currently the most effective drug for controlling persistent asthma; however, there is a significant difference in the response to GC among patients with asthma. Steroid-resistant asthma is one of the subtypes of asthma and has poor response to high-dose GC treatment. It may affect the quality of life of patients and even threaten their lives. Therefore, it is of great significance to explore the pathogenesis of steroid-resistant asthma and related targeted treatment strategy. In recent years, a variety of pathogeneses have been found to participate in the development and progression of steroid-resistant asthma, including the reduction in the binding between GC receptor and GC, the increase in the expression of GC receptor β, over-activation of nuclear transcription factor activating protein 1 and nuclear factor-κB, abnormality in histone acetylation, and immune-mediated cytokine dysregulation. In addition, many studies have shown that vitamin D can improve the sensitivity to GC among patients with steroid-resistant asthma. This article reviews the pathogenesis of steroid-resistant asthma and the influence of vitamin D.
Collapse
Affiliation(s)
- Yu-Xiao Yan
- First Clinical Medical College of Lanzhou University, Lanzhou 730000, China.
| | | |
Collapse
|
28
|
Yan YX, Li YN. [Pathogenesis of steroid-resistant asthma and the influence of vitamin D]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:724-729. [PMID: 31315776 PMCID: PMC7389094 DOI: 10.7499/j.issn.1008-8830.2019.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/22/2019] [Indexed: 06/10/2023]
Abstract
Glucocorticoid (GC) is currently the most effective drug for controlling persistent asthma; however, there is a significant difference in the response to GC among patients with asthma. Steroid-resistant asthma is one of the subtypes of asthma and has poor response to high-dose GC treatment. It may affect the quality of life of patients and even threaten their lives. Therefore, it is of great significance to explore the pathogenesis of steroid-resistant asthma and related targeted treatment strategy. In recent years, a variety of pathogeneses have been found to participate in the development and progression of steroid-resistant asthma, including the reduction in the binding between GC receptor and GC, the increase in the expression of GC receptor β, over-activation of nuclear transcription factor activating protein 1 and nuclear factor-κB, abnormality in histone acetylation, and immune-mediated cytokine dysregulation. In addition, many studies have shown that vitamin D can improve the sensitivity to GC among patients with steroid-resistant asthma. This article reviews the pathogenesis of steroid-resistant asthma and the influence of vitamin D.
Collapse
Affiliation(s)
- Yu-Xiao Yan
- First Clinical Medical College of Lanzhou University, Lanzhou 730000, China.
| | | |
Collapse
|
29
|
Schuhmacher D, Sontag JM, Sontag E. Protein Phosphatase 2A: More Than a Passenger in the Regulation of Epithelial Cell-Cell Junctions. Front Cell Dev Biol 2019; 7:30. [PMID: 30895176 PMCID: PMC6414416 DOI: 10.3389/fcell.2019.00030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/22/2019] [Indexed: 12/17/2022] Open
Abstract
Cell–cell adhesion plays a key role in the maintenance of the epithelial barrier and apicobasal cell polarity, which is crucial for homeostasis. Disruption of cell–cell adhesion is a hallmark of numerous pathological conditions, including invasive carcinomas. Adhesion between apposing cells is primarily regulated by three types of junctional structures: desmosomes, adherens junctions, and tight junctions. Cell junctional structures are highly regulated multiprotein complexes that also serve as signaling platforms to control epithelial cell function. The biogenesis, integrity, and stability of cell junctions is controlled by complex regulatory interactions with cytoskeletal and polarity proteins, as well as modulation of key component proteins by phosphorylation/dephosphorylation processes. Not surprisingly, many essential signaling molecules, including protein Ser/Thr phosphatase 2A (PP2A) are associated with intercellular junctions. Here, we examine how major PP2A enzymes regulate epithelial cell–cell junctions, either directly by associating with and dephosphorylating component proteins, or indirectly by affecting signaling pathways that control junctional integrity and cytoskeletal dynamics. PP2A deregulation has severe consequences on the stability and functionality of these structures, and disruption of cell–cell adhesion and cell polarity likely contribute to the link between PP2A dysfunction and human carcinomas.
Collapse
Affiliation(s)
- Diana Schuhmacher
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Jean-Marie Sontag
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
30
|
Britt RD, Thompson MA, Sasse S, Pabelick CM, Gerber AN, Prakash YS. Th1 cytokines TNF-α and IFN-γ promote corticosteroid resistance in developing human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2018; 316:L71-L81. [PMID: 30335498 DOI: 10.1152/ajplung.00547.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Corticosteroids (CSs) are commonly used to manage wheezing and asthma in pediatric populations. Although corticosteroids are effective in alleviating airway diseases, some children with more moderate-severe asthma phenotypes show CS resistance and exhibit significant airflow obstruction, persistent inflammation, and more frequent exacerbations. Previous studies have demonstrated that Th1 cytokines, such as TNF-α and IFN-γ, promote CS resistance in adult human airway smooth muscle (ASM). In the present study, using a human fetal ASM cell model, we tested the hypothesis that TNF-α/IFN-γ induces CS resistance. In contrast to TNF-α or IFN-γ alone, the combination of TNF-α/IFN-γ blunted the ability of fluticasone propionate (FP) to reduce expression of the chemokines CCL5 and CXCL10 despite expression of key anti-inflammatory glucocorticoid receptor target genes being largely unaffected by TNF-α/IFN-γ. Expression of the NF-κB subunit p65 and phosphorylation of Stat1 were elevated in cells treated with TNF-α/IFN-γ, an effect that remained in the presence of FP. siRNA knockdown studies demonstrated the effects of TNF-α/IFN-γ on increased p65 are mediated by Stat1, a transcription factor activated by IFN-γ. Expression of TNFAIP3, a negative regulator of NF-κB activity, was not altered by TNF-α/IFN-γ. However, the effects of TNF-α/IFN-γ were partially reduced by overexpression of TNFAIP3 but did not influence p65 expression. Together, these data suggest that IFN-γ augments the effects of TNF-α on chemokines by enhancing expression of key inflammatory pathways in the presence of CS. Interactions between TNF-α- and IFN-γ-mediated pathways may promote inflammation in asthmatic children resistant to CSs.
Collapse
Affiliation(s)
- Rodney D Britt
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota.,Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,Department of Pediatrics, The Ohio State University , Columbus, Ohio
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
| | - Sarah Sasse
- Department of Medicine, National Jewish Health , Denver, Colorado
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Anthony N Gerber
- Department of Medicine, National Jewish Health , Denver, Colorado
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
31
|
Kobayashi Y, Yasuba H, Asako M, Yamamoto T, Takano H, Tomoda K, Kanda A, Iwai H. HFA-BDP Metered-Dose Inhaler Exhaled Through the Nose Improves Eosinophilic Chronic Rhinosinusitis With Bronchial Asthma: A Blinded, Placebo-Controlled Study. Front Immunol 2018; 9:2192. [PMID: 30337921 PMCID: PMC6178134 DOI: 10.3389/fimmu.2018.02192] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/05/2018] [Indexed: 12/18/2022] Open
Abstract
Background: Eosinophilic chronic rhinosinusitis (ECRS) is a subtype of chronic rhinosinusitis with nasal polyps in Japanese. ECRS highly associated with asthma is a refractory eosinophilic airway inflammation and requires comprehensive care as part of the united airway concept. We recently reported a series of ECRS patients with asthma treated with fine-particle inhaled corticosteroid (ICS) exhalation through the nose (ETN). Objective: To evaluate fine-particle ICS ETN treatment as a potential therapeutic option in ECRS with asthma. Methods: Twenty-three patients with severe ECRS under refractory to intranasal corticosteroid treatment were randomized in a double-blind fashion to receive either HFA-134a-beclomethasone dipropionate (HFA-BDP) metered-dose inhaler (MDI) ETN (n = 11) or placebo MDI ETN (n = 12) for 4 weeks. Changes in nasal polyp score, computed tomographic (CT) score, smell test, and quality of life (QOL) score from baseline were assessed. Fractionated exhaled nitric oxide (FENO) was measured as a marker of eosinophilic airway inflammation. Response to corticosteroids was evaluated before and after treatment. Additionally, deposition of fine-particles was visualized using a particle deposition model. To examine the role of eosinophils on airway inflammation, BEAS-2B human bronchial epithelial cells were co-incubated with purified eosinophils to determine corticosteroid sensitivity. Results: HFA-BDP MDI ETN treatment improved all assessed clinical endpoints and corticosteroid sensitivity without any deterioration in pulmonary function. FENO and blood eosinophil number were reduced by HFA-BDP MDI ETN treatment. The visualization study suggested that ETN at expiratory flow rates of 10–30 L/min led to fine particle deposition in the middle meatus, including the sinus ostia. Co-incubation of eosinophils with BEAS-2B cells induced corticosteroid resistance. Conclusions: Additional HFA-BDP MDI ETN treatment was beneficial in patients with ECRS and should be considered as a potential therapeutic option for eosinophilic airway inflammation such as ECRS with asthma. (UMIN-CTR: R000019325) (http://www.umin.ac.jp/ctr/index.htm).
Collapse
Affiliation(s)
- Yoshiki Kobayashi
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Osaka, Japan.,Allergy Center, Kansai Medical University Hospital, Osaka, Japan
| | - Hirotaka Yasuba
- Department of Airway Medicine, Mitsubishi Kyoto Hospital, Kyoto, Japan
| | - Mikiya Asako
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Osaka, Japan.,Allergy Center, Kansai Medical University Hospital, Osaka, Japan
| | - Takahisa Yamamoto
- Department of Mechanical Engineering, National Institute of Technology Gifu College, Motosu, Japan
| | - Hiroshi Takano
- Bio-Microfluidic Science Research Centerm, Doshisha University, Kyoto, Japan
| | - Koichi Tomoda
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Osaka, Japan
| | - Akira Kanda
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Osaka, Japan.,Allergy Center, Kansai Medical University Hospital, Osaka, Japan
| | - Hiroshi Iwai
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Osaka, Japan
| |
Collapse
|
32
|
Panda L, Mabalirajan U. Recent Updates on Corticosteroid Resistance in Asthma. EUROPEAN MEDICAL JOURNAL 2018. [DOI: 10.33590/emj/10311987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Corticosteroids are one of the most effective medications available for a wide variety of inflammatory diseases, including rheumatoid arthritis, inflammatory bowel disease, autoimmune diseases, and chronic lung diseases such as asthma; however, 5–10% of asthma patients respond poorly to corticosteroids and require high doses, secondary immunosuppressants, such as calcineurin inhibitors and methotrexate, or disease-modifying biologics that can be toxic and/or expensive. Though steroid-resistant asthma affects a small percentage of patients, it consumes significant health resources and contributes to substantial morbidity and mortality. In addition, the side effects caused by excessive use of steroids dramatically impact patients’ quality of life. Recognition of patients who respond poorly to steroid therapy is important due to the persistent and considerable problems they face in managing their conditions, which bears a significant socioeconomic burden. Along with the recognition of such patients, elucidation of the molecular mechanisms of steroid resistance is equally important, so that administration of a high dosage of steroids, and the consequent adverse effects, can be avoided. This review provides an update on the mechanisms of steroid function and the possible new therapeutic modalities to treat steroid-resistant asthma.
Collapse
Affiliation(s)
- Lipsa Panda
- Molecular Pathobiology of Respiratory Diseases, Council of Scientific & Industrial Research (CSIR), Institute of Genomics and Integrative Biology, Delhi, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases, Council of Scientific & Industrial Research (CSIR), Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
33
|
Nair PM, Starkey MR, Haw TJ, Liu G, Horvat JC, Morris JC, Verrills NM, Clark AR, Ammit AJ, Hansbro PM. Targeting PP2A and proteasome activity ameliorates features of allergic airway disease in mice. Allergy 2017; 72:1891-1903. [PMID: 28543283 DOI: 10.1111/all.13212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Asthma is an allergic airway disease (AAD) caused by aberrant immune responses to allergens. Protein phosphatase-2A (PP2A) is an abundant serine/threonine phosphatase with anti-inflammatory activity. The ubiquitin proteasome system (UPS) controls many cellular processes, including the initiation of inflammatory responses by protein degradation. We assessed whether enhancing PP2A activity with fingolimod (FTY720) or 2-amino-4-(4-(heptyloxy) phenyl)-2-methylbutan-1-ol (AAL(S) ), or inhibiting proteasome activity with bortezomib (BORT), could suppress experimental AAD. METHODS Acute AAD was induced in C57BL/6 mice by intraperitoneal sensitization with ovalbumin (OVA) in combination with intranasal (i.n) exposure to OVA. Chronic AAD was induced in mice with prolonged i.n exposure to crude house dust mite (HDM) extract. Mice were treated with vehicle, FTY720, AAL(S) , BORT or AAL(S) +BORT and hallmark features of AAD assessed. RESULTS AAL(S) reduced the severity of acute AAD by suppressing tissue eosinophils and inflammation, mucus-secreting cell (MSC) numbers, type 2-associated cytokines (interleukin (IL)-33, thymic stromal lymphopoietin, IL-5 and IL-13), serum immunoglobulin (Ig)E and airway hyper-responsiveness (AHR). FTY720 only suppressed tissue inflammation and IgE. BORT reduced bronchoalveolar lavage fluid (BALF) and tissue eosinophils and inflammation, IL-5, IL-13 and AHR. Combined treatment with AAL(S) +BORT had complementary effects and suppressed BALF and tissue eosinophils and inflammation, MSC numbers, reduced the production of type 2 cytokines and AHR. AAL(S) , BORT and AAL(S) +BORT also reduced airway remodelling in chronic AAD. CONCLUSION These findings highlight the potential of combination therapies that enhance PP2A and inhibit proteasome activity as novel therapeutic strategies for asthma.
Collapse
Affiliation(s)
- P. M. Nair
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - M. R. Starkey
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - T. J. Haw
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - G. Liu
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - J. C. Horvat
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - J. C. Morris
- School of Chemistry; University of New South Wales; Sydney NSW Australia
| | - N. M. Verrills
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - A. R. Clark
- Institute of Inflammation and Ageing; College of Medical and Dental Sciences; University of Birmingham; Birmingham UK
| | - A. J. Ammit
- Woolcock Emphysema Centre; Woolcock Institute of Medical Research; University of Sydney; Sydney NSW Australia
- Faculty of Science; School of Life Sciences; University of Technology Sydney; Sydney NSW Australia
| | - P. M. Hansbro
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| |
Collapse
|
34
|
Serguienko A, Hanes R, Grad I, Wang MY, Myklebost O, Munthe E. PP2A Regulatory Subunit B55γ is a Gatekeeper of Osteoblast Maturation and Lineage Maintenance. Stem Cells Dev 2017; 26:1375-1383. [DOI: 10.1089/scd.2017.0129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Anastassia Serguienko
- Department for Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Robert Hanes
- Department for Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Iwona Grad
- Department for Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Meng Yu Wang
- Department for Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ola Myklebost
- Department for Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department for Clinical Science, University of Bergen, Bergen, Norway
| | - Else Munthe
- Department for Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
35
|
Glucocorticoid Receptor-mediated transactivation is hampered by Striatin-3, a novel interaction partner of the receptor. Sci Rep 2017; 7:8941. [PMID: 28827617 PMCID: PMC5567040 DOI: 10.1038/s41598-017-09246-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 07/19/2017] [Indexed: 12/12/2022] Open
Abstract
The transcriptional activity of the glucocorticoid receptor (GR) is co-determined by its ability to recruit a vast and varying number of cofactors. We here identify Striatin-3 (STRN3) as a novel interaction partner of GR that interferes with GR’s ligand-dependent transactivation capacity. Remarkably, STRN3 selectively affects only GR-dependent transactivation and leaves GR-dependent transrepression mechanisms unhampered. We found that STRN3 down-regulates GR transactivation by an additional recruitment of the catalytic subunit of protein phosphatase 2A (PPP2CA) to GR. We hypothesize the existence of a functional trimeric complex in the nucleus, able to dephosphorylate GR at serine 211, a known marker for GR transactivation in a target gene-dependent manner. The presence of STRN3 appears an absolute prerequisite for PPP2CA to engage in a complex with GR. Herein, the C-terminal domain of GR is essential, reflecting ligand-dependency, yet other receptor parts are also needed to create additional contacts with STRN3.
Collapse
|
36
|
Patel BS, Rahman MM, Rumzhum NN, Oliver BG, Verrills NM, Ammit AJ. Theophylline Represses IL-8 Secretion from Airway Smooth Muscle Cells Independently of Phosphodiesterase Inhibition. Novel Role as a Protein Phosphatase 2A Activator. Am J Respir Cell Mol Biol 2017; 54:792-801. [PMID: 26574643 DOI: 10.1165/rcmb.2015-0308oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Theophylline is an old drug experiencing a renaissance owing to its beneficial antiinflammatory effects in chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease. Multiple modes of antiinflammatory action have been reported, including inhibition of the enzymes that degrade cAMP-phosphodiesterase (PDE). Using primary cultures of airway smooth muscle (ASM) cells, we recently revealed that PDE4 inhibitors can potentiate the antiinflammatory action of β2-agonists by augmenting cAMP-dependent expression of the phosphatase that deactivates mitogen-activated protein kinase (MAPK)-MAPK phosphatase (MKP)-1. Therefore, the aim of this study was to address whether theophylline repressed cytokine production in a similar, PDE-dependent, MKP-1-mediated manner. Notably, theophylline did not potentiate cAMP release from ASM cells treated with the long-acting β2-agonist formoterol. Moreover, theophylline (0.1-10 μM) did not increase formoterol-induced MKP-1 messenger RNA expression nor protein up-regulation, consistent with the lack of cAMP generation. However, theophylline (at 10 μM) was antiinflammatory and repressed secretion of the neutrophil chemoattractant cytokine IL-8, which is produced in response to TNF-α. Because theophylline's effects were independent of PDE4 inhibition or antiinflammatory MKP-1, we then wished to elucidate the novel mechanisms responsible. We investigated the impact of theophylline on protein phosphatase (PP) 2A, a master controller of multiple inflammatory signaling pathways, and show that theophylline increases TNF-α-induced PP2A activity in ASM cells. Confirmatory results were obtained in A549 lung epithelial cells. PP2A activators have beneficial effects in ex vivo and in vivo models of respiratory disease. Thus, our study is the first to link theophylline with PP2A activation as a novel mechanism to control respiratory inflammation.
Collapse
Affiliation(s)
| | | | - Nowshin N Rumzhum
- 1 Faculty of Pharmacy, University of Sydney, New South Wales, Australia
| | - Brian G Oliver
- 2 Woolcock Institute of Medical Research, University of Sydney, New South Wales, Australia.,3 School of Life Sciences, University of Technology, Sydney, New South Wales, Australia; and
| | - Nicole M Verrills
- 4 School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, New South Wales
| | - Alaina J Ammit
- 1 Faculty of Pharmacy, University of Sydney, New South Wales, Australia
| |
Collapse
|
37
|
Varricchi G, Senna G, Loffredo S, Bagnasco D, Ferrando M, Canonica GW. Reslizumab and Eosinophilic Asthma: One Step Closer to Precision Medicine? Front Immunol 2017; 8:242. [PMID: 28344579 PMCID: PMC5344894 DOI: 10.3389/fimmu.2017.00242] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/20/2017] [Indexed: 12/29/2022] Open
Abstract
Human eosinophils represent approximately 1% of peripheral blood leukocytes. However, these cells have the propensity to leave the blood stream and migrate into inflamed tissues. Eosinophilic inflammation is present in a significant proportion of patients with severe asthma. Asthma is a chronic inflammatory disorder that affects more than 315 million people worldwide, with 10% having severe uncontrolled disease. Although the majority of patients can be efficiently treated, severe asthmatics continue to be uncontrolled and are at risk of exacerbations and even death. Interleukin-5 (IL-5) plays a fundamental role in eosinophil differentiation, maturation, activation and inhibition of apoptosis. Therefore, targeting IL-5 is an appealing approach to the treatment of patients with severe eosinophilic asthma. Reslizumab, a humanized anti-IL-5 monoclonal antibody, binds with high affinity to amino acids 89–92 of IL-5 that are critical for binding to IL-5 receptor α. Two phase III studies have demonstrated that reslizumab administration in adult patients with severe asthma and eosinophilia (≥400 cells/μL) improved lung function, asthma control, and symptoms. Thus, the use of blood eosinophils as a baseline biomarker could help to select patients with severe uncontrolled asthma who are likely to achieve benefits in asthma control with reslizumab. In conclusion, targeted therapy with reslizumab represents one step closer to precision medicine in patients with severe eosinophilic asthma.
Collapse
Affiliation(s)
- Gilda Varricchi
- Division of Clinical Immunology and Allergy, Department of Translational Medical Sciences, School of Medicine, University of Naples Federico II, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gianenrico Senna
- Asthma Center and Allergy Unit, Verona University, General Hospital , Verona , Italy
| | - Stefania Loffredo
- Division of Clinical Immunology and Allergy, Department of Translational Medical Sciences, School of Medicine, University of Naples Federico II, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Diego Bagnasco
- Allergy and Respiratory Diseases, DIMI Department of Internal Medicine, IRCCS AOU San Martino-IST, University of Genova , Genova , Italy
| | - Matteo Ferrando
- Allergy and Respiratory Diseases, DIMI Department of Internal Medicine, IRCCS AOU San Martino-IST, University of Genova , Genova , Italy
| | - Giorgio Walter Canonica
- Personalized Medicine Clinic Asthma and Allergy Humanitas Clinical and Research Center, Department of Biomedical Science, Humanitas University , Rozzano, Milano , Italy
| |
Collapse
|
38
|
Penberthy KK, Buckley MW, Arandjelovic S, Ravichandran K. Ex vivo modulation of the Foxo1 phosphorylation state does not lead to dysfunction of T regulatory cells. PLoS One 2017; 12:e0173386. [PMID: 28267764 PMCID: PMC5340387 DOI: 10.1371/journal.pone.0173386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/20/2017] [Indexed: 12/17/2022] Open
Abstract
Peripheral regulatory CD4+ T cells (Treg cells) prevent maladaptive inflammatory responses to innocuous foreign antigens. Treg cell dysfunction has been linked to many inflammatory diseases, including allergic airway inflammation. Glucocorticoids that are used to treat allergic airway inflammation and asthma are thought to work in part by promoting Treg cell differentiation; patients who are refractory to these drugs have defective induction of anti-inflammatory Treg cells. Previous observations suggest that Treg cells deficient in the transcription factor FoxO1 are pro-inflammatory, and that FoxO1 activity is regulated by its phosphorylation status and nuclear localization. Here, we asked whether altering the phosphorylation state of FoxO1 through modulation of a regulatory phosphatase might affect Treg cell function. In a mouse model of house dust mite-induced allergic airway inflammation, we observed robust recruitment of Treg cells to the lungs and lymph nodes of diseased mice, without an apparent increase in the Treg cytokine interleukin-10 in the airways. Intriguingly, expression of PP2A, a serine/threonine phosphatase linked to the regulation of FoxO1 phosphorylation, was decreased in the mediastinal lymph nodes of HDM-treated mice, mirroring the decreased PP2A expression seen in peripheral blood monocytes of glucocorticoid-resistant asthmatic patients. When we asked whether modulation of PP2A activity alters Treg cell function via treatment with the PP2A inhibitor okadaic acid, we observed increased phosphorylation of FoxO1 and decreased nuclear localization. However, dysregulation of FoxO1 did not impair Treg cell differentiation ex vivo or cause Treg cells to adopt a pro-inflammatory phenotype. Moreover, inhibition of PP2A activity did not affect the suppressive function of Treg cells ex vivo. Collectively, these data suggest that modulation of the phosphorylation state of FoxO1 via PP2A inhibition does not modify Treg cell function ex vivo. Our data also highlight the caveat in using ex vivo assays of Treg cell differentiation and function, in that while these assays are useful, they may not fully recapitulate Treg cell phenotypes that are observed in vivo.
Collapse
Affiliation(s)
- Kristen Kelley Penberthy
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Center for Cell Clearance, University of Virginia, Charlottesville, Virginia, United States of America
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States of America
| | - Monica Weaver Buckley
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Center for Cell Clearance, University of Virginia, Charlottesville, Virginia, United States of America
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States of America
| | - Sanja Arandjelovic
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Center for Cell Clearance, University of Virginia, Charlottesville, Virginia, United States of America
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States of America
| | - Kodi Ravichandran
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Center for Cell Clearance, University of Virginia, Charlottesville, Virginia, United States of America
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
39
|
Chachi L, Abbasian M, Gavrila A, Alzahrani A, Tliba O, Bradding P, Wardlaw AJ, Brightling C, Amrani Y. Protein phosphatase 5 mediates corticosteroid insensitivity in airway smooth muscle in patients with severe asthma. Allergy 2017; 72:126-136. [PMID: 27501780 DOI: 10.1111/all.13003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND The mechanisms driving glucocorticoid (GC) insensitivity in patients with severe asthma are still unknown. Recent evidence suggests the existence of GC-insensitive pathways in airway smooth muscle (ASM) caused by a defect in GC receptor (GRα) function. We examined whether other mechanisms could potentially explain the reduced sensitivity of ASM cells to GC in severe asthmatics. METHODS Airway smooth muscle cells from healthy and severe asthmatic subjects were treated with TNF-α and responses to corticosteroids in both cohorts were compared by ELISA, immunoblot, immunohistochemistry and real-time PCR. Immunohistochemistry and flow cytometry assays were used to assess the expression of the protein phosphatase PP5 in endobronchial biopsies and ASM cells. RESULTS The production of CCL11 and CCL5 by TNF-α was insensitive to both fluticasone and dexamethasone in ASM cells from severe asthmatic compared to that in healthy subjects. Fluticasone-induced GRα nuclear translocation, phosphorylation at serine 211 and expression of GC-induced leucine zipper (GILZ) were significantly reduced in ASM cells from severe asthmatics compared to responses in healthy subjects. Levels of PP5 were increased in ASM cells from severe asthmatics and PP5 knockdown using siRNA restored fluticasone repressive action on chemokine production and its ability to induce GRα nuclear translocation and GRE-dependent GILZ expression. In vivo PP5 expression was also increased in the ASM bundles in endobronchial biopsies in severe asthmatics. CONCLUSIONS PP5-dependent impairment of GRα function represents a novel mechanism driving GC insensitivity in ASM in severe asthma.
Collapse
Affiliation(s)
- L. Chachi
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - M. Abbasian
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - A. Gavrila
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - A. Alzahrani
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - O. Tliba
- Department of Pharmaceutical Sciences; Jefferson School of Pharmacy; Thomas Jefferson University; Philadelphia PA USA
| | - P. Bradding
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - A. J. Wardlaw
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - C. Brightling
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - Y. Amrani
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| |
Collapse
|
40
|
Milara J, Cervera A, de Diego A, Sanz C, Juan G, Gavaldà A, Miralpeix M, Morcillo E, Cortijo J. Non-neuronal cholinergic system contributes to corticosteroid resistance in chronic obstructive pulmonary disease patients. Respir Res 2016; 17:145. [PMID: 27825347 PMCID: PMC5101693 DOI: 10.1186/s12931-016-0467-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/02/2016] [Indexed: 12/21/2022] Open
Abstract
Background Inhaled corticosteroid (ICS) with long-acting beta-2 agonists is a well-documented combination therapy for chronic obstructive pulmonary disease (COPD) based on its additive anti-inflammatory properties. By contrast, the recommendation of ICS in combination with long-acting muscarinic antagonist (LAMA) is not evidence-based. In this study, neutrophils obtained from COPD patients were used to compare the anti-inflammatory effects of aclidinium bromide (a long-acting muscarinic antagonist) with corticosteroids and their potential additive effect. Methods Human sputum and blood neutrophils were isolated from healthy individuals (n = 37), patients with stable COPD (n = 52) and those with exacerbated COPD (n = 16). The cells were incubated with corticosteroid fluticasone propionate (0.1 nM–1 μM), aclidinium bromide (0.1 nM–1 μM) or a combination thereof and stimulated with 1 μg of lipopolysaccharide/ml or 5 % cigarette smoke extract. Levels of the pro-inflammatory mediators interleukin-8, matrix metalloproteinase-9, CCL-5, granulocyte-macrophage colony-stimulating factor and interleukin-1β were measured and the mechanisms of corticosteroid resistance evaluated at the end of the incubation. Results The non-neuronal cholinergic system was over-expressed in neutrophils from COPD patients, as evidenced by increases in the expression of muscarinic receptors (M2, M4 and M5), choline acetyltransferase and vesicular acetylcholine transporter. Aclidinium bromide demonstrated anti-inflammatory effects on neutrophils from COPD patients, reversing their resistance to corticosteroids. Additive effects of combined aclidinium bromide and fluticasone propionate in blocking M2 receptor levels, inhibiting phosphoinositide 3-kinase-δ and enhancing the glucocorticoid response element transcription factor were demonstrated and were accompanied by an increase in the corticosteroid-induced expression of anti-inflammatory-related genes. Conclusions LAMAs potentiate the anti-inflammatory effects of corticosteroids in neutrophils from COPD patients in vitro, thus providing a scientific rationale for their use in combination with corticosteroids in the treatment of COPD. Electronic supplementary material The online version of this article (doi:10.1186/s12931-016-0467-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Javier Milara
- Department of pharmacology, faculty of medicine, Jaume I University, Castellón, Spain. .,Pharmacy Unit, University General Hospital Consortium, Valencia, Spain. .,CIBERES, Health Institute Carlos III, Valencia, Spain. .,Unidad de Investigación Clínica, Consorcio Hospital General Universitario, Avenida tres cruces s/n, E-46014, Valencia, Spain.
| | - Angela Cervera
- Respiratory Unit, University General Hospital Consortium, Valencia, Spain
| | - Alfredo de Diego
- Respiratory Unit, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Celia Sanz
- Department of pharmacology, faculty of medicine, Jaume I University, Castellón, Spain.,Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Gustavo Juan
- Respiratory Unit, University General Hospital Consortium, Valencia, Spain
| | | | | | - Esteban Morcillo
- CIBERES, Health Institute Carlos III, Valencia, Spain.,Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Health Research Institute INCLIVA, Valencia, Spain
| | - Julio Cortijo
- CIBERES, Health Institute Carlos III, Valencia, Spain.,Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Research and teaching Unit, University General Hospital Consortium, Valencia, Spain
| |
Collapse
|
41
|
Pazdrak K, Straub C, Maroto R, Stafford S, White WI, Calhoun WJ, Kurosky A. Cytokine-Induced Glucocorticoid Resistance from Eosinophil Activation: Protein Phosphatase 5 Modulation of Glucocorticoid Receptor Phosphorylation and Signaling. THE JOURNAL OF IMMUNOLOGY 2016; 197:3782-3791. [PMID: 27742828 DOI: 10.4049/jimmunol.1601029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/21/2016] [Indexed: 01/01/2023]
Abstract
The mechanisms contributing to persistent eosinophil activation and poor eosinopenic response to glucocorticoids in severe asthma are poorly defined. We examined the effect of cytokines typically overexpressed in the asthmatic airways on glucocorticoid signaling in in vitro activated eosinophils. An annexin V assay used to measure eosinophil apoptosis showed that cytokine combinations of IL-2 plus IL-4 as well as TNF-α plus IFN-γ, or IL-3, GM-CSF, and IL-5 alone significantly diminished the proapoptotic response to dexamethasone. We found that IL-2 plus IL-4 resulted in impaired phosphorylation and function of the nuclear glucocorticoid receptor (GCR). Proteomic analysis of steroid sensitive and resistant eosinophils identified several differentially expressed proteins, namely protein phosphatase 5 (PP5), formyl peptide receptor 2, and annexin 1. Furthermore, increased phosphatase activity of PP5 correlated with impaired phosphorylation of the GCR. Importantly, suppression of PP5 expression with small interfering RNA restored proper phosphorylation and the proapoptotic function of the GCR. We also examined the effect of lipoxin A4 on PP5 activation by IL-2 plus IL-4. Similar to PP5 small interfering RNA inhibition, pretreatment of eosinophils with lipoxin A4 restored GCR phosphorylation and the proaptoptotic function of GCs. Taken together, our results showed 1) a critical role for PP5 in cytokine-induced resistance to GC-mediated eosinophil death, 2) supported the dependence of GCR phosphorylation on PP5 activity, and 3) revealed that PP5 is a target of the lipoxin A4-induced pathway countering cytokine-induced resistance to GCs in eosinophils.
Collapse
Affiliation(s)
- Konrad Pazdrak
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555.,National Heart, Lung, and Blood Institute Proteomics Center Program in Airway Inflammation, The University of Texas Medical Branch, Galveston, TX 77555
| | - Christof Straub
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Rosario Maroto
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555.,National Heart, Lung, and Blood Institute Proteomics Center Program in Airway Inflammation, The University of Texas Medical Branch, Galveston, TX 77555
| | - Susan Stafford
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555.,National Heart, Lung, and Blood Institute Proteomics Center Program in Airway Inflammation, The University of Texas Medical Branch, Galveston, TX 77555
| | | | - William J Calhoun
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555.,National Heart, Lung, and Blood Institute Proteomics Center Program in Airway Inflammation, The University of Texas Medical Branch, Galveston, TX 77555
| | - Alexander Kurosky
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555; .,National Heart, Lung, and Blood Institute Proteomics Center Program in Airway Inflammation, The University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
42
|
Kobayashi Y, Ito K, Kanda A, Tomoda K, Miller-Larsson A, Barnes PJ, Mercado N. Protein tyrosine phosphatase PTP-RR regulates corticosteroid sensitivity. Respir Res 2016; 17:30. [PMID: 27013170 PMCID: PMC4806463 DOI: 10.1186/s12931-016-0349-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/17/2016] [Indexed: 12/30/2022] Open
Abstract
Background We have recently reported that protein phosphate 2A (PP2A) inactivation resulted in increased phosphorylation of the mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase 1 (JNK1) and glucocorticoid receptors (GR) at Ser226, thereby reducing GR nuclear translocation and causing corticosteroid insensitivity in severe asthmatics. Protein tyrosine phosphatases (PTPs) are also known to be critically involved in the regulation of MAPKs, such as JNK and therefore potentially associated with GR function. The aim of study was to elucidate the involvement of MAPK-PTPs (PTP-RR, PTP-N5 and PTP-N7), which can dephosphorylate MAPKs, in the regulation of corticosteroid sensitivity. Methods Corticosteroid sensitivity, GR nuclear translocation, phosphorylation levels of GR-Ser226, JNK1 and PP2A catalytic subunit (PP2AC)-Tyr307 and protein expression levels and activities of PTP-RR and PP2AC were evaluated in U937 cells and/or peripheral blood mononuclear cells (PBMCs). Knock-down effects of MAPK-PTPs using siRNA were also evaluated. Results Knock-down of PTP-RR, but not of PTP-N5 or PTP-N7 impaired corticosteroid sensitivity, induced GR-Ser226 phosphorylation and reduced GR nuclear translocation. Under IL-2/IL-4-induced corticosteroid insensitivity, PTP-RR expression, activity and associations with JNK1 and GR were reduced but PTP-RR activity was restored by formoterol. Also in PBMCs from severe asthmatic patients, PTP-RR and JNK1 expression were reduced and GR-Ser226 phosphorylation increased. Furthermore, PTP-RR was associated with PP2A. PTP-RR reduction enhanced PP2AC-Tyr307 phosphorylation leading to impairment of PP2A expression and activity. Conclusions We demonstrated that with corticosteroid insensitivity PTP-RR fails to reduce phosphorylation of JNK1 and GR-Ser226, resulting in down-regulation of GR nuclear translocation. Reduced PTP-RR may represent a novel cause of corticosteroid insensitivity in severe asthmatics. Electronic supplementary material The online version of this article (doi:10.1186/s12931-016-0349-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoshiki Kobayashi
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Royal Brompton Campus, Dovehouse Street, London, SW3 6LY, UK. .,Airway Medicine, Department of Otolaryngology, Kansai Medical University, Osaka, Japan.
| | - Kazuhiro Ito
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Royal Brompton Campus, Dovehouse Street, London, SW3 6LY, UK
| | - Akira Kanda
- Airway Medicine, Department of Otolaryngology, Kansai Medical University, Osaka, Japan
| | - Koich Tomoda
- Airway Medicine, Department of Otolaryngology, Kansai Medical University, Osaka, Japan
| | | | - Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Royal Brompton Campus, Dovehouse Street, London, SW3 6LY, UK
| | - Nicolas Mercado
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Royal Brompton Campus, Dovehouse Street, London, SW3 6LY, UK
| |
Collapse
|
43
|
Abstract
Corticosteroids are the most effective treatment for asthma, but the therapeutic response varies markedly between individuals, with up to one third of patients showing evidence of insensitivity to corticosteroids. This article summarizes information on genetic, environmental and asthma-related factors as well as demographic and pharmacokinetic variables associated with corticosteroid insensitivity in asthma. Molecular mechanisms proposed to explain corticosteroid insensitivity are reviewed including alterations in glucocorticoid receptor subtype, binding and nuclear translocation, increased proinflammatory transcription factors and defective histone acetylation. Current therapies and future interventions that may restore corticosteroid sensitivity in asthma are discussed, including small molecule drugs and biological agents. In the future, biomarkers may be used in the clinic to predict corticosteroid sensitivity in patients with poorly controlled asthma.
Collapse
Affiliation(s)
- Neil C Thomson
- a Institute of Infection, Immunity & Inflammation , University of Glasgow , Glasgow , UK
| |
Collapse
|
44
|
Rahman MM, Rumzhum NN, Hansbro PM, Morris JC, Clark AR, Verrills NM, Ammit AJ. Activating protein phosphatase 2A (PP2A) enhances tristetraprolin (TTP) anti-inflammatory function in A549 lung epithelial cells. Cell Signal 2016; 28:325-34. [PMID: 26820662 DOI: 10.1016/j.cellsig.2016.01.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/21/2016] [Accepted: 01/23/2016] [Indexed: 12/13/2022]
Abstract
Chronic respiratory diseases are driven by inflammation, but some clinical conditions (severe asthma, COPD) are refractory to conventional anti-inflammatory therapies. Thus, novel anti-inflammatory strategies are necessary. The mRNA destabilizing protein, tristetraprolin (TTP), is an anti-inflammatory molecule that functions to induce mRNA decay of cytokines that drive pathogenesis of respiratory disorders. TTP is regulated by phosphorylation and protein phosphatase 2A (PP2A) is responsible for dephosphorylating (and hence activating) TTP, amongst other targets. PP2A is activated by small molecules, FTY720 and AAL(S), and in this study we examine whether these compounds repress cytokine production in a cellular model of airway inflammation using A549 lung epithelial cells stimulated with tumor necrosis factor α (TNFα) in vitro. PP2A activators significantly increase TNFα-induced PP2A activity and inhibit mRNA expression and protein secretion of interleukin 8 (IL-8) and IL-6; two key pro-inflammatory cytokines implicated in respiratory disease and TTP targets. The effect of PP2A activators is not via an increase in TNFα-induced TTP mRNA expression; instead we demonstrate a link between PP2A activation and TTP anti-inflammatory function by showing that specific knockdown of TTP with siRNA reversed the repression of TNFα-induced IL-8 and IL-6 mRNA expression and protein secretion by FTY720. Therefore we propose that PP2A activators affect the dynamic equilibrium regulating TTP; shifting the equilibrium from phosphorylated (inactive) towards unphosphorylated (active) but unstable TTP. PP2A activators boost the anti-inflammatory function of TTP and have implications for future pharmacotherapeutic strategies to combat inflammation in respiratory disease.
Collapse
Affiliation(s)
| | | | - Philip M Hansbro
- Priority Research Centre for Respiratory Diseases, Hunter Medical Research Institute, University of Newcastle, NSW 2308, Australia
| | | | - Andrew R Clark
- Centre for Translational Inflammation Research, School of Immunity and Infection, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, NSW 2308, Australia
| | - Alaina J Ammit
- Faculty of Pharmacy, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
45
|
Okada T, Niiyama E, Uto K, Aoyagi T, Ebara M. Inactivated Sendai Virus (HVJ-E) Immobilized Electrospun Nanofiber for Cancer Therapy. MATERIALS (BASEL, SWITZERLAND) 2015; 9:E12. [PMID: 28787810 PMCID: PMC5456544 DOI: 10.3390/ma9010012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 01/29/2023]
Abstract
Inactivated Hemagglutinating Virus of Japan Envelope (HVJ-E) was immobilized on electrospun nanofibers of poly(ε-caprolactone) by layer-by-layer (LbL) assembly technique. The precursor LbL film was first constructed with poly-L-lysine and alginic acid via electrostatic interaction. Then the HVJ-E particles were immobilized on the cationic PLL outermost surface. The HVJ-E adsorption was confirmed by surface wettability test, scanning laser microscopy, scanning electron microscopy, and confocal laser microscopy. The immobilized HVJ-E particles were released from the nanofibers under physiological condition. In vitro cytotoxic assay demonstrated that the released HVJ-E from nanofibers induced cancer cell deaths. This surface immobilization technique is possible to perform on anti-cancer drug incorporated nanofibers that enables the fibers to show chemotherapy and immunotherapy simultaneously for an effective eradication of tumor cells in vivo.
Collapse
Affiliation(s)
- Takaharu Okada
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
- Biomaterials Unit, Nano-Life Field, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Japan Society for the Promotion of Science (JSPS), 8 Ichibancho, Chiyoda-ku, Tokyo 102-0083, Japan.
| | - Eri Niiyama
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
- Biomaterials Unit, Nano-Life Field, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Koichiro Uto
- Biomaterials Unit, Nano-Life Field, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Takao Aoyagi
- Biomaterials Unit, Nano-Life Field, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Mitsuhiro Ebara
- Biomaterials Unit, Nano-Life Field, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Graduate School of Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| |
Collapse
|
46
|
Barnes PJ. Therapeutic approaches to asthma-chronic obstructive pulmonary disease overlap syndromes. J Allergy Clin Immunol 2015; 136:531-45. [PMID: 26343937 DOI: 10.1016/j.jaci.2015.05.052] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 12/14/2022]
Abstract
The recognition that there are some patients with features of asthma and chronic obstructive pulmonary disease (COPD) has highlighted the need to develop more specific treatments for these clinical phenotypes. Some patients with COPD have predominantly eosinophilic inflammation and might respond to high doses of inhaled corticosteroids and newly developed specific antieosinophil therapies, including blocking antibodies against IL-5, IL-13, IL-33, and thymic stromal lymphopoietin, as well as oral chemoattractant receptor-homologous molecule expressed on TH2 cells antagonists. Other patients have severe asthma or are asthmatic patients who smoke with features of COPD-induced inflammation and might benefit from treatments targeting neutrophils, including macrolides, CXCR2 antagonists, phosphodiesterase 4 inhibitors, p38 mitogen-activating protein kinase inhibitors, and antibodies against IL-1 and IL-17. Other patients appear to have largely fixed obstruction with little inflammation and might respond to long-acting bronchodilators, including long-acting muscarinic antagonists, to reduce hyperinflation. Highly selected patients with severe asthma might benefit from bronchial thermoplasty. Some patients with overlap syndromes can be conveniently treated with triple fixed-dose combination inhaler therapy with an inhaled corticosteroid, long-acting β2-agonist, and long-acting muscarinic antagonist, several of which are now in development. Corticosteroid resistance is a feature of asthma-COPD overlap syndrome, and understanding the various molecular mechanisms of this resistance has identified novel therapeutic targets and presented the prospect of therapies that can restore corticosteroid responsiveness.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, United Kingdom.
| |
Collapse
|
47
|
Peripheral blood IRF1 expression as a marker for glucocorticoid sensitivity. Pharmacogenet Genomics 2015; 25:126-33. [PMID: 25564375 DOI: 10.1097/fpc.0000000000000116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Despite of the common usage of glucocorticoids (GCs), a significant portion of asthma patients exhibit GC insensitivity. This could be mediated by diverse mechanisms, including genomics. Recent work has suggested that measuring changes in gene expression may provide more predictive information about GC insensitivity than baseline gene expression alone, and that expression changes in peripheral blood may be reflective of those in the airway. METHODS We performed in silico discovery using gene expression omnibus (GEO) data that evaluated GC effect on gene expression in multiple tissue types. Subsequently, candidate genes whose expression levels are affected by GC were examined in cell lines and in primary cells derived from human airway and blood. RESULTS Through gene expression omnibus analysis, we identified interferon regulator factor 1 (IRF1), whose expression is affected by GC treatment in airway smooth muscle cells, normal human bronchial epithelial (NHBE) cells, and lymphoblastoid cell lines (LCLs). Significant IRF1 downregulation post GC exposure was confirmed in two cultured airway epithelial cell lines and primary NHBE cells (P<0.05). We observed large interindividual variation in GC-induced IRF1 expression changes among primary NHBE cells tested. Significant downregulation of IRF1 was also observed in six randomly selected LCLs (P<0.05), with variable degrees of downregulation among different samples. In peripheral blood mononuclear cells obtained from healthy volunteers, variable downregulation of IRF1 by GC was also shown. NFKB1, a gene whose expression is known to be downregulated by GC and the degree of downregulation of which is reflective of GC response, was used as a control in our study. IRF1 shows more consistent downregulation across tissue types when compared with NFKB1. CONCLUSION Our results suggest that GC-induced IRF1 gene expression changes in peripheral blood could be used as a marker to reflect GC response in the airway.
Collapse
|
48
|
Rahman MM, Rumzhum NN, Morris JC, Clark AR, Verrills NM, Ammit AJ. Basal protein phosphatase 2A activity restrains cytokine expression: role for MAPKs and tristetraprolin. Sci Rep 2015; 5:10063. [PMID: 25985190 PMCID: PMC4434956 DOI: 10.1038/srep10063] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/26/2015] [Indexed: 12/31/2022] Open
Abstract
PP2A is a master controller of multiple inflammatory signaling pathways. It is a target in asthma; however the molecular mechanisms by which PP2A controls inflammation warrant further investigation. In A549 lung epithelial cells in vitro we show that inhibition of basal PP2A activity by okadaic acid (OA) releases restraint on MAPKs and thereby increases MAPK-mediated pro-asthmatic cytokines, including IL-6 and IL-8. Notably, PP2A inhibition also impacts on the anti-inflammatory protein - tristetraprolin (TTP), a destabilizing RNA binding protein regulated at multiple levels by p38 MAPK. Although PP2A inhibition increases TTP mRNA expression, resultant TTP protein builds up in the hyperphosphorylated inactive form. Thus, when PP2A activity is repressed, pro-inflammatory cytokines increase and anti-inflammatory proteins are rendered inactive. Importantly, these effects can be reversed by the PP2A activators FTY720 and AAL(s), or more specifically by overexpression of the PP2A catalytic subunit (PP2A-C). Moreover, PP2A plays an important role in cytokine expression in cells stimulated with TNFα; as inhibition of PP2A with OA or PP2A-C siRNA results in significant increases in cytokine production. Collectively, these data reveal the molecular mechanisms of PP2A regulation and highlight the potential of boosting the power of endogenous phosphatases as novel anti-inflammatory strategies to combat asthmatic inflammation.
Collapse
Affiliation(s)
| | | | | | - Andrew R Clark
- Centre for Translational Inflammation Research School of Immunity and Infection University of Birmingham. Edgbaston B15 2TT United Kingdom
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy Faculty of Health University of Newcastle. NSW 2308 Australia
| | - Alaina J Ammit
- Faculty of Pharmacy University of Sydney. NSW 2006 Australia
| |
Collapse
|
49
|
Abstract
Chronic inflammatory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), are clinically and socioeconomically important diseases globally. Currently the mainstay of anti-inflammatory therapy in respiratory diseases is corticosteroids. Although corticosteroids have proven clinical efficacy in asthma, many asthmatic inflammatory conditions (e.g., infection, exacerbation, and severe asthma) are not responsive to corticosteroids. Moreover, despite an understanding that COPD progression is driven by inflammation, we currently do not have effective anti-inflammatory strategies to combat this disease. Hence, alternative anti-inflammatory strategies are required. p38 mitogen-activated protein kinase (MAPK) has emerged as an important signaling molecule driving airway inflammation, and pharmacological inhibitors against p38 MAPK may provide potential therapies for chronic respiratory disease. In this review, we discuss some of the recent in vitro and in vivo studies targeting p38 MAPK, but suggest that p38 MAPK inhibitors may prove less effective than originally considered because they may block anti-inflammatory molecules along with proinflammatory responses. We propose that an alternative strategy may be to target an anti-inflammatory molecule farther downstream of p38 MAPK, i.e., tristetraprolin (TTP). TTP is an mRNA-destabilizing, RNA-binding protein that enhances the decay of mRNAs, including those encoding proteins implicated in chronic respiratory diseases. We suggest that understanding the molecular mechanism of TTP expression and its temporal regulation will guide future development of novel anti-inflammatory pharmacotherapeutic approaches to combat respiratory disease.
Collapse
Affiliation(s)
- Pavan Prabhala
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| | - Alaina J Ammit
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
50
|
MicroRNA-9 regulates steroid-resistant airway hyperresponsiveness by reducing protein phosphatase 2A activity. J Allergy Clin Immunol 2015; 136:462-73. [PMID: 25772595 DOI: 10.1016/j.jaci.2014.11.044] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Steroid-resistant asthma is a major clinical problem that is linked to activation of innate immune cells. Levels of IFN-γ and LPS are often increased in these patients. Cooperative signaling between IFN-γ/LPS induces macrophage-dependent steroid-resistant airway hyperresponsiveness (AHR) in mouse models. MicroRNAs (miRs) are small noncoding RNAs that regulate the function of innate immune cells by controlling mRNA stability and translation. Their role in regulating glucocorticoid responsiveness and AHR remains unexplored. OBJECTIVE IFN-γ and LPS synergistically increase the expression of miR-9 in macrophages and lung tissue, suggesting a role in the mechanisms of steroid resistance. Here we demonstrate the role of miR-9 in IFN-γ/LPS-induced inhibition of dexamethasone (DEX) signaling in macrophages and in induction of steroid-resistant AHR. METHODS MiRNA-9 expression was assessed by means of quantitative RT-PCR. Putative miR-9 targets were determined in silico and confirmed in luciferase reporter assays. miR-9 function was inhibited with sequence-specific antagomirs. The efficacy of DEX was assessed by quantifying glucocorticoid receptor (GR) cellular localization, protein phosphatase 2A (PP2A) activity, and AHR. RESULTS Exposure of pulmonary macrophages to IFN-γ/LPS synergistically induced miR-9 expression; reduced levels of its target transcript, protein phosphatase 2 regulatory subunit B (B56) δ isoform; attenuated PP2A activity; and inhibited DEX-induced GR nuclear translocation. Inhibition of miR-9 increased both PP2A activity and GR nuclear translocation in macrophages and restored steroid sensitivity in multiple models of steroid-resistant AHR. Pharmacologic activation of PP2A restored DEX efficacy and inhibited AHR. MiR-9 expression was increased in sputum of patients with neutrophilic but not those with eosinophilic asthma. CONCLUSION MiR-9 regulates GR signaling and steroid-resistant AHR. Targeting miR-9 function might be a novel approach for the treatment of steroid-resistant asthma.
Collapse
|