1
|
Jellinger KA. Pathomechanisms of behavioral abnormalities in Huntington disease: an update. J Neural Transm (Vienna) 2024; 131:999-1012. [PMID: 38874766 DOI: 10.1007/s00702-024-02794-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Huntington disease (HD), a devastating autosomal-dominant neurodegenerative disease caused by an expanded CAG trinucleotide repeat, is clinically characterized by a triad of symptoms including involuntary motions, behavior problems and cognitive deficits. Behavioral symptoms with anxiety, irritability, obsessive-compulsive behaviors, apathy and other neuropsychiatric symptoms, occurring in over 50% of HD patients are important features of this disease and contribute to impairment of quality of life, but their pathophysiology is poorly understood. Behavior problems, more frequent than depression, can be manifest before obvious motor symptoms and occur across all HD stages, usually correlated with duration of illness. While specific neuropathological data are missing, the relations between gene expression and behavior have been elucidated in transgenic models of HD. Disruption of interneuronal communications, with involvement of prefronto-striato-thalamic networks and hippocampal dysfunctions produce deficits in multiple behavioral domains. These changes that have been confirmed by multistructural neuroimaging studies are due to a causal cascade linking molecular pathologies (glutamate-mediated excitotoxicity, mitochondrial dysfunctions inducing multiple biochemical and structural alterations) and deficits in multiple behavioral domains. The disruption of large-scale connectivities may explain the variability of behavior profiles and is useful in understanding the biological backgrounds of functional decline in HD. Such findings offer new avenues for targeted treatments in terms of minimizing neurobehavioral impairment in HD.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, Vienna, A-1150, Austria.
| |
Collapse
|
2
|
Seo JH, Shin JH, Lee J, Kim D, Hwang HY, Nam BG, Lee J, Kim HH, Cho SR. DNA double-strand break-free CRISPR interference delays Huntington's disease progression in mice. Commun Biol 2023; 6:466. [PMID: 37117485 PMCID: PMC10147674 DOI: 10.1038/s42003-023-04829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/11/2023] [Indexed: 04/30/2023] Open
Abstract
Huntington's disease (HD) is caused by a CAG repeat expansion in the huntingtin (HTT) gene. CRISPR-Cas9 nuclease causes double-strand breaks (DSBs) in the targeted DNA that induces toxicity, whereas CRISPR interference (CRISPRi) using dead Cas9 (dCas9) suppresses the target gene expression without DSBs. Delivery of dCas9-sgRNA targeting CAG repeat region does not damage the targeted DNA in HEK293T cells containing CAG repeats. When this study investigates whether CRISPRi can suppress mutant HTT (mHTT), CRISPRi results in reduced expression of mHTT with relative preservation of the wild-type HTT in human HD fibroblasts. Although both dCas9 and Cas9 treatments reduce mHTT by sgRNA targeting the CAG repeat region, CRISPRi delays behavioral deterioration and protects striatal neurons against cell death in HD mice. Collectively, CRISPRi can delay disease progression by suppressing mHtt, suggesting DNA DSB-free CRISPRi is a potential therapy for HD that can compensate for the shortcoming of CRISPR-Cas9 nuclease.
Collapse
Affiliation(s)
- Jung Hwa Seo
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong Hong Shin
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junwon Lee
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Daesik Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hye-Yeon Hwang
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Bae-Geun Nam
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Hyongbum Henry Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
3
|
Kim H, Lenoir S, Helfricht A, Jung T, Karneva ZK, Lee Y, Beumer W, van der Horst GB, Anthonijsz H, Buil LC, van der Ham F, Platenburg GJ, Purhonen P, Hebert H, Humbert S, Saudou F, Klein P, Song JJ. A pathogenic proteolysis-resistant huntingtin isoform induced by an antisense oligonucleotide maintains huntingtin function. JCI Insight 2022; 7:154108. [PMID: 35943803 PMCID: PMC9536263 DOI: 10.1172/jci.insight.154108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Huntington’s disease (HD) is a late-onset neurological disorder for which therapeutics are not available. Its key pathological mechanism involves the proteolysis of polyglutamine-expanded (polyQ-expanded) mutant huntingtin (mHTT), which generates N-terminal fragments containing polyQ, a key contributor to HD pathogenesis. Interestingly, a naturally occurring spliced form of HTT mRNA with truncated exon 12 encodes an HTT (HTTΔ12) with a deletion near the caspase-6 cleavage site. In this study, we used a multidisciplinary approach to characterize the therapeutic potential of targeting HTT exon 12. We show that HTTΔ12 was resistant to caspase-6 cleavage in both cell-free and tissue lysate assays. However, HTTΔ12 retained overall biochemical and structural properties similar to those of wt-HTT. We generated mice in which HTT exon 12 was truncated and found that the canonical exon 12 was dispensable for the main physiological functions of HTT, including embryonic development and intracellular trafficking. Finally, we pharmacologically induced HTTΔ12 using the antisense oligonucleotide (ASO) QRX-704. QRX-704 showed predictable pharmacology and efficient biodistribution. In addition, it was stable for several months and inhibited pathogenic proteolysis. Furthermore, QRX-704 treatments resulted in a reduction of HTT aggregation and an increase in dendritic spine count. Thus, ASO-induced HTT exon 12 splice switching from HTT may provide an alternative therapeutic strategy for HD.
Collapse
Affiliation(s)
- Hyeongju Kim
- Department of Biological Sciences, KAIST (Korea Advanced Institute of Science and Technology), Daejeon, Korea, Republic of
| | - Sophie Lenoir
- Grenoble Institute Neurosciences, University Grenoble Alpes, Grenoble, France
| | | | - Taeyang Jung
- Department of Biological Sciences, KAIST (Korea Advanced Institute of Science and Technology), Daejeon, Korea, Republic of
| | | | - Yejin Lee
- Department of Biological Sciences, KAIST (Korea Advanced Institute of Science and Technology), Daejeon, Korea, Republic of
| | | | | | | | | | | | | | - Pasi Purhonen
- Department of Biomedical Engineering and Health Systems, The Royal Institute of Technology, KTH, Huddinge, Sweden
| | - Hans Hebert
- Department of Biomedical Engineering and Health Systems, The Royal Institute of Technology, KTH, Huddinge, Sweden
| | - Sandrine Humbert
- Grenoble Institute Neurosciences, University Grenoble Alpes, Grenoble, France
| | - Frédéric Saudou
- Grenoble Institute Neurosciences, University Grenoble Alpes, Grenoble, France
| | | | - Ji-Joon Song
- Department of Biological Sciences, KAIST (Korea Advanced Institute of Science and Technology), Daejeon, Korea, Republic of
| |
Collapse
|
4
|
Etxeberria-Rekalde E, Alzola-Aldamizetxebarria S, Flunkert S, Hable I, Daurer M, Neddens J, Hutter-Paier B. Quantification of Huntington's Disease Related Markers in the R6/2 Mouse Model. Front Mol Neurosci 2021; 13:617229. [PMID: 33505246 PMCID: PMC7831778 DOI: 10.3389/fnmol.2020.617229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Huntington’s disease (HD) is caused by an expansion of CAG triplets in the huntingtin gene, leading to severe neuropathological changes that result in a devasting and lethal phenotype. Neurodegeneration in HD begins in the striatum and spreads to other brain regions such as cortex and hippocampus, causing motor and cognitive dysfunctions. To understand the signaling pathways involved in HD, animal models that mimic the human pathology are used. The R6/2 mouse as model of HD was already shown to present major neuropathological changes in the caudate putamen and other brain regions, but recently established biomarkers in HD patients were yet not analyzed in these mice. We therefore performed an in-depth analysis of R6/2 mice to establish new and highly translational readouts focusing on Ctip2 as biological marker for motor system-related neurons and translocator protein (TSPO) as a promising readout for early neuroinflammation. Our results validate already shown pathologies like mutant huntingtin aggregates, ubiquitination, and brain atrophy, but also provide evidence for decreased tyrosine hydroxylase and Ctip2 levels as indicators of a disturbed motor system, while vesicular acetyl choline transporter levels as marker for the cholinergic system barely change. Additionally, increased astrocytosis and activated microglia were observed by GFAP, Iba1 and TSPO labeling, illustrating, that TSPO is a more sensitive marker for early neuroinflammation compared to GFAP and Iba1. Our results thus demonstrate a high sensitivity and translational value of Ctip2 and TSPO as new marker for the preclinical evaluation of new compounds in the R6/2 mouse model of HD.
Collapse
Affiliation(s)
| | | | | | - Isabella Hable
- QPS Austria GmbH, Grambach, Austria.,Department of Health Studies, FH Joanneum University of Applied Sciences, Graz, Austria
| | | | | | | |
Collapse
|
5
|
Gatto RG, Weissmann C. Diffusion Tensor Imaging in Preclinical and Human Studies of Huntington's Disease: What Have we Learned so Far? Curr Med Imaging 2020; 15:521-542. [PMID: 32008561 DOI: 10.2174/1573405614666181115113400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Huntington's Disease is an irreversible neurodegenerative disease characterized by the progressive deterioration of specific brain nerve cells. The current evaluation of cellular and physiological events in patients with HD relies on the development of transgenic animal models. To explore such events in vivo, diffusion tensor imaging has been developed to examine the early macro and microstructural changes in brain tissue. However, the gap in diffusion tensor imaging findings between animal models and clinical studies and the lack of microstructural confirmation by histological methods has questioned the validity of this method. OBJECTIVE This review explores white and grey matter ultrastructural changes associated to diffusion tensor imaging, as well as similarities and differences between preclinical and clinical Huntington's Disease studies. METHODS A comprehensive review of the literature using online-resources was performed (Pub- Med search). RESULTS Similar changes in fractional anisotropy as well as axial, radial and mean diffusivities were observed in white matter tracts across clinical and animal studies. However, comparative diffusion alterations in different grey matter structures were inconsistent between clinical and animal studies. CONCLUSION Diffusion tensor imaging can be related to specific structural anomalies in specific cellular populations. However, some differences between animal and clinical studies could derive from the contrasting neuroanatomy or connectivity across species. Such differences should be considered before generalizing preclinical results into the clinical practice. Moreover, current limitations of this technique to accurately represent complex multicellular events at the single micro scale are real. Future work applying complex diffusion models should be considered.
Collapse
Affiliation(s)
- Rodolfo Gabriel Gatto
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, United States
| | - Carina Weissmann
- Insituto de Fisiología Biologia Molecular y Neurociencias-IFIBYNE-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Validation of behavioral phenotypes in the BACHD rat model. Behav Brain Res 2020; 393:112783. [DOI: 10.1016/j.bbr.2020.112783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 01/24/2023]
|
7
|
Naizhen X, Kido T, Yokoyama S, Linnoila RI, Kimura S. Spatiotemporal Expression of Three Secretoglobin Proteins, SCGB1A1, SCGB3A1, and SCGB3A2, in Mouse Airway Epithelia. J Histochem Cytochem 2019; 67:453-463. [PMID: 30768367 DOI: 10.1369/0022155419829050] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Secretoglobins (SCGBs) are cytokine-like small molecular weight secreted proteins with largely unknown biological functions. Three SCGB proteins, SCGB1A1, SCGB3A1, and SCGB3A2, are predominantly expressed in lung airways. To gain insight into the possible functional relationships among the SCGBs, their protein and mRNA expression patterns were examined in lungs during gestation and in adult mice, using Scgb3a1-null and Scgb3a2-null mice as negative controls, by immunohistochemistry and by qRT-PCR analysis, respectively. The three SCGBs exhibited unique spatiotemporal expression patterns during embryogenesis. The lack of Scgb3a1 or Scgb3a2 did not affect expression of the other Scgb genes as determined by mRNA measurements. Moreover, the lack of Scgb3a1 or Scgb3a2 did not affect development of the pulmonary neuroepithelial bodies during embryogenesis, while the lack of Scgb3a2 may have resulted in slightly fewer ciliated cells than in the wild-type. These results suggest that SCGB1A1, SCGB3A1, and SCGB3A2 each may possess its own unique biological function.
Collapse
Affiliation(s)
- Xu Naizhen
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.,Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland
| | - Taketomo Kido
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.,Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Shigetoshi Yokoyama
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - R Ilona Linnoila
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Shioko Kimura
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
8
|
Napoli E, Song G, Liu S, Espejo A, Perez CJ, Benavides F, Giulivi C. Zdhhc13-dependent Drp1 S-palmitoylation impacts brain bioenergetics, anxiety, coordination and motor skills. Sci Rep 2017; 7:12796. [PMID: 29038583 PMCID: PMC5643561 DOI: 10.1038/s41598-017-12889-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/14/2017] [Indexed: 01/14/2023] Open
Abstract
Protein S-palmitoylation is a reversible post-translational modification mediated by palmitoyl acyltransferase enzymes, a group of Zn2+-finger DHHC-domain-containing proteins (ZDHHC). Here, for the first time, we show that Zdhhc13 plays a key role in anxiety-related behaviors and motor function, as well as brain bioenergetics, in a mouse model (luc) carrying a spontaneous Zdhhc13 recessive mutation. At 3 m of age, mutant mice displayed increased sensorimotor gating, anxiety, hypoactivity, and decreased motor coordination, compared to littermate controls. Loss of Zdhhc13 in cortex and cerebellum from 3- and 24 m old hetero- and homozygous male mutant mice resulted in lower levels of Drp1 S-palmitoylation accompanied by altered mitochondrial dynamics, increased glycolysis, glutaminolysis and lactic acidosis, and neurotransmitter imbalances. Employing in vivo and in vitro models, we identified that Zdhhc13-dependent Drp1 S-palmitoylation, which acting alone or in concert, enables the normal occurrence of the fission-fusion process. In vitro and in vivo direct Zdhhc13-Drp1 protein interaction was observed, confirming Drp1 as a substrate of Zdhhc13. Abnormal fission-fusion processes result in disrupted mitochondria morphology and distribution affecting not only mitochondrial ATP output but neurotransmission and integrity of synaptic structures in the brain, setting the basis for the behavioral abnormalities described in the Zdhhc13-deficient mice.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Gyu Song
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Siming Liu
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Alexsandra Espejo
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA
| | - Carlos J Perez
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA
| | - Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA. .,Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Davis, CA, 95817, USA.
| |
Collapse
|
9
|
Jacobsen JC, Erdin S, Chiang C, Hanscom C, Handley RR, Barker DD, Stortchevoi A, Blumenthal I, Reid SJ, Snell RG, MacDonald ME, Morton AJ, Ernst C, Gusella JF, Talkowski ME. Potential molecular consequences of transgene integration: The R6/2 mouse example. Sci Rep 2017; 7:41120. [PMID: 28120936 PMCID: PMC5264158 DOI: 10.1038/srep41120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/11/2016] [Indexed: 01/09/2023] Open
Abstract
Integration of exogenous DNA into a host genome represents an important route to generate animal and cellular models for exploration into human disease and therapeutic development. In most models, little is known concerning structural integrity of the transgene, precise site of integration, or its impact on the host genome. We previously used whole-genome and targeted sequencing approaches to reconstruct transgene structure and integration sites in models of Huntington’s disease, revealing complex structural rearrangements that can result from transgenesis. Here, we demonstrate in the R6/2 mouse, a widely used Huntington’s disease model, that integration of a rearranged transgene with coincident deletion of 5,444 bp of host genome within the gene Gm12695 has striking molecular consequences. Gm12695, the function of which is unknown, is normally expressed at negligible levels in mouse brain, but transgene integration has resulted in cortical expression of a partial fragment (exons 8–11) 3’ to the transgene integration site in R6/2. This transcript shows significant expression among the extensive network of differentially expressed genes associated with this model, including synaptic transmission, cell signalling and transcription. These data illustrate the value of sequence-level resolution of transgene insertions and transcription analysis to inform phenotypic characterization of transgenic models utilized in therapeutic research.
Collapse
Affiliation(s)
- Jessie C Jacobsen
- Centre for Brain Research, School of Biological Sciences, The University of Auckland 1010, New Zealand
| | - Serkan Erdin
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Program in Medical and Population Genetics, Broad Institute of M.I.T and Harvard, Cambridge, Massachusetts 02143, USA
| | - Colby Chiang
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Carrie Hanscom
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Renee R Handley
- Centre for Brain Research, School of Biological Sciences, The University of Auckland 1010, New Zealand
| | - Douglas D Barker
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Alex Stortchevoi
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Ian Blumenthal
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Suzanne J Reid
- Centre for Brain Research, School of Biological Sciences, The University of Auckland 1010, New Zealand
| | - Russell G Snell
- Centre for Brain Research, School of Biological Sciences, The University of Auckland 1010, New Zealand
| | - Marcy E MacDonald
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Program in Medical and Population Genetics, Broad Institute of M.I.T and Harvard, Cambridge, Massachusetts 02143, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115 USA
| | - A Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, United Kingdom
| | - Carl Ernst
- Department of Psychiatry, McGill University, Montreal, Quebec ON H4H 1R3, Canada
| | - James F Gusella
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Program in Medical and Population Genetics, Broad Institute of M.I.T and Harvard, Cambridge, Massachusetts 02143, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115 USA
| | - Michael E Talkowski
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Program in Medical and Population Genetics, Broad Institute of M.I.T and Harvard, Cambridge, Massachusetts 02143, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115 USA.,Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, 02114 USA
| |
Collapse
|
10
|
Beckman D, Santos LE, Americo TA, Ledo JH, de Mello FG, Linden R. Prion Protein Modulates Monoaminergic Systems and Depressive-like Behavior in Mice. J Biol Chem 2015; 290:20488-98. [PMID: 26152722 DOI: 10.1074/jbc.m115.666156] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Indexed: 12/14/2022] Open
Abstract
We sought to examine interactions of the prion protein (PrP(C)) with monoaminergic systems due to: the role of PrP(C) in both Prion and Alzheimer diseases, which include clinical depression among their symptoms, the implication of monoamines in depression, and the hypothesis that PrP(C) serves as a scaffold for signaling systems. To that effect we compared both behavior and monoaminergic markers in wild type (WT) and PrP(C)-null (PrP(-/-)) mice. PrP(-/-) mice performed poorly when compared with WT in forced swimming, tail suspension, and novelty suppressed feeding tests, typical of depressive-like behavior, but not in the control open field nor rotarod motor tests; cyclic AMP responses to stimulation of D1 receptors by dopamine was selectively impaired in PrP(-/-) mice, and responses to serotonin, but not to norepinephrine, also differed between genotypes. Contents of dopamine, tyrosine hydroxylase, and the 5-HT5A serotonin receptor were increased in the cerebral cortex of PrP(-/-), as compared with WT mice. Microscopic colocalization, as well as binding in overlay assays were found of PrP(C) with both the 5HT5A and D1, but not D4 receptors. The data are consistent with the scaffolding of monoaminergic signaling modules by PrP(C), and may help understand the pathogenesis of clinical depression and neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Jose H Ledo
- Instituto de Bioquímica Médica da UFRJ, Rio de Janeiro 21941-902, Brasil
| | | | | |
Collapse
|
11
|
Age-, tissue- and length-dependent bidirectional somatic CAG•CTG repeat instability in an allelic series of R6/2 Huntington disease mice. Neurobiol Dis 2015; 76:98-111. [PMID: 25662336 DOI: 10.1016/j.nbd.2015.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/30/2014] [Accepted: 01/25/2015] [Indexed: 12/11/2022] Open
Abstract
The expansion of simple sequence CAG•CTG repeats is associated with a number of inherited disorders including Huntington disease (HD), myotonic dystrophy type 1 and several of the spinocerebellar ataxias. Inherited disease-associated alleles usually exceed 40 repeats and may be in excess of 1,000 repeats in some disorders. Inherited allele length is inversely proportional to age at onset, and frequent germline expansions account for the striking anticipation observed in affected families. Expanded disease associated alleles are also somatically unstable via a pathway that is age dependent and tissue specific, and also appears to be expansion biased. Somatic expansions are thought to contribute toward both tissue specificity and disease progression. Here we have examined the somatic mutational dynamics in brain and peripheral tissues from an allelic series of R6/2 HD transgenic mice inheriting from 52 to >700 CAG repeats. We found age-dependent, tissue-specific somatic instability, with particularly large expansions observed in the striatum and cortex. We also found a positive increase in somatic instability with increasing allele length. Surprisingly, however, the degree of somatic variation did not increase in a linear fashion, but leveled off with increasing allele length. Most unexpectedly, the almost exclusive bias toward the accumulation of expansions observed in mice inheriting smaller alleles was lost, and a high frequency of large somatic contractions was observed in mice inheriting very large alleles (>500 repeats). These data highlight the bidirectional nature of CAG•CTG repeat instability and the subtle balance that exists between expansion and contraction in vivo. Defining the dynamics and tissue specificity of expansion and contraction is important for understanding the role of genetic instability in pathophysiology and in particular the development of novel therapies based on suppressing expansions and/or promoting contractions.
Collapse
|
12
|
Ooms M, Rietjens R, Rangarajan JR, Vunckx K, Valdeolivas S, Maes F, Himmelreich U, Fernandez-Ruiz J, Bormans G, Van Laere K, Casteels C. Early decrease of type 1 cannabinoid receptor binding and phosphodiesterase 10A activity in vivo in R6/2 Huntington mice. Neurobiol Aging 2014; 35:2858-2869. [PMID: 25018107 DOI: 10.1016/j.neurobiolaging.2014.06.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/13/2014] [Accepted: 06/10/2014] [Indexed: 01/03/2023]
Abstract
Several lines of evidence imply early alterations in endocannabinoid and phosphodiesterase 10A (PDE10A) signaling in Huntington disease (HD). Using [(18)F]MK-9470 and [(18)F]JNJ42259152 small-animal positron emission tomography (PET), we investigated for the first time cerebral changes in type 1 cannabinoid (CB1) receptor binding and PDE10A levels in vivo in presymptomatic, early symptomatic, and late symptomatic HD (R6/2) mice, in relation to glucose metabolism ([(18)F]FDG PET), brain morphology (magnetic resonance imaging) and motor function. Ten R6/2 and 16 wild-type (WT) mice were investigated at 3 different time points between the age of 4 and 13 weeks. Parametric CB1 receptor and PDE10A images were anatomically standardized to Paxinos space and analyzed voxelwise. Volumetric microMRI imaging was performed to assess HD pathology. In R6/2 mice, CB1 receptor binding was decreased in comparison with WT in a cluster comprising the bilateral caudate-putamen, globus pallidus, and thalamic nucleus at week 5 (-8.1% ± 2.6%, p = 1.7 × 10(-5)). Longitudinal follow-up showed further progressive decline compared with controls in a cluster comprising the bilateral hippocampus, caudate-putamen, globus pallidus, superior colliculus, thalamic nucleus, and cerebellum (late vs. presymptomatic age: -13.7% ± 3.1% for R6/2 and +1.5% ± 4.0% for WT, p = 1.9 × 10(-5)). In R6/2 mice, PDE10A binding potential also decreased over time to reach significance at early and late symptomatic HD (late vs. presymptomatic age: -79.1% ± 1.9% for R6/2 and +2.1% ± 2.7% for WT, p = 1.5 × 10(-4)). The observed changes in CB1 receptor and PDE10A binding were correlated to anomalies exhibited by R6/2 animals in motor function, whereas no correlation was found with magnetic resonance imaging-based striatal volume. Our findings point to early regional dysfunctions in endocannabinoid and PDE10A signaling, involving the caudate-putamen and lateral globus pallidus, which may play a role in the progression of the disease in R6/2 animals. PET quantification of in vivo CB1 and/or PDE10A binding may thus be useful early biomarkers for HD. Our results also provide evidence of subtle motor deficits at earlier stages than previously described.
Collapse
Affiliation(s)
- Maarten Ooms
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; MoSAIC-Molecular Small Animal Imaging Centre, KU Leuven, Leuven, Belgium
| | - Roma Rietjens
- MoSAIC-Molecular Small Animal Imaging Centre, KU Leuven, Leuven, Belgium; Division of Nuclear Medicine, Department of Imaging and Pathology, KU Leuven and University Hospital Leuven, Leuven, Belgium
| | - Janaki Raman Rangarajan
- KU Leuven Medical Image Computing (ESAT/PSI), Department of Electrical Engineering & Medical Imaging Research Center, University Hospital Leuven, Leuven, Belgium
| | - Kathleen Vunckx
- Division of Nuclear Medicine, Department of Imaging and Pathology, KU Leuven and University Hospital Leuven, Leuven, Belgium
| | - Sara Valdeolivas
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Frederik Maes
- KU Leuven Medical Image Computing (ESAT/PSI), Department of Electrical Engineering & Medical Imaging Research Center, University Hospital Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical NMR Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Javier Fernandez-Ruiz
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Guy Bormans
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; MoSAIC-Molecular Small Animal Imaging Centre, KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- MoSAIC-Molecular Small Animal Imaging Centre, KU Leuven, Leuven, Belgium; Division of Nuclear Medicine, Department of Imaging and Pathology, KU Leuven and University Hospital Leuven, Leuven, Belgium
| | - Cindy Casteels
- MoSAIC-Molecular Small Animal Imaging Centre, KU Leuven, Leuven, Belgium; Division of Nuclear Medicine, Department of Imaging and Pathology, KU Leuven and University Hospital Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Regulation of hippocampal cGMP levels as a candidate to treat cognitive deficits in Huntington's disease. PLoS One 2013; 8:e73664. [PMID: 24040016 PMCID: PMC3764028 DOI: 10.1371/journal.pone.0073664] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/19/2013] [Indexed: 01/05/2023] Open
Abstract
Huntington’s disease (HD) patients and mouse models show learning and memory impairment associated with hippocampal dysfunction. The neuronal nitric oxide synthase/3',5'-cyclic guanosine monophosphate (nNOS/cGMP) pathway is implicated in synaptic plasticity, and in learning and memory processes. Here, we examined the nNOS/cGMP pathway in the hippocampus of HD mice to determine whether it can be a good therapeutic target for cognitive improvement in HD. We analyzed hippocampal nNOS and phosphodiesterase (PDE) 5 and 9 levels in R6/1 mice, and cGMP levels in the hippocampus of R6/1, R6/2 and HdhQ7/Q111 mice, and of HD patients. We also investigated whether sildenafil, a PDE5 inhibitor, could improve cognitive deficits in R6/1 mice. We found that hippocampal cGMP levels were 3-fold lower in 12-week-old R6/1 mice, when they show deficits in object recognition memory and in passive avoidance learning. Consistent with hippocampal cGMP levels, nNOS levels were down-regulated, while there were no changes in the levels of PDE5 and PDE9 in R6/1 mice. A single intraperitoneal injection of sildenafil (3 mg/Kg) immediately after training increased cGMP levels, and improved memory in R6/1 mice, as assessed by using the novel object recognition and the passive avoidance test. Importantly, cGMP levels were also reduced in R6/2 mouse and human HD hippocampus. Therefore, the regulation of hippocampal cGMP levels can be a suitable treatment for cognitive impairment in HD.
Collapse
|
14
|
Correlations of behavioral deficits with brain pathology assessed through longitudinal MRI and histopathology in the R6/2 mouse model of HD. PLoS One 2013; 8:e60012. [PMID: 23593159 PMCID: PMC3617160 DOI: 10.1371/journal.pone.0060012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/20/2013] [Indexed: 11/30/2022] Open
Abstract
Huntington’s disease (HD) is caused by the expansion of a CAG repeat in the huntingtin (HTT) gene. The R6/2 mouse model of HD expresses a mutant version of exon 1 HTT and develops motor and cognitive impairments, a widespread huntingtin (HTT) aggregate pathology and brain atrophy. Despite the vast number of studies that have been performed on this model, the association between the molecular and cellular neuropathology with brain atrophy, and with the development of behavioral phenotypes remains poorly understood. In an attempt to link these factors, we have performed longitudinal assessments of behavior (rotarod, open field, passive avoidance) and of regional brain abnormalities determined through magnetic resonance imaging (MRI) (whole brain, striatum, cortex, hippocampus, corpus callosum), as well as an end-stage histological assessment. Detailed correlative analyses of these three measures were then performed. We found a gender-dependent emergence of motor impairments that was associated with an age-related loss of regional brain volumes. MRI measurements further indicated that there was no striatal atrophy, but rather a lack of striatal growth beyond 8 weeks of age. T2 relaxivity further indicated tissue-level changes within brain regions. Despite these dramatic motor and neuroanatomical abnormalities, R6/2 mice did not exhibit neuronal loss in the striatum or motor cortex, although there was a significant increase in neuronal density due to tissue atrophy. The deposition of the mutant HTT (mHTT) protein, the hallmark of HD molecular pathology, was widely distributed throughout the brain. End-stage histopathological assessments were not found to be as robustly correlated with the longitudinal measures of brain atrophy or motor impairments. In conclusion, modeling pre-manifest and early progression of the disease in more slowly progressing animal models will be key to establishing which changes are causally related.
Collapse
|
15
|
Tomé S, Manley K, Simard JP, Clark GW, Slean MM, Swami M, Shelbourne PF, Tillier ERM, Monckton DG, Messer A, Pearson CE. MSH3 polymorphisms and protein levels affect CAG repeat instability in Huntington's disease mice. PLoS Genet 2013; 9:e1003280. [PMID: 23468640 PMCID: PMC3585117 DOI: 10.1371/journal.pgen.1003280] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 12/12/2012] [Indexed: 01/21/2023] Open
Abstract
Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)∼100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases. The genetic instability of repetitive DNA sequences in particular genes can lead to numerous neurodegenerative, neurological, and neuromuscular diseases. These diseases show progressively increasing severity of symptoms through the life of the affected individual, a phenomenon that is linked with increasing instability of the repeated sequences as the person ages. There is variability in the levels of this instability between individuals—the source of this variability is unknown. We have shown in a mouse model of repeat instability that small differences in a certain DNA repair gene, MSH3, whose protein is known to fix broken DNA, can lead to variable levels of repeat instability. These DNA repair variants lead to different repair protein levels, where lower levels lead to reduced repeat instability. Our findings reveal that such naturally occurring variations in DNA repair genes in affected humans may serve as a predictor of disease progression. Moreover, our findings support the concept that pharmacological reduction of MSH3 protein should reduce repeat instability and disease progression.
Collapse
Affiliation(s)
- Stéphanie Tomé
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kevin Manley
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, New York, United States of America
| | - Jodie P. Simard
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Greg W. Clark
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Institute for Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Meghan M. Slean
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Meera Swami
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Peggy F. Shelbourne
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Elisabeth R. M. Tillier
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Institute for Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Darren G. Monckton
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anne Messer
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, New York, United States of America
| | - Christopher E. Pearson
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
16
|
Goula AV, Stys A, Chan JPK, Trottier Y, Festenstein R, Merienne K. Transcription elongation and tissue-specific somatic CAG instability. PLoS Genet 2012; 8:e1003051. [PMID: 23209427 PMCID: PMC3510035 DOI: 10.1371/journal.pgen.1003051] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 09/05/2012] [Indexed: 12/12/2022] Open
Abstract
The expansion of CAG/CTG repeats is responsible for many diseases, including Huntington's disease (HD) and myotonic dystrophy 1. CAG/CTG expansions are unstable in selective somatic tissues, which accelerates disease progression. The mechanisms underlying repeat instability are complex, and it remains unclear whether chromatin structure and/or transcription contribute to somatic CAG/CTG instability in vivo. To address these issues, we investigated the relationship between CAG instability, chromatin structure, and transcription at the HD locus using the R6/1 and R6/2 HD transgenic mouse lines. These mice express a similar transgene, albeit integrated at a different site, and recapitulate HD tissue-specific instability. We show that instability rates are increased in R6/2 tissues as compared to R6/1 matched-samples. High transgene expression levels and chromatin accessibility correlated with the increased CAG instability of R6/2 mice. Transgene mRNA and H3K4 trimethylation at the HD locus were increased, whereas H3K9 dimethylation was reduced in R6/2 tissues relative to R6/1 matched-tissues. However, the levels of transgene expression and these specific histone marks were similar in the striatum and cerebellum, two tissues showing very different CAG instability levels, irrespective of mouse line. Interestingly, the levels of elongating RNA Pol II at the HD locus, but not the initiating form of RNA Pol II, were tissue-specific and correlated with CAG instability levels. Similarly, H3K36 trimethylation, a mark associated with transcription elongation, was specifically increased at the HD locus in the striatum and not in the cerebellum. Together, our data support the view that transcription modulates somatic CAG instability in vivo. More specifically, our results suggest for the first time that transcription elongation is regulated in a tissue-dependent manner, contributing to tissue-selective CAG instability.
Collapse
Affiliation(s)
- Agathi-Vasiliki Goula
- Programme of Translational Medicine and Neurogenetics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR 7104-CNRS/INSERM/UdS, Illkirch, France
| | - Agnieszka Stys
- Programme of Translational Medicine and Neurogenetics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR 7104-CNRS/INSERM/UdS, Illkirch, France
| | - Jackson P. K. Chan
- Department of Medicine, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Yvon Trottier
- Programme of Translational Medicine and Neurogenetics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR 7104-CNRS/INSERM/UdS, Illkirch, France
| | - Richard Festenstein
- Department of Medicine, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Karine Merienne
- Programme of Translational Medicine and Neurogenetics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR 7104-CNRS/INSERM/UdS, Illkirch, France
| |
Collapse
|
17
|
Cowin RM, Bui N, Graham D, Green JR, Yuva-Paylor LA, Weiss A, Paylor R. Genetic background modulates behavioral impairments in R6/2 mice and suggests a role for dominant genetic modifiers in Huntington’s disease pathogenesis. Mamm Genome 2012; 23:367-77. [PMID: 22290451 PMCID: PMC3357469 DOI: 10.1007/s00335-012-9391-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/05/2012] [Indexed: 11/15/2022]
Abstract
Variability and modification of the symptoms of Huntington’s disease (HD) are commonly observed in both patient populations and animal models of the disease. Utilizing a stable line of the R6/2 HD mouse model, the present study investigated the role of genetic background in the onset and severity of HD symptoms in a transgenic mouse. R6/2 congenic C57BL/6J and C57BL/6J × DBA/2J F1 (B6D2F1) mice were evaluated for survival and a number of behavioral phenotypes. This study reports that the presence of the DBA/2J allele results in amelioration or exacerbation of several HD-like phenotypes characteristic of the R6/2 mouse model and indicates the presence of dominant genetic modifiers of HD symptoms. This study is the first step in identifying genes that confer natural genetic variation and modify the HD symptoms. This identification may lead to novel targets for treatment and help elucidate the molecular mechanisms of HD pathogenesis.
Collapse
Affiliation(s)
- Randi-Michelle Cowin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Cowin RM, Roscic A, Bui N, Graham D, Paganetti P, Jankowsky JL, Weiss A, Paylor R. Neuronal aggregates are associated with phenotypic onset in the R6/2 Huntington's disease transgenic mouse. Behav Brain Res 2012; 229:308-19. [PMID: 22306231 DOI: 10.1016/j.bbr.2011.12.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 12/28/2011] [Accepted: 12/30/2011] [Indexed: 11/13/2022]
Abstract
Huntington's disease (HD) is caused by the expansion of the polyglutamine tract expressed in the huntingtin protein. Data from patients show a strong negative correlation between CAG repeat size and age of disease onset. Recent studies in mixed background C57×CBA R6/2 mice suggest the inverse correlation observed in the human disease may not be replicated in some animal models of HD. To further clarify the relationship between repeat length and age of onset, congenic C57BL6/J R6/2 transgenic mice expressing 110, 260 or 310 CAG were tested in a comprehensive behavioral battery at multiple ages. Data confirmed the findings of earlier studies and indicate that on a pure C57BL6/J genetic background, R6/2 mice with larger repeats exhibit a delay in phenotypic onset with increasing polyglutamine size (6 weeks in 110 CAG and 17 weeks in 310 CAG mice). Further analysis confirmed a decrease in transgene transcript expression in 310 CAG mice as well as differential aggregated protein localization in association with repeat length. Mice expressing 110 CAG developed aggregates that localized almost exclusively to the nucleus of neuronal cells in the striatum and cortex. In contrast, tissue from 310 CAG mice exhibited predominantly extranuclear inclusions. Novel mutant protein analysis obtained using time-resolved fluorescence resonance energy transfer (FRET) revealed that soluble protein levels decreased with disease onset in R6/2 mice while aggregated protein levels increased. We believe that these data suggest a role for aggregation and inclusion localization in HD pathogenesis and propose a mechanism for the age of onset delay observed in R6/2 mice.
Collapse
Affiliation(s)
- Randi-Michelle Cowin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|