1
|
Aboushadi MM, Albelasy EH, Ordinola-Zapata R. Association between endodontic symptoms and root canal microbiota: a systematic review and meta-analysis of bacteroidetes, spirochaetes and fusobacteriales. Clin Oral Investig 2024; 28:593. [PMID: 39394538 DOI: 10.1007/s00784-024-05946-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/14/2024] [Indexed: 10/13/2024]
Abstract
OBJECTIVES This systematic review and meta-analysis aimed to assess the prevalence of Bacteroidetes, Spirochaetes, and Fusobacteriales in symptomatic versus asymptomatic apical periodontitis as a primary objective. The secondary objective was to evaluate the prevalence of these species independently in symptomatic and asymptomatic apical periodontitis. MATERIALS AND METHODS An electronic search of the PubMed, Scopus, and Open-Grey databases was carried out from November 2022 to February 2023 and was later updated through July 2024..The risk of bias was assessed using the New Castle Ottawa scale. The quality of evidence was assessed using the Grading of Recommendations. Assessment, Development, and Evaluation. RESULTS The initial search resulted in 968 records. Following the removal of duplicates and a review of titles and abstracts, 66 studies underwent full-texts analysis. Twenty studies were deemed eligible for inclusion. For the first outcome, a fixed-effects model was used. In a total of 7 studies with 193 participants, Spirochaetes were more prevalent in symptomatic apical periodontitis (p < .05) with a risk ratio of 1.91 [ 95% CI 1.25-2.92]. No significant difference was observed (p˃.05) in the prevalence of Bacteroidetes (12 studies with 451 participants) and Fusobacteriales (7 studies with 205 participants) in symptomatic vs asymptomatic apical periodontitis with a risk ratio of (.96), and (1.1), [95% CI, .78-1.19], and [95% CI, 0.84.1.44], respectively. The overall quality of evidence was low. CONCLUSIONS The confirmation of the prevalence of Bacteroidetes and Fusobacteriales in symptomatic vs asymptomatic apical periodontitis remains uncertain. However, there is an association between Spirochetes and symptomatic apical periodontitis. Additional research is required to address the limitations of the current body of evidence. CLINICAL RELEVANCE Identifying key pathogens in symptomatic apical periodontitis can help develop targeted interventions that address the underlying microbial causes.
Collapse
Affiliation(s)
- Marwa M Aboushadi
- Endodontics Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, Egypt.
- Endodontics Department, Faculty of Dentistry, University of Minnesota, Minneapolis, MN, USA.
| | - Eman H Albelasy
- Conservative Dentistry Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Ronald Ordinola-Zapata
- Endodontics Department, Faculty of Dentistry, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Lin B, Wang J, Zhang Y. Bacterial dynamics in the progression of caries to apical periodontitis in primary teeth of children with severe early childhood caries. Front Microbiol 2024; 15:1418261. [PMID: 39323882 PMCID: PMC11422202 DOI: 10.3389/fmicb.2024.1418261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/10/2024] [Indexed: 09/27/2024] Open
Abstract
Background Early childhood caries (ECC) are a prevalent chronic disease in young children. However, there has been limited research on the microbiota in different tissue levels of the same tooth in children with ECC. This study aimed to investigate the dynamic changes in bacterial diversity during the progression of Severe Early Childhood Caries (S-ECC) within the same tooth, from the tooth surface to the root canal, by collecting tissue samples from different areas of the affected tooth. Methods Twenty primary teeth with periapical periodontitis were selected from 20 children aged 3-5 years, with 100 samples collected from the different layers: uncavitated buccal enamel surface without white spot lesion (surface), the outermost layer of the dentin carious lesion (superficial), the inner layer of carious dentin (deep), necrotic pulp tissue (pulp), and root exudate (exudate). The taxonomy of each OTU representative sequence was analyzed against the 16S rRNA database. Comparisons of alpha diversity between groups were performed. The number of shared and unique genera between groups counted. Beta diversity was contrasted to evaluate differences in bacterial community composition, and the relationships between the microbiota and samples were analyzed. The heatmap analysis of the 30 most abundant genera was used, which highlighted their relative distribution and abundance. The significantly abundant taxa (phylum to genera) of bacteria among the different groups were identified. The differences of relative abundance between bacterial genera among the five groups were analyzed. Significant Spearman correlations were noted, and visualization of the co-occurrence network was conducted. Results Bacterial 16S rRNA gene sequencing showed that most genera were present in all layers, with the number of shared genera increasing as the disease advanced. The bacterial communities and core genera in the co-occurrence network changed with progression to severe ECC. Conclusion An increase in both the quantity and complexity of bacterial interactions was observed. This study emphasized the importance of paying attention to the relationship between microbial species rather than just checking changes in bacterial species structure when investigating the role of bacteria in disease progression.
Collapse
Affiliation(s)
- Bichen Lin
- First Clinical Division, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jinfeng Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yifei Zhang
- Department of Dental Materials, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
3
|
Park DH, Park OJ, Yoo YJ, Perinpanayagam H, Cho EB, Kim K, Park J, Noblett WC, Kum KY, Han SH. Microbiota Association and Profiling of Gingival Sulci and Root Canals of Teeth with Primary or Secondary/Persistent Endodontic Infections. J Endod 2024; 50:1124-1133. [PMID: 38768706 DOI: 10.1016/j.joen.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/10/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Microbiota associated with primary endodontic infection (PEI) and secondary/persistent endodontic infection (SPEI) must be characterized to elucidate pathogenesis in apical periodontitis and bacterial biomarkers identified for diagnostic and therapeutic applications. METHODS This study analyzed the microbial community profiles of root canals and gingival sulci (sulcus-E) for teeth with PEI (n = 10) or SPEI (n = 10), using the Illumina MiSeq platform. Bacterial samples from gingival sulci (sulcus-C) of healthy contralateral teeth served as controls. RESULTS There were 15 phyla, 177 genera, and 340 species identified. The number and diversity of bacteria in root canals did not differ significantly between PEI and SPEI. Proteobacteria, Firmicutes, Fusobacteria, Bacteroidetes, and Actinobacteria were the dominant phyla in both groups. At the genus level, Lancefieldella, Bifidobacterium, Stomatobaculum, and Schaalia were enriched in root canals with SPEI. Of significance, Lancefieldella was observed in both root canals and sulcus-E of teeth with SPEI. At the species level, Neisseria macacae, Streptococcus gordonii, Bifidobacterium dentium, Stomatobaculum longum, and Schaalia odontolytica were increased significantly in root canals with SPEI compared to PEI. Oribacterium species, Streptococcus salivarius, Lancefieldella parvula, Prevotella denticola, and Oribacterium asaccharolyticum were more abundant in sulcus-E of teeth with SPEI compared to PEI. CONCLUSIONS There were distinctive and differing predominant bacterial species associated with the root canals and gingival sulci between teeth with PEI and SPEI. Specific bacteria identified in sulcus-E and root canals of teeth with SPEI could serve as noninvasive diagnostic biomarkers for detecting SPEI.
Collapse
Affiliation(s)
- Dong Hyun Park
- Department of Oral Microbiology and Immunology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Ok-Jin Park
- Department of Oral Microbiology and Immunology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Yeon-Jee Yoo
- Department of Conservative Dentistry, Dental Research Institute, Seoul National University Dental Hospital, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Hiran Perinpanayagam
- Division of Endodontics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Eun-Bee Cho
- Department of Conservative Dentistry, Dental Research Institute, Seoul National University Dental Hospital, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | | | | | - W Craig Noblett
- Division of Endodontics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota
| | - Kee-Yeon Kum
- Department of Conservative Dentistry, Dental Research Institute, Seoul National University Dental Hospital, Seoul National University School of Dentistry, Seoul, Republic of Korea.
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Hu Z, Xiang Y, Wei Y, Gu X, Leng W, Xia L. Bacterial diversity in primary infected root canals of a Chinese cohort: analysis of 16 S rDNA sequencing. BMC Oral Health 2023; 23:932. [PMID: 38012618 PMCID: PMC10680180 DOI: 10.1186/s12903-023-03618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023] Open
Abstract
PURPOSE To characterize the bacterial community in the primarily infected root canals. METHODS A total of 13 samples were collected from the primarily infected root canals. 16 S rDNA sequencing was performed to define bacterial community. Taxonomic annotation, bacterial hierarchical structures, community richness and diversity, and inter-subject variability of the bacterial community in the root canal samples were analyzed. Gender, age, and duration of the toothache-specific bacterial community associated with the patient groups were analyzed. RESULTS A total of 359 Species were annotated and identified in the whole study cohort. The Alpha diversity analysis showed that the species diversity and detection rate of the 13 samples were high, which reflected the authenticity of sequencing results. The Beta diversity analysis was used to compare the degree of difference between different root canal samples. The 13 samples were divided into two groups according to the results, group A was samples I1-I12, and group B was samples I13. The bacterial species of group A samples were analyzed with the clinical characteristics of patients, and it was found that gender, and duration specific differences in bacterial species, and there was no significant difference in species types among different ages of patients. CONCLUSION There were a wide diversity and inter-subject variability in the bacterial community in the primary infected root canals. While Porphyromonas gingivalis was the most abundant species, Fusobacterium nucleatum was the most variable species in the bacterial community of the root canal. The bacterial community at different taxonomic levels varied from sample to sample, despite consistent disease diagnoses. There was gender, duration-specific differences in the bacterial species in the primary infected root canals.
Collapse
Affiliation(s)
- Ziqiu Hu
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, 442000, China
| | - Yonggang Xiang
- Department of Ophthalmology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Yanhong Wei
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, 442000, China
| | - Xinsheng Gu
- Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, 442000, China.
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
5
|
Matoso FB, Montagner F, Jardine AP, Quintana RM, Grecca FS, Kopper PMP. Effect of different disinfection protocols in bacterial viability of an intraradicular biofilm formed in situ. Braz Dent J 2023; 34:42-49. [PMID: 37466524 PMCID: PMC10355264 DOI: 10.1590/0103-6440202305244] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/18/2023] [Indexed: 07/20/2023] Open
Abstract
The present study aimed to evaluate bacterial viability after the use of different disinfection protocols in root canals infected with a multispecies biofilm (MB) formed in situ. Palatal roots with a single canal were obtained from extracted maxillary molars and sterilized before being inserted into the mouth. The roots were contaminated with a MB in an intraoral appliance worn by ten volunteers. All volunteers wore six roots simultaneously in two intraoral devices for 21 days. One root from each volunteer was assigned to each group (n=10): PUI - passive ultrasonic irrigation; EC - Easy Clean; XPF - XP-endo Finisher; aPDT - antimicrobial photodynamic therapy; CI - conventional irrigation; and NC - negative control. The samples were evaluated under confocal laser scanning microscopy. The percentage of viable cells (VC) was calculated over the total percentage of MB biovolume. Data were statistically analyzed (α=5%). The cell viability in the entire root canal or for each third was compared between groups (Kruskal-Wallis test, Dunn post-hoc test) and for the same group (Friedman test, Dunn post-hoc test). Disinfection protocols were not significantly different from each other (P>.05). Samples in EC, PUI, and aPDT had lower cell viability than in NC (P<.05). In the coronal third of samples in the EC, XPF, PUI and aPDT, the percentage of VC biovolume was lower than in the NC (P<.05). The percentage of VC in EC samples was lower in the coronal and middle thirds than in the apical third (P<.05). EC, PUI and aPDT had significant effects on cell viability in intraradicular multispecies biofilm formed in situ when compared with untreated samples.
Collapse
Affiliation(s)
- Felipe Barros Matoso
- Graduate Program in Dentistry, Federal University of Rio Grande
do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Francisco Montagner
- Graduate Program in Dentistry, Federal University of Rio Grande
do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Ramiro Martins Quintana
- Graduate Program in Dentistry, Federal University of Rio Grande
do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fabiana Soares Grecca
- Graduate Program in Dentistry, Federal University of Rio Grande
do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Patricia Maria Poli Kopper
- Graduate Program in Dentistry, Federal University of Rio Grande
do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Higashi DL, Krieger MC, Qin H, Zou Z, Palmer EA, Kreth J, Merritt J. Who is in the driver's seat? Parvimonas micra: An understudied pathobiont at the crossroads of dysbiotic disease and cancer. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023. [PMID: 36999244 DOI: 10.1111/1758-2229.13153] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Recent advances in our understanding of microbiome composition at sites of inflammatory dysbiosis have triggered a substantial interest in a variety of historically understudied bacteria, especially among fastidious obligate anaerobes. A plethora of new evidence suggests that these microbes play outsized roles in establishing synergistic polymicrobial infections at many different sites in the human body. Parvimonas micra is a prime example of such an organism. Despite being almost completely uncharacterized at the genetic level, it is one of the few species commonly detected in abundance at multiple mucosal sites experiencing either chronic or acute inflammatory diseases, and more recently, it has been proposed as a discriminating biomarker for multiple types of malignancies. In the absence of disease, P. micra is commonly found in low abundance, typically residing within the oral cavity and gastrointestinal tract. P. micra exhibits the typical features of an inflammophilic organism, meaning its growth actually benefits from active inflammation and inflammatory tissue destruction. In this mini-review, we will describe our current understanding of this underappreciated but ubiquitous pathobiont, specifically focusing upon the role of P. micra in polymicrobial inflammatory dysbiosis and cancer as well as the key emerging questions regarding its pathobiology. Through this timely work, we highlight Parvimonas micra as a significant driver of disease and discuss its unique position at the crossroads of dysbiosis and cancer.
Collapse
Affiliation(s)
- Dustin L Higashi
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Madeline C Krieger
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Hua Qin
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Zhengzhong Zou
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Elizabeth A Palmer
- Department of Pediatric Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Jens Kreth
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Justin Merritt
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
7
|
Kumari KS, Dixit S, Gaur M, Behera DU, Dey S, Sahoo RK, Dash P, Subudhi E. Taxonomic Assignment-Based Genome Reconstruction from Apical Periodontal Metagenomes to Identify Antibiotic Resistance and Virulence Factors. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010194. [PMID: 36676144 PMCID: PMC9861942 DOI: 10.3390/life13010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Primary apical periodontitis occurs due to various insults to the dental pulp including microbial infections, physical and iatrogenic trauma, whereas inadequate elimination of intraradicular infection during root canal treatment may lead to secondary apical periodontitis. We explored the complex intra-radicular microbial communities and their functional potential through genome reconstruction. We applied shotgun metagenomic sequencing, binning and functional profiling to identify the significant contributors to infection at the acute and chronic apical periodontal lesions. Our analysis revealed the five classified clusters representing Enterobacter, Enterococcus, Lacticaseibacillus, Pseudomonas, Streptococcus and one unclassified cluster of contigs at the genus level. Of them, the major contributors were Pseudomonas, with 90.61% abundance in acute conditions, whereas Enterobacter followed by Enterococcus with 69.88% and 15.42% abundance, respectively, in chronic conditions. Enterobacter actively participated in antibiotic target alteration following multidrug efflux-mediated resistance mechanisms, predominant in the chronic stage. The prediction of pathways involved in the destruction of the supportive tissues of the tooth in Enterobacter and Pseudomonas support their crucial role in the manifestation of respective disease conditions. This study provides information about the differential composition of the microbiome in chronic and acute apical periodontitis. It takes a step to interpret the role of a single pathogen, solely or predominantly, in establishing endodontic infection types through genome reconstruction following high throughput metagenomic DNA analysis. The resistome prediction sheds a new light on the therapeutic treatment guidelines for endodontists. However, it needs further conclusive research to support this outcome using a larger number of samples with similar etiological conditions, but different demographic origin.
Collapse
Affiliation(s)
- K. Swapna Kumari
- Institute of Dental Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Sangita Dixit
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Mahendra Gaur
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751003, India
- Department of Biotechnology, Punjabi University, Patiala 147002, India
| | - Dibyajyoti Uttameswar Behera
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Suchanda Dey
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Rajesh Kumar Sahoo
- Institute of Dental Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Patitapaban Dash
- Institute of Dental Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Enketeswara Subudhi
- Institute of Dental Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751003, India
- Correspondence: ; Tel.: +91-9861075829
| |
Collapse
|
8
|
Abstract
Culture-independent nucleic acid technologies have been extensively applied to the analysis of oral bacterial communities associated with healthy and diseased conditions. These methods have confirmed and substantially expanded the findings from culture studies to reveal the oral microbial inhabitants and candidate pathogens associated with the major oral diseases. Over 1000 bacterial distinct species-level taxa have been identified in the oral cavity and studies using next-generation DNA sequencing approaches indicate that the breadth of bacterial diversity is even much larger. Nucleic acid technologies have also been helpful in profiling bacterial communities and identifying disease-related patterns. This chapter provides an overview of the diversity and taxonomy of oral bacteria associated with health and disease.
Collapse
|
9
|
Hong X, Zhao J, Yin J, Zhao F, Wang W, Ding X, Yu H, Ma X, Wang B. The association between the pre-pregnancy vaginal microbiome and time-to-pregnancy: a Chinese pregnancy-planning cohort study. BMC Med 2022; 20:246. [PMID: 35909180 PMCID: PMC9341075 DOI: 10.1186/s12916-022-02437-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Although sexually transmitted infections are regarded as the main cause of tubal infertility, the association between the common vaginal microbiome and female fecundability has yet to be determined. The objective of this study was to find convincing evidence relating to the impact of the vaginal bacterial structure on the fecundability of women planning pregnancy. METHODS We recruited women who took part in the Free Pre-pregnancy Health Examination Project from 13 June 2018 to 31 October 2018 (n = 89, phase I) and from 1 November 2018 to 30 May 2020 (n = 389, phase II). We collected pre-pregnancy vaginal swabs from each subject; then, we followed up each subject to acquire the pregnancy-planning outcome in 1 year. In phase I, 16S rRNA gene sequencing was performed to investigate the vaginal bacterial content between the pregnancy and non-pregnancy groups. These findings were verified in phase II by applying a quantitative real-time polymerase chain reaction for the measurement of the absolute abundance of specific species. Cox models were used to estimate fecundability ratios (FR) for each vaginal microbiome type. RESULTS In phase I, 59.6% (53/89) of women became pregnant within 1 year. The principal coordinate analysis showed that the pre-pregnancy vaginal microbial community structures of the pregnant and non-pregnant groups were significantly different (PERMANOVA test, R2 = 0.025, P = 0.049). The abundance of the genus Lactobacillus in the pregnancy group was higher than that of the non-pregnant group (linear discriminant analysis effect size (LDA) > 4.0). The abundance of the genus Gardnerella in the non-pregnant group was higher than those in the pregnant group (LDA > 4.0). In phase II, female fecundability increased with higher absolute loads of Lactobacillus gasseri (quartile Q4 vs Q1, FR = 1.71, 95%CI 1.02-2.87) but decreased with higher absolute loads of Fannyhessea vaginae (Q4 vs Q1, FR = 0.62, 95%CI 0.38-1.00). Clustering analysis showed that the vaginal microbiome of type D (characterized by a higher abundance of Lactobacillus iners, a lower abundance of Lactobacillus crispatus and Lactobacillus gassri) was associated with a 55% reduction of fecundability (FR = 0.45, 95%CI 0.26-0.76) compared with type A (featuring three Lactobacillus species, low Gardnerella vaginalis and Fannyhessea vaginae abundance). CONCLUSIONS This cohort study demonstrated an association between the pre-pregnancy vaginal microbiome and female fecundability. A vaginal microbiome characterized by a higher abundance of L. iners and lower abundances of L. crispatus and L. gasseri appeared to be associated with a lower fecundability. Further research now needs to confirm whether manipulation of the vaginal microenvironment might improve human fecundability.
Collapse
Affiliation(s)
- Xiang Hong
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, No. 87 Dingjiaqiao Rd., Gulou District, Nanjing, Jiangsu, China
| | - Jun Zhao
- National Research Institute for Family Planning, Beijing, China. .,National Human Genetic Resources Center, Beijing, China.
| | - Jiechen Yin
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, No. 87 Dingjiaqiao Rd., Gulou District, Nanjing, Jiangsu, China
| | - Fanqi Zhao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, No. 87 Dingjiaqiao Rd., Gulou District, Nanjing, Jiangsu, China
| | - Wei Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, No. 87 Dingjiaqiao Rd., Gulou District, Nanjing, Jiangsu, China
| | - Xiaoling Ding
- Maternal and Child Health Center of Gulou District, Nanjing, China
| | - Hong Yu
- Department of Obstetrics and Gynecology, Zhong Da Hospital, Southeast University, Nanjing, China
| | - Xu Ma
- National Research Institute for Family Planning, Beijing, China. .,National Human Genetic Resources Center, Beijing, China.
| | - Bei Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, No. 87 Dingjiaqiao Rd., Gulou District, Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
de Castro Kruly P, Alenezi HEM, Manogue M, Devine DA, Teixeira ND, Pimentel Garcia FC, Do T. Residual bacteriome after chemomechanical preparation of root canals in primary and secondary infections. J Endod 2022; 48:855-863. [DOI: 10.1016/j.joen.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 02/13/2022] [Accepted: 03/27/2022] [Indexed: 12/27/2022]
|
11
|
Wong J, Manoil D, Näsman P, Belibasakis GN, Neelakantan P. Microbiological Aspects of Root Canal Infections and Disinfection Strategies: An Update Review on the Current Knowledge and Challenges. FRONTIERS IN ORAL HEALTH 2022; 2:672887. [PMID: 35048015 PMCID: PMC8757850 DOI: 10.3389/froh.2021.672887] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
The oral cavity is the habitat of several hundreds of microbial taxa that have evolved to coexist in multispecies communities in this unique ecosystem. By contrast, the internal tissue of the tooth, i.e., the dental pulp, is a physiologically sterile connective tissue in which any microbial invasion is a pathological sign. It results in inflammation of the pulp tissue and eventually to pulp death and spread of inflammation/infection to the periradicular tissues. Over the past few decades, substantial emphasis has been placed on understanding the pathobiology of root canal infections, including the microbial composition, biofilm biology and host responses to infections. To develop clinically effective treatment regimens as well as preventive therapies, such extensive understanding is necessary. Rather surprisingly, despite the definitive realization that root canal infections are biofilm mediated, clinical strategies have been focused more on preparing canals to radiographically impeccable levels, while much is left desired on the debridement of these complex root canal systems. Hence, solely focusing on "canal shaping" largely misses the point of endodontic treatment as the current understanding of the microbial aetiopathogenesis of apical periodontitis calls for the emphasis to be placed on "canal cleaning" and chemo-mechanical disinfection. In this review, we dissect in great detail, the current knowledge on the root canal microbiome, both in terms of its composition and functional characteristics. We also describe the challenges in root canal disinfection and the novel strategies that attempt to address this challenge. Finally, we provide some critical pointers for areas of future research, which will serve as an important area for consideration in Frontiers in Oral Health.
Collapse
Affiliation(s)
- Jasmine Wong
- Discipline of Endodontology, Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Daniel Manoil
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - Peggy Näsman
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - Prasanna Neelakantan
- Discipline of Endodontology, Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Benny B, Pillai V, Joseph A, Pazhani J, Mony V. Oral Microbes Associated with Pulp and Periapical Infections. JOURNAL OF OROFACIAL SCIENCES 2022. [DOI: 10.4103/jofs.jofs_268_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Amaral RR, Braga T, Siqueira JF, Rôças IN, da Costa Rachid CTC, Guimarães Oliveira AG, de Souza Côrtes MI, Love RM. Root Canal Microbiome Associated with Asymptomatic Apical Periodontitis as Determined by High-Throughput Sequencing. J Endod 2022; 48:487-495. [DOI: 10.1016/j.joen.2022.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 12/15/2022]
|
14
|
Siqueira JF, Rôças IN. Present status and future directions - microbiology of endodontic infections. Int Endod J 2021; 55 Suppl 3:512-530. [PMID: 34958494 DOI: 10.1111/iej.13677] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 11/29/2022]
Abstract
Apical periodontitis has a microbial aetiology and is one of the most common inflammatory diseases that affect humans. Fungi, archaea and viruses have been found in association with apical periodontitis, but bacteria are by far the most prevalent and dominant microorganisms in endodontic infections. Bacterial infection of the root canal system only occurs when the pulp is necrotic or was removed for previous treatment. In some specific cases, including acute and chronic abscesses, the bacterial infection may reach the periradicular tissues. Intracanal bacteria are usually observed as sessile multispecies communities (biofilms) attached to the dentinal root canal walls. Infection in the main root canal lumen can spread to other areas of the root canal system. Although more than 500 bacterial species have been detected in endodontic infections, a selected group of 20 to 30 species are most frequently detected and may be considered as the core microbiome. There is a high interindividual variability in the endodontic microbiome in terms of species composition and relative abundance. Obligate anaerobic species are more abundant in the intraradicular bacterial communities of teeth with primary apical periodontitis, while both anaerobes and facultatives dominate the communities in post-treatment apical periodontitis. Bacterial interactions play an essential role in determining the overall virulence of the community, which has been regarded as the unit of pathogenicity of apical periodontitis. This article reviews the microbiologic aspects of endodontic infections and provides perspectives for future research and directions in the field.
Collapse
Affiliation(s)
- José F Siqueira
- Department of Dental Research, Faculty of Dentistry, Iguaçu University (UNIG), Nova Iguaçu, RJ, and Department of Endodontics and Molecular Microbiology Laboratory, Faculty of Dentistry, Grande Rio University, Rio de Janeiro, RJ, Brazil
| | - Isabela N Rôças
- Department of Dental Research, Faculty of Dentistry, Iguaçu University (UNIG), Nova Iguaçu, RJ, and Department of Endodontics and Molecular Microbiology Laboratory, Faculty of Dentistry, Grande Rio University, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
15
|
Siqueira JF, Rôças IN. A critical analysis of research methods and experimental models to study the root canal microbiome. Int Endod J 2021; 55 Suppl 1:46-71. [PMID: 34714548 DOI: 10.1111/iej.13656] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022]
Abstract
Endodontic microbiology deals with the study of the microbial aetiology and pathogenesis of pulpal and periradicular inflammatory diseases. Research in endodontic microbiology started almost 130 years ago and since then has mostly focussed on establishing and confirming the infectious aetiology of apical periodontitis, identifying the microbial species associated with the different types of endodontic infections and determining the efficacy of treatment procedures in eradicating or controlling infection. Diverse analytical methods have been used over the years, each one with their own advantages and limitations. In this review, the main features and applications of the most used technologies are discussed, and advice is provided to improve study designs in order to properly address the scientific questions and avoid setbacks that can compromise the results. Finally, areas of future research are described.
Collapse
Affiliation(s)
- José F Siqueira
- Department of Endodontics and Molecular Microbiology Laboratory, Faculty of Dentistry, Grande Rio University, Rio de Janeiro, Brazil.,Department of Dental Research, Faculty of Dentistry, Iguaçu University (UNIG), Nova Iguaçu, Brazil
| | - Isabela N Rôças
- Department of Endodontics and Molecular Microbiology Laboratory, Faculty of Dentistry, Grande Rio University, Rio de Janeiro, Brazil.,Department of Dental Research, Faculty of Dentistry, Iguaçu University (UNIG), Nova Iguaçu, Brazil
| |
Collapse
|
16
|
Schulz-Weidner N, Weigel M, Turujlija F, Komma K, Mengel JP, Schlenz MA, Bulski JC, Krämer N, Hain T. Microbiome Analysis of Carious Lesions in Pre-School Children with Early Childhood Caries and Congenital Heart Disease. Microorganisms 2021; 9:1904. [PMID: 34576799 PMCID: PMC8469307 DOI: 10.3390/microorganisms9091904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/23/2021] [Accepted: 09/02/2021] [Indexed: 12/04/2022] Open
Abstract
Oral bacteria have been associated with several systemic diseases. Moreover, the abundance of bacteria associated with caries has been found to be higher in patients with congenital heart disease (CHD) than in healthy control groups (HCGs). Therefore, this study aimed to evaluate the dental microbiota in children with CHD compared to a HCG. The aim was to describe and compare the carious microbiome regarding the composition, diversity, and taxonomic patterns in these two groups. Twenty children with CHD and a HCG aged between two and six years participated. All of them were affected by early childhood caries. Microbiome profiling indicated that Fusobacterium, Prevotella, Capnocytophaga, and Oribacterium were more abundant in the CHD group, whereas Lactobacillus and Rothia were predominant in the HCG. Furthermore, microbiome analysis revealed three distinct clusters for the CHD and HCG samples. In the first cluster, we found mainly the genera Lactobacillus and Coriobacteriaceae. The second cluster showed a higher relative abundance of the genus Actinomyces and a more diverse composition consisting of more genera with a smaller relative lot. The third cluster was characterized by two genera, Streptococcus and Veillonella. These data can help us to understand the oral microbial community structures involved in caries and endodontic infections of pre-school children in relation to the general health of these high-risk patients.
Collapse
Affiliation(s)
- Nelly Schulz-Weidner
- Dental Clinic—Department of Pediatric Dentistry, Justus Liebig University, Schlangenzahl 14, 35392 Giessen, Germany; (N.S.-W.); (J.C.B.); (N.K.)
| | - Markus Weigel
- Institute of Medical Microbiology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany; (M.W.); (F.T.); (K.K.); (J.P.M.)
| | - Filip Turujlija
- Institute of Medical Microbiology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany; (M.W.); (F.T.); (K.K.); (J.P.M.)
| | - Kassandra Komma
- Institute of Medical Microbiology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany; (M.W.); (F.T.); (K.K.); (J.P.M.)
| | - Jan Philipp Mengel
- Institute of Medical Microbiology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany; (M.W.); (F.T.); (K.K.); (J.P.M.)
| | - Maximiliane Amelie Schlenz
- Dental Clinic—Department of Prosthodontics, Justus Liebig University, Schlangenzahl 14, 35392 Giessen, Germany;
| | - Julia Camilla Bulski
- Dental Clinic—Department of Pediatric Dentistry, Justus Liebig University, Schlangenzahl 14, 35392 Giessen, Germany; (N.S.-W.); (J.C.B.); (N.K.)
| | - Norbert Krämer
- Dental Clinic—Department of Pediatric Dentistry, Justus Liebig University, Schlangenzahl 14, 35392 Giessen, Germany; (N.S.-W.); (J.C.B.); (N.K.)
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany; (M.W.); (F.T.); (K.K.); (J.P.M.)
- Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
17
|
Korona-Glowniak I, Piatek D, Fornal E, Lukowiak A, Gerasymchuk Y, Kedziora A, Bugla-Płoskonska G, Grywalska E, Bachanek T, Malm A. Patterns of Oral Microbiota in Patients with Apical Periodontitis. J Clin Med 2021; 10:jcm10122707. [PMID: 34205290 PMCID: PMC8234888 DOI: 10.3390/jcm10122707] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022] Open
Abstract
In this study, microbial diversity of the root canal microbiota related to different endodontic infections was investigated. In total, 45 patients with endo–perio lesions (8 patients), chronic periapical periodontitis (29 patients) and pulp necrosis (8 patients) were recruited. In 19 (42.2%) patients there was secondary infection of root canals. Microbial specimens were collected from root canals of non-vital teeth with or without changes in periapical area visible in X-ray. Then, oral microbiota were detected and identified using the culture method and real-time PCR amplification primers and hydrolysis-probe detection with the 16S rRNA gene as the target. Overall, 1434 species/genes from 41 different genera of 90 various microbial species were retrieved. Of the major reported phyla, Firmicutes (62.9%), Actinobacteria (14.0%), Bacteroidetes (12.1%), Proteobacteria (9.1%) and Fusobacteria (4.2%) were detected. Of the bacterial species, 54.6% were strict anaerobes. Corynebacterium matruchotii (p = 0.039) was present significantly more frequently in chronic periapical periodontitis. Moreover, the higher values of Decayed, Missing and Filled Permanent Teeth index were positively correlated with relative abundance of Actinomyces spp. (p = 0.042), Lactobacillus spp. (p = 0.006), Propionibacterium spp. (p = 0.024) and Rothia spp. (p = 0.002). The multivariate analyses revealed differences in total root canal samples, where components that affected grouping of root samples into four main categories were identified. Anaerobic Gram-negative bacteria predominated in root canals of teeth with pulp necrosis and periapical lesions. Facultative anaerobic Gram-positive bacteria predominated in canals with secondary infections. All detected members of mixed population groups that might serve as keystone species contributed to the entire community in its clinical relevance.
Collapse
Affiliation(s)
- Izabela Korona-Glowniak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
- Correspondence: ; Tel.: +48-814487105
| | - Dominika Piatek
- Department of Conservative Dentistry with Endodontics, Faculty of Medical Dentistry, Medical University of Lublin, 20-093 Lublin, Poland; (D.P.); (T.B.)
| | - Emilia Fornal
- Department of Pathophysiology, Faculty of Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Anna Lukowiak
- Institute of Low Temperature and Structure Research, Polish Academy of Science, 50-422 Wroclaw, Poland; (A.L.); (Y.G.)
| | - Yuriy Gerasymchuk
- Institute of Low Temperature and Structure Research, Polish Academy of Science, 50-422 Wroclaw, Poland; (A.L.); (Y.G.)
| | - Anna Kedziora
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland; (A.K.); (G.B.-P.)
| | - Gabriela Bugla-Płoskonska
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland; (A.K.); (G.B.-P.)
| | - Ewelina Grywalska
- Department of Clinical Immunology, Faculty of Medicine, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Teresa Bachanek
- Department of Conservative Dentistry with Endodontics, Faculty of Medical Dentistry, Medical University of Lublin, 20-093 Lublin, Poland; (D.P.); (T.B.)
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
18
|
Yuan D, Chen W, Qin J, Shen D, Qiao Y, Kong B. Associations between bacterial vaginosis, candida vaginitis, trichomonas vaginalis, and vaginal pathogenic community in Chinese women. Am J Transl Res 2021; 13:7148-7155. [PMID: 34306475 PMCID: PMC8290683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND To investigate the associations between Vaginal Pathogenic Community with Bacterial vaginosis, Candida vaginitis, and Trichomonas vaginalis in Chinese women. METHOD In this experiment, ten BV, nine VVC, eight TV patients, and four non-infected healthy women were recruited. The vaginal samples were collected from the vaginal orifice, the middle of the vagina, and vaginal fornix from every participant and conducted with next-generation sequencing (NGS). The NGS was based upon the analysis of bacterial 16S rRNA genes by using the Illumina Miseq system. RESULTS No significant difference in microbiome community structures was observed for the three sampling sites from the same subject. Compared with the healthy population, patients with BV and TV showed more diverse symptoms and had a lower amount of Lactobacillus but a higher number of BV-related bacteria like Atopobium, Dialister, Sneathia, Mobiluncus, and Prevotella. On the contrary, the species composition of the VVC group is relatively simple, which has a significantly high abundance of Lactobacillus. Eight genera, including Arcanobacterium, Clostridium, Moryella, Mobiluncus, Shuttleworthia, Dialister, Bulleidia, and Megasphaera, were closely correlated with BV. Among vaginal pathogenic bacteria, Anaerococcus, Lysobacter, Mycoplasma, Peptoniphilus, Sneathia, and Prevotella were more common, with higher copy numbers in the TV group. CONCLUSIONS The data outlined the overall structure of vaginal communities, indicating that BV and TV were touching related to a sharp increase in the rich taxonomy and diversity of vaginal microbiota. VVC group presented a lower variety, with a significantly high abundance of Lactobacillus.
Collapse
Affiliation(s)
- Dandan Yuan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and TechnologyBaotou 014010, Inner Mongolia, PR China
| | - Wen Chen
- Department of Cancer Epidemiology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, PR China
| | - Junjie Qin
- Digital Microbiota Technology Co., Ltd.Shenzhen 518110, PR China
| | - Dongqian Shen
- Digital Microbiota Technology Co., Ltd.Shenzhen 518110, PR China
| | - Youlin Qiao
- Department of Cancer Epidemiology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, PR China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and TechnologyBaotou 014010, Inner Mongolia, PR China
| |
Collapse
|
19
|
Antimicrobials from Medicinal Plants: An Emergent Strategy to Control Oral Biofilms. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oral microbial biofilms, directly related to oral diseases, particularly caries and periodontitis, exhibit virulence factors that include acidification of the oral microenvironment and the formation of biofilm enriched with exopolysaccharides, characteristics and common mechanisms that, ultimately, justify the increase in antibiotics resistance. In this line, the search for natural products, mainly obtained through plants, and derived compounds with bioactive potential, endorse unique biological properties in the prevention of colonization, adhesion, and growth of oral bacteria. The present review aims to provide a critical and comprehensive view of the in vitro antibiofilm activity of various medicinal plants, revealing numerous species with antimicrobial properties, among which, twenty-four with biofilm inhibition/reduction percentages greater than 95%. In particular, the essential oils of Cymbopogon citratus (DC.) Stapf and Lippia alba (Mill.) seem to be the most promising in fighting microbial biofilm in Streptococcus mutans, given their high capacity to reduce biofilm at low concentrations.
Collapse
|
20
|
Quantitative Analysis of Candidate Endodontic Pathogens and Their Association with Cause and Symptoms of Apical Periodontitis in a Sudanese Population. Eur Endod J 2021; 6:50-55. [PMID: 33762533 PMCID: PMC8056810 DOI: 10.14744/eej.2020.52297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Objective: To investigate the prevalence of key endodontic pathogens and their association with the clinical features and the cause of apical periodontitis. Methods: The study population included patients referred to Khartoum Dental teaching Hospital, Sudan for endodontic treatment. Samples were collected from single-rooted teeth carious or traumatised teeth with clinical and radiographic evidence of apical periodontitis. The endodontic pathogens Porphyromonas endodontalis, Fusobacterium nucleatum and Treponema denticola were quantified by real time polymerase chain reaction (qPCR). The prevalence of each species was identified at both a low detection threshold (>50 bacteria) and a high detection threshold (>1000 bacteria). Results: 75 patients (mean age 30.1 yrs SD 10.1) were included in the analysis. The most prevalent bacterium at both the low and high threshold was F. nucleatum followed by T. denticola at the low threshold and P. endodontalis at the high threshold. There was no association with symptoms at the low detection threshold, but at high threshold P. endodontalis was associated with swelling, adjusted odds ratio (OR), 9.32 95%CI 1.11- 78.66, P=0.04. All species were more prevalent in apical periodontitis due to caries only at the low detection threshold, OR=5.01 (P=0.006) for T. denticola; 4.84 (P=0.01) for F. nucleatum; and 3.62 (P=0.03) for P. endodontalis. Conclusion: There was a high prevalence of the F. nucleatum, T. denticola and P. endodontalis in apical periodontitis associated with caries. None of these bacterial were associated with pain but the presence of P. endodontalis at high levels was associated with swelling.
Collapse
|
21
|
Costa CPS, Alves MS, Lima-Neto LG, Valois EM, Monteiro-Neto V, Souza SFC. Is there bacterial infection in the intact crowns of teeth with pulp necrosis of sickle cell anaemia patients? A case series study nested in a cohort. Int Endod J 2021; 54:817-825. [PMID: 33434310 DOI: 10.1111/iej.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/26/2022]
Abstract
AIM To evaluate the presence of bacteria in permanent teeth with intact crowns (without caries, periodontal disease or dental trauma) in patients with sickle cell anaemia (HbSS genotype) by analysing their clinical, imaging and microbiological parameters. METHODOLOGY This is a case series study nested in a cohort. In the first follow-up of this cohort study (Journal of Endodontics, 2013, 39, 177), 10 HbSS patients with at least one tooth with an intact crown and clinically diagnosed with pulp necrosis by pulse oximetry adapted for dentistry and a cold pulp sensitivity test (n = 27 teeth) were selected. Changes in the pulp chamber, root and periodontal ligament were identified in the tomographic analysis. Bacterial culture, staining for live and dead bacteria, and real-time polymerase chain reaction with 16S rRNA primers were used to identify the presence of bacteria. Culture sample collection was performed immediately after access to the pulp chamber. The microbiome was analysed with a MiSeq sequencer (Illumina, San Diego, CA). RESULTS The diagnosis of pulp necrosis was confirmed clinically in 82% (22/27) of the teeth. The amount of bacterial load identified was less than 100 copies μL-1 in 23% (5/22) of the teeth with intact crowns and pulp necrosis. Thirteen bacterial species were identified that are commonly found in urinary tract infections, septicaemia and infective endocarditis. Only one of these species, Granulicatella adjacens, has also be found in primary endodontic infections. CONCLUSION Prospective clinical, imaging and microbiological analyses suggest that pulp necrosis of teeth with intact crowns in HbSS patients is not associated with the presence of bacteria.
Collapse
Affiliation(s)
- C P S Costa
- School of Dentistry, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - M S Alves
- Parasitic Biology Postgraduate, CEUMA University, São Luís, Maranhão, Brazil
| | - L G Lima-Neto
- Parasitic Biology Postgraduate, CEUMA University, São Luís, Maranhão, Brazil
| | - E M Valois
- School of Dentistry, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - V Monteiro-Neto
- Department of Pathology, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - S F C Souza
- School of Dentistry, Federal University of Maranhão, São Luís, Maranhão, Brazil
| |
Collapse
|
22
|
Characterization of Root Canal Microbiota in Teeth Diagnosed with Irreversible Pulpitis. J Endod 2020; 47:415-423. [PMID: 33359531 DOI: 10.1016/j.joen.2020.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Previous studies have shown that in teeth presenting with symptoms of irreversible pulpitis (IP), bacteria and their by-products driving inflammation are confined mainly within the coronal pulpal tissue. The present study aimed to determine the presence and identity of bacteria within pulps presenting with clinical symptoms of IP using molecular methods. METHODS Samples were obtained from 30 adult patients presenting to the dental emergency department with signs and symptoms of IP. After meticulous surface decontamination, the pulp space was accessed, and clinical samples were collected from inflamed pulp tissue using sterile paper points. Genomic DNA was extracted from the clinical samples, and quantification of bacteria was performed using quantitative polymerase chain reaction targeting the conserved 16S ribosomal RNA (rRNA) gene. To characterize the microbial composition, the V3-V5 hypervariable regions of the 16S rRNA gene were amplified and subjected to next-generation sequencing on the MiSeq platform (Illumina, San Diego, CA). RESULTS Of the 30 teeth that presented with IP, half of the intracanal samples had a substantial bacterial load (16S rRNA copies) within the IP vital pulp as determined by quantitative polymerase chain reaction. Next-generation sequencing microbial identification was successful in 7 intracanal samples and yielded 187 bacterial operational taxonomic units within the IP samples. The most abundant genera observed among the vital cases were Veillonella (16%), Streptococcus (13%), Corynebacterium (10%), Cutibacterium (9.3%), and Porphyromonas (5.7%). CONCLUSIONS The current study highlighted the evidence of vital teeth diagnosed as IP harboring considerable bacterial loads and composed of genera reflective of established endodontic pathology and thus may offer insights into the initial events preceding pulpal necrosis.
Collapse
|
23
|
Heintz E, Pettengill MA, Gangat MA, Hardy DJ, Bonnez W, Sobhanie MM. Oral flora meningoencephalitis diagnosis by next-generation DNA sequencing. Access Microbiol 2020; 1:e000056. [PMID: 32974557 PMCID: PMC7472542 DOI: 10.1099/acmi.0.000056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/06/2019] [Indexed: 01/23/2023] Open
Abstract
Introduction Standard culture methods may fail to detect the causative agents of bacterial infection for various reasons including specimen collection after antibiotic administration, or when standard techniques or environmental conditions are not appropriate for growth of the microorganisms. Conventional 16S rRNA gene sequencing is sometimes a useful alternative technique for identification of bacteria, but is confounded by polymicrobial infection. We present a case of a patient who developed a serious neurological infection for which causative oral flora organisms were observed by microscopy, failed to culture but were identified by next-generation DNA sequencing. Case presentation A male in his forties developed sinus pain and congestion, followed by facial and eye pain, and several weeks later acute-onset confusion and neck stiffness. Cerebrospinal fluid examination revealed pleocytosis and several bacterial morphologies, which were subsequently identified by next-generation sequencing as oral flora constituents Porphyromonas endodontalis , Fusobacterium nucleatum , Streptococcus constellatus , Prevotella species and Parvimonas micra . Conclusion Oral flora can cause meningoencephalitis and brain abscess formation if translocation occurs by injury or surgical procedures. Next-generation sequencing is often not available at healthcare facilities, or when available may not have been validated for a wide spectrum of specimen sources, but is available at reference laboratories and should be considered when routine methods fail to provide a diagnosis for serious infections.
Collapse
Affiliation(s)
- Eric Heintz
- University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew A Pettengill
- University of Rochester Medical Center, Rochester, NY, USA.,Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Dwight J Hardy
- University of Rochester Medical Center, Rochester, NY, USA
| | - William Bonnez
- University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|
24
|
Moraes LC, Lang PM, Arcanjo RA, Rampelotto PH, Fatturi-Parolo CC, Ferreira MBC, Montagner F. Microbial ecology and predicted metabolic pathways in various oral environments from patients with acute endodontic infections. Int Endod J 2020; 53:1603-1617. [PMID: 33448446 DOI: 10.1111/iej.13389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/11/2020] [Indexed: 01/17/2023]
Abstract
AIM To assess in a cross-sectional clinical study the effect of antibiotics on the diversity, structure and metabolic pathways of bacterial communities in various oral environments in patients with acute primary infections. METHODOLOGY Samples of saliva (SA), supragingival biofilm (SB) and from the pulp cavity (PC) were collected from teeth with acute primary infections and then grouped according to previous use of antibiotics (NoAtb = no antibiotics [n = 6]; Atb = antibiotics [n = 6]). DNA sequencing was conducted using MiSeq (Illumina, San Diego, CA, USA). The V1-V3 hyper-variable region of the 16S rRNA gene was amplified. A custom Mothur pipeline was used for 16S rRNA processing. Subsequent analyses of the sequence dataset were performed in R (using vegan, phyloseq and ggplot2 packages) or QIIME. RESULTS Twelve patients aged from 22 to 56 years were recruited. Participants in the Atb group had taken the beta-lactamics amoxicillin (5/6) or cephalexin (1/6) for 2-3 days. A total of 332 bacterial taxa (OTUs) were identified, belonging to 120 genera, 60 families and nine phyla. Firmicutes (41%) and Bacteroidetes (38%) were the most abundant phyla in all samples. Taxa clustered significantly by oral site (PCoA analysis; P < 0.05, ANOSIM). Use of antibiotics had little effect on this clustering. However, SA, SB and PC had different degrees of richness, diversity and evenness. The greatest diversity was observed in SB samples and the least diversity was observed in PC samples. Metabolic prediction identified 163 pathways and previous use of antibiotics had a major effect on the estimated functional clustering in SA and PC samples. CONCLUSION The ecological niche had a strong influence on the bacterial content of samples from various oral sites. Previous exposure to antibiotics may exert an effect on the phylogenetic composition of SA. Metabolic pathways appear to be modulated by antimicrobial agents in SA and PC samples. The dynamics of host/microbial interactions in the apical region and the functional ecology of the infected pulp cavity should be revisited.
Collapse
Affiliation(s)
- L C Moraes
- Programa de Pós-graduação em Odontologia, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - P M Lang
- Programa de Pós-graduação em Odontologia, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Curso de Odontologia, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Brazil
| | - R A Arcanjo
- Programa de Pós-graduação em Ciências Biológicas: Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - P H Rampelotto
- Laboratório Experimental de Hepatologia e Gastroenterologia (LEHG), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - C C Fatturi-Parolo
- Programa de Pós-graduação em Odontologia, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - M B C Ferreira
- Departamento de Odontologia Conservadora, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - F Montagner
- Programa de Pós-graduação em Odontologia, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Curso de Odontologia, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Brazil
| |
Collapse
|
25
|
Distribution of Antibiotic Resistance Genes in the Saliva of Healthy Omnivores, Ovo-Lacto-Vegetarians, and Vegans. Genes (Basel) 2020; 11:genes11091088. [PMID: 32961926 PMCID: PMC7564780 DOI: 10.3390/genes11091088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Food consumption allows the entrance of bacteria and their antibiotic resistance (AR) genes into the human oral cavity. To date, very few studies have examined the influence of diet on the composition of the salivary microbiota, and even fewer investigations have specifically aimed to assess the impact of different long-term diets on the salivary resistome. In this study, the saliva of 144 healthy omnivores, ovo-lacto-vegetarians, and vegans were screened by nested PCR for the occurrence of 12 genes conferring resistance to tetracyclines, macrolide-lincosamide-streptogramin B, vancomycin, and β-lactams. The tet(W), tet(M), and erm(B) genes occurred with the highest frequencies. Overall, no effect of diet on AR gene distribution was seen. Some differences emerged at the recruiting site level, such as the higher frequency of erm(C) in the saliva of the ovo-lacto-vegetarians and omnivores from Bologna and Turin, respectively, and the higher occurrence of tet(K) in the saliva of the omnivores from Bologna. A correlation of the intake of milk and cheese with the abundance of tet(K) and erm(C) genes was seen. Finally, when the occurrence of the 12 AR genes was evaluated along with geographical location, age, and sex as sources of variability, high similarity among the 144 volunteers was seen.
Collapse
|
26
|
Salas-López EK, Casas-Flores S, López-Lozano NE, Layseca-Espinosa E, García-Sepúlveda CA, Niño-Moreno PD, Pozos-Guillén A. Analysis of bacterial communities of infected primary teeth in a Mexican population. Med Oral Patol Oral Cir Bucal 2020; 25:e668-e674. [PMID: 32851984 PMCID: PMC7473434 DOI: 10.4317/medoral.23689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 08/10/2020] [Indexed: 11/11/2022] Open
Abstract
Background The objective of this study was to describe the bacterial communities associated with pediatric patients with endodontic infections of temporal teeth by targeting the 16S rRNA gene using pyrosequencing.
Material and Methods Microbiological samples were obtained from the lower primary molars of thirteen 13 pediatric patients with dental infections. An aspiration method for microbiological sampling was used. The identification of microbiota employing the pyrosequencing method by targeting the 16S gene was performed.
Results Ribosomal 16S RNA gene sequences were amplified, obtaining a total of 16,182 sequences from 13 primary infected molars (13 different individuals) by pyrosequencing. Bacteroidetes phyla (35.15%) were the most abundant followed by Firmicutes (33.3%) and Fusobacteria (10.05%); the presence of specific pathogenic bacteria was determined as well.
Conclusions The infected root canal of primary teeth contains a high diversity of anaerobic bacteria, and Bacteroidetes, Firmicutes, and Fusobacteria phyla were the most abundant; Prevotella and Streptococcus genera were the most prevalent. Key words:Pyrosequencing, deciduous teeth, oral bacterial microbiota, 16S rRNA, taxonomy.
Collapse
Affiliation(s)
- E-K Salas-López
- Facultad de Estomatología Universidad Autónoma de San Luis Potosí Av. Dr. Manuel Nava #2, Zona Universitaria C.P. 78290, San Luis Potosí, S.L.P. México
| | | | | | | | | | | | | |
Collapse
|
27
|
Park OJ, Jeong MH, Lee EH, Cho MR, Hwang J, Cho S, Yun CH, Han SH, Kim SY. A Pilot Study of Chronological Microbiota Changes in a Rat Apical Periodontitis Model. Microorganisms 2020; 8:microorganisms8081174. [PMID: 32748824 PMCID: PMC7464309 DOI: 10.3390/microorganisms8081174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 01/10/2023] Open
Abstract
Apical periodontitis caused by microbial infection in the dental pulp is characterized by inflammation, destruction of the pulpal and periradicular tissues, and alveolar bone resorption. We analyzed the chronological changes in microbiota using a pyrosequencing-based approach combined with radiologic and histopathologic changes in a rat apical periodontitis model. During the three-week observation, the pulp and periapical area showed a typical progress of apical periodontitis. A total of 27 phyla, 645 genera, and 1276 species were identified. The root apex had a lower bacterial species diversity than the pulp chamber. Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria were dominant phyla in both the pulp chamber and root apex. Remarkably, bacterial communities showed a tendency to change in the root apex based on the disease progression. At the genus level, Escherichia, Streptococcus, Lactobacillus, Rodentibacter, and Bacteroidetes were dominant genera in the pulp chamber. The most abundant genera in the root apex were Bradyrhizobium, Halomonas, and Escherichia. The species Azospirillum oryzae increased in the pulp chamber, whereas the species Bradyrhizobium japonicum and Halomonas stevensii were highly observed in the root apex as the disease progressed. The experimental rat model of apical periodontitis demonstrated a relationship between the microbiota and the apical periodontitis progression.
Collapse
Affiliation(s)
- Ok-Jin Park
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Korea;
| | - Moon-Hee Jeong
- Department of Conservative Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Korea; (M.-H.J.); (E.-H.L.); (M.-R.C.)
| | - Eun-Hye Lee
- Department of Conservative Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Korea; (M.-H.J.); (E.-H.L.); (M.-R.C.)
| | - Mi-Ran Cho
- Department of Conservative Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Korea; (M.-H.J.); (E.-H.L.); (M.-R.C.)
| | - Jaehong Hwang
- Department of Nuclear and Quantum Engineering, KAIST, Daejeon 34141, Korea; (J.H.); (S.C.)
| | - Seungryong Cho
- Department of Nuclear and Quantum Engineering, KAIST, Daejeon 34141, Korea; (J.H.); (S.C.)
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Korea;
- Correspondence: (S.H.H.); (S.-Y.K.); Tel.: +82-2-880-2312 (S.H.H.); +82-2-2072-2652 (S.-Y.K.)
| | - Sun-Young Kim
- Department of Conservative Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Korea; (M.-H.J.); (E.-H.L.); (M.-R.C.)
- Correspondence: (S.H.H.); (S.-Y.K.); Tel.: +82-2-880-2312 (S.H.H.); +82-2-2072-2652 (S.-Y.K.)
| |
Collapse
|
28
|
Proteome Analysis of Molecular Events in Oral Pathogenesis and Virus: A Review with a Particular Focus on Periodontitis. Int J Mol Sci 2020; 21:ijms21155184. [PMID: 32707841 PMCID: PMC7432693 DOI: 10.3390/ijms21155184] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Some systemic diseases are unquestionably related to periodontal health, as periodontal disease can be an extension or manifestation of the primary disease process. One example is spontaneous gingival bleeding, resulting from anticoagulant treatment for cardiac diseases. One important aspect of periodontal therapy is the care of patients with poorly controlled disease who require surgery, such as patients with uncontrolled diabetes. We reviewed research on biomarkers and molecular events for various diseases, as well as candidate markers of periodontal disease. Content of this review: (1) Introduction, (2) Periodontal disease, (3) Bacterial and viral pathogens associated with periodontal disease, (4) Stem cells in periodontal tissue, (5) Clinical applications of mass spectrometry using MALDI-TOF-MS and LC-MS/MS-based proteomic analyses, (6) Proteome analysis of molecular events in oral pathogenesis of virus in GCF, saliva, and other oral Components in periodontal disease, (7) Outlook for the future and (8) Conclusions. This review discusses proteome analysis of molecular events in the pathogenesis of oral diseases and viruses, and has a particular focus on periodontitis.
Collapse
|
29
|
The apical root canal system microbial communities determined by next-generation sequencing. Sci Rep 2020; 10:10932. [PMID: 32616783 PMCID: PMC7331743 DOI: 10.1038/s41598-020-67828-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/09/2020] [Indexed: 12/30/2022] Open
Abstract
The aim of this study was to explore the microbial communities of endodontic infections at their apical portion by 16S rRNA Illumina sequencing and delineate the core microbiome of root canal infections and that of their associated clinical symptomatology. Samples were collected from fifteen subjects presenting one tooth with a root canal infection, and their associated symptoms were recorded. Samples were collected from the apical third of roots using a #10 K file and then amplified using multiple displacement amplification and PCR-amplified with universal primers. Amplicons were sequenced (V3–V4 hypervariable region of the 16S rRNA gene) using MiSeq (Illumina, CA). The microbial composition of the samples was determined using QIIME and HOMINGS. Data were analyzed using t tests and ANOVA. A total of 1,038,656 good quality sequences were obtained, and OTUs were assigned to 10 bacterial phyla, led by Bacteroidetes (51.2%) and Firmicutes (27.1%), and 94 genera were represented primarily by Prevotella (17.9%) and Bacteroidaceae G-1 (14.3%). Symptomatic teeth were associated with higher levels of Porphyromonas (p < 0.05) and Prevotella. P. endodontalis and P. oris were present in both cores. The present study demonstrated the complexity of the root canal microbiome and the “common denominators” of root canal infections and identified taxa whose virulence properties should be further explored. The polymicrobial etiology of endodontic infections has long been established. However, few studies have focused on expanding the breadth and depth of coverage of microbiome-infected root canals at their apical portion.
Collapse
|
30
|
Next-Generation Sequencing to Assess Potentially Active Bacteria in Endodontic Infections. J Endod 2020; 46:1105-1112. [PMID: 32497654 DOI: 10.1016/j.joen.2020.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Because active bacteria present a higher abundance of ribosomal RNA (rRNA) than DNA (rRNA gene), the rRNA/DNA ratio of next-generation sequencing (NGS) data was measured to search for active bacteria in endodontic infections. METHODS Paired complementary DNA and DNA samples from 5 root canals of teeth with apical periodontitis were subjected to polymerase chain reaction with bar-coded primers amplifying the 16S rRNA gene hypervariable regions V4-V5. High-throughput sequencing was performed using MiSeq (Illumina, San Deigo, CA), and data were analyzed using Quantitative Insights Into Microbial Ecology and Human Oral Microbiome Database. Statistical analysis was performed for relative abundance of bacteria in the DNA- and rRNA-based NGS data using the Mann-Whitney test, whereas differences in the diversity and richness indexes were assessed using a nonparametric 2-sample t test (P < .05). For bacterial taxa detected in both approaches, the rRNA/DNA ratios were calculated by dividing the average abundance of individual species in the respective analysis. RESULTS Although no significant difference was found in the indexes of bacterial richness and diversity, the relative abundance of bacterial members varied in both analyses. Comparing rRNA with DNA data, there was a significant decrease in the relative abundance of Firmicutes (P < .05). The bacterial taxa Bacteroidales [G-2] bacterium HMT 274, Porphyromonas endodontalis, Tannerella forsythia, Alloprevotella tannerae, Prevotella intermedia, Pseudoramibacter alactolyticus, Olsenella sp. HMT 809, Olsenella sp. HMT 939, Olsenella uli, and Fusobacterium nucleatum subsp. animalis were both dominant (DNA ≥ 1%) and active (rRNA/DNA ≥ 1). CONCLUSIONS The integrated DNA- and rRNA-based NGS strategy was particularly important to disclose the activity of as-yet-uncultivated or difficult-to-culture bacteria in endodontic infections.
Collapse
|
31
|
Horiuchi A, Kokubu E, Warita T, Ishihara K. Synergistic biofilm formation by Parvimonas micra and Fusobacterium nucleatum. Anaerobe 2020; 62:102100. [DOI: 10.1016/j.anaerobe.2019.102100] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/23/2022]
|
32
|
Kazemtabrizi A, Haddadi A, Shavandi M, Harzandi N. Metagenomic investigation of bacteria associated with dental lesions: a cross-sectional study. Med Oral Patol Oral Cir Bucal 2020; 25:e240-e251. [PMID: 32040467 PMCID: PMC7103443 DOI: 10.4317/medoral.23326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Dental caries is considered as one of the most significant global health problem over the world. Dental caries initiates from bacterial shifts within the supragingival biofilm, then a polymicrobial biofilm is formed on the surface of tooth, and finally various bacterial species aggregate in a complex-organized manner. The exploiting variability in 16S rRNA gene sequence has been considered as a cost-efficient high-throughput characterization approach in human oral microbiome investigations. The aim of this study is to characterize bacterial species associated with superficial dental biofilm, underlying carious dentine and root caries lesion by16S rRNA gene-based metagenomic analysis. MATERIAL AND METHODS Herein, the bacterial communities in carious dentin lesion, biofilm and root canal samples of 30 subjects (aged 4-76 years) admitted to a clinic in Tehran during 2017 were investigated using a culture independent approach. Total genomic DNA of each tissue was subjected to metagenomic identification of bacteria using a nested PCR assay and 16S rRNA library construction method. RESULTS 31 samples collected from 30 consenting patients (29 samples from 29 patients ant two biofilm samples from one patient). Bioinformatics analyses of a-800bp sequences of the second step of Nested-PCR revealed presence of 156 bacterial isolates in carious (n=45), biofilm (n=81) and root canal (n=30) specimens. Prevotella spp., Lactobacillus vaginalis, and streptococcus spp. showed higher prevalence in carious dentin, root and biofilm samples, respectively. CONCLUSIONS Exploring the dental microbiota and comparing them in health or diseased conditions is critical step in the determination of human general health. The method applied in this study could identify bacteria related to the three dental lesions. However, due to lack of data for comparison in Genbank or because of the sequence similarity lower than 98% for most identified bacteria, the use of more powerful approaches like NGS platforms or typing of multiple loci (MLST) in future studies is recommended.
Collapse
Affiliation(s)
- A Kazemtabrizi
- Department of Microbiology, Karaj Branch Islamic Azad University, Karaj, Iran
| | | | | | | |
Collapse
|
33
|
Manoil D, Al‐Manei K, Belibasakis GN. A Systematic Review of the Root Canal Microbiota Associated with Apical Periodontitis: Lessons from Next‐Generation Sequencing. Proteomics Clin Appl 2020; 14:e1900060. [DOI: 10.1002/prca.201900060] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/14/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Daniel Manoil
- Division of Oral DiseasesDepartment of Dental MedicineKarolinska Institute Huddinge 14152 Sweden
| | - Khaled Al‐Manei
- Division of Oral DiseasesDepartment of Dental MedicineKarolinska Institute Huddinge 14152 Sweden
- Division of EndodonticsDepartment of Restorative Dental ScienceCollege of DentistryKing Saud University Riyadh 11545 Saudi Arabia
| | - Georgios N. Belibasakis
- Division of Oral DiseasesDepartment of Dental MedicineKarolinska Institute Huddinge 14152 Sweden
| |
Collapse
|
34
|
Zhang W, Chen Y, Shi Q, Hou B, Yang Q. Identification of bacteria associated with periapical abscesses of primary teeth by sequence analysis of 16S rDNA clone libraries. Microb Pathog 2019; 141:103954. [PMID: 31891793 DOI: 10.1016/j.micpath.2019.103954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/17/2019] [Accepted: 12/27/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVE This study aims to detect the predominant bacteria in acute periapical abscesses of primary teeth using culture-independent molecular methods based on 16S ribosomal DNA cloning. METHODS Purulent material was collected from nine children diagnosed with abscesses of endodontic origin. DNA was extracted and the 16S rRNA gene amplified with universal primer pairs 27F and 1492R. Amplified genes were cloned, sequenced by Applied Biosystems, and identified by comparison with known 16S rRNA gene sequences. RESULTS Bacterial DNA was present in all nine purulence samples. A total of 681 clones were classified into 8 phyla, 78 genera, and 125 species/phylotypes. The phyla were Firmicutes, Proteobacteria, Fusobacteria, Bacteroidetes, Actinobacteria, Tenericutes, Deinococcus-Thermus, and Spirochaetes. The most dominant genera were Streptococcus (13.3%), Fusobacterium (11.8%), Parvimonas (7.8%), Prevotella (6.7%), Sphingomonas (5.8%), and Hafnia (5.2%). Fusobacterium nucleatum (11.5%), Parvimonas micra (7.8%), Streptococcus intermedius (6.6%), Sphingomonas echinoides (5.3%), Hafnia alvei (5.2%), and Citrobacter freundii (4.9%) were the most common species/phylotypes. Among these species/phylotypes, F.nucleatum was the most prevalent (7/9). C. freundii, Carnobacterium maltaromaticum, and H. alvei were seldom detected species in acute periapical abscesses but had relatively high abundance and prevalence. CONCLUSION Acute periapical abscesses are polymicrobial with certain prevalent bacteria, especially anaerobic bacterium. The most predominant and prevalent bacteria of acute periapical abscesses in children was F. nucleatum.
Collapse
Affiliation(s)
- Wenwen Zhang
- Beijing Institute for Dental Research, Capital Medical University, School of Stomatology, Beijing, China
| | - Yuanyuan Chen
- Beijing Institute for Dental Research, Capital Medical University, School of Stomatology, Beijing, China
| | - Qing Shi
- Department of Pediatric Dentistry, Capital Medical University, School of Stomatology, Beijing, China
| | - Benxiang Hou
- Department of Endodontics, Capital Medical University, School of Stomatology, Beijing, China
| | - Qiubo Yang
- Beijing Institute for Dental Research, Capital Medical University, School of Stomatology, Beijing, China.
| |
Collapse
|
35
|
|
36
|
Fouad AF. Microbiological aspects of traumatic injuries. Dent Traumatol 2019; 35:324-332. [PMID: 31125490 DOI: 10.1111/edt.12494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
After traumatic injuries to teeth, microorganisms may invade the compromised pulp tissue and initiate pulp infection and periapical inflammation. In addition to bone resorption that typically accompanies pulp necrosis, root resorption frequently occurs. Root resorption has several variants that may occur shortly after the trauma or at a later stage. The pathological changes seen after traumatic injuries to teeth are invariably linked to the presence of microbial irritants. The presence of bacterial biofilms in the dental pulp space can be treated with regenerative or therapeutic endodontic procedures. However, necrosis of periodontal ligament is usually terminal for the tooth involved. In this review, the sources of bacteria after traumatic injuries are discussed. The types and role of microorganisms involved in the pathogenesis of endodontic pathosis after traumatic injuries are presented, and contemporary approaches for the management of these conditions are reviewed. Contemporary antimicrobial strategies are discussed. The rationale for the use of systemic and topical antimicrobials is presented. Finally, novel approaches to the use of antimicrobial therapies, particularly in regenerative procedures, are reviewed.
Collapse
Affiliation(s)
- Ashraf F Fouad
- Department of Endodontics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
37
|
Llena C, Almarche A, Mira A, López MA. Antimicrobial efficacy of the supernatant of Streptococcus dentisani against microorganisms implicated in root canal infections. J Oral Sci 2019; 61:184-194. [PMID: 30918216 DOI: 10.2334/josnusd.18-0239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The present study aimed to test the antimicrobial activity of Streptococcus dentisani (S. dentisani) supernatant against a collection of microorganisms implicated in dental root infections, and to analyze morphological changes induced in a selection of the tested microorganisms. A total of 22 microbial species were selected, and their growth was monitored by spectrophotometry in the presence and absence of the supernatant of S. dentisani at different assay concentrations (0.2×, 1×, 2×). The generation time and maximum growth rates were evaluated under every tested condition. Scanning electron microscope (SEM) images were obtained to assess the effect on the cell surface following incubation of the pathogens with the concentrated (2×) supernatant of S. dentisani. The supernatant of S. dentisani was found to exert effective inhibitory activity against most of the studied microorganisms implicated in dental root infections (20 out of 22). Total growth inhibition was observed in the case of Streptococcus oralis, Streptococcus sobrinus, Streptococcus salivarius, Prevotella intermedia, and Streptococcus mutans, while the rest of the microorganisms showed an increase in the generation time (between 30 min and 4 h). SEM images revealed structural changes in the membrane consistent with bacteriocin activity, although the effects were heterogeneous among the different species tested.
Collapse
Affiliation(s)
- Carmen Llena
- Department of Stomatology, University of Valencia
| | | | - Alejandro Mira
- The Foundation for the Promotion of Health and Biomedical Research (FISABIO)
| | - M Arantxa López
- The Foundation for the Promotion of Health and Biomedical Research (FISABIO)
| |
Collapse
|
38
|
Hurley E, Barrett MPJ, Kinirons M, Whelton H, Ryan CA, Stanton C, Harris HMB, O'Toole PW. Comparison of the salivary and dentinal microbiome of children with severe-early childhood caries to the salivary microbiome of caries-free children. BMC Oral Health 2019; 19:13. [PMID: 30642327 PMCID: PMC6332856 DOI: 10.1186/s12903-018-0693-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/12/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The main objectives of this study were to describe and compare the microbiota of 1) deep dentinal lesions of deciduous teeth of children affected with severe early childhood caries (S-ECC) and 2) the unstimulated saliva of these children and 3) the unstimulated saliva of caries-free children, and to compare microbiota compositional differences and diversity of taxa in these sampled sites. METHODS Children with S-ECC and without S-ECC were recruited. The saliva of all children with and without S-ECC was sampled along with the deep dentinal microbiota from children affected by S-ECC. The salivary microbiota of children affected by S-ECC (n = 68) was compared to that of caries-free children (n = 70), by Illumina MiSeq sequencing of 16S rRNA amplicons. Finally, the caries microbiota of deep dentinal lesions of those children with S-ECC was investigated. RESULTS Using two beta diversity metrics (Bray Curtis dissimilarity and UniFrac distance), the caries microbiota was found to be distinct from that of either of the saliva groups (caries-free & caries-active) when bacterial abundance was taken into account. However, when the comparison was made by measuring only presence and absence of bacterial taxa, all three microbiota types separated. While the alpha diversity of the caries microbiota was lowest, the diversity difference between the caries samples and saliva samples was statistically significant (p < 0.001). The major phyla of the caries active dentinal microbiota were Firmicutes (median abundance value 33.5%) and Bacteroidetes (23.2%), with Neisseria (10.3%) being the most abundant genus, followed by Prevotella (10%). The caries-active salivary microbiota was dominated by Proteobacteria (median abundance value 38.2%) and Bacteroidetes (27.8%) with the most abundant genus being Neisseria (16.3%), followed by Porphyromonas (9.5%). Caries microbiota samples were characterized by high relative abundance of Streptococcus mutans, Prevotella spp., Bifidobacterium and Scardovia spp. CONCLUSIONS Distinct differences between the caries microbiota and saliva microbiota were identified, with separation of both salivary groups (caries-active and caries-free) whereby rare taxa were highlighted. While the caries microbiota was less diverse than the salivary microbiota, the presence of these rare taxa could be the difference between health and disease in these children.
Collapse
Affiliation(s)
- Eimear Hurley
- School of Microbiology, University College Cork, Room 447 Food Science Building, Cork, Ireland.,Cork University Dental School & Hospital, Cork University Hospital, Wilton, Cork, Ireland
| | - Maurice P J Barrett
- School of Microbiology, University College Cork, Room 447 Food Science Building, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Martin Kinirons
- Cork University Dental School & Hospital, Cork University Hospital, Wilton, Cork, Ireland
| | - Helen Whelton
- College of Medicine & Health, University College Cork, Cork, Ireland
| | - C Anthony Ryan
- Department of Neonatology, Cork University Maternity Hospital, Wilton, Cork, Ireland
| | | | - Hugh M B Harris
- School of Microbiology, University College Cork, Room 447 Food Science Building, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul W O'Toole
- School of Microbiology, University College Cork, Room 447 Food Science Building, Cork, Ireland. .,APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
39
|
Gomes BPFDA, Herrera DR. Etiologic role of root canal infection in apical periodontitis and its relationship with clinical symptomatology. Braz Oral Res 2018; 32:e69. [PMID: 30365610 DOI: 10.1590/1807-3107bor-2018.vol32.0069] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/12/2018] [Indexed: 12/16/2022] Open
Abstract
Evidence shows the polymicrobial etiology of endodontic infections, in which bacteria and their products are the main agents for the development, progression, and dissemination of apical periodontitis. Microbial factors in necrotic root canals (e.g., endotoxin) may spread into apical tissue, evoking and supporting a chronic inflammatory load. Thus, apical periodontitis is the result of the complex interplay between microbial factors and host defense against invasion of periradicular tissues. This review of the literature aims to discuss the complex network between endodontic infectious content and host immune response in apical periodontitis. A better understanding of the relationship of microbial factors with clinical symptomatology is important to establish appropriate therapeutic procedures for a more predictable outcome of endodontic treatment.
Collapse
Affiliation(s)
| | - Daniel Rodrigo Herrera
- Universidade Estadual de Campinas -Unicamp, Piracicaba Dental School, Department of Restorative Dentistry, Piracicaba, SP, Brazil
| |
Collapse
|
40
|
Outcome of Initial Endodontic Treatment Performed, by One Specialist, in 122 Tunisian Patients: A Retrospective Study. Int J Dent 2018; 2018:3504245. [PMID: 30154847 PMCID: PMC6091415 DOI: 10.1155/2018/3504245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/11/2018] [Indexed: 01/09/2023] Open
Abstract
Objective To assess the 6- to 24-month outcome of endodontic treatments performed, by one specialist, and to identify prognostic factors that may influence initial endodontic treatment outcome (IETO). Methods One hundred and forty-six patients out of 163 were included. A number of 201 teeth were endodontically treated, and an overall number of 408 canals were obturated. Of these, 165 teeth received initial endodontic treatment (IET). The criteria of the European Society of Endodontology were used to assess the IETO. The level of significance was set at p < 0.05%. Results Apical periodontitis (AP) was present in 42.5% of all cases, with a PAI >3 in 28.5%. The success rate (SR) was 91.5%. It was significantly higher in vital teeth (97%) than in devital teeth (87.7%) (p=0.04); however, a lower SR was recorded in teeth with AP (p=0.02). The lesion healed in 60 teeth (85.7%), decreased in size in 4 teeth (5.7%), and increased in size in 6 teeth (8.5%). A higher SR was obtained when a permanent restoration was present (94%) than absent (68.7%) (p=0.005). Conclusion Within the limitations of the study, pulp and periapical status and permanent restoration are found to be strong outcome predictors.
Collapse
|
41
|
Abstract
Newer research tools and basic science knowledge base have allowed the exploration of endodontic diseases in the pulp and periapical tissues in novel ways. The use of next generation sequencing, bioinformatics analyses, genome-wide association studies, to name just a few of these innovations, has allowed the identification of hundreds of microorganisms and of host response factors. This review addresses recent advances in endodontic microbiology and the host response and discusses the potential for future innovations in this area.
Collapse
Affiliation(s)
- Ashraf F Fouad
- Department of Endodontics, School of Dentistry, University of North Carolina at Chapel Hill, 1098 First Dental Building, CB# 7450, Chapel Hill, NC 27599-7450, USA.
| |
Collapse
|
42
|
Abstract
The pathogenesis of odontogenic infection is polymicrobial, consisting of various facultative and strict anaerobes. The dominant isolates are strictly anaerobic gram-negative rods and gram-positive cocci. The periapical infection is the most common form of odontogenic infection. Although odontogenic infections are usually confined to the alveolar ridge vicinity, they can spread into deep fascial spaces. Cavernous sinus thrombosis, brain abscess, airway obstruction, and mediastinitis are possible complications of dental infections. The most important element in treating odontogenic infections is elimination of the primary source of the infection with antibiotics as adjunctive therapy.
Collapse
|
43
|
Deciphering Endodontic Microbial Communities by Next-generation Sequencing. J Endod 2018; 44:1080-1087. [DOI: 10.1016/j.joen.2018.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 03/23/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022]
|
44
|
Herrera D, Retamal-Valdes B, Alonso B, Feres M. Acute periodontal lesions (periodontal abscesses and necrotizing periodontal diseases) and endo-periodontal lesions. J Periodontol 2018; 89 Suppl 1:S85-S102. [DOI: 10.1002/jper.16-0642] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 06/29/2017] [Accepted: 07/30/2017] [Indexed: 12/16/2022]
Affiliation(s)
- David Herrera
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group; University Complutense; Madrid Spain
| | - Belén Retamal-Valdes
- Department of Periodontology; Dental Research Division; Guarulhos University; Guarulhos São Paulo Brazil
| | - Bettina Alonso
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group; University Complutense; Madrid Spain
| | - Magda Feres
- Department of Periodontology; Dental Research Division; Guarulhos University; Guarulhos São Paulo Brazil
| |
Collapse
|
45
|
Herrera D, Retamal-Valdes B, Alonso B, Feres M. Acute periodontal lesions (periodontal abscesses and necrotizing periodontal diseases) and endo-periodontal lesions. J Clin Periodontol 2018; 45 Suppl 20:S78-S94. [DOI: 10.1111/jcpe.12941] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 06/29/2017] [Accepted: 07/30/2017] [Indexed: 01/29/2023]
Affiliation(s)
- David Herrera
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group; University Complutense; Madrid Spain
| | - Belén Retamal-Valdes
- Department of Periodontology; Dental Research Division; Guarulhos University; Guarulhos São Paulo Brazil
| | - Bettina Alonso
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group; University Complutense; Madrid Spain
| | - Magda Feres
- Department of Periodontology; Dental Research Division; Guarulhos University; Guarulhos São Paulo Brazil
| |
Collapse
|
46
|
Sánchez-Sanhueza G, Bello-Toledo H, González-Rocha G, Gonçalves AT, Valenzuela V, Gallardo-Escárate C. Metagenomic study of bacterial microbiota in persistent endodontic infections using Next-generation sequencing. Int Endod J 2018; 51:1336-1348. [PMID: 29786880 DOI: 10.1111/iej.12953] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 05/13/2018] [Indexed: 12/16/2022]
Abstract
AIM To determine the bacterial microbiota in root canals associated with persistent apical periodontitis and their relationship with the clinical characteristics of patients using next-generation sequencing (NGS). METHODOLOGY Bacterial samples from root canals associated with teeth having persistent apical periodontitis were taken from 24 patients undergoing root canal retreatment. Bacterial DNA was extracted, and V3-V4 variable regions of the 16S rRNA gene were amplified. The amplification was deep sequenced by Illumina technology to establish the metagenetic relationships among the bacterial species identified. The composition and diversity of microbial communities in the root canal and their relationships with clinical features were analysed. Parametric and nonparametric tests were used to analyse differences between patient characteristics and microbial data. RESULTS A total of 86 different operational taxonomic units (OTUs) were identified and Good's nonparametric coverage estimator method indicated that 99.9 ± 0.00001% diversity was recovered per sample. The largest number of bacteria belonged to the phylum Proteobacteria. According to the medical history from the American Society of Anesthesiologists (ASA) Classification System, ASA II-III had higher richness estimates and distinct phylogenetic relationships compared to ASA I individuals (P < 0.05). Periapical index (PAI) score 5 was associated with increased microbiota diversity in comparison to PAI score 4, and this index was reduced in symptomatic patients. CONCLUSIONS Based on the findings of this study, it is possible to suggest a close relationship between several clinical features and greater microbiota diversity with persistent endodontic infections. This work provides a better understanding on how microbial communities interact with their host and vice versa.
Collapse
Affiliation(s)
- G Sánchez-Sanhueza
- Discipline of Endodontics, Faculty of Dentistry, Department of Restorative Dentistry, University of Concepción, Concepción, Chile
| | - H Bello-Toledo
- Research Laboratory on Antibacterial Agents, Faculty of Biological Sciences, Department of Microbiology, University of Concepción, Concepción, Chile
| | - G González-Rocha
- Research Laboratory on Antibacterial Agents, Faculty of Biological Sciences, Department of Microbiology, University of Concepción, Concepción, Chile
| | - A T Gonçalves
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepción, Chile
| | - V Valenzuela
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepción, Chile
| | - C Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepción, Chile
| |
Collapse
|
47
|
Almansa Ruiz JC, Jonker A, Bosman AM, Steenkamp G. Bacteria profile and antibiogram of the bacteria isolated from the exposed pulp of dog canine teeth. Vet Rec 2018; 183:97. [PMID: 29703789 DOI: 10.1136/vr.104540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 02/05/2018] [Accepted: 04/04/2018] [Indexed: 11/04/2022]
Abstract
Twenty-seven microbiological samples were taken from root canals (RC) of the canine teeth of 20 dogs where the pulps were non-vital and exposed due to complicated crown fractures. These pulps were cultured for aerobic/anaerobic bacteria. Antimicrobial susceptibility of isolates was determined using the Kirby-Bauer diffusion test. A total of 49 cultivable isolates, belonging to 27 different microbial species and 18 different genera, were recovered from the 27 RCs sampled. Twenty (40.81 per cent) of the cultivable isolates were Gram positive while 29 (59.19 per cent) were Gram negative. Facultative anaerobes were the most common bacteria (77.56 per cent). Aerobic isolates represented 18.36 per cent, and strict anaerobes 4.08 per cent. The antimicrobials with the highest in vitro efficacy were gentamicin (100 per cent) and enrofloxacin (93.32 per cent).
Collapse
Affiliation(s)
- José Carlos Almansa Ruiz
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| | - Annelize Jonker
- Department of Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| | - Anna-Mari Bosman
- Department of Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| | - Gerhard Steenkamp
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| |
Collapse
|
48
|
Illumina MiSeq Sequencing for Preliminary Analysis of Microbiome Causing Primary Endodontic Infections in Egypt. Int J Microbiol 2018; 2018:2837328. [PMID: 29849646 PMCID: PMC5903297 DOI: 10.1155/2018/2837328] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/01/2018] [Accepted: 02/26/2018] [Indexed: 12/26/2022] Open
Abstract
The use of high throughput next generation technologies has allowed more comprehensive analysis than traditional Sanger sequencing. The specific aim of this study was to investigate the microbial diversity of primary endodontic infections using Illumina MiSeq sequencing platform in Egyptian patients. Samples were collected from 19 patients in Suez Canal University Hospital (Endodontic Department) using sterile # 15K file and paper points. DNA was extracted using Mo Bio power soil DNA isolation extraction kit followed by PCR amplification and agarose gel electrophoresis. The microbiome was characterized on the basis of the V3 and V4 hypervariable region of the 16S rRNA gene by using paired-end sequencing on Illumina MiSeq device. MOTHUR software was used in sequence filtration and analysis of sequenced data. A total of 1858 operational taxonomic units at 97% similarity were assigned to 26 phyla, 245 families, and 705 genera. Four main phyla Firmicutes, Bacteroidetes, Proteobacteria, and Synergistetes were predominant in all samples. At genus level, Prevotella, Bacillus, Porphyromonas, Streptococcus, and Bacteroides were the most abundant. Illumina MiSeq platform sequencing can be used to investigate oral microbiome composition of endodontic infections. Elucidating the ecology of endodontic infections is a necessary step in developing effective intracanal antimicrobials.
Collapse
|
49
|
Burczynska A, Dziewit L, Decewicz P, Struzycka I, Wroblewska M. Application of Metagenomic Analyses in Dentistry as a Novel Strategy Enabling Complex Insight into Microbial Diversity of the Oral Cavity. Pol J Microbiol 2018; 66:9-15. [PMID: 29359689 DOI: 10.5604/17331331.1234988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The composition of the oral microbiome in healthy individuals is complex and dynamic, and depends on many factors, such as anatomical location in the oral cavity, diet, oral hygiene habits or host immune responses. It is estimated at present that worldwide about 2 billion people suffer from diseases of the oral cavity, mainly periodontal disease and dental caries. Importantly, the oral microflora involved in local infections may spread and cause systemic, even life-threatening infections. In search for etiological agents of infections in dentistry, traditional approaches are not sufficient, as about 50% of oral bacteria are not cultivable. Instead, metagenomic analyses are particularly useful for studies of the complex oral microbiome - both in healthy individuals, and in patients with oral and dental diseases. In this paper we review the current and future applications of metagenomic studies in evaluation of both the composition of the oral microbiome as well as its potential pathogenic role in infections in dentistry.
Collapse
Affiliation(s)
| | - Lukasz Dziewit
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland
| | - Przemysław Decewicz
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland; Research and Development for Life Sciences Ltd., Poland
| | - Izabela Struzycka
- Department of Comprehensive Dental Care, Medical University of Warsaw, Poland
| | - Marta Wroblewska
- Department of Dental Microbiology, Medical University of Warsaw, Poland; Department of Microbiology, Central Clinical Hospital in Warsaw, Poland
| |
Collapse
|
50
|
Microbial Analysis of Endodontic Infections in Root-filled Teeth with Apical Periodontitis before and after Irrigation Using Pyrosequencing. J Endod 2018; 44:372-378. [DOI: 10.1016/j.joen.2017.11.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/10/2017] [Accepted: 11/20/2017] [Indexed: 01/01/2023]
|