1
|
Messina JM, Luo M, Hossan MS, Gadelrab HA, Yang X, John A, Wilmore JR, Luo J. Unveiling cytokine charge disparity as a potential mechanism for immune regulation. Cytokine Growth Factor Rev 2024; 77:1-14. [PMID: 38184374 DOI: 10.1016/j.cytogfr.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024]
Abstract
Cytokines are small signaling proteins that regulate the immune responses to infection and tissue damage. Surface charges of cytokines determine their in vivo fate in immune regulation, e.g., half-life and distribution. The overall negative charges in the extracellular microenvironment and the acidosis during inflammation and infection may differentially impact cytokines with different surface charges for fine-tuned immune regulation via controlling tissue residential properties. However, the trend and role of cytokine surface charges has yet to be elucidated in the literature. Interestingly, we have observed that most pro-inflammatory cytokines have a negative charge, while most anti-inflammatory cytokines and chemokines have a positive charge. In this review, we extensively examined the surface charges of all cytokines and chemokines, summarized the pharmacokinetics and tissue adhesion of major cytokines, and analyzed the link of surface charge with cytokine biodistribution, activation, and function in immune regulation. Additionally, we identified that the general trend of charge disparity between pro- and anti-inflammatory cytokines represents a unique opportunity to develop precise immune modulation approaches, which can be applied to many inflammation-associated diseases including solid tumors, chronic wounds, infection, and sepsis.
Collapse
Affiliation(s)
- Jennifer M Messina
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Minghao Luo
- Department of Clinical Medicine, 2nd Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Md Shanewaz Hossan
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Hadil A Gadelrab
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiguang Yang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Anna John
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Joel R Wilmore
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States.
| |
Collapse
|
2
|
Park JE, Kim DH. Advanced Immunomodulatory Biomaterials for Therapeutic Applications. Adv Healthc Mater 2024:e2304496. [PMID: 38716543 DOI: 10.1002/adhm.202304496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/15/2024] [Indexed: 05/22/2024]
Abstract
The multifaceted biological defense system modulating complex immune responses against pathogens and foreign materials plays a critical role in tissue homeostasis and disease progression. Recently developed biomaterials that can specifically regulate immune responses, nanoparticles, graphene, and functional hydrogels have contributed to the advancement of tissue engineering as well as disease treatment. The interaction between innate and adaptive immunity, collectively determining immune responses, can be regulated by mechanobiological recognition and adaptation of immune cells to the extracellular microenvironment. Therefore, applying immunomodulation to tissue regeneration and cancer therapy involves manipulating the properties of biomaterials by tailoring their composition in the context of the immune system. This review provides a comprehensive overview of how the physicochemical attributes of biomaterials determine immune responses, focusing on the physical properties that influence innate and adaptive immunity. This review also underscores the critical aspect of biomaterial-based immune engineering for the development of novel therapeutics and emphasizes the importance of understanding the biomaterials-mediated immunological mechanisms and their role in modulating the immune system.
Collapse
Affiliation(s)
- Ji-Eun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul, 02841, Republic of Korea
- Biomedical Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| |
Collapse
|
3
|
Klak K, Maciuszek M, Pijanowski L, Marcinkowska M, Homa J, Verburg-van Kemenade BML, Rakus K, Chadzinska M. Evolutionarily conserved mechanisms regulating stress-induced neutrophil redistribution in fish. Front Immunol 2024; 15:1330995. [PMID: 38515741 PMCID: PMC10954836 DOI: 10.3389/fimmu.2024.1330995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction Stress may pose a serious challenge to immune homeostasis. Stress however also may prepare the immune system for challenges such as wounding or infection, which are likely to happen during a fight or flight stress response. Methods In common carp (Cyprinus carpio L.) we studied the stress-induced redistribution of neutrophils into circulation, and the expression of genes encoding CXC chemokines known to be involved in the regulation of neutrophil retention (CXCL12) and redistribution (CXCL8), and their receptors (CXCR4 and CXCR1-2, respectively) in blood leukocytes and in the fish hematopoietic organ - the head kidney. The potential involvement of CXC receptors and stress hormone receptors in stress-induced neutrophil redistribution was determined by an in vivo study with selective CXCR inhibitors and antagonists of the receptors involved in stress regulation: glucocorticoid/mineralocorticoid receptors (GRs/MRs), adrenergic receptors (ADRs) and the melanocortin 2 receptor (MC2R). Results The stress-induced increase of blood neutrophils was accompanied by a neutrophil decrease in the hematopoietic organs. This increase was cortisol-induced and GR-dependent. Moreover, stress upregulated the expression of genes encoding CXCL12 and CXCL8 chemokines, their receptors, and the receptor for granulocytes colony-stimulation factor (GCSFR) and matrix metalloproteinase 9 (MMP9). Blocking of the CXCR4 and CXCR1 and 2 receptors with selective inhibitors inhibited the stress-induced neutrophil redistribution and affected the expression of genes encoding CXC chemokines and CXCRs as well as GCSFR and MMP9. Discussion Our data demonstrate that acute stress leads to the mobilization of the immune system, characterized by neutrophilia. CXC chemokines and CXC receptors are involved in this stress-induced redistribution of neutrophils from the hematopoietic tissue into the peripheral blood. This phenomenon is directly regulated by interactions between cortisol and the GR/MR. Considering the pivotal importance of neutrophilic granulocytes in the first line of defense, this knowledge is important for aquaculture, but will also contribute to the mechanisms involved in the stress-induced perturbation in neutrophil redistribution as often observed in clinical practice.
Collapse
Affiliation(s)
- Katarzyna Klak
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Magdalena Maciuszek
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Lukasz Pijanowski
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Magdalena Marcinkowska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Joanna Homa
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | | | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
4
|
Babatunde KA, Ayuso JM, Kerr SC, Huttenlocher A, Beebe DJ. Microfluidic Systems to Study Neutrophil Forward and Reverse Migration. Front Immunol 2021; 12:781535. [PMID: 34899746 PMCID: PMC8653704 DOI: 10.3389/fimmu.2021.781535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/09/2021] [Indexed: 12/26/2022] Open
Abstract
During infection, neutrophils are the most abundantly recruited innate immune cells at sites of infection, playing critical roles in the elimination of local infection and healing of the injury. Neutrophils are considered to be short-lived effector cells that undergo cell death at infection sites and in damaged tissues. However, recent in vitro and in vivo evidence suggests that neutrophil behavior is more complex and that they can migrate away from the inflammatory site back into the vasculature following the resolution of inflammation. Microfluidic devices have contributed to an improved understanding of the interaction and behavior of neutrophils ex vivo in 2D and 3D microenvironments. The role of reverse migration and its contribution to the resolution of inflammation remains unclear. In this review, we will provide a summary of the current applications of microfluidic devices to investigate neutrophil behavior and interactions with other immune cells with a focus on forward and reverse migration in neutrophils.
Collapse
Affiliation(s)
| | - Jose M Ayuso
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, United States
| | - Sheena C Kerr
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, United States.,Carbone Cancer Center, University of Wisconsin, Madison, WI, United States
| | - Anna Huttenlocher
- Departments of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - David J Beebe
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, United States.,Carbone Cancer Center, University of Wisconsin, Madison, WI, United States.,Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
5
|
Effah CY, Drokow EK, Agboyibor C, Ding L, He S, Liu S, Akorli SY, Nuamah E, Sun T, Zhou X, Liu H, Xu Z, Feng F, Wu Y, Zhang X. Neutrophil-Dependent Immunity During Pulmonary Infections and Inflammations. Front Immunol 2021; 12:689866. [PMID: 34737734 PMCID: PMC8560714 DOI: 10.3389/fimmu.2021.689866] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Rapid recruitment of neutrophils to an inflamed site is one of the hallmarks of an effective host defense mechanism. The main pathway through which this happens is by the innate immune response. Neutrophils, which play an important part in innate immune defense, migrate into lungs through the modulation actions of chemokines to execute a variety of pro-inflammatory functions. Despite the importance of chemokines in host immunity, little has been discussed on their roles in host immunity. A holistic understanding of neutrophil recruitment, pattern recognition pathways, the roles of chemokines and the pathophysiological roles of neutrophils in host immunity may allow for new approaches in the treatment of infectious and inflammatory disease of the lung. Herein, this review aims at highlighting some of the developments in lung neutrophil-immunity by focusing on the functions and roles of CXC/CC chemokines and pattern recognition receptors in neutrophil immunity during pulmonary inflammations. The pathophysiological roles of neutrophils in COVID-19 and thromboembolism have also been summarized. We finally summarized various neutrophil biomarkers that can be utilized as prognostic molecules in pulmonary inflammations and discussed various neutrophil-targeted therapies for neutrophil-driven pulmonary inflammatory diseases.
Collapse
Affiliation(s)
| | - Emmanuel Kwateng Drokow
- Department of Radiation Oncology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Clement Agboyibor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shaohua Liu
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Senyo Yao Akorli
- College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Emmanuel Nuamah
- College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Tongwen Sun
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolei Zhou
- Department of Respiratory, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Hong Liu
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiwei Xu
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Zhengzhou University & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Zhengzhou University & Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
6
|
Patra MC, Shah M, Choi S. Toll-like receptor-induced cytokines as immunotherapeutic targets in cancers and autoimmune diseases. Semin Cancer Biol 2019; 64:61-82. [PMID: 31054927 DOI: 10.1016/j.semcancer.2019.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022]
Abstract
Immune cells of the myeloid and lymphoid lineages express Toll-like receptors (TLRs) to recognize pathogenic components or cellular debris and activate the immune system through the secretion of cytokines. Cytokines are signaling molecules that are structurally and functionally distinct from one another, although their secretion profiles and signaling cascades often overlap. This situation gives rise to pleiotropic cell-to-cell communication pathways essential for protection from infections as well as cancers. Nonetheless, deregulated signaling can have detrimental effects on the host, in the form of inflammatory or autoimmune diseases. Because cytokines are associated with numerous autoimmune and cancerous conditions, therapeutic strategies to modulate these molecules or their biological responses have been immensely beneficial over the years. There are still challenges in the regulation of cytokine function in patients, even in those who take approved biological therapeutics. In this review, our purpose is to discuss the differential expression patterns of TLR-regulated cytokines and their cell type specificity that is associated with cancers and immune-system-related diseases. In addition, we highlight key structural features and molecular recognition of cytokines by receptors; these data have facilitated the development and approval of several biologics for the treatment of autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Mahesh Chandra Patra
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Masaud Shah
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
7
|
Navarro J. Fine-Tuning of GPCR-Chemokine Interactions. Design and Identification of Chemokine Analogues as Receptor Agonists, Biased Agonists, and Antagonists. Biochemistry 2019; 58:1432-1439. [PMID: 30726064 DOI: 10.1021/acs.biochem.8b01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemokines play important roles in immune defense by directing migration of leukocytes and serve as key promoters of tumorigenesis and metastasis. This study explores the molecular mechanisms of recognition and activation of two homologous chemokine receptors, CXCR1 and CXCR2, using CXCL8 analogues with residue substitutions in the conserved Glu4Leu5Arg6 (ELR) triad. Analysis of the binding of CXCL8 analogues to CXCR1 is consistent with the two-site model for signal recognition of CXCR1, whereas analysis of the binding of CXCL8 analogues to CXCR2 supported a single-site model for signal recognition of CXCR2. The CXCL8-Arg6His analogue stimulated calcium release, phosphorylation of ERK1/2, and chemotaxis in cells expressing CXCR1. However, CXCL8-Arg6His failed to stimulate calcium release and chemotaxis in cells expressing CXCR2, although it stimulated phosphorylation of ERK1/2, indicating that CXCL8-Arg6His operated as a classical CXCR2 biased agonist. The CXCL8-Glu4AlaLeu5AlaArg6His analogue was inactive in cells expressing CXCR1 and CXCR2. These findings suggest that the Glu4Leu5 motif in CXCL8 is essential for activation of CXCR1 and CXCR2. Importantly, CXCL8-Glu4AlaLeu5AlaArg6His blocked specifically the calcium release and chemotaxis of cells expressing CXCR1 but not of cells expressing CXCR2. CXCL8-Glu4AlaLeu5AlaArg6His was identified as the first specific CXCR1 antagonist. The binding of CXCL8-ELR6H to CXCR1 created a Zn2+ coordination site at the receptor activation domain responsible for calcium release, as ZnCl2 specifically blocked CXCL8-Arg6His-induced calcium release without affecting CXCL8-induced calcium release. This work provides the basis for further exploration of the activation mechanisms of chemokine receptors and will assist in the design of the next generation of modulators of CXCR1 and CXCR2.
Collapse
Affiliation(s)
- Javier Navarro
- Department of Neuroscience, Cell Biology and Anatomy, School of Medicine, Sealy Center for Structural Biology and Molecular Biophysics , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| |
Collapse
|
8
|
Tabei Y, Fukui H, Nishioka A, Hagiwara Y, Sato K, Yoneda T, Koyama T, Horie M. Effect of iron overload from multi walled carbon nanotubes on neutrophil-like differentiated HL-60 cells. Sci Rep 2019; 9:2224. [PMID: 30778158 PMCID: PMC6379482 DOI: 10.1038/s41598-019-38598-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/28/2018] [Indexed: 01/17/2023] Open
Abstract
Multi walled carbon nanotubes (MWCNTs) are one of the most intensively explored nanomaterials because of their unique physical and chemical properties. Due to the widespread use of MWCNTs, it is important to investigate their effects on human health. The precise mechanism of MWCNT toxicity has not been fully elucidated. The present study was designed to examine the mechanisms of MWCNT toxicity toward human promyelocytic leukemia HL-60 cells. First, we found that MWCNTs decreased the viability of neutrophil-like differentiated HL-60 cells but not undifferentiated HL-60 cells. Because neutrophil-like differentiated HL-60 cells exhibit enhanced phagocytic activity, the cytotoxicity of MWCNTs is dependent on the intracellularly localized MWCNTs. Next, we revealed that the cytotoxicity of MWCNTs is correlated with the intracellular accumulation of iron that is released from the engulfed MWCNTs in an acidic lysosomal environment. The intracellular accumulation of iron was repressed by treatment with cytochalasin D, a phagocytosis inhibitor. In addition, our results indicated that iron overload enhanced the release of interleukin-8 (IL-8), a chemokine that activates neutrophils, and subsequently elevated intracellular calcium concentration ([Ca2+]i). Finally, we found that the sustained [Ca2+]i elevation resulted in the loss of mitochondrial membrane potential and the increase of caspase-3 activity, thereby inducing apoptotic cell death. These findings suggest that the iron overload caused by engulfed MWCNTs results in the increase of IL-8 production and the elevation of [Ca2+]i, thereby activating the mitochondria-mediated apoptotic pathway.
Collapse
Affiliation(s)
- Yosuke Tabei
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa, 761-0395, Japan.
| | - Hiroko Fukui
- Safety Evaluation Center, Showa Denko K.K., 1-1-1 Ohnodai, Midori-ku, Chiba-shi, Chiba, 267-0056, Japan
| | - Ayako Nishioka
- Safety Evaluation Center, Showa Denko K.K., 1-1-1 Ohnodai, Midori-ku, Chiba-shi, Chiba, 267-0056, Japan
| | - Yuji Hagiwara
- Safety Evaluation Center, Showa Denko K.K., 1-1-1 Ohnodai, Midori-ku, Chiba-shi, Chiba, 267-0056, Japan
| | - Kei Sato
- Safety Evaluation Center, Showa Denko K.K., 1-1-1 Ohnodai, Midori-ku, Chiba-shi, Chiba, 267-0056, Japan
| | - Tadashi Yoneda
- Safety Evaluation Center, Showa Denko K.K., 1-1-1 Ohnodai, Midori-ku, Chiba-shi, Chiba, 267-0056, Japan
| | - Tamami Koyama
- Institute for Advanced and Core Technology, Showa Denko K.K., 1-1-1 Ohnodai, Midori-ku, Chiba-shi, Chiba, 267-0056, Japan
| | - Masanori Horie
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa, 761-0395, Japan
| |
Collapse
|
9
|
Fisher RC, Bellamkonda K, Alex Molina L, Xiang S, Liska D, Sarvestani SK, Chakrabarti S, Berg A, Jorgensen ML, Hatala D, Chen S, Aiello A, Appelman HD, Scott EW, Huang EH. Disrupting Inflammation-Associated CXCL8-CXCR1 Signaling Inhibits Tumorigenicity Initiated by Sporadic- and Colitis-Colon Cancer Stem Cells. Neoplasia 2019; 21:269-281. [PMID: 30738331 PMCID: PMC6370871 DOI: 10.1016/j.neo.2018.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/18/2018] [Accepted: 12/22/2018] [Indexed: 02/07/2023] Open
Abstract
Dysfunctional inflammatory pathways are associated with an increased risk of cancer, including colorectal cancer. We have previously identified and enriched for a self-renewing, colon cancer stem cell (CCSC) subpopulation in primary sporadic colorectal cancers (CRC) and a related subpopulation in ulcerative colitis (UC) patients defined by the stem cell marker, aldehyde dehydrogenase (ALDH). Subsequent work demonstrated that CCSC-initiated tumors are dependent on the inflammatory chemokine, CXCL8, a known inducer of tumor proliferation, angiogenesis and invasion. Here, we use RNA interference to target CXCL8 and its receptor, CXCR1, to establish the existence of a functional signaling pathway promoting tumor growth initiated by sporadic and colitis CCSCs. Knocking down either CXCL8 or CXCR1 had a dramatic effect on inhibiting both in vitro proliferation and angiogenesis. Likewise, tumorigenicity was significantly inhibited due to reduced levels of proliferation and angiogenesis. Decreased expression of cycle cell regulators cyclins D1 and B1 along with increased p21 levels suggested that the reduction in tumor growth is due to dysregulation of cell cycle progression. Therapeutically targeting the CXCL8-CXCR1 signaling pathway has the potential to block sustained tumorigenesis by inhibiting both CCSC- and pCCSC-induced proliferation and angiogenesis.
Collapse
Affiliation(s)
- Robert C Fisher
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kishan Bellamkonda
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - L Alex Molina
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shao Xiang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - David Liska
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Colorectal Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Samaneh K Sarvestani
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Annamarie Berg
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Marda L Jorgensen
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Denise Hatala
- Immunochemistry Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sugong Chen
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Alexandra Aiello
- Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Henry D Appelman
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Edward W Scott
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Emina H Huang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Colorectal Surgery, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
10
|
Rajarathnam K, Schnoor M, Richardson RM, Rajagopal S. How do chemokines navigate neutrophils to the target site: Dissecting the structural mechanisms and signaling pathways. Cell Signal 2019; 54:69-80. [PMID: 30465827 PMCID: PMC6664297 DOI: 10.1016/j.cellsig.2018.11.004] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022]
Abstract
Chemokines play crucial roles in combating microbial infection and initiating tissue repair by recruiting neutrophils in a timely and coordinated manner. In humans, no less than seven chemokines (CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8) and two receptors (CXCR1 and CXCR2) mediate neutrophil functions but in a context dependent manner. Neutrophil-activating chemokines reversibly exist as monomers and dimers, and their receptor binding triggers conformational changes that are coupled to G-protein and β-arrestin signaling pathways. G-protein signaling activates a variety of effectors including Ca2+ channels and phospholipase C. β-arrestin serves as a multifunctional adaptor and is coupled to several signaling hubs including MAP kinase and tyrosine kinase pathways. Both G-protein and β-arrestin signaling pathways play important non-overlapping roles in neutrophil trafficking and activation. Functional studies have established many similarities but distinct differences for a given chemokine and between chemokines at the level of monomer vs. dimer, CXCR1 vs. CXCR2 activation, and G-protein vs. β-arrestin pathways. We propose that two forms of the ligand binding two receptors and activating two signaling pathways enables fine-tuned neutrophil function compared to a single form, a single receptor, or a single pathway. We summarize the current knowledge on the molecular mechanisms by which chemokine monomers/dimers activate CXCR1/CXCR2 and how these interactions trigger G-protein/β-arrestin-coupled signaling pathways. We also discuss current challenges and knowledge gaps, and likely advances in the near future that will lead to a better understanding of the relationship between the chemokine-CXCR1/CXCR2-G-protein/β-arrestin axis and neutrophil function.
Collapse
Affiliation(s)
- Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, Department of Microbiology and Immunology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| | - Michael Schnoor
- Department for Molecular Biomedicine, Cinvestav-IPN, 07360 Mexico City, Mexico
| | - Ricardo M Richardson
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | | |
Collapse
|
11
|
Park SH, Berkamp S, Radoicic J, De Angelis AA, Opella SJ. Interaction of Monomeric Interleukin-8 with CXCR1 Mapped by Proton-Detected Fast MAS Solid-State NMR. Biophys J 2018; 113:2695-2705. [PMID: 29262362 DOI: 10.1016/j.bpj.2017.09.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/17/2017] [Accepted: 09/21/2017] [Indexed: 12/01/2022] Open
Abstract
The human chemokine interleukin-8 (IL-8; CXCL8) is a key mediator of innate immune and inflammatory responses. This small, soluble protein triggers a host of biological effects upon binding and activating CXCR1, a G protein-coupled receptor, located in the cell membrane of neutrophils. Here, we describe 1H-detected magic angle spinning solid-state NMR studies of monomeric IL-8 (1-66) bound to full-length and truncated constructs of CXCR1 in phospholipid bilayers under physiological conditions. Cross-polarization experiments demonstrate that most backbone amide sites of IL-8 (1-66) are immobilized and that their chemical shifts are perturbed upon binding to CXCR1, demonstrating that the dynamics and environments of chemokine residues are affected by interactions with the chemokine receptor. Comparisons of spectra of IL-8 (1-66) bound to full-length CXCR1 (1-350) and to N-terminal truncated construct NT-CXCR1 (39-350) identify specific chemokine residues involved in interactions with binding sites associated with N-terminal residues (binding site-I) and extracellular loop and helical residues (binding site-II) of the receptor. Intermolecular paramagnetic relaxation enhancement broadening of IL-8 (1-66) signals results from interactions of the chemokine with CXCR1 (1-350) containing Mn2+ chelated to an unnatural amino acid assists in the characterization of the receptor-bound form of the chemokine.
Collapse
Affiliation(s)
- Sang Ho Park
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Sabrina Berkamp
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Jasmina Radoicic
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Anna A De Angelis
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California.
| |
Collapse
|
12
|
Nguyen TTT, Nguyen HT, Wang PC, Chen SC. Identification and expression analysis of two pro-inflammatory cytokines, TNF-α and IL-8, in cobia (Rachycentron canadum L.) in response to Streptococcus dysgalactiae infection. FISH & SHELLFISH IMMUNOLOGY 2017; 67:159-171. [PMID: 28600195 DOI: 10.1016/j.fsi.2017.06.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/04/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
Tumor necrosis factor-alpha (TNF-α) and interleukin-8 (IL-8/CXCL8) play pivotal roles in mediating inflammatory responses to invading pathogens. In this study, we identified and analyzed expressions of cobia TNF-α and IL-8 during Streptococcus dysgalactiae infection. The cloned cDNA transcript of cobia TNF-α comprised of 1281 base pairs (bp), with a 774 bp open reading frame (ORF) encoding 257 amino acids. The deduced amino acid sequence of cobia TNF-α showed a close relationship (84% similarity) with TNF-α of yellowtail amberjack. The cloned IL-8 cDNA sequence was 828 bp long, including a 300-bp ORF encoding 99 amino acids. The deduced amino acid sequence of cobia IL-8 shared 90% identity with IL-8 of striped trumpeter. Cobia challenged with a virulent S. dysgalactiae strain displayed an early significant up-regulation of TNF-α and IL-8 in head kidney, liver, and spleen. Notably, IL-8 expression level increased dramatically in the liver at the severe stage of infection (72 h). In conclusion, a better understanding of TNF-α and IL-8 allows more detailed investigation of immune responses in cobia and furthers study on controlling the infectious disease caused by S. dysgalactiae.
Collapse
Affiliation(s)
- Thuy Thi Thu Nguyen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Hai Trong Nguyen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Pei-Chyi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan; International Degree Program of Ornamental Fish Science and Technology, International College, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| |
Collapse
|
13
|
Li L, Yu J, Duan Z, Dang HX. The effect of NFATc1 on vascular generation and the possible underlying mechanism in epithelial ovarian carcinoma. Int J Oncol 2016; 48:1457-66. [PMID: 26820075 DOI: 10.3892/ijo.2016.3355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/16/2015] [Indexed: 11/05/2022] Open
Abstract
We investigated the effect of nuclear factor of activated T cells c1 (NFATc1) on the growth and vascular generation of human ovarian carcinoma SKOV3 cell-transplanted tumors in nude mice and explored the possible underlying mechanism. NFATc1 siRNA was transfected into the SKOV3 cells, which were then subjected to immunofluorescence tests and real-time reverse transcription polymerase chain reaction (RT-PCR) to determine the transfection-induced inhibition rate. The tumor volumes in the nude mice in all groups were measured to determine the in vivo antitumor effect of NFATc1 siRNA. Immunohistochemical (IHC) methods were employed to detect NFATc1 expression in tumor tissue, combined with cytokeratin (CK) staining to label the epithelial origin of the tumor tissue. CD34 and podoplanin were used as markers for labeling microvessels and microlymphatic vessels, respectively. The densities of microvessels and microlymphatic vessels in each group were calculated and statistically analyzed. RT-PCR and western blotting were performed to detect the protein and mRNA expression levels of NFATc1, the ELR+ CXC chemokine interleukin (IL)-8, fibroblast growth factor-2 (FGF-2), and platelet-derived growth factor BB (PDGF BB) in xenografted tumor tissue in all groups. NFATc1 was highly expressed in tumor tissue in the control groups. The intervention group exhibited a tumor growth inhibition rate of 57.08% and presented a lower tumor weight and volume compared with the two control groups. In the control groups, the microvessel densities were 12.00 ± 1.65 and 11.47 ± 0.32, respectively, and the microlymphatic vessel densities were 10.03 ± 0.96 and 9.95 ± 1.12; these values were significantly higher than in the intervention group. RT-PCR and western blot shows that NFATc1 siRNA could markedly suppress the expression of IL-8, FGF-2 and PDGF BB at the mRNA and the protein level. In conclusion, it was shown that NFATc1 siRNA significantly suppresses the growth and vascular generation of SKOV3 human ovarian carcinoma cell-transplanted tumors subcutaneously xenografted into nude mice. The downregulation of the expression of IL-8, FGF-2 and PDGF BB may be one of the mechanisms underlying the above inhibitory effects.
Collapse
Affiliation(s)
- Long Li
- Department of Physical Examination, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jihui Yu
- Department of Physical Examination, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhaoning Duan
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hong-Xing Dang
- Department of PICU, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400016, P.R. China
| |
Collapse
|
14
|
de Oliveira S, Reyes-Aldasoro CC, Candel S, Renshaw SA, Mulero V, Calado Â. Cxcl8 (IL-8) mediates neutrophil recruitment and behavior in the zebrafish inflammatory response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:4349-59. [PMID: 23509368 PMCID: PMC3736093 DOI: 10.4049/jimmunol.1203266] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neutrophils play a pivotal role in the innate immune response. The small cytokine CXCL8 (also known as IL-8) is known to be one of the most potent chemoattractant molecules that, among several other functions, is responsible for guiding neutrophils through the tissue matrix until they reach sites of injury. Unlike mice and rats that lack a CXCL8 homolog, zebrafish has two distinct CXCL8 homologs: Cxcl8-l1 and Cxcl8-l2. Cxcl8-l1 is known to be upregulated under inflammatory conditions caused by bacterial or chemical insult but until now the role of Cxcl8s in neutrophil recruitment has not been studied. In this study we show that both Cxcl8 genes are upregulated in response to an acute inflammatory stimulus, and that both are crucial for normal neutrophil recruitment to the wound and normal resolution of inflammation. Additionally, we have analyzed neutrophil migratory behavior through tissues to the site of injury in vivo, using open-access phagocyte tracking software PhagoSight. Surprisingly, we observed that in the absence of these chemokines, the speed of the neutrophils migrating to the wound was significantly increased in comparison with control neutrophils, although the directionality was not affected. Our analysis suggests that zebrafish may possess a subpopulation of neutrophils whose recruitment to inflamed areas occurs independently of Cxcl8 chemokines. Moreover, we report that Cxcl8-l2 signaled through Cxcr2 for inducing neutrophil recruitment. Our study, therefore, confirms the zebrafish as an excellent in vivo model to shed light on the roles of CXCL8 in neutrophil biology.
Collapse
Affiliation(s)
- Sofia de Oliveira
- Unidade de Biologia Microvascular e Inflamação, Instituto de Medicina Molecular, Instituto de Bioquímica, Faculdade de Medicina, Universidade de Lisboa, Lisboa-Portugal
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia-Spain
| | - Constantino C. Reyes-Aldasoro
- Biomedical Engineering Research Group, School of Engineering and Design, University of Sussex, Brighton BN1 9QT – United Kingdom
| | - Sergio Candel
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia-Spain
| | - Stephen A. Renshaw
- MRC Centre for Developmental and Biomedical Genetics, University of Sheffield, Firth Court, Western Bank, Sheffield – United Kingdom
| | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia-Spain
| | - Ângelo Calado
- Unidade de Biologia Microvascular e Inflamação, Instituto de Medicina Molecular, Instituto de Bioquímica, Faculdade de Medicina, Universidade de Lisboa, Lisboa-Portugal
| |
Collapse
|
15
|
van Noort JM, Bsibsi M, Nacken PJ, Gerritsen WH, Amor S, Holtman IR, Boddeke E, van Ark I, Leusink-Muis T, Folkerts G, Hennink WE, Amidi M. Activation of an immune-regulatory macrophage response and inhibition of lung inflammation in a mouse model of COPD using heat-shock protein alpha B-crystallin-loaded PLGA microparticles. Biomaterials 2012; 34:831-40. [PMID: 23117214 DOI: 10.1016/j.biomaterials.2012.10.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
Abstract
As an extracellular protein, the small heat-shock protein alpha B-crystallin (HSPB5) has anti-inflammatory effects in several mouse models of inflammation. Here, we show that these effects are associated with the ability of HSPB5 to activate an immune-regulatory response in macrophages via endosomal/phagosomal CD14 and Toll-like receptors 1 and 2. Humans, however, possess natural antibodies against HSPB5 that block receptor binding. To protect it from these antibodies, we encapsulated HSPB5 in porous PLGA microparticles. We document here size, morphology, protein loading and release characteristics of such microparticles. Apart from effectively protecting HSPB5 from neutralization, PLGA microparticles also strongly promoted macrophage targeting of HSPB via phagocytosis. As a result, HSPB5 in porous PLGA microparticles was more than 100-fold more effective in activating macrophages than free soluble protein. Yet, the immune-regulatory nature of the macrophage response, as documented here by microarray transcript profiling, remained the same. In mice developing cigarette smoke-induced COPD, HSPB5-loaded PLGA microparticles were selectively taken up by alveolar macrophages upon intratracheal administration, and significantly suppressed lung infiltration by lymphocytes and neutrophils. In contrast, 30-fold higher doses of free soluble HSPB5 remained ineffective. Our data indicate that porous HSPB5-PLGA microparticles hold considerable promise as an anti-inflammatory biomaterial for humans.
Collapse
|
16
|
Blanchet X, Langer M, Weber C, Koenen RR, von Hundelshausen P. Touch of chemokines. Front Immunol 2012; 3:175. [PMID: 22807925 PMCID: PMC3394994 DOI: 10.3389/fimmu.2012.00175] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 06/09/2012] [Indexed: 01/13/2023] Open
Abstract
Chemoattractant cytokines or chemokines constitute a family of structurally related proteins found in vertebrates, bacteria, or viruses. So far, 48 chemokine genes have been identified in humans, which bind to around 20 chemokine receptors. These receptors belong to the seven transmembrane G-protein-coupled receptor family. Chemokines and their receptors were originally studied for their role in cellular trafficking of leukocytes during inflammation and immune surveillance. It is now known that they exert different functions under physiological conditions such as homeostasis, development, tissue repair, and angiogenesis but also under pathological disorders including tumorigenesis, cancer metastasis, inflammatory, and autoimmune diseases. Physicochemical properties of chemokines and chemokine receptors confer the ability to homo- and hetero-oligomerize. Many efforts are currently performed in establishing new therapeutically compounds able to target the chemokine/chemokine receptor system. In this review, we are interested in the role of chemokines in inflammatory disease and leukocyte trafficking with a focus on vascular inflammatory diseases, the operating synergism, and the emerging therapeutic approaches of chemokines.
Collapse
Affiliation(s)
- Xavier Blanchet
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University of Munich Munich, Germany
| | | | | | | | | |
Collapse
|