1
|
Widyasari K, Bwalya J, Kim K. Binding immunoglobulin 2 functions as a proviral factor for potyvirus infections in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2023; 24:179-187. [PMID: 36416097 PMCID: PMC9831281 DOI: 10.1111/mpp.13284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Infection of viruses from the genera Bromovirus, Potyvirus, and Potexvirus in Nicotiana benthamiana induces significant up-regulation of the genes that encode the HSP70 family, including binding immunoglobulin protein 2 (BiP2). Three up-regulated genes were knocked down and infection assays with these knockdown lines demonstrated the importance of the BiP2 gene for potyvirus infection but not for infection by the other tested viruses. Distinct symptoms of cucumber mosaic virus (CMV) and potato virus X (PVX) were observed in the BiP2 knockdown line at 10 days postagroinfiltration. Interestingly, following inoculation with either soybean mosaic virus (SMV) or pepper mottle virus (PepMoV) co-expressing green fluorescent protein (GFP), neither crinkle symptoms nor GFP signals were observed in the BiP2 knockdown line. Subsequent reverse transcription-quantitative PCR analysis demonstrated that knockdown of BiP2 resulted in a significant decrease of SMV and PepMoV RNA accumulation but not PVX or CMV RNA accumulation. Further yeast two-hybrid and co-immunoprecipitation analyses validated the interaction between BiP2 and nuclear inclusion protein b (NIb) of SMV. Together, our findings suggest the crucial role of BiP2 as a proviral host factor necessary for potyvirus infection. The interaction between BiP2 and NIb may be the critical factor determining susceptibility in N. benthamiana, but further studies are needed to elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Kristin Widyasari
- Department of Agricultural BiotechnologySeoul National UniversitySeoulSouth Korea
| | - John Bwalya
- Department of Agricultural BiotechnologySeoul National UniversitySeoulSouth Korea
| | - Kook‐Hyung Kim
- Department of Agricultural BiotechnologySeoul National UniversitySeoulSouth Korea
- Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulSouth Korea
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoulSouth Korea
| |
Collapse
|
2
|
Usovsky M, Chen P, Li D, Wang A, Shi A, Zheng C, Shakiba E, Lee D, Canella Vieira C, Lee YC, Wu C, Cervantez I, Dong D. Decades of Genetic Research on Soybean mosaic virus Resistance in Soybean. Viruses 2022; 14:1122. [PMID: 35746594 PMCID: PMC9230979 DOI: 10.3390/v14061122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
This review summarizes the history and current state of the known genetic basis for soybean resistance to Soybean mosaic virus (SMV), and examines how the integration of molecular markers has been utilized in breeding for crop improvement. SVM causes yield loss and seed quality reduction in soybean based on the SMV strain and the host genotype. Understanding the molecular underpinnings of SMV-soybean interactions and the genes conferring resistance to SMV has been a focus of intense research interest for decades. Soybean reactions are classified into three main responses: resistant, necrotic, or susceptible. Significant progress has been achieved that has greatly increased the understanding of soybean germplasm diversity, differential reactions to SMV strains, genotype-strain interactions, genes/alleles conferring specific reactions, and interactions among resistance genes and alleles. Many studies that aimed to uncover the physical position of resistance genes have been published in recent decades, collectively proposing different candidate genes. The studies on SMV resistance loci revealed that the resistance genes are mainly distributed on three chromosomes. Resistance has been pyramided in various combinations for durable resistance to SMV strains. The causative genes are still elusive despite early successes in identifying resistance alleles in soybean; however, a gene at the Rsv4 locus has been well validated.
Collapse
Affiliation(s)
- Mariola Usovsky
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65201, USA;
| | - Pengyin Chen
- Delta Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO 63873, USA; (D.L.); (C.C.V.); (Y.C.L.)
| | - Dexiao Li
- College of Agronomy, Northwest University of Agriculture, Jiangling, Xianyang 712100, China;
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada;
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA;
| | | | - Ehsan Shakiba
- Rice Research and Extension Center, Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Stuttgart, AR 72160, USA;
| | - Dongho Lee
- Delta Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO 63873, USA; (D.L.); (C.C.V.); (Y.C.L.)
| | - Caio Canella Vieira
- Delta Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO 63873, USA; (D.L.); (C.C.V.); (Y.C.L.)
| | - Yi Chen Lee
- Delta Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO 63873, USA; (D.L.); (C.C.V.); (Y.C.L.)
| | - Chengjun Wu
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Innan Cervantez
- Bayer CropScience, Global Soybean Breeding, 1781 Gavin Road, Marion, AR 72364, USA;
| | - Dekun Dong
- Soybean Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| |
Collapse
|
3
|
Gao L, Wu Y, An J, Huang W, Liu X, Xue Y, Luan X, Lin F, Sun L. Pathogenicity and genome-wide sequence analysis reveals relationships between soybean mosaic virus strains. Arch Virol 2022; 167:517-529. [PMID: 35024966 PMCID: PMC8755985 DOI: 10.1007/s00705-021-05271-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/27/2021] [Indexed: 11/06/2022]
Abstract
Soybean mosaic virus (SMV) is the most prevalent viral pathogen in soybean. In China, the SMV strains SC and N are used simultaneously in SMV resistance assessments of soybean cultivars, but the pathogenic relationship between them is unclear. In this study, SMV strains N1 and N3 were found to be the most closely related to SC18. Moreover, N3 was found to be more virulent than N1. A global pathotype classification revealed the highest level of genetic diversity in China. The N3 type was the most frequent and widespread worldwide, implying that SMV possibly originated in China and spread across continents through the dissemination of infected soybean. It also suggests that the enhanced virulence of N3 facilitated its spread and adaptability in diverse geographical and ecological regions worldwide. Phylogenetic analysis revealed prominent geographical associations among SMV strains/isolates, and genomic nucleotide diversity analysis and neutrality tests demonstrated that the whole SMV genome is under negative selection, with the P1 gene being under the greatest selection pressure. The results of this study will facilitate the nationwide use of SMV-resistant soybean germplasm and could provide useful insights into the molecular variability, geographical distribution, phylogenetic relationships, and evolutionary history of SMV around the world.
Collapse
Affiliation(s)
- Le Gao
- Department of Horticulture, Beijing Vocational College of Agriculture, Beijing, 102442, China.
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| | - Yueying Wu
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jie An
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Wenxuan Huang
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xinlei Liu
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yongguo Xue
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xiaoyan Luan
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Lianjun Sun
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Yin J, Wang L, Jin T, Nie Y, Liu H, Qiu Y, Yang Y, Li B, Zhang J, Wang D, Li K, Xu K, Zhi H. A cell wall-localized NLR confers resistance to Soybean mosaic virus by recognizing viral-encoded cylindrical inclusion protein. MOLECULAR PLANT 2021; 14:1881-1900. [PMID: 34303025 DOI: 10.1016/j.molp.2021.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 06/03/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Soybean mosaic virus (SMV) causes severe yield losses and seed quality reduction in soybean (Glycine max) production worldwide. Rsc4 from cultivar Dabaima is a dominant genetic locus for SMV resistance, and its mapping interval contains three nucleotide-binding domain leucine-rich repeat-containing (NLR) candidates (Rsc4-1, Rsc4-2, and Rsc4-3). The NLR-type resistant proteins were considered as important intracellular pathogen sensors in the previous studies. In this study, based on transient expression assay in Nicotiana benthamiana leaves, we found that the longest transcript of Rsc4-3 is sufficient to confer resistance to SMV, and CRISPR/Cas9-mediated editing of Rsc4-3 in resistant cultivar Dabaima compromised the resistance. Interestingly, Rsc4-3 encodes a cell-wall-localized NLR-type resistant protein. We found that the internal polypeptide region responsible for apoplastic targeting of Rsc4-3 and the putative palmitoylation sites on the N terminus are essential for the resistance. Furthermore, we showed that viral-encoded cylindrical inclusion (CI) protein partially localizes to the cell wall and can interact with Rsc4-3. Virus-driven or transient expression of CI protein of avirulent SMV strains is enough to induce resistance response in the presence of Rsc4-3, suggesting that CI is the avirulent gene for Rsc4-3-mediated resistance. Taken together, our work identified a unique NLR that recognizes plant virus in the apoplast, and provided a simple and effective method for identifying resistant genes against SMV infection.
Collapse
Affiliation(s)
- Jinlong Yin
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Liqun Wang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Tongtong Jin
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yang Nie
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Hui Liu
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yanglin Qiu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yunhua Yang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Bowen Li
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jiaojiao Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Dagang Wang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Kai Li
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Haijian Zhi
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
5
|
Hajimorad MR, Domier LL, Tolin SA, Whitham SA, Saghai Maroof MA. Soybean mosaic virus: a successful potyvirus with a wide distribution but restricted natural host range. MOLECULAR PLANT PATHOLOGY 2018; 19:1563-1579. [PMID: 29134790 PMCID: PMC6638002 DOI: 10.1111/mpp.12644] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/18/2017] [Accepted: 11/07/2017] [Indexed: 05/12/2023]
Abstract
TAXONOMY Soybean mosaic virus (SMV) is a species within the genus Potyvirus, family Potyviridae, which includes almost one-quarter of all known plant RNA viruses affecting agriculturally important plants. The Potyvirus genus is the largest of all genera of plant RNA viruses with 160 species. PARTICLE The filamentous particles of SMV, typical of potyviruses, are about 7500 Å long and 120 Å in diameter with a central hole of about 15 Å in diameter. Coat protein residues are arranged in helices of about 34 Å pitch having slightly less than nine subunits per turn. GENOME The SMV genome consists of a single-stranded, positive-sense, polyadenylated RNA of approximately 9.6 kb with a virus-encoded protein (VPg) linked at the 5' terminus. The genomic RNA contains a single large open reading frame (ORF). The polypeptide produced from the large ORF is processed proteolytically by three viral-encoded proteinases to yield about 10 functional proteins. A small ORF, partially overlapping the P3 cistron, pipo, is encoded as a fusion protein in the N-terminus of P3 (P3N + PIPO). BIOLOGICAL PROPERTIES SMV's host range is restricted mostly to two plant species of a single genus: Glycine max (cultivated soybean) and G. soja (wild soybean). SMV is transmitted by aphids non-persistently and by seeds. The variability of SMV is recognized by reactions on cultivars with dominant resistance (R) genes. Recessive resistance genes are not known. GEOGRAPHICAL DISTRIBUTION AND ECONOMIC IMPORTANCE As a consequence of its seed transmissibility, SMV is present in all soybean-growing areas of the world. SMV infections can reduce significantly seed quantity and quality (e.g. mottled seed coats, reduced seed size and viability, and altered chemical composition). CONTROL The most effective means of managing losses from SMV are the planting of virus-free seeds and cultivars containing single or multiple R genes. KEY ATTRACTIONS The interactions of SMV with soybean genotypes containing different dominant R genes and an understanding of the functional role(s) of SMV-encoded proteins in virulence, transmission and pathogenicity have been investigated intensively. The SMV-soybean pathosystem has become an excellent model for the examination of the genetics and genomics of a uniquely complex gene-for-gene resistance model in a crop of worldwide importance.
Collapse
Affiliation(s)
- M. R. Hajimorad
- Department of Entomology and Plant PathologyThe University of TennesseeKnoxvilleTN 37996USA
| | - L. L. Domier
- United States Department of Agriculture‐Agricultural Research Service and Department of Crop SciencesUniversity of IllinoisUrbanaIL 61801USA
| | - S. A. Tolin
- Department of Plant Pathology, Physiology and Weed ScienceVirginia TechBlacksburgVA 24061USA
| | - S. A. Whitham
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA 50011USA
| | - M. A. Saghai Maroof
- Department of Crop and Soil Environmental SciencesVirginia TechBlacksburgVA 24061USA
| |
Collapse
|
6
|
Jang C, Wang R, Wells J, Leon F, Farman M, Hammond J, Goodin MM. Genome sequence variation in the constricta strain dramatically alters the protein interaction and localization map of Potato yellow dwarf virus. J Gen Virol 2017; 98:1526-1536. [PMID: 28635588 PMCID: PMC5656794 DOI: 10.1099/jgv.0.000771] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/10/2017] [Indexed: 12/19/2022] Open
Abstract
The genome sequence of the constricta strain of Potato yellow dwarf virus (CYDV) was determined to be 12 792 nt long and organized into seven ORFs with the gene order 3'-N-X-P-Y-M-G-L-5', which encodes the nucleocapsid, phospho, movement, matrix, glyco, and RNA-dependent RNA polymerase proteins, respectively, except for X, which is of unknown function. Cloned ORFs for each gene, except L, were used to construct a protein interaction and localization map (PILM) for this virus, which shares greater than 80 % amino acid similarity in all ORFs except X and P with the sanguinolenta strain of this species (SYDV). Protein localization patterns and interactions unique to each viral strain were identified, resulting in strain-specific PILMs. Localization of CYDV and SYDV proteins in virus-infected cells mapped subcellular loci likely to be sites of replication, morphogenesis and movement.
Collapse
Affiliation(s)
- Chanyong Jang
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Renyuan Wang
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Joseph Wells
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Fabian Leon
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Mark Farman
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - John Hammond
- USDA-ARS, United States National Arboretum, Beltsville, MD, USA
| | - Michael M. Goodin
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
7
|
Chen H, Adam Arsovski A, Yu K, Wang A. Deep sequencing leads to the identification of eukaryotic translation initiation factor 5A as a key element in Rsv1-mediated lethal systemic hypersensitive response to Soybean mosaic virus infection in soybean. MOLECULAR PLANT PATHOLOGY 2017; 18:391-404. [PMID: 27019403 PMCID: PMC6638201 DOI: 10.1111/mpp.12407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 05/23/2023]
Abstract
Rsv1, a single dominant resistance locus in soybean, confers extreme resistance to the majority of Soybean mosaic virus (SMV) strains, but is susceptible to the G7 strain. In Rsv1-genotype soybean, G7 infection provokes a lethal systemic hypersensitive response (LSHR), a delayed host defence response. The Rsv1-mediated LSHR signalling pathway remains largely unknown. In this study, we employed a genome-wide investigation to gain an insight into the molecular interplay between SMV G7 and Rsv1-genotype soybean. Small RNA (sRNA), degradome and transcriptome sequencing analyses were used to identify differentially expressed genes (DEGs) and microRNAs (DEMs) in response to G7 infection. A number of DEGs, DEMs and microRNA targets, and the interaction network of DEMs and their target mRNAs responsive to G7 infection, were identified. Knock-down of one of the identified DEGs, the eukaryotic translation initiation factor 5A (eIF5A), diminished the LSHR and enhanced viral accumulation, suggesting the essential role of eIF5A in the G7-induced, Rsv1-mediated LSHR signalling pathway. This work provides an in-depth genome-wide analysis of high-throughput sequencing data, and identifies multiple genes and microRNA signatures that are associated with the Rsv1-mediated LSHR.
Collapse
Affiliation(s)
- Hui Chen
- London Research and Development Centre, Agriculture and Agri‐Food CanadaOttawaONCanadaN5T 4T3
- Department of BiologyUniversity of Western OntarioLondonONCanadaN6A 5B7
| | - Andrej Adam Arsovski
- London Research and Development Centre, Agriculture and Agri‐Food CanadaOttawaONCanadaN5T 4T3
| | - Kangfu Yu
- Greenhouse and Processing Crops Research Centre, Agriculture and Agri‐Food CanadaHarrowONCanadaN0R 1G0
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri‐Food CanadaOttawaONCanadaN5T 4T3
- Department of BiologyUniversity of Western OntarioLondonONCanadaN6A 5B7
| |
Collapse
|
8
|
Liu JZ, Fang Y, Pang H. The Current Status of the Soybean- Soybean Mosaic Virus (SMV) Pathosystem. Front Microbiol 2016; 7:1906. [PMID: 27965641 PMCID: PMC5127794 DOI: 10.3389/fmicb.2016.01906] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/15/2016] [Indexed: 12/19/2022] Open
Abstract
Soybean mosaic virus (SMV) is one of the most devastating pathogens that cost huge economic losses in soybean production worldwide. Due to the duplicated genome, clustered and highly homologous nature of R genes, as well as recalcitrant to transformation, soybean disease resistance studies is largely lagging compared with other diploid crops. In this review, we focus on the major advances that have been made in identifying both the virulence/avirulence factors of SMV and mapping of SMV resistant genes in soybean. In addition, we review the progress in dissecting the SMV resistant signaling pathways in soybean, with a special focus on the studies using virus-induced gene silencing. The soybean genome has been fully sequenced, and the increasingly saturated SNP markers have been identified. With these resources available together with the newly developed genome editing tools, and more efficient soybean transformation system, cloning SMV resistant genes, and ultimately generating cultivars with a broader spectrum resistance to SMV are becoming more realistic than ever.
Collapse
Affiliation(s)
- Jian-Zhong Liu
- College of Chemistry and Life Sciences, Zhejiang Normal UniversityJinhua, China
| | - Yuan Fang
- College of Chemistry and Life Sciences, Zhejiang Normal UniversityJinhua, China
| | - Hongxi Pang
- College of Agronomy, Northwest A&F UniversityYangling, China
| |
Collapse
|
9
|
Luan H, Shine MB, Cui X, Chen X, Ma N, Kachroo P, Zhi H, Kachroo A. The Potyviral P3 Protein Targets Eukaryotic Elongation Factor 1A to Promote the Unfolded Protein Response and Viral Pathogenesis. PLANT PHYSIOLOGY 2016; 172:221-34. [PMID: 27356973 PMCID: PMC5074642 DOI: 10.1104/pp.16.00505] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/14/2016] [Indexed: 05/21/2023]
Abstract
The biochemical function of the potyviral P3 protein is not known, although it is known to regulate virus replication, movement, and pathogenesis. We show that P3, the putative virulence determinant of soybean mosaic virus (SMV), targets a component of the translation elongation complex in soybean. Eukaryotic elongation factor 1A (eEF1A), a well-known host factor in viral pathogenesis, is essential for SMV virulence and the associated unfolded protein response (UPR). Silencing GmEF1A inhibits accumulation of SMV and another ER-associated virus in soybean. Conversely, endoplasmic reticulum (ER) stress-inducing chemicals promote SMV accumulation in wild-type, but not GmEF1A-knockdown, plants. Knockdown of genes encoding the eEF1B isoform, which is important for eEF1A function in translation elongation, has similar effects on UPR and SMV resistance, suggesting a link to translation elongation. P3 and GmEF1A promote each other's nuclear localization, similar to the nuclear-cytoplasmic transport of eEF1A by the Human immunodeficiency virus 1 Nef protein. Our results suggest that P3 targets host elongation factors resulting in UPR, which in turn facilitates SMV replication and place eEF1A upstream of BiP in the ER stress response during pathogen infection.
Collapse
Affiliation(s)
- Hexiang Luan
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China (H.L., N.M., H.Z.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (H.L., M.B.S., P.K., A.K.); andJiangsu Academy of Agricultural Sciences, Nanjing 210014, China (X.Cu., X.Ch.)
| | - M B Shine
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China (H.L., N.M., H.Z.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (H.L., M.B.S., P.K., A.K.); andJiangsu Academy of Agricultural Sciences, Nanjing 210014, China (X.Cu., X.Ch.)
| | - Xiaoyan Cui
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China (H.L., N.M., H.Z.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (H.L., M.B.S., P.K., A.K.); andJiangsu Academy of Agricultural Sciences, Nanjing 210014, China (X.Cu., X.Ch.)
| | - Xin Chen
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China (H.L., N.M., H.Z.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (H.L., M.B.S., P.K., A.K.); andJiangsu Academy of Agricultural Sciences, Nanjing 210014, China (X.Cu., X.Ch.)
| | - Na Ma
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China (H.L., N.M., H.Z.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (H.L., M.B.S., P.K., A.K.); andJiangsu Academy of Agricultural Sciences, Nanjing 210014, China (X.Cu., X.Ch.)
| | - Pradeep Kachroo
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China (H.L., N.M., H.Z.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (H.L., M.B.S., P.K., A.K.); andJiangsu Academy of Agricultural Sciences, Nanjing 210014, China (X.Cu., X.Ch.)
| | - Haijan Zhi
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China (H.L., N.M., H.Z.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (H.L., M.B.S., P.K., A.K.); andJiangsu Academy of Agricultural Sciences, Nanjing 210014, China (X.Cu., X.Ch.)
| | - Aardra Kachroo
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China (H.L., N.M., H.Z.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (H.L., M.B.S., P.K., A.K.); andJiangsu Academy of Agricultural Sciences, Nanjing 210014, China (X.Cu., X.Ch.)
| |
Collapse
|
10
|
Whitham SA, Qi M, Innes RW, Ma W, Lopes-Caitar V, Hewezi T. Molecular Soybean-Pathogen Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:443-68. [PMID: 27359370 DOI: 10.1146/annurev-phyto-080615-100156] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Soybean hosts a wide variety of pathogens that cause significant yield losses. The importance of soybean as a major oilseed crop has led to research focused on its interactions with pathogens, such as Soybean mosaic virus, Pseudomonas syringae, Phytophthora sojae, Phakopsora pachyrhizi, and Heterodera glycines. Pioneering work on soybean's interactions with these organisms, which represent the five major pathogen groups (viruses, bacteria, oomycetes, fungi, and nematodes), has contributed to our understanding of the molecular mechanisms underlying virulence and immunity. These mechanisms involve conserved and unique features that validate the need for research in both soybean and homologous model systems. In this review, we discuss identification of effectors and their functions as well as resistance gene-mediated recognition and signaling. We also point out areas in which model systems and recent advances in resources and tools have provided opportunities to gain deeper insights into soybean-pathogen interactions.
Collapse
Affiliation(s)
- Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011; ,
| | - Mingsheng Qi
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011; ,
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, Indiana 47405;
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521;
| | - Valéria Lopes-Caitar
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996; ,
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996; ,
| |
Collapse
|
11
|
Chen H, Arsovski AA, Yu K, Wang A. Genome-Wide Investigation Using sRNA-Seq, Degradome-Seq and Transcriptome-Seq Reveals Regulatory Networks of microRNAs and Their Target Genes in Soybean during Soybean mosaic virus Infection. PLoS One 2016; 11:e0150582. [PMID: 26963095 PMCID: PMC4786119 DOI: 10.1371/journal.pone.0150582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 02/16/2016] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRNAs) play key roles in a variety of cellular processes through regulation of their target gene expression. Accumulated experimental evidence has demonstrated that infections by viruses are associated with the altered expression profile of miRNAs and their mRNA targets in the host. However, the regulatory network of miRNA-mRNA interactions during viral infection remains largely unknown. In this study, we performed small RNA (sRNA)-seq, degradome-seq and as well as a genome-wide transcriptome analysis to profile the global gene and miRNA expression in soybean following infections by three different Soybean mosaic virus (SMV) isolates, L (G2 strain), LRB (G2 strain) and G7 (G7 strain). sRNA-seq analyses revealed a total of 253 soybean miRNAs with a two-fold or greater change in abundance compared with the mock-inoculated control. 125 transcripts were identified as the potential cleavage targets of 105 miRNAs and validated by degradome-seq analyses. Genome-wide transcriptome analysis showed that total 2679 genes are differentially expressed in response to SMV infection including 71 genes predicted as involved in defense response. Finally, complex miRNA-mRNA regulatory networks were derived using the RNAseq, small RNAseq and degradome data. This work represents a comprehensive, global approach to examining virus-host interactions. Genes responsive to SMV infection are identified as are their potential miRNA regulators. Additionally, regulatory changes of the miRNAs themselves are described and the regulatory relationships were supported with degradome data. Taken together these data provide new insights into molecular SMV-soybean interactions and offer candidate miRNAs and their targets for further elucidation of the SMV infection process.
Collapse
Affiliation(s)
- Hui Chen
- Agriculture and Agri-Food Canada, 1391 Sandford ST. London, Ontario, N5T 4T3, Canada
- Dept of Biology, The University of Western Ontario, 1151 Richmond ST N. London, Ontario, N6A 5B7, Canada
| | - Andrej Adam Arsovski
- Agriculture and Agri-Food Canada, 1391 Sandford ST. London, Ontario, N5T 4T3, Canada
| | - Kangfu Yu
- Greenhouse and Processing Crops Research Centre, Agriculture and Agri-Food Canada, 2585 County Rd. 20, Harrow, Ontario, N0R 1G0, Canada
| | - Aiming Wang
- Agriculture and Agri-Food Canada, 1391 Sandford ST. London, Ontario, N5T 4T3, Canada
- Dept of Biology, The University of Western Ontario, 1151 Richmond ST N. London, Ontario, N6A 5B7, Canada
| |
Collapse
|
12
|
Zhou GC, Shao ZQ, Ma FF, Wu P, Wu XY, Xie ZY, Yu DY, Cheng H, Liu ZH, Jiang ZF, Chen QS, Wang B, Chen JQ. The evolution of soybean mosaic virus: An updated analysis by obtaining 18 new genomic sequences of Chinese strains/isolates. Virus Res 2015; 208:189-98. [PMID: 26103098 DOI: 10.1016/j.virusres.2015.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 10/23/2022]
Abstract
Soybean mosaic virus (SMV) is widely recognized as a highly damaging pathogen of soybean, and various strains/isolates have been reported to date. However, the pathogenic differences and phylogenetic relationships of these SMV strains/isolates have not been extensively studied. In the present work, by first obtaining 18 new genomic sequences of Chinese SMV strains/isolates and further compiling these with available data, we have explored the evolution of SMV from multiple aspects. First, as in other potyviruses, recombination has occurred frequently during SMV evolution, and a total of 32 independent events were detected. Second, using a maximum-likelihood method and removing recombinant fragments, a phylogeny covering 83 SMV sequences sampled from all over the world was reconstructed and the results showed four separate SMV clades, with clade I and II recovered for the first time. Third, the population structure analysis of SMV revealed significant genetic differentiations between China and two other countries (Korea and U.S.A.). Fourth, certain SMV-encoded genes, such as P1, HC-Pro and P3, exhibited higher non-synonymous substitution rate (dN) than synonymous substitution rate (dS), indicating that positive selection has influenced these genes. Finally, four Chinese SMV strains/isolates were selected for inoculation of both USA and Chinese differential soybean cultivars, and their pathogenic phenotypes were significantly different from that of the American strains. Overall, these findings have further broadened our understanding on SMV evolution, which would assist researchers to better deal with this harmful virus.
Collapse
Affiliation(s)
- Guang-Can Zhou
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhu-Qing Shao
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Fang-Fang Ma
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ping Wu
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiao-Yi Wu
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhong-Yun Xie
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - De-Yue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing 210095, China
| | - Hao Cheng
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing 210095, China
| | - Zhi-Hua Liu
- College of Resources and Environment, Northeast Agriculture University, Harbin 150030, China
| | - Zhen-Feng Jiang
- College of Agriculture, Northeast Agriculture University, Harbin 150030, China
| | - Qing-Shan Chen
- College of Agriculture, Northeast Agriculture University, Harbin 150030, China
| | - Bin Wang
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Jian-Qun Chen
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
13
|
Wang Y, Khatabi B, Hajimorad MR. Amino acid substitution in P3 of Soybean mosaic virus to convert avirulence to virulence on Rsv4-genotype soybean is influenced by the genetic composition of P3. MOLECULAR PLANT PATHOLOGY 2015; 16:301-7. [PMID: 25040594 PMCID: PMC6638367 DOI: 10.1111/mpp.12175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The modification of avirulence factors of plant viruses by one or more amino acid substitutions converts avirulence to virulence on hosts containing resistance genes. Limited experimental studies have been conducted on avirulence/virulence factors of plant viruses, in particular those of potyviruses, to determine whether avirulence/virulence sites are conserved among strains. In this study, the Soybean mosaic virus (SMV)-Rsv4 pathosystem was exploited to determine whether: (i) avirulence/virulence determinants of SMV reside exclusively on P3 regardless of virus strain; and (ii) the sites residing on P3 and crucial for avirulence/virulence of isolates belonging to strain G2 are also involved in virulence of avirulent isolates belonging to strain G7. The results confirm that avirulence/virulence determinants of SMV on Rsv4-genotype soybean reside exclusively on P3. Furthermore, the data show that sites involved in the virulence of SMV on Rsv4-genotype soybean vary among strains, with the genetic composition of P3 playing a crucial role.
Collapse
Affiliation(s)
- Y Wang
- Department of Entomology and Plant Pathology, The University of Tennessee, Knoxville, TN, 37996, USA
| | | | | |
Collapse
|
14
|
Caffier V, Patocchi A, Expert P, Bellanger MN, Durel CE, Hilber-Bodmer M, Broggini GAL, Groenwold R, Bus VGM. Virulence Characterization of Venturia inaequalis Reference Isolates on the Differential Set of Malus Hosts. PLANT DISEASE 2015; 99:370-375. [PMID: 30699702 DOI: 10.1094/pdis-07-14-0708-re] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A set of differential hosts has recently been identified for 17 apple scab resistance genes in an updated system for defining gene-for-gene (GfG) relationships in the Venturia inaequalis-Malus pathosystem. However, a set of reference isolates characterized for their complementary avirulence alleles is not yet available. In this paper, we report on improving the set of differential hosts for h(7) and propose the apple genotype LPG3-29 as carrying the single major resistance gene Rvi7. We characterized a reference set of 23 V. inaequalis isolates on 14 differential apple hosts carrying major resistance genes under controlled conditions. We identified isolates that were virulent on at least one of the following defined resistance gene hosts: h(1), h(2), h(3), h(4), h(5), h(6), h(7), h(8), h(9), h(10), and h(13). Sixteen different virulence patterns were observed. In general, the isolates carried one to three virulences, but some of them were more complex, with up to six virulences. This set of well-characterized isolates will be helpful for the identification of additional apple scab resistance genes in apple germplasm and the characterization of new GfG relationships to help improve our understanding of the host-pathogen interactions in the V. inaequalis-Malus pathosystem.
Collapse
Affiliation(s)
- Valérie Caffier
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, 49071 Beaucouzé, France; AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, 49045 Angers, France; Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAV, 49045 Angers, France
| | - Andrea Patocchi
- Agroscope Research Station, Phytopathology, P.B., 8820 Wädenswil, Switzerland
| | - Pascale Expert
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, 49071 Beaucouzé, France; AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, 49045 Angers, France; Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAV, 49045 Angers, France
| | - Marie-Noëlle Bellanger
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, 49071 Beaucouzé, France; AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, 49045 Angers, France; Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAV, 49045 Angers, France
| | - Charles-Eric Durel
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, 49071 Beaucouzé, France; AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, 49045 Angers, France; Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAV, 49045 Angers, France
| | - Maja Hilber-Bodmer
- Agroscope Research Station, Phytopathology, P.B., 8820 Wädenswil, Switzerland
| | - Giovanni A L Broggini
- Agroscope Research Station, Phytopathology, P.B., 8820 Wädenswil, Switzerland; Swiss Federal Institute of Technology Zürich ETHZ, Phytopathology Group, Universitätstrasse 2, Zürich, Switzerland
| | - Remmelt Groenwold
- Wageningen University and Research, Plant Breeding, P.O. Box 16, 6700AA Wageningen, The Netherlands
| | - Vincent G M Bus
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 1401, Havelock North 4157, New Zealand
| |
Collapse
|
15
|
Chen H, Zhang L, Yu K, Wang A. Pathogenesis of Soybean mosaic virus in soybean carrying Rsv1 gene is associated with miRNA and siRNA pathways, and breakdown of AGO1 homeostasis. Virology 2015; 476:395-404. [PMID: 25591174 DOI: 10.1016/j.virol.2014.12.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/26/2014] [Accepted: 12/20/2014] [Indexed: 11/30/2022]
Abstract
Profiling small RNAs in soybean Williams 82 (rsv), susceptible to Soybean mosaic virus (SMV, the genus Potyvirus, family Potyviridae) strains G2 and G7, and soybean PI96983 (Rsv1), resistant to G2 but susceptible to G7, identified the microRNA miR168 that was highly overexpressed only in G7-infected PI96983 showing a lethal systemic hypersensitive response (LSHR). Overexpression of miR168 was in parallel with the high-level expression of AGO1 mRNA, high-level accumulation of miR168-mediated AGO1 mRNA cleavage products but with severely repressed AGO1 protein. In contrast, AGO1 mRNA, degradation products and protein remained without significant changes in G2- and G7-infected Williams 82. Moreover, knock-down of SGS3, an essential component in RNA silencing, suppressed AGO1 siRNA, partially recovered repressed AGO1 protein, and alleviated LSHR severity in G7-infected Rsv1 soybean. These results suggest that both miRNA and siRNA pathways are involved in G7 infection of Rsv1 soybean, and LSHR is associated with breakdown of AGO1 homeostasis.
Collapse
Affiliation(s)
- Hui Chen
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada; Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 5B7
| | - Lingrui Zhang
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada; Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 5B7
| | - Kangfu Yu
- Greenhouse and Processing Crops Research Centre, Agriculture and Agri-Food Canada, 2585 County Road, 20, Harrow, Ontario, Canada N0R 1G0
| | - Aiming Wang
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada; Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 5B7.
| |
Collapse
|
16
|
Abstract
Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses.
Collapse
|
17
|
Sorel M, Svanella-Dumas L, Candresse T, Acelin G, Pitarch A, Houvenaghel MC, German-Retana S. Key mutations in the cylindrical inclusion involved in lettuce mosaic virus adaptation to eIF4E-mediated resistance in lettuce. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1014-24. [PMID: 25105805 DOI: 10.1094/mpmi-04-14-0111-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We previously showed that allelic genes mol¹ and mo1² used to protect lettuce crops against Lettuce mosaic virus (LMV) correspond to mutant alleles of the gene encoding the eukaryotic translation initiation factor 4E. LMV resistance-breaking determinants map not only to the main potyvirus virulence determinant, a genome-linked viral protein, but also to the C-terminal region of the cylindrical inclusion (CI), with a key role of amino acid at position 621. Here, we show that the propagation of several non-lettuce isolates of LMV in mo1¹ plants is accompanied by a gain of virulence correlated with the presence in the CI C terminus of a serine at position 617 and the accumulation of mutations at positions 602 or 627. Whole-genome sequencing of native and evolved isolates showed that no other mutation could be associated with adaptation to mo1 resistance. Site-directed mutagenesis pinpointed the key role in the virulence of the combination of mutations at positions 602 and 617, in addition to position 621. The impact of these mutations on the fitness of the virus was evaluated, suggesting that the durability of mo1 resistance in the field relies on the fitness cost associated with the resistance-breaking mutations, the nature of the mutations, and their potential antagonistic effects.
Collapse
|
18
|
Sorel M, Garcia JA, German-Retana S. The Potyviridae cylindrical inclusion helicase: a key multipartner and multifunctional protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:215-226. [PMID: 24405034 DOI: 10.1094/mpmi-11-13-0333-cr] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A unique feature shared by all plant viruses of the Potyviridae family is the induction of characteristic pinwheel-shaped inclusion bodies in the cytoplasm of infected cells. These cylindrical inclusions are composed of the viral-encoded cylindrical inclusion helicase (CI protein). Its helicase activity was characterized and its involvement in replication demonstrated through different reverse genetics approaches. In addition to replication, the CI protein is also involved in cell-to-cell and long-distance movements, possibly through interactions with the recently discovered viral P3N-PIPO protein. Studies over the past two decades demonstrate that the CI protein is present in several cellular compartments interacting with viral and plant protein partners likely involved in its various roles in different steps of viral infection. Furthermore, the CI protein acts as an avirulence factor in gene-for-gene interactions with dominant-resistance host genes and as a recessive-resistance overcoming factor. Although a significant amount of data concerning the potential functions and subcellular localization of this protein has been published, no synthetic review is available on this important multifunctional protein. In this review, we compile and integrate all information relevant to the current understanding of this viral protein structure and function and present a mode of action for CI, combining replication and movement.
Collapse
|
19
|
Abstract
Soybean, one of the world's most important sources of animal feed and vegetable oil, can be infected by numerous viruses. However, only a small number of the viruses that can potentially infect soybean are considered as major economic problems to soybean production. Therefore, we consider management options available to control diseases caused by eight viruses that cause, or have the potential to cause, significant economic loss to producers. We summarize management tactics in use and suggest direction for the future. Clearly, the most important tactic is disease resistance. Several resistance genes are available for three of the eight viruses discussed. Other options include use of virus-free seed and avoidance of alternative virus hosts when planting. Attempts at arthropod vector control have generally not provided consistent disease management. In the future, disease management will be considerably enhanced by knowledge of the interaction between soybean and viral proteins. Identification of genes required for soybean defense may represent key regulatory hubs that will enhance or broaden the spectrum of basal resistance to viruses. It may be possible to create new recessive or dominant negative alleles of host proteins that do not support viral functions but perform normal cellular function. The future approach to virus control based on gene editing or exploiting allelic diversity points to necessary research into soybean-virus interactions. This will help to generate the knowledge needed for rational design of durable resistance that will maximize global production.
Collapse
Affiliation(s)
- John H Hill
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA.
| | - Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
20
|
Ahangaran A, Habibi MK, Mohammadi GHM, Winter S, García-Arenal F. Analysis of Soybean mosaic virus genetic diversity in Iran allows the characterization of a new mutation resulting in overcoming Rsv4-resistance. J Gen Virol 2013; 94:2557-2568. [PMID: 23939982 DOI: 10.1099/vir.0.055434-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The genetic variation and population structure of Soybean mosaic virus (SMV) in Iran was analysed through the characterization of a set of isolates collected in the soybean-growing provinces of Iran. The partial nucleotide sequence of these isolates showed a single, undifferentiated population with low genetic diversity, highly differentiated from other SMV world populations. These traits are compatible with a population bottleneck associated with the recent introduction of SMV in Iran. Phylogenetic analyses suggest that SMV was introduced into Iran from East Asia, with at least three introduction events. The limited genetic diversification of SMV in Iran may be explained by strong negative selection in most viral genes eliminating the majority of mutations, together with recombination purging deleterious mutations. The pathogenicity of Iranian SMV isolates was typified on a set of soybean differential lines either susceptible or carrying different resistance genes or alleles to SMV. Two pathotypes were distinguished according to the ability to overcome Rsv4 resistance in line V94-5152. Amino acid sequence comparisons of virulent and avirulent isolates on V94-5152 (Rsv4), plus site-directed mutagenesis in a biologically active cDNA clone, identified mutation S1053N in the P3 protein as the determinant for virulence on V94-5152. Codon 1053 was shown to be under positive selection, and S1053N-determined Rsv4-virulence occurred in isolates with different genealogies. The V94-5152 (Rsv4)-virulence determinant in Iranian isolates maps into a different amino acid position in the P3 protein than those previously reported, indicating different evolutionary pathways towards resistance breaking that might be conditioned by sequence context.
Collapse
Affiliation(s)
- Akbar Ahangaran
- Department of Plant Protection, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mina Koohi Habibi
- Department of Plant Protection, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | | | - Stephan Winter
- German Collection of Microorganisms and Cell Cultures, DSMZ, Braunschweig, Germany
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Campus Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
21
|
Choi SH, Hagiwara-Komoda Y, Nakahara KS, Atsumi G, Shimada R, Hisa Y, Naito S, Uyeda I. Quantitative and qualitative involvement of P3N-PIPO in overcoming recessive resistance against Clover yellow vein virus in pea carrying the cyv1 gene. J Virol 2013; 87:7326-37. [PMID: 23616656 PMCID: PMC3700270 DOI: 10.1128/jvi.00065-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/11/2013] [Indexed: 12/31/2022] Open
Abstract
In pea carrying cyv1, a recessive gene for resistance to Clover yellow vein virus (ClYVV), ClYVV isolate Cl-no30 was restricted to the initially infected cells, whereas isolate 90-1 Br2 overcame this resistance. We mapped the region responsible for breaking of cyv1-mediated resistance by examining infection of cyv1 pea with chimeric viruses constructed from parts of Cl-no30 and 90-1 Br2. The breaking of resistance was attributed to the P3 cistron, which is known to produce two proteins: P3, from the main open reading frame (ORF), and P3N-PIPO, which has the N-terminal part of P3 fused to amino acids encoded by a small open reading frame (ORF) called PIPO in the +2 reading frame. We introduced point mutations that were synonymous with respect to the P3 protein but nonsynonymous with respect to the P3N-PIPO protein, and vice versa, into the chimeric viruses. Infection of plants with these mutant viruses revealed that both P3 and P3N-PIPO were involved in overcoming cyv1-mediated resistance. Moreover, P3N-PIPO quantitatively affected the virulence of Cl-no30 in cyv1 pea. Additional expression in trans of the P3N-PIPO derived from Cl-no30, using White clover mosaic virus as a vector, enabled Cl-no30 to move to systemic leaves in cyv1 pea. Susceptible pea plants infected with chimeric ClYVV possessing the P3 cistron of 90-1 Br2, and which were therefore virulent toward cyv1 pea, accumulated more P3N-PIPO than did those infected with Cl-no30, suggesting that the higher level of P3N-PIPO in infected cells contributed to the breaking of resistance by 90-1 Br2. This is the first report showing that P3N-PIPO is a virulence determinant in plants resistant to a potyvirus.
Collapse
Affiliation(s)
- Sun Hee Choi
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Harper SJ. Citrus tristeza virus: Evolution of Complex and Varied Genotypic Groups. Front Microbiol 2013; 4:93. [PMID: 23630519 PMCID: PMC3632782 DOI: 10.3389/fmicb.2013.00093] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/03/2013] [Indexed: 12/22/2022] Open
Abstract
Amongst the Closteroviridae, Citrus tristeza virus (CTV) is almost unique in possessing a number of distinct and characterized strains, isolates of which produce a wide range of phenotype combinations among its different hosts. There is little understanding to connect genotypes to phenotypes, and to complicate matters more, these genotypes are found throughout the world as members of mixed populations within a single host plant. There is essentially no understanding of how combinations of genotypes affect symptom expression and disease severity. We know little about the evolution of the genotypes that have been characterized to date, little about the biological role of their diversity and particularly, about the effects of recombination. Additionally, genotype grouping has not been standardized. In this study we utilized an extensive array of CTV genomic information to classify the major genotypes, and to determine the major evolutionary processes that led to their formation and subsequent retention. Our analyses suggest that three major processes act on these genotypes: (1) ancestral diversification of the major CTV lineages, followed by (2) conservation and co-evolution of the major functional domains within, though not between CTV genotypes, and (3) extensive recombination between lineages that have given rise to new genotypes that have subsequently been retained within the global population. The effects of genotype diversity and host-interaction are discussed, as is a proposal for standardizing the classification of existing and novel CTV genotypes.
Collapse
Affiliation(s)
- S J Harper
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida Lake Alfred, FL, USA
| |
Collapse
|
23
|
Tian YP, Valkonen JPT. Genetic determinants of Potato virus Y required to overcome or trigger hypersensitive resistance to PVY strain group O controlled by the gene Ny in potato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:297-305. [PMID: 23113714 DOI: 10.1094/mpmi-09-12-0219-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Potato virus Y (PVY) (genus Potyvirus) is the most economically damaging and widely distributed virus in potato. Spread of PVY in the field is controlled by growing resistant cultivars. The dominant potato gene Ny(tbr) for hypersensitive resistance (HR) controls ordinary PVY strains (PVY(O)) but is overcome by PVY(N) strains. Studies with infectious PVY chimeras and mutants indicated that the viral determinants necessary and sufficient to overcome Ny(tbr) reside within the helper component proteinase (HC-Pro) (residues 227 to 327). Specifically, eight residues and the modeled three-dimensional conformation of this HC-Pro region distinguish PVY(N) from PVY(O) strains. According to the model, the conserved IGN and CCCT motifs implicated in potyvirus replication and movement, respectively, are situated in a coiled structure and an α-helix, respectively, within this region in PVY(O); however, their locations are reversed in PVY(N). Two residues (R269 and K270) are crucial for the predicted PVY(O)-specific HC-Pro conformation. Two viral chimeras triggered Ny(tbr) and induced veinal necrosis in tobacco, which is novel for PVY. One chimera belonged to strain group PVY(E). Our results suggest a structure-function relationship in recognition of PVY(O) HC-Pro by Ny(tbr), reveal HC-Pro amino acid signatures specific to PVY(O) and PVY(N), and facilitate identification of PVY strains overcoming Ny(tbr).
Collapse
Affiliation(s)
- Yan-Ping Tian
- Department of Agricultural Sciences, University of Helsinki, Finland
| | | |
Collapse
|