1
|
Venkataraman YR, Huffmyer AS, White SJ, Downey-Wall A, Ashey J, Becker DM, Bengtsson Z, Putnam HM, Strand E, Rodríguez-Casariego JA, Wanamaker SA, Lotterhos KE, Roberts SB. DNA methylation correlates with transcriptional noise in response to elevated pCO 2 in the eastern oyster ( Crassostrea virginica). ENVIRONMENTAL EPIGENETICS 2024; 10:dvae018. [PMID: 39534877 PMCID: PMC11556341 DOI: 10.1093/eep/dvae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/15/2024] [Accepted: 09/22/2024] [Indexed: 11/16/2024]
Abstract
Ocean acidification significantly affects marine calcifiers like oysters, warranting the study of molecular mechanisms like DNA methylation that contribute to adaptive plasticity in response to environmental change. However, a consensus has not been reached on the extent to which methylation modules gene expression, and in turn plasticity, in marine invertebrates. In this study, we investigated the impact of pCO2 on gene expression and DNA methylation in the eastern oyster, Crassostrea virginica. After a 30-day exposure to control (572 ppm) or elevated pCO2 (2827 ppm), whole-genome bisulfite sequencing (WGBS) and RNA-seq data were generated from adult female gonad tissue and male sperm samples. Although differentially methylated loci (DMLs) were identified in females (89) and males (2916), there were no differentially expressed genes and only one differentially expressed transcript in females. However, gene body methylation impacted other forms of gene activity in sperm, such as the maximum number of transcripts expressed per gene and changes in the predominant transcript expressed. Elevated pCO2 exposure increased gene expression variability (transcriptional noise) in males but decreased noise in females, suggesting a sex-specific role of methylation in gene expression regulation. Functional annotation of genes with changes in transcript-level expression or containing DMLs revealed several enriched biological processes potentially involved in elevated pCO2 response, including apoptotic pathways and signal transduction, as well as reproductive functions. Taken together, these results suggest that DNA methylation may regulate gene expression variability to maintain homeostasis in elevated pCO2 conditions and could play a key role in environmental resilience in marine invertebrates.
Collapse
Affiliation(s)
- Yaamini R Venkataraman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Ariana S Huffmyer
- School of Aquatic and Fisheries Sciences, University of Washington, Seattle, WA 98195, United States
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - Samuel J White
- School of Aquatic and Fisheries Sciences, University of Washington, Seattle, WA 98195, United States
| | | | - Jill Ashey
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - Danielle M Becker
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - Zachary Bengtsson
- School of Aquatic and Fisheries Sciences, University of Washington, Seattle, WA 98195, United States
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - Emma Strand
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, United States
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, United States
| | - Javier A Rodríguez-Casariego
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, FL, 33199, United States
| | - Shelly A Wanamaker
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, United States
| | - Katie E Lotterhos
- Northeastern University Marine Science Center, Nahant, MA 01908, United States
| | - Steven B Roberts
- School of Aquatic and Fisheries Sciences, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
2
|
Le Franc L, Petton B, Favrel P, Rivière G. m 6A Profile Dynamics Indicates Regulation of Oyster Development by m 6A-RNA Epitranscriptomes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:742-755. [PMID: 36496129 PMCID: PMC10787124 DOI: 10.1016/j.gpb.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The N6-methylation of RNA adenosines (N6-methyladenosine, m6A) is an important regulator of gene expression with critical implications in vertebrate and insect development. However, the developmental significance of epitranscriptomes in lophotrochozoan organisms remains unknown. Using methylated RNA immunoprecipitation sequencing (MeRIP-seq), we generated transcriptome-wide m6A-RNA methylomes covering the entire development of the oyster from oocytes to juveniles. Oyster RNA classes display specific m6A signatures, with messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) exhibiting distinct profiles and being highly methylated compared to transposable element (TE) transcripts. Epitranscriptomes are dynamic and correspond to the chronological steps of development (cleavage, gastrulation, organogenesis, and metamorphosis), with minimal mRNA and lncRNA methylation at the morula stage followed by a global increase. mRNA m6A levels are correlated with transcript levels, and shifts in methylation profiles correspond to expression kinetics. Differentially methylated transcripts cluster according to embryo-larval stages and bear the corresponding developmental functions (cell division, signal transduction, morphogenesis, and cell differentiation). The m6A level of TE transcripts is also regulated and peaks during the gastrulation. We demonstrate that m6A-RNA methylomes are dynamic and associated with gene expression regulation during oyster development. The putative epitranscriptome implication in the cleavage, maternal-to-zygotic transition, and cell differentiation in a lophotrochozoan model brings new insights into the control and evolution of developmental processes.
Collapse
Affiliation(s)
- Lorane Le Franc
- Laboratoire de Biologie des Organismes et des Ecosystèmes Aquatiques (BOREA), Muséum d'Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, Université des Antilles, CNRS UMR 8067, IRD, 14032 Caen, France
| | - Bruno Petton
- Ifremer, Laboratoire des Sciences de l'Environnement Marin, UMR 6539 CNRS/UBO/IRD/Ifremer, Centre Bretagne, 29280 Plouzané, France
| | - Pascal Favrel
- Laboratoire de Biologie des Organismes et des Ecosystèmes Aquatiques (BOREA), Muséum d'Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, Université des Antilles, CNRS UMR 8067, IRD, 14032 Caen, France
| | - Guillaume Rivière
- Laboratoire de Biologie des Organismes et des Ecosystèmes Aquatiques (BOREA), Muséum d'Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, Université des Antilles, CNRS UMR 8067, IRD, 14032 Caen, France.
| |
Collapse
|
3
|
Lyu C, An R, Liu C, Shi Z, Wang Y, Luo G, Li J, Wang D. Bioaccumulation Pattern of the SARS-CoV-2 Spike Proteins in Pacific Oyster Tissues. Appl Environ Microbiol 2023; 89:e0210622. [PMID: 36815797 PMCID: PMC10057954 DOI: 10.1128/aem.02106-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
There is mounting evidence of the contamination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the sewage, surface water, and even marine environment. Various studies have confirmed that bivalve mollusks can bioaccumulate SARS-CoV-2 RNA to detectable levels. However, these results do not provide sufficient evidence for the presence of infectious viral particles. To verify whether oysters can bind the viral capsid and bioaccumulate the viral particles, Pacific oysters were artificially contaminated with the recombinant SARS-CoV-2 spike protein S1 subunit (rS1). The bioaccumulation pattern of the rS1 in different tissues was investigated by immunohistological assays. The results revealed that the rS1 was bioaccumulated predominately in the digestive diverticula. The rS1 was also present in the epithelium of the nondigestive tract tissues, including the gills, mantle, and heart. In addition, three potential binding ligands, including angiotensin-converting enzyme 2 (ACE 2)-like substances, A-type histo-blood group antigen (HBGA)-like substances, and oyster heat shock protein 70 (oHSP 70), were confirmed to bind rS1 and were distributed in tissues with various patterns. The colocalization analysis of rS1 and those potential ligands indicated that the distributions of rS1 are highly consistent with those of ACE 2-like substances and oHSP 70. Both ligands are distributed predominantly in the secretory absorptive cells of the digestive diverticula and may serve as the primary ligands to bind rS1. Therefore, oysters are capable of bioaccumulating the SARS-CoV-2 capsid readily by filter-feeding behavior assisted by specific binding ligands, especially in digestive diverticula. IMPORTANCE This is the first article to investigate the SARS-CoV-2 spike protein bioaccumulation pattern and mechanism in Pacific oysters by the histochemical method. Oysters can bioaccumulate SARS-CoV-2 capsid readily by filter-feeding behavior assisted by specific binding ligands. The new possible foodborne transmission route may change the epidemic prevention strategies and reveal some outbreaks that current conventional epidemic transmission routes cannot explain. This original and interdisciplinary paper advances a mechanistic understanding of the bioaccumulation of SARS-CoV-2 in oysters inhabiting contaminated surface water.
Collapse
Affiliation(s)
- Chenang Lyu
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Ran An
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Chu Liu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhentao Shi
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanfei Wang
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Guangda Luo
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingwen Li
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Dapeng Wang
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Egan BM, Scharf A, Pohl F, Kornfeld K. Control of aging by the renin–angiotensin system: a review of C. elegans, Drosophila, and mammals. Front Pharmacol 2022; 13:938650. [PMID: 36188619 PMCID: PMC9518657 DOI: 10.3389/fphar.2022.938650] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
The free-living, non-parasitic nematode Caenorhabditis elegans is a premier model organism for the study of aging and longevity due to its short lifespan, powerful genetic tools, and conservation of fundamental mechanisms with mammals. Approximately 70 percent of human genes have homologs in C. elegans, including many that encode proteins in pathways that influence aging. Numerous genetic pathways have been identified in C. elegans that affect lifespan, including the dietary restriction pathway, the insulin/insulin-like growth factor (IGF) signaling pathway, and the disruption of components of the mitochondrial electron transport chain. C. elegans is also a powerful system for performing drug screens, and many lifespan-extending compounds have been reported; notably, several FDA-approved medications extend the lifespan in C. elegans, raising the possibility that they can also extend the lifespan in humans. The renin–angiotensin system (RAS) in mammals is an endocrine system that regulates blood pressure and a paracrine system that acts in a wide range of tissues to control physiological processes; it is a popular target for drugs that reduce blood pressure, including angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs). Emerging evidence indicates that this system influences aging. In C. elegans, decreasing the activity of the ACE homolog acn-1 or treatment with the ACE-inhibitor Captopril significantly extends the lifespan. In Drosophila, treatment with ACE inhibitors extends the lifespan. In rodents, manipulating the RAS with genetic or pharmacological interventions can extend the lifespan. In humans, polymorphisms in the ACE gene are associated with extreme longevity. These results suggest the RAS plays a conserved role in controlling longevity. Here, we review studies of the RAS and aging, emphasizing the potential of C. elegans as a model for understanding the mechanism of lifespan control.
Collapse
Affiliation(s)
- Brian M. Egan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Andrea Scharf
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, United States
| | - Franziska Pohl
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- *Correspondence: Kerry Kornfeld,
| |
Collapse
|
5
|
Jones DL, Baluja MQ, Graham DW, Corbishley A, McDonald JE, Malham SK, Hillary LS, Connor TR, Gaze WH, Moura IB, Wilcox MH, Farkas K. Shedding of SARS-CoV-2 in feces and urine and its potential role in person-to-person transmission and the environment-based spread of COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141364. [PMID: 32836117 PMCID: PMC7836549 DOI: 10.1016/j.scitotenv.2020.141364] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 04/14/2023]
Abstract
The recent detection of SARS-CoV-2 RNA in feces has led to speculation that it can be transmitted via the fecal-oral/ocular route. This review aims to critically evaluate the incidence of gastrointestinal (GI) symptoms, the quantity and infectivity of SARS-CoV-2 in feces and urine, and whether these pose an infection risk in sanitary settings, sewage networks, wastewater treatment plants, and the wider environment (e.g. rivers, lakes and marine waters). A review of 48 independent studies revealed that severe GI dysfunction is only evident in a small number of COVID-19 cases, with 11 ± 2% exhibiting diarrhea and 12 ± 3% exhibiting vomiting and nausea. In addition to these cases, SARS-CoV-2 RNA can be detected in feces from some asymptomatic, mildly- and pre-symptomatic individuals. Fecal shedding of the virus peaks in the symptomatic period and can persist for several weeks, but with declining abundances in the post-symptomatic phase. SARS-CoV-2 RNA is occasionally detected in urine, but reports in fecal samples are more frequent. The abundance of the virus genetic material in both urine (ca. 102-105 gc/ml) and feces (ca. 102-107 gc/ml) is much lower than in nasopharyngeal fluids (ca. 105-1011 gc/ml). There is strong evidence of multiplication of SARS-CoV-2 in the gut and infectious virus has occasionally been recovered from both urine and stool samples. The level and infectious capability of SARS-CoV-2 in vomit remain unknown. In comparison to enteric viruses transmitted via the fecal-oral route (e.g. norovirus, adenovirus), the likelihood of SARS-CoV-2 being transmitted via feces or urine appears much lower due to the lower relative amounts of virus present in feces/urine. The biggest risk of transmission will occur in clinical and care home settings where secondary handling of people and urine/fecal matter occurs. In addition, while SARS-CoV-2 RNA genetic material can be detected by in wastewater, this signal is greatly reduced by conventional treatment. Our analysis also suggests the likelihood of infection due to contact with sewage-contaminated water (e.g. swimming, surfing, angling) or food (e.g. salads, shellfish) is extremely low or negligible based on very low predicted abundances and limited environmental survival of SARS-CoV-2. These conclusions are corroborated by the fact that tens of million cases of COVID-19 have occurred globally, but exposure to feces or wastewater has never been implicated as a transmission vector.
Collapse
Affiliation(s)
- David L Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia.
| | | | - David W Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Alexander Corbishley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush Campus Midlothian, EH25 9RG, UK
| | - James E McDonald
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Luke S Hillary
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Thomas R Connor
- Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; Public Health Wales, University Hospital of Wales, Cardiff CF14 4XW, UK
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, ESI, Penryn Campus, TR10 9FE, UK
| | - Ines B Moura
- Leeds Institute for Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds LS1 3EX, UK
| | - Mark H Wilcox
- Healthcare Associated Infections Research Group, Leeds Teaching Hospitals NHS Trust and University of Leeds, Leeds, UK
| | - Kata Farkas
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| |
Collapse
|
6
|
Jones DL, Baluja MQ, Graham DW, Corbishley A, McDonald JE, Malham SK, Hillary LS, Connor TR, Gaze WH, Moura IB, Wilcox MH, Farkas K. Shedding of SARS-CoV-2 in feces and urine and its potential role in person-to-person transmission and the environment-based spread of COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141364. [PMID: 32836117 DOI: 10.20944/preprints202007.0471.v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 05/18/2023]
Abstract
The recent detection of SARS-CoV-2 RNA in feces has led to speculation that it can be transmitted via the fecal-oral/ocular route. This review aims to critically evaluate the incidence of gastrointestinal (GI) symptoms, the quantity and infectivity of SARS-CoV-2 in feces and urine, and whether these pose an infection risk in sanitary settings, sewage networks, wastewater treatment plants, and the wider environment (e.g. rivers, lakes and marine waters). A review of 48 independent studies revealed that severe GI dysfunction is only evident in a small number of COVID-19 cases, with 11 ± 2% exhibiting diarrhea and 12 ± 3% exhibiting vomiting and nausea. In addition to these cases, SARS-CoV-2 RNA can be detected in feces from some asymptomatic, mildly- and pre-symptomatic individuals. Fecal shedding of the virus peaks in the symptomatic period and can persist for several weeks, but with declining abundances in the post-symptomatic phase. SARS-CoV-2 RNA is occasionally detected in urine, but reports in fecal samples are more frequent. The abundance of the virus genetic material in both urine (ca. 102-105 gc/ml) and feces (ca. 102-107 gc/ml) is much lower than in nasopharyngeal fluids (ca. 105-1011 gc/ml). There is strong evidence of multiplication of SARS-CoV-2 in the gut and infectious virus has occasionally been recovered from both urine and stool samples. The level and infectious capability of SARS-CoV-2 in vomit remain unknown. In comparison to enteric viruses transmitted via the fecal-oral route (e.g. norovirus, adenovirus), the likelihood of SARS-CoV-2 being transmitted via feces or urine appears much lower due to the lower relative amounts of virus present in feces/urine. The biggest risk of transmission will occur in clinical and care home settings where secondary handling of people and urine/fecal matter occurs. In addition, while SARS-CoV-2 RNA genetic material can be detected by in wastewater, this signal is greatly reduced by conventional treatment. Our analysis also suggests the likelihood of infection due to contact with sewage-contaminated water (e.g. swimming, surfing, angling) or food (e.g. salads, shellfish) is extremely low or negligible based on very low predicted abundances and limited environmental survival of SARS-CoV-2. These conclusions are corroborated by the fact that tens of million cases of COVID-19 have occurred globally, but exposure to feces or wastewater has never been implicated as a transmission vector.
Collapse
Affiliation(s)
- David L Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia.
| | | | - David W Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Alexander Corbishley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush Campus Midlothian, EH25 9RG, UK
| | - James E McDonald
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Luke S Hillary
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Thomas R Connor
- Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; Public Health Wales, University Hospital of Wales, Cardiff CF14 4XW, UK
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, ESI, Penryn Campus, TR10 9FE, UK
| | - Ines B Moura
- Leeds Institute for Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds LS1 3EX, UK
| | - Mark H Wilcox
- Healthcare Associated Infections Research Group, Leeds Teaching Hospitals NHS Trust and University of Leeds, Leeds, UK
| | - Kata Farkas
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| |
Collapse
|
7
|
Jones DL, Baluja MQ, Graham DW, Corbishley A, McDonald JE, Malham SK, Hillary LS, Connor TR, Gaze WH, Moura IB, Wilcox MH, Farkas K. Shedding of SARS-CoV-2 in feces and urine and its potential role in person-to-person transmission and the environment-based spread of COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020. [PMID: 32836117 DOI: 10.1016/j.scitotenv.2020.141364pmid-32836117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The recent detection of SARS-CoV-2 RNA in feces has led to speculation that it can be transmitted via the fecal-oral/ocular route. This review aims to critically evaluate the incidence of gastrointestinal (GI) symptoms, the quantity and infectivity of SARS-CoV-2 in feces and urine, and whether these pose an infection risk in sanitary settings, sewage networks, wastewater treatment plants, and the wider environment (e.g. rivers, lakes and marine waters). A review of 48 independent studies revealed that severe GI dysfunction is only evident in a small number of COVID-19 cases, with 11 ± 2% exhibiting diarrhea and 12 ± 3% exhibiting vomiting and nausea. In addition to these cases, SARS-CoV-2 RNA can be detected in feces from some asymptomatic, mildly- and pre-symptomatic individuals. Fecal shedding of the virus peaks in the symptomatic period and can persist for several weeks, but with declining abundances in the post-symptomatic phase. SARS-CoV-2 RNA is occasionally detected in urine, but reports in fecal samples are more frequent. The abundance of the virus genetic material in both urine (ca. 102-105 gc/ml) and feces (ca. 102-107 gc/ml) is much lower than in nasopharyngeal fluids (ca. 105-1011 gc/ml). There is strong evidence of multiplication of SARS-CoV-2 in the gut and infectious virus has occasionally been recovered from both urine and stool samples. The level and infectious capability of SARS-CoV-2 in vomit remain unknown. In comparison to enteric viruses transmitted via the fecal-oral route (e.g. norovirus, adenovirus), the likelihood of SARS-CoV-2 being transmitted via feces or urine appears much lower due to the lower relative amounts of virus present in feces/urine. The biggest risk of transmission will occur in clinical and care home settings where secondary handling of people and urine/fecal matter occurs. In addition, while SARS-CoV-2 RNA genetic material can be detected by in wastewater, this signal is greatly reduced by conventional treatment. Our analysis also suggests the likelihood of infection due to contact with sewage-contaminated water (e.g. swimming, surfing, angling) or food (e.g. salads, shellfish) is extremely low or negligible based on very low predicted abundances and limited environmental survival of SARS-CoV-2. These conclusions are corroborated by the fact that tens of million cases of COVID-19 have occurred globally, but exposure to feces or wastewater has never been implicated as a transmission vector.
Collapse
Affiliation(s)
- David L Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia.
| | | | - David W Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Alexander Corbishley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush Campus Midlothian, EH25 9RG, UK
| | - James E McDonald
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Luke S Hillary
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Thomas R Connor
- Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; Public Health Wales, University Hospital of Wales, Cardiff CF14 4XW, UK
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, ESI, Penryn Campus, TR10 9FE, UK
| | - Ines B Moura
- Leeds Institute for Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds LS1 3EX, UK
| | - Mark H Wilcox
- Healthcare Associated Infections Research Group, Leeds Teaching Hospitals NHS Trust and University of Leeds, Leeds, UK
| | - Kata Farkas
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| |
Collapse
|
8
|
Le Franc L, Bernay B, Petton B, Since M, Favrel P, Rivière G. A functional m 6 A-RNA methylation pathway in the oyster Crassostrea gigas assumes epitranscriptomic regulation of lophotrochozoan development. FEBS J 2020; 288:1696-1711. [PMID: 32743927 DOI: 10.1111/febs.15500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/13/2020] [Accepted: 07/28/2020] [Indexed: 11/30/2022]
Abstract
N6 -methyladenosine (m6 A) is a prevalent epitranscriptomic mark in eukaryotic RNA, with crucial roles for mammalian and ecdysozoan development. Indeed, m6 A-RNA and the related protein machinery are important for splicing, translation, maternal-to-zygotic transition and cell differentiation. However, to date, the presence of an m6 A-RNA pathway remains unknown in more distant animals, questioning the evolution and significance of the epitranscriptomic regulation. Therefore, we investigated the m6 A-RNA pathway in the oyster Crassostrea gigas, a lophotrochozoan model whose development was demonstrated under strong epigenetic influence. Using mass spectrometry and dot blot assays, we demonstrated that m6 A-RNA is actually present in the oyster and displays variations throughout early oyster development, with the lowest levels at the end of cleavage. In parallel, by in silico analyses, we were able to characterize at the molecular level a complete and conserved putative m6 A machinery. The expression levels of the identified putative m6 A writers, erasers and readers were strongly regulated across oyster development. Finally, RNA pull-down coupled to LC-MS/MS allowed us to prove the actual presence of readers able to bind m6 A-RNA and exhibiting specific developmental patterns. Altogether, our results demonstrate the conservation of a complete m6 A-RNA pathway in the oyster and strongly suggest its implication in early developmental processes including MZT. This first demonstration and characterization of an epitranscriptomic regulation in a lophotrochozoan model, potentially involved in the embryogenesis, bring new insights into our understanding of developmental epigenetic processes and their evolution.
Collapse
Affiliation(s)
- Lorane Le Franc
- UNICAEN, CNRS, BOREA, Normandie Univ, Caen, France.,Laboratoire Biologie des organismes et Ecosystèmes aquatiques (BOREA), Muséum d'Histoire naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Caen, France
| | - Benoit Bernay
- UNICAEN, ICORE, PROTEOGEN Core Facility, Caen, SF, France
| | - Bruno Petton
- Ifremer, Laboratoire des Sciences de l'Environnement Marin, UMR 6539 CNRS/UBO/IRD/Ifremer, Centre Bretagne, Normandie Univ, Plouzané, France
| | - Marc Since
- UNICAEN, Comprehensive Cancer Center F. Baclesse, SF ICORE, PRISMM Core Facility, Normandie Univ, Caen, France
| | - Pascal Favrel
- UNICAEN, CNRS, BOREA, Normandie Univ, Caen, France.,Laboratoire Biologie des organismes et Ecosystèmes aquatiques (BOREA), Muséum d'Histoire naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Caen, France
| | - Guillaume Rivière
- UNICAEN, CNRS, BOREA, Normandie Univ, Caen, France.,Laboratoire Biologie des organismes et Ecosystèmes aquatiques (BOREA), Muséum d'Histoire naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Caen, France
| |
Collapse
|
9
|
Histone Methylation Participates in Gene Expression Control during the Early Development of the Pacific Oyster Crassostrea gigas. Genes (Basel) 2019; 10:genes10090695. [PMID: 31509985 PMCID: PMC6771004 DOI: 10.3390/genes10090695] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022] Open
Abstract
Histone methylation patterns are important epigenetic regulators of mammalian development, notably through stem cell identity maintenance by chromatin remodeling and transcriptional control of pluripotency genes. But, the implications of histone marks are poorly understood in distant groups outside vertebrates and ecdysozoan models. However, the development of the Pacific oyster Crassostrea gigas is under the strong epigenetic influence of DNA methylation, and Jumonji histone-demethylase orthologues are highly expressed during C. gigas early life. This suggests a physiological relevance of histone methylation regulation in oyster development, raising the question of functional conservation of this epigenetic pathway in lophotrochozoan. Quantification of histone methylation using fluorescent ELISAs during oyster early life indicated significant variations in monomethyl histone H3 lysine 4 (H3K4me), an overall decrease in H3K9 mono- and tri-methylations, and in H3K36 methylations, respectively, whereas no significant modification could be detected in H3K27 methylation. Early in vivo treatment with the JmjC-specific inhibitor Methylstat induced hypermethylation of all the examined histone H3 lysines and developmental alterations as revealed by scanning electronic microscopy. Using microarrays, we identified 376 genes that were differentially expressed under methylstat treatment, which expression patterns could discriminate between samples as indicated by principal component analysis. Furthermore, Gene Ontology revealed that these genes were related to processes potentially important for embryonic stages such as binding, cell differentiation and development. These results suggest an important physiological significance of histone methylation in the oyster embryonic and larval life, providing, to our knowledge, the first insights into epigenetic regulation by histone methylation in lophotrochozoan development.
Collapse
|
10
|
Fellous A, Earley RL, Silvestre F. Identification and expression of mangrove rivulus (Kryptolebias marmoratus) histone deacetylase (HDAC) and lysine acetyltransferase (KAT) genes. Gene 2019; 691:56-69. [DOI: 10.1016/j.gene.2018.12.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/14/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022]
|
11
|
Fellous A, Earley RL, Silvestre F. The Kdm/Kmt gene families in the self-fertilizing mangrove rivulus fish, Kryptolebias marmoratus, suggest involvement of histone methylation machinery in development and reproduction. Gene 2019; 687:173-187. [DOI: 10.1016/j.gene.2018.11.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 12/16/2022]
|
12
|
Fellous A, Labed‐Veydert T, Locrel M, Voisin A, Earley RL, Silvestre F. DNA methylation in adults and during development of the self-fertilizing mangrove rivulus, Kryptolebias marmoratus. Ecol Evol 2018; 8:6016-6033. [PMID: 29988456 PMCID: PMC6024129 DOI: 10.1002/ece3.4141] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/18/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
In addition to genetic variation, epigenetic mechanisms such as DNA methylation might make important contributions to heritable phenotypic diversity in populations. However, it is often difficult to disentangle the contributions of genetic and epigenetic variation to phenotypic diversity. Here, we investigated global DNA methylation and mRNA expression of the methylation-associated enzymes during embryonic development and in adult tissues of one natural isogenic lineage of mangrove rivulus fish, Kryptolebias marmoratus. Being the best-known self-fertilizing hermaphroditic vertebrate affords the opportunity to work with genetically identical individuals to examine, explicitly, the phenotypic effects of epigenetic variance. Using the LUminometric Methylation Assay (LUMA), we described variable global DNA methylation at CpG sites in adult tissues, which differed significantly between hermaphrodite ovotestes and male testes (79.6% and 87.2%, respectively). After fertilization, an immediate decrease in DNA methylation occurred to 15.8% in gastrula followed by re-establishment to 70.0% by stage 26 (liver formation). Compared to zebrafish, at the same embryonic stages, this reprogramming event seems later, deeper, and longer. Furthermore, genes putatively encoding DNA methyltransferases (DNMTs), Ten-Eleven Translocation (TET), and MeCP2 proteins showed specific regulation in adult gonad and brain, and also during early embryogenesis. Their conserved domains and expression profiles suggest that these proteins play important roles during reproduction and development. This study raises questions about mangrove rivulus' peculiar reprogramming period in terms of epigenetic transmission and physiological adaptation of individuals to highly variable environments. In accordance with the general-purpose genotype model, epigenetic mechanisms might allow for the expression of diverse phenotypes among genetically identical individuals. Such phenotypes might help to overcome environmental challenges, making the mangrove rivulus a valuable vertebrate model for ecological epigenetic studies. The mangrove rivulus, Kryptolebias marmoratus, is the best-known self-fertilizing hermaphroditic vertebrate that allows to work with genetically identical individuals to examine, explicitly, the phenotypic effects of epigenetic variance. The reprogramming event is later, more dramatic and longer than in other described vertebrates. High evolutionary conservation and expression patterns of DNMT, TET, and MeCP2 proteins in K. marmoratus suggest biological roles for each member in gametogenesis and development.
Collapse
Affiliation(s)
- Alexandre Fellous
- Laboratory of Evolutionary and Adaptive PhysiologyInstitute of Life, Earth and EnvironmentUniversity of NamurNamurBelgium
| | - Tiphaine Labed‐Veydert
- Laboratory of Evolutionary and Adaptive PhysiologyInstitute of Life, Earth and EnvironmentUniversity of NamurNamurBelgium
| | - Mélodie Locrel
- Laboratory of Evolutionary and Adaptive PhysiologyInstitute of Life, Earth and EnvironmentUniversity of NamurNamurBelgium
| | - Anne‐Sophie Voisin
- Laboratory of Evolutionary and Adaptive PhysiologyInstitute of Life, Earth and EnvironmentUniversity of NamurNamurBelgium
| | - Ryan L. Earley
- Department of Biological SciencesUniversity of AlabamaTuscaloosaAlabamaUSA
| | - Frederic Silvestre
- Laboratory of Evolutionary and Adaptive PhysiologyInstitute of Life, Earth and EnvironmentUniversity of NamurNamurBelgium
| |
Collapse
|
13
|
Wang X, Yu H, Xing R, Li P. Characterization, Preparation, and Purification of Marine Bioactive Peptides. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9746720. [PMID: 28761878 PMCID: PMC5518491 DOI: 10.1155/2017/9746720] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/25/2017] [Accepted: 06/01/2017] [Indexed: 12/17/2022]
Abstract
Marine bioactive peptides, as a source of unique bioactive compounds, are the focus of current research. They exert various biological roles, some of the most crucial of which are antioxidant activity, antimicrobial activity, anticancer activity, antihypertensive activity, anti-inflammatory activity, and so forth, and specific characteristics of the bioactivities are described. This review also describes various manufacturing techniques for marine bioactive peptides using organic synthesis, microwave assisted extraction, chemical hydrolysis, and enzymes hydrolysis. Finally, purification of marine bioactive peptides is described, including gel or size exclusion chromatography, ion-exchange column chromatography, and reversed-phase high-performance liquid chromatography, which are aimed at finding a fast, simple, and effective method to obtain the target peptides.
Collapse
Affiliation(s)
- Xueqin Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huahua Yu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ronge Xing
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Pengcheng Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
14
|
GigaTON: an extensive publicly searchable database providing a new reference transcriptome in the pacific oyster Crassostrea gigas. BMC Bioinformatics 2015; 16:401. [PMID: 26627443 PMCID: PMC4667447 DOI: 10.1186/s12859-015-0833-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 11/24/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The Pacific oyster, Crassostrea gigas, is one of the most important aquaculture shellfish resources worldwide. Important efforts have been undertaken towards a better knowledge of its genome and transcriptome, which makes now C. gigas becoming a model organism among lophotrochozoans, the under-described sister clade of ecdysozoans within protostomes. These massive sequencing efforts offer the opportunity to assemble gene expression data and make such resource accessible and exploitable for the scientific community. Therefore, we undertook this assembly into an up-to-date publicly available transcriptome database: the GigaTON (Gigas TranscriptOme pipeliNe) database. DESCRIPTION We assembled 2204 million sequences obtained from 114 publicly available RNA-seq libraries that were realized using all embryo-larval development stages, adult organs, different environmental stressors including heavy metals, temperature, salinity and exposure to air, which were mostly performed as part of the Crassostrea gigas genome project. This data was analyzed in silico and resulted into 56621 newly assembled contigs that were deposited into a publicly available database, the GigaTON database. This database also provides powerful and user-friendly request tools to browse and retrieve information about annotation, expression level, UTRs, splice and polymorphism, and gene ontology associated to all the contigs into each, and between all libraries. CONCLUSIONS The GigaTON database provides a convenient, potent and versatile interface to browse, retrieve, confront and compare massive transcriptomic information in an extensive range of conditions, tissues and developmental stages in Crassostrea gigas. To our knowledge, the GigaTON database constitutes the most extensive transcriptomic database to date in marine invertebrates, thereby a new reference transcriptome in the oyster, a highly valuable resource to physiologists and evolutionary biologists.
Collapse
|
15
|
Temperature influences histone methylation and mRNA expression of the Jmj-C histone-demethylase orthologues during the early development of the oyster Crassostrea gigas. Mar Genomics 2015; 19:23-30. [DOI: 10.1016/j.margen.2014.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 01/08/2023]
|
16
|
Fellous A, Favrel P, Guo X, Riviere G. The Jumonji gene family in Crassostrea gigas suggests evolutionary conservation of Jmj-C histone demethylases orthologues in the oyster gametogenesis and development. Gene 2014; 538:164-75. [DOI: 10.1016/j.gene.2013.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/09/2013] [Accepted: 12/07/2013] [Indexed: 11/17/2022]
|
17
|
Riviere G, Wu GC, Fellous A, Goux D, Sourdaine P, Favrel P. DNA methylation is crucial for the early development in the Oyster C. gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:739-53. [PMID: 23877618 DOI: 10.1007/s10126-013-9523-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 06/04/2013] [Indexed: 05/02/2023]
Abstract
In vertebrates, epigenetic modifications influence gene transcription, and an appropriate DNA methylation is critical in development. Indeed, a precise temporal and spatial pattern of early gene expression is mandatory for a normal embryogenesis. However, such a regulation and its underlying mechanisms remain poorly understood in more distant organisms such as Lophotrochozoa. Thus, despite DNA in the oyster genome being methylated, the role of DNA methylation in development is unknown. To clarify this point, oyster genomic DNA was examined during early embryogenesis and found differentially methylated. Reverse transcriptase quantitative polymerase chain reaction indicated stage-specific levels of transcripts encoding DNA-methyltransferase (DNMT) and methyl-binding domain proteins. In addition, as highlighted by electronic microscopy and immunohistochemistry, the DNMT inhibitor 5-aza-cytidine induced alterations in the quantity and the localisation of methylated DNA and severe dose-dependent development alterations and was lethal after zygotic genome reinitiation. Furthermore, methyl-DNA-immunoprecipitation-quantitative polymerase chain reaction revealed that the transcription level of most of the homeobox gene orthologues examined, but not of the other early genes investigated, was inversely correlated with their specific DNA methylation. Altogether, our results demonstrate that DNA methylation influences gene expression in Crassostrea gigas and is critical for oyster development, possibly by specifically controlling the transcription level of homeobox orthologues. These findings provide evidence for the importance of epigenetic regulation of development in Lophotrochozoans and bring new insights into the early life of C. gigas, one of the most important aquaculture resources worldwide.
Collapse
Affiliation(s)
- Guillaume Riviere
- Biologie des Organismes Marins et des Ecosystèmes Associés (BioMEA) Esplanade de la paix, Université de Caen Basse-Normandie, 14032, Caen Cedex, France,
| | | | | | | | | | | |
Collapse
|
18
|
Bernstein KE, Ong FS, Blackwell WLB, Shah KH, Giani JF, Gonzalez-Villalobos RA, Shen XZ, Fuchs S, Touyz RM. A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol Rev 2012; 65:1-46. [PMID: 23257181 DOI: 10.1124/pr.112.006809] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) is a zinc-dependent peptidase responsible for converting angiotensin I into the vasoconstrictor angiotensin II. However, ACE is a relatively nonspecific peptidase that is capable of cleaving a wide range of substrates. Because of this, ACE and its peptide substrates and products affect many physiologic processes, including blood pressure control, hematopoiesis, reproduction, renal development, renal function, and the immune response. The defining feature of ACE is that it is composed of two homologous and independently catalytic domains, the result of an ancient gene duplication, and ACE-like genes are widely distributed in nature. The two ACE catalytic domains contribute to the wide substrate diversity of ACE and, by extension, the physiologic impact of the enzyme. Several studies suggest that the two catalytic domains have different biologic functions. Recently, the X-ray crystal structure of ACE has elucidated some of the structural differences between the two ACE domains. This is important now that ACE domain-specific inhibitors have been synthesized and characterized. Once widely available, these reagents will undoubtedly be powerful tools for probing the physiologic actions of each ACE domain. In turn, this knowledge should allow clinicians to envision new therapies for diseases not currently treated with ACE inhibitors.
Collapse
Affiliation(s)
- Kenneth E Bernstein
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Davis 2021, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|