1
|
Kenneally C, Murphy CP, Sleator RD, Culligan EP. Turbidimetric bioassays: A solution to antimicrobial activity detection in asymptomatic bacteriuria isolates against uropathogenic Escherichia coli. Microbiologyopen 2024; 13:e1411. [PMID: 38706434 PMCID: PMC11070844 DOI: 10.1002/mbo3.1411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Traditional bacteriocin screening methods often face limitations due to diffusion-related challenges in agar matrices, which can prevent the peptides from reaching their target organism. Turbidimetric techniques offer a solution to these issues, eliminating diffusion-related problems and providing an initial quantification of bacteriocin efficacy in producer organisms. This study involved screening the cell-free supernatant (CFS) from eight uncharacterized asymptomatic bacteriuria (ABU) isolates and Escherichia coli 83972 for antimicrobial activity against clinical uropathogenic E. coli (UPEC) strains using turbidimetric growth methods. ABU isolates exhibiting activity against five or more UPEC strains were further characterized (PUTS 37, PUTS 58, PUTS 59, S-07-4, and SK-106-1). The inhibition of the CFS by proteinase K suggested that the antimicrobial activity was proteinaceous in nature, potentially bacteriocins. The activity of E. coli PUTS 58 and SK-106-1 was enhanced in an artificial urine medium, with both inhibiting all eight UPECs. A putative microcin H47 operon was identified in E. coli SK-106-1, along with a previously identified microcin V and colicin E7 in E. coli PUTS 37 and PUTS 58, respectively. These findings indicate that ABU bacteriocin-producers could serve as viable prophylactics and therapeutics in the face of increasing antibiotic resistance among uropathogens.
Collapse
Affiliation(s)
- Ciara Kenneally
- Department of Biological SciencesMunster Technological University, BishopstownCorkIreland
| | - Craig P. Murphy
- Department of Biological SciencesMunster Technological University, BishopstownCorkIreland
| | - Roy D. Sleator
- Department of Biological SciencesMunster Technological University, BishopstownCorkIreland
| | - Eamonn P. Culligan
- Department of Biological SciencesMunster Technological University, BishopstownCorkIreland
| |
Collapse
|
2
|
García FA, Fuentes TF, Alonso IP, Bosch RA, Brunetti AE, Lopes NP. A Comprehensive Review of Patented Antimicrobial Peptides from Amphibian Anurans. JOURNAL OF NATURAL PRODUCTS 2024; 87:600-616. [PMID: 38412091 DOI: 10.1021/acs.jnatprod.3c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Since the 1980s, studies of antimicrobial peptides (AMPs) derived from anuran skin secretions have unveiled remarkable structural diversity and a wide range of activities. This study explores the potential of these peptides for drug development by examining granted patents, amino acid modifications related to patented peptides, and recent amphibians' taxonomic updates influencing AMP names. A total of 188 granted patents related to different anuran peptides were found, with Asia and North America being the predominant regions, contributing 65.4% and 15.4%, respectively. Conversely, although the Neotropical region is the world's most diversified region for amphibians, it holds only 3.7% of the identified patents. The antimicrobial activities of the peptides are claimed in 118 of these 188 patents. Additionally, for 160 of these peptides, 66 patents were registered for the natural sequence, 69 for both natural and derivative sequences, and 20 exclusively for sequence derivatives. Notably, common modifications include alterations in the side chains of amino acids and modifications to the peptides' N- and C-termini. This review underscores the biomedical potential of anuran-derived AMPs, emphasizing the need to bridge the gap between AMP description and practical drug development while highlighting the urgency of biodiversity conservation to facilitate biomedical discoveries.
Collapse
Affiliation(s)
- Fabiola Almeida García
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Avenida do Café, s/no, 14040-903 Ribeirão Preto, Brazil
| | - Talia Frómeta Fuentes
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 Street No. 455, Vedado 10400, Cuba
| | - Isel Pascual Alonso
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 Street No. 455, Vedado 10400, Cuba
| | - Roberto Alonso Bosch
- Natural History Museum Felipe Poey, Faculty of Biology, University of Havana, Vedado 10400, Cuba
| | - Andrés E Brunetti
- Institute of Subtropical Biology (CONICET-UNAM), National University of Misiones, Posadas N3300LQH, Argentina
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Norberto Peporine Lopes
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Avenida do Café, s/no, 14040-903 Ribeirão Preto, Brazil
| |
Collapse
|
3
|
Neiber RR, Samak NA, Xing J, Elmongy EI, Galhoum AA, El Sayed IET, Guibal E, Xin J, Lu X. Synthesis and molecular docking study of α-aminophosphonates as potential multi-targeting antibacterial agents. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133203. [PMID: 38103294 DOI: 10.1016/j.jhazmat.2023.133203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Antibacterial compounds that reduce extracellular polymeric substances (EPS) are needed to avoid bacterial biofilms in water pipelines. Herein, green one-pot synthesis of α-aminophosphonates (α-Amps) [A-G] was achieved by using ionic liquid (IL) as a Lewis acid catalyst. The synthesized α-Amp analogues were tested against different bacteria such as Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. The representative [B] analogue showed an efficient antibacterial effect with MIC values of 3.13 μg/mL for E. coli, P. aeruginosa, and 6.25 μg/mL for B. subtilis. Additionally, a strong ability to eliminate the mature bacterial biofilm, with super-MIC values of 12.5 μg/mL for E. coli, P. aeruginosa, and 25 μg/mL for B. subtilis. Moreover, bacterial cell disruption by ROS formation was also tested, and the compound [B] revealed the highest ROS level compared to other compounds and the control, and efficiently destroyed the extracellular polymeric substances (EPS). The docking study confirmed strong interactions between [B] analogue and protein structures with a binding affinity of -6.65 kCal/mol for the lyase protein of gram-positive bacteria and -6.46 kCal/mol for DNA gyrase of gram-negative bacteria. The results showed that α-Amps moiety is a promising candidate for developing novel antibacterial and anti-biofilm agents for clean water supply.
Collapse
Affiliation(s)
- Rana R Neiber
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China; College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, 100049 Beijing, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Nadia A Samak
- College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, 100049 Beijing, China; CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Aquatic microbiology department, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany.
| | - Jianmin Xing
- College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, 100049 Beijing, China; CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Elshaymaa I Elmongy
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed A Galhoum
- Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo, Egypt.
| | | | - Eric Guibal
- Institut Mines Telecom-Mines Alès, C2MA, 6 avenue de Clavières, F-30319 Alès cedex, France
| | - Jiayu Xin
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China; Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Xingmei Lu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China; Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China; Department of Chemistry, University of Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
4
|
Forsyth JH, Barron NL, Scott L, Watson BNJ, Chisnall MAW, Meaden S, van Houte S, Raymond B. Decolonizing drug-resistant E. coli with phage and probiotics: breaking the frequency-dependent dominance of residents. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001352. [PMID: 37418300 PMCID: PMC10433417 DOI: 10.1099/mic.0.001352] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
Widespread antibiotic resistance in commensal bacteria creates a persistent challenge for human health. Resident drug-resistant microbes can prevent clinical interventions, colonize wounds post-surgery, pass resistance traits to pathogens or move to more harmful niches following routine interventions such as catheterization. Accelerating the removal of resistant bacteria or actively decolonizing particular lineages from hosts could therefore have a number of long-term benefits. However, removing resident bacteria via competition with probiotics, for example, poses a number of ecological challenges. Resident microbes are likely to have physiological and numerical advantages and competition based on bacteriocins or other secreted antagonists is expected to give advantages to the dominant partner, via positive frequency dependence. Since a narrow range of Escherichia coli genotypes (primarily those belonging to the clonal group ST131) cause a significant proportion of multidrug-resistant infections, this group presents a promising target for decolonization with bacteriophage, as narrow-host-range viral predation could lead to selective removal of particular genotypes. In this study we tested how a combination of an ST131-specific phage and competition from the well-known probiotic E. coli Nissle strain could displace E. coli ST131 under aerobic and anaerobic growth conditions in vitro. We showed that the addition of phage was able to break the frequency-dependent advantage of a numerically dominant ST131 isolate. Moreover, the addition of competing E. coli Nissle could improve the ability of phage to suppress ST131 by two orders of magnitude. Low-cost phage resistance evolved readily in these experiments and was not inhibited by the presence of a probiotic competitor. Nevertheless, combinations of phage and probiotic produced stable long-term suppression of ST131 over multiple transfers and under both aerobic and anaerobic growth conditions. Combinations of phage and probiotic therefore have real potential for accelerating the removal of drug-resistant commensal targets.
Collapse
Affiliation(s)
- Jessica H. Forsyth
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
- Present address: Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Natalie L. Barron
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
| | - Lucy Scott
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
| | | | | | - Sean Meaden
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
- Present address: Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Stineke van Houte
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
| | - Ben Raymond
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
| |
Collapse
|
5
|
Upatissa S, Mun W, Mitchell RJ. Pairing Colicins B and E5 with Bdellovibrio bacteriovorus To Eradicate Carbapenem- and Colistin-Resistant Strains of Escherichia coli. Microbiol Spectr 2023; 11:e0017323. [PMID: 37036359 PMCID: PMC10269710 DOI: 10.1128/spectrum.00173-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/19/2023] [Indexed: 04/11/2023] Open
Abstract
While diverse antibacterials are available in nature, each possesses their own strengths and limitations. One such antibacterial is colicins, proteinaceous toxins that are produced by strains of E. coli to subvert the growth or viability of other E. coli strains. Similarly, predatory bacteria, of which Bdellovibrio bacteriovorus is well-known, are microbes that actively predate on and consume other Gram-negative bacterial strains. While they are all quite active as antibacterials, they also present some limitations: rapid resistance development to colicins while predation does not completely kill their prey. Within this study, therefore, we evaluated the impact of two different colicins (colicin B [ColB] and colicin E5 [ColE5]) and B. bacteriovorus HD100 either individually or together against four clinical isolates of E. coli that are resistant to either colistin or carbapenem. While the ColB and ColE5 were quickly active when used alone, causing a significant loss in viability (>3-log) in susceptible populations after only 3 h, the pathogens always grew afterwards and had final cell densities that were similar with their respective controls. Predation with B. bacteriovorus HD100, in contrast, was most pronounced after 24 h (>3-log reduction in each pathogen viability but never complete). When combined, better killing efficiencies were observed with several of the pathogens, with complete eradication realized for two (<100 viable pathogens per mL). Given the diversity of colicins in nature and the broad-spectrum activities of B. bacteriovorus strains, the results presented here suggest there is a massive potential to control pathogens when they are used together. IMPORTANCE The coupled impact of drug resistance with reduced antibiotic development has placed humankind at a postantibiotic crossroads where antibiotic alternatives are desperately needed. Consequently, we discuss here the combined effectiveness of two vastly different classes of antibacterials, namely, colicins and a predatory bacterium (i.e.,Bdellovibrio bacteriovorus HD100), against two priority pathogenic groups, colistin- and carbapenem-resistant strains of E. coli. While each is effective in its own manner, these antibacterials also display limitations, i.e., the rapid appearance of mutations that confer resistance to the colicins while predatory bacteria do not completely kill their prey. Here, we show these limitations can be overcome using combined treatments of these antibacterials, with two pathogenic E. coli populations completely eradicated within 24 h. Given the diversity of colicins and the broad-spectrum activities of B. bacteriovorus strains, the results presented here suggests there is a massive potential to control pathogens when they are used together.
Collapse
Affiliation(s)
- Sumudu Upatissa
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Wonsik Mun
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Robert J. Mitchell
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| |
Collapse
|
6
|
Lima-Noronha MA, Fonseca DLH, Oliveira RS, Freitas RR, Park JH, Galhardo RS. Sending out an SOS - the bacterial DNA damage response. Genet Mol Biol 2022; 45:e20220107. [PMID: 36288458 PMCID: PMC9578287 DOI: 10.1590/1678-4685-gmb-2022-0107] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/15/2022] [Indexed: 11/04/2022] Open
Abstract
The term “SOS response” was first coined by Radman in 1974, in an intellectual effort to put together the data suggestive of a concerted gene expression program in cells undergoing DNA damage. A large amount of information about this cellular response has been collected over the following decades. In this review, we will focus on a few of the relevant aspects about the SOS response: its mechanism of control and the stressors which activate it, the diversity of regulated genes in different species, its role in mutagenesis and evolution including the development of antimicrobial resistance, and its relationship with mobile genetic elements.
Collapse
Affiliation(s)
- Marco A. Lima-Noronha
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Douglas L. H. Fonseca
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Renatta S. Oliveira
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Rúbia R. Freitas
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Jung H. Park
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Rodrigo S. Galhardo
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| |
Collapse
|
7
|
Fokt H, Cleto S, Oliveira H, Araújo D, Castro J, Cerca N, Vieira MJ, Almeida C. Bacteriocin Production by Escherichia coli during Biofilm Development. Foods 2022; 11:foods11172652. [PMID: 36076837 PMCID: PMC9455227 DOI: 10.3390/foods11172652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 12/01/2022] Open
Abstract
Escherichia coli is a highly versatile bacterium ranging from commensal to intestinal pathogen, and is an important foodborne pathogen. E. coli species are able to prosper in multispecies biofilms and secrete bacteriocins that are only toxic to species/strains closely related to the producer strain. In this study, 20 distinct E. coli strains were characterized for several properties that confer competitive advantages against closer microorganisms by assessing the biofilm-forming capacity, the production of antimicrobial molecules, and the production of siderophores. Furthermore, primer sets for E. coli bacteriocins–colicins were designed and genes were amplified, allowing us to observe that colicins were widely distributed among the pathogenic E. coli strains. Their production in the planktonic phase or single-species biofilms was uncommon. Only two E. coli strains out of nine biofilm-forming were able to inhibit the growth of other E. coli strains. There is evidence of larger amounts of colicin being produced in the late stages of E. coli biofilm growth. The decrease in bacterial biomass after 12 h of incubation indicates active type I colicin production, whose release normally requires E. coli cell lysis. Almost all E. coli strains were siderophore-producing, which may be related to the resistance to colicin as these two molecules may use the same transporter system. Moreover, E. coli CECT 504 was able to coexist with Salmonella enterica in dual-species biofilms, but Shigella dysenteriae was selectively excluded, correlating with high expression levels of colicin (E, B, and M) genes observed by real-time PCR.
Collapse
Affiliation(s)
- Hanna Fokt
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Sara Cleto
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Hugo Oliveira
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS–Associate Laboratory, 4710-057 Braga, Portugal
| | - Daniela Araújo
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
| | - Joana Castro
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
| | - Nuno Cerca
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS–Associate Laboratory, 4710-057 Braga, Portugal
| | - Maria João Vieira
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS–Associate Laboratory, 4710-057 Braga, Portugal
| | - Carina Almeida
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS–Associate Laboratory, 4710-057 Braga, Portugal
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: ; Tel.: +351-252-660-600
| |
Collapse
|
8
|
Bacteriocin-Producing Escherichia coli Isolated from the Gastrointestinal Tract of Farm Animals: Prevalence, Molecular Characterization and Potential for Application. Microorganisms 2022; 10:microorganisms10081558. [PMID: 36013976 PMCID: PMC9413453 DOI: 10.3390/microorganisms10081558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
Due to the spread of antibiotic-resistant bacteria, new alternatives to antibiotics and ways to prevent infections are being sought. Bacteriocin-producing bacteria are therefore attracting attention due to their probiotic potential as a safe alternative to antimicrobial drugs. The aim of this work was to determine the prevalence of bacteriocin-encoded genes among Escherichia coli strains from healthy farm animals and to characterize the presence of virulence-associated genes, the possibility of prophage induction, and hemolytic and bacterial antagonistic activity of the bacteriocin-producing E. coli in order to reveal their potential for application. It was found that 17 of 72 E. coli strains (23.6%) produced bacteriocins. Among them, 18 out of 30 bacteriocin genes were detected: the most prevalent genes were those for microcin M (58.8%), colicin E1 (52.9%), and colicin M (35.3%). Colicin Ia (29.4%), colicin E9, colicin Ib, colicin B (23.5%), and colicin E9 (17.7%) genes were also frequent, while the prevalence of genes encoding microcins V, B17, and H47 and colicins E3, K, N, U, Y, 5, and 10 did not exceed 11.8%. At least two different bacteriocin genes were detected in all 17 bacteriocinogenic strains; the highest number of different bacteriocin genes detected in one strain was seven genes. E. coli strains with combinations of colicin E1 and E or microcin M and colicin E1 genes were more prevalent than others (17.7%). Among the 17 bacteriocin-producing E. coli strains, 5.9% were hemolytic, 47.1% contained prophages, and 58.8% carried genes encoding toxins. Cell-free supernatants of bacteriocin-producing strains were shown to inhibit the growth of pathogenic E. coli strains belonging to the APEC, STEC, and ETEC pathotypes. Thus, among the studied bacteriocin-producing E. coli isolated from the gastrointestinal tract of farm animals, three strains with high antagonistic bacterial activity and the absence of pathogenicity genes, prophages, and hemolytic activity were identified and therefore have potential for application.
Collapse
|
9
|
Parker JK, Davies BW. Microcins reveal natural mechanisms of bacterial manipulation to inform therapeutic development. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001175. [PMID: 35438625 PMCID: PMC10233263 DOI: 10.1099/mic.0.001175] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/17/2022] [Indexed: 12/20/2022]
Abstract
Microcins are an understudied and poorly characterized class of antimicrobial peptides. Despite the existence of only 15 examples, all identified from the Enterobacteriaceae, microcins display diversity in sequence, structure, target cell uptake, cytotoxic mechanism of action and target specificity. Collectively, these features describe some of the unique means nature has contrived for molecules to cross the 'impermeable' barrier of the Gram-negative bacterial outer membrane and inflict cytotoxic effects. Microcins appear to be widely dispersed among different species and in different environments, where they function in regulating microbial communities in diverse ways, including through competition. Growing evidence suggests that microcins may be adapted for therapeutic uses such as antimicrobial drugs, microbiome modulators or facilitators of peptide uptake into cells. Advancing our biological, ecological and biochemical understanding of the roles of microcins in bacterial interactions, and learning how to regulate and modify microcin activity, is essential to enable such therapeutic applications.
Collapse
Affiliation(s)
| | - Bryan William Davies
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
10
|
Kenneally C, Murphy CP, Sleator RD, Culligan EP. The Urinary Microbiome and Biological Therapeutics: Novel Therapies For Urinary Tract Infections. Microbiol Res 2022; 259:127010. [DOI: 10.1016/j.micres.2022.127010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022]
|
11
|
Kuznetsova MV, Maslennikova IL, Pospelova JS, Žgur Bertok D, Starčič Erjavec M. Differences in recipient ability of uropathogenic Escherichia coli strains in relation with their pathogenic potential. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 97:105160. [PMID: 34839025 DOI: 10.1016/j.meegid.2021.105160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 11/18/2022]
Abstract
Conjugation is recognized as a mechanism driving dissemination of antibacterial resistances and virulence factors among bacteria. In the presented work conjugative transfer frequency into clinical uropathogenic Escherichia coli strains (UPEC) isolated from patients with symptomatic urinary tract infections was investigated. From 93 obtained UPEC strains only 29 were suitable for conjugation experiments with the plasmid pOX38, a well-known F-plasmid derivative. The study was focused on comparison of conjugation frequencies in plankton and biofilm, including comparison of conjugation frequencies in high and low biofilm biomass with their virulence potential. It was shown that the conjugation frequency depended on the biofilm biomass and was significantly higher in thin (OD580 < 0.3) than in thick biofilm (OD580 ≥ 0.3). Nonmetric multidimensional scaling analysis revealed that higher conjugation frequencies in plankton and biofilm were directly positively correlated with the sum of virulence-associated genes of the recipient strain and presence of multidrug antibiotic resistances. On the other hand, the sum of insensitivities to different bacteriocins was negatively correlated with an increase in the conjugative transfer level. Our results obtained hence indicate that the evolution of potentially more pathogenic strains via conjugation is depended on the strains' ability to be a "good" recipient in the conjugative transfer, possibly due to the ability to form thinner biofilms.
Collapse
Affiliation(s)
- Marina V Kuznetsova
- Institute of Ecology and Genetics of Microorganisms Ural Branch Russian Academy of Sciences, Goleva street 13, 614081 Perm, Russia
| | - Irina L Maslennikova
- Institute of Ecology and Genetics of Microorganisms Ural Branch Russian Academy of Sciences, Goleva street 13, 614081 Perm, Russia
| | - Julia S Pospelova
- Institute of Ecology and Genetics of Microorganisms Ural Branch Russian Academy of Sciences, Goleva street 13, 614081 Perm, Russia
| | - Darja Žgur Bertok
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| | - Marjanca Starčič Erjavec
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| |
Collapse
|
12
|
The urobiome, urinary tract infections, and the need for alternative therapeutics. Microb Pathog 2021; 161:105295. [PMID: 34801647 DOI: 10.1016/j.micpath.2021.105295] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
Improvements in bacterial culturing and DNA sequencing techniques have revealed a diverse, and hitherto unknown, urinary tract microbiome (urobiome). The potential role of this microbial community in contributing to health and disease, particularly in the context of urinary tract infections (UTIs) is of significant clinical importance. However, while several studies have confirmed the existence of a core urobiome, the role of its constituent microbes is not yet fully understood, particularly in the context of health and disease. Herein, we review the current state of the art, concluding that the urobiome represents an important component of the body's innate immune defences, and a potentially rich resource for the development of alternative treatment and control strategies for UTIs.
Collapse
|
13
|
Escherichia coli Strains Producing Selected Bacteriocins Inhibit Porcine Enterotoxigenic Escherichia coli (ETEC) under both In Vitro and In Vivo Conditions. Appl Environ Microbiol 2021; 87:e0312120. [PMID: 33962981 DOI: 10.1128/aem.03121-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) and Shiga toxin-producing E. coli (STEC) strains are the causative agents of severe foodborne diseases in both humans and animals. In this study, porcine pathogenic E. coli strains (n = 277) as well as porcine commensal strains (n = 188) were tested for their susceptibilities to 34 bacteriocin monoproducers to identify the most suitable bacteriocin types inhibiting porcine pathogens. Under in vitro conditions, the set of pathogenic E. coli strains was found to be significantly more susceptible to the majority of tested bacteriocins than commensal E. coli. Based on the production of bacteriocins with specific activity against pathogens, three potentially probiotic commensal E. coli strains of human origin were selected. These strains were found to be able to outcompete ETEC strains expressing F4 or F18 fimbriae in liquid culture and also decreased the severity and duration of diarrhea in piglets during experimental ETEC infection as well as pathogen numbers on the last day of in vivo experimentation. While the extents of the probiotic effect were different for each strain, the cocktail of all three strains showed the most pronounced beneficial effects, suggesting synergy between the tested E. coli strains. IMPORTANCE Increasing levels of antibiotic resistance among bacteria also increase the need for alternatives to conventional antibiotic treatment. Pathogenic Escherichia coli represents a major diarrheic infectious agent of piglets in their postweaning period; however, available measures to control these infections are limited. This study describes three novel E. coli strains producing antimicrobial compounds (bacteriocins) that actively inhibit a majority of toxigenic E. coli strains. The beneficial effect of three potentially probiotic E. coli strains was demonstrated under both in vitro and in vivo conditions. The novel probiotic candidates may be used as prophylaxis during piglets' postweaning period to overcome common infections caused by E. coli.
Collapse
|
14
|
CESA-LUNA CATHERINE, ALATORRE-CRUZ JULIAMARÍA, CARREÑO-LÓPEZ RICARDO, QUINTERO-HERNÁNDEZ VERÓNICA, BAEZ ANTONINO. Emerging Applications of Bacteriocins as Antimicrobials, Anticancer Drugs, and Modulators of The Gastrointestinal Microbiota. Pol J Microbiol 2021; 70:143-159. [PMID: 34349808 PMCID: PMC8326989 DOI: 10.33073/pjm-2021-020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/06/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023] Open
Abstract
The use of bacteriocins holds great promise in different areas such as health, food, nutrition, veterinary, nanotechnology, among others. Many research groups worldwide continue to advance the knowledge to unravel a novel range of therapeutic agents and food preservatives. This review addresses the advances of bacteriocins and their producer organisms as biocontrol agents for applications in the medical industry and agriculture. Furthermore, the bacteriocin mechanism of action and structural characteristics will be reviewed. Finally, the potential role of bacteriocins to modulate the signaling in host-associated microbial communities will be discussed.
Collapse
Affiliation(s)
- CATHERINE CESA-LUNA
- Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, México
| | | | - RICARDO CARREÑO-LÓPEZ
- Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, México
| | | | - ANTONINO BAEZ
- Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, México
| |
Collapse
|
15
|
A Toxic Environment: a Growing Understanding of How Microbial Communities Affect Escherichia coli O157:H7 Shiga Toxin Expression. Appl Environ Microbiol 2020; 86:AEM.00509-20. [PMID: 32358004 DOI: 10.1128/aem.00509-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) strains, including E. coli O157:H7, cause severe illness in humans due to the production of Shiga toxin (Stx) and other virulence factors. Because Stx is coregulated with lambdoid prophage induction, its expression is especially susceptible to environmental cues. Infections with Stx-producing E. coli can be difficult to model due to the wide range of disease outcomes: some infections are relatively mild, while others have serious complications. Probiotic organisms, members of the gut microbiome, and organic acids can depress Stx production, in many cases by inhibiting the growth of EHEC strains. On the other hand, the factors currently known to amplify Stx act via their effect on the stx-converting phage. Here, we characterize two interactive mechanisms that increase Stx production by O157:H7 strains: first, direct interactions with phage-susceptible E. coli, and second, indirect amplification by secreted factors. Infection of susceptible strains by the stx-converting phage can expand the Stx-producing population in a human or animal host, and phage infection has been shown to modulate virulence in vitro and in vivo Acellular factors, particularly colicins and microcins, can kill O157:H7 cells but may also trigger Stx expression in the process. Colicins, microcins, and other bacteriocins have diverse cellular targets, and many such molecules remain uncharacterized. The identification of additional Stx-amplifying microbial interactions will improve our understanding of E. coli O157:H7 infections and help elucidate the intricate regulation of pathogenicity in EHEC strains.
Collapse
|
16
|
Telhig S, Ben Said L, Zirah S, Fliss I, Rebuffat S. Bacteriocins to Thwart Bacterial Resistance in Gram Negative Bacteria. Front Microbiol 2020; 11:586433. [PMID: 33240239 PMCID: PMC7680869 DOI: 10.3389/fmicb.2020.586433] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/16/2020] [Indexed: 12/16/2022] Open
Abstract
An overuse of antibiotics both in human and animal health and as growth promoters in farming practices has increased the prevalence of antibiotic resistance in bacteria. Antibiotic resistant and multi-resistant bacteria are now considered a major and increasing threat by national health agencies, making the need for novel strategies to fight bugs and super bugs a first priority. In particular, Gram-negative bacteria are responsible for a high proportion of nosocomial infections attributable for a large part to Enterobacteriaceae, such as pathogenic Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. To cope with their highly competitive environments, bacteria have evolved various adaptive strategies, among which the production of narrow spectrum antimicrobial peptides called bacteriocins and specifically microcins in Gram-negative bacteria. They are produced as precursor peptides that further undergo proteolytic cleavage and in many cases more or less complex posttranslational modifications, which contribute to improve their stability and efficiency. Many have a high stability in the gastrointestinal tract where they can target a single pathogen whilst only slightly perturbing the gut microbiota. Several microcins and antibiotics can bind to similar bacterial receptors and use similar pathways to cross the double-membrane of Gram-negative bacteria and reach their intracellular targets, which they also can share. Consequently, bacteria may use common mechanisms of resistance against microcins and antibiotics. This review describes both unmodified and modified microcins [lasso peptides, siderophore peptides, nucleotide peptides, linear azole(in)e-containing peptides], highlighting their potential as weapons to thwart bacterial resistance in Gram-negative pathogens and discusses the possibility of cross-resistance and co-resistance occurrence between antibiotics and microcins in Gram-negative bacteria.
Collapse
Affiliation(s)
- Soufiane Telhig
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
- Laboratory Molecules of Communication and Adaptation of Microorganisms, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Laila Ben Said
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
| | - Séverine Zirah
- Laboratory Molecules of Communication and Adaptation of Microorganisms, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Ismail Fliss
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
| | - Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
17
|
Browne K, Chakraborty S, Chen R, Willcox MDP, Black DS, Walsh WR, Kumar N. A New Era of Antibiotics: The Clinical Potential of Antimicrobial Peptides. Int J Mol Sci 2020; 21:E7047. [PMID: 32987946 PMCID: PMC7582481 DOI: 10.3390/ijms21197047] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial resistance is a multifaceted crisis, imposing a serious threat to global health. The traditional antibiotic pipeline has been exhausted, prompting research into alternate antimicrobial strategies. Inspired by nature, antimicrobial peptides are rapidly gaining attention for their clinical potential as they present distinct advantages over traditional antibiotics. Antimicrobial peptides are found in all forms of life and demonstrate a pivotal role in the innate immune system. Many antimicrobial peptides are evolutionarily conserved, with limited propensity for resistance. Additionally, chemical modifications to the peptide backbone can be used to improve biological activity and stability and reduce toxicity. This review details the therapeutic potential of peptide-based antimicrobials, as well as the challenges needed to overcome in order for clinical translation. We explore the proposed mechanisms of activity, design of synthetic biomimics, and how this novel class of antimicrobial compound may address the need for effective antibiotics. Finally, we discuss commercially available peptide-based antimicrobials and antimicrobial peptides in clinical trials.
Collapse
Affiliation(s)
- Katrina Browne
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia; (K.B.); (S.C.); (R.C.)
| | - Sudip Chakraborty
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia; (K.B.); (S.C.); (R.C.)
| | - Renxun Chen
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia; (K.B.); (S.C.); (R.C.)
| | - Mark DP Willcox
- School of Optometry and Vision Science, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia;
| | - David StClair Black
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia; (K.B.); (S.C.); (R.C.)
| | - William R Walsh
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Prince of Wales Hospital, University of New South Wales (UNSW), Randwick 2031, Australia;
| | - Naresh Kumar
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia; (K.B.); (S.C.); (R.C.)
| |
Collapse
|
18
|
Bosák J, Hrala M, Micenková L, Šmajs D. Non-antibiotic antibacterial peptides and proteins of Escherichia coli: efficacy and potency of bacteriocins. Expert Rev Anti Infect Ther 2020; 19:309-322. [PMID: 32856960 DOI: 10.1080/14787210.2020.1816824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The emergence and spread of antibiotic resistance among pathogenic bacteria drives the search for alternative antimicrobial therapies. Bacteriocins represent a potential alternative to antibiotic treatment. In contrast to antibiotics, bacteriocins are peptides or proteins that have relatively narrow spectra of antibacterial activities and are produced by a wide range of bacterial species. Bacteriocins of Escherichia coli are historically classified as microcins and colicins, and, until now, more than 30 different bacteriocin types have been identified and characterized. AREAS COVERED We performed bibliographical searches of online databases to review the literature regarding bacteriocins produced by E. coli with respect to their occurrence, bacteriocin role in bacterial colonization and pathogenicity, and application of their antimicrobial effect. EXPERT OPINION The potential use of bacteriocins for applications in human and animal medicine and the food industry includes (i) the use of bacteriocin-producing probiotic strains, (ii) recombinant production in plants and application in food, and (iii) application of purified bacteriocins.
Collapse
Affiliation(s)
- Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Matěj Hrala
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Micenková
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
19
|
Massip C, Oswald E. Siderophore-Microcins in Escherichia coli: Determinants of Digestive Colonization, the First Step Toward Virulence. Front Cell Infect Microbiol 2020; 10:381. [PMID: 32974212 PMCID: PMC7472721 DOI: 10.3389/fcimb.2020.00381] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Siderophore-microcins are antimicrobial peptides produced by enterobacteria, especially Escherichia coli and Klebsiella pneumoniae strains. The antibiotic peptide is post-translationally modified by the linkage of a siderophore moiety. Therefore, it can enter and kill phylogenetically related bacteria by a “Trojan Horse” stratagem, by mimicking the iron–siderophore complexes. Consequently, these antimicrobial peptides are key determinants of bacterial competition within the intestinal niche, which is the reservoir for pathogenic E. coli. The most frequent extraintestinal infections caused by E. coli are urinary tract infections. Uropathogenic E. coli (UPEC) can produce many virulence factors, including siderophore-microcins. Siderophore-microcins are chromosomally encoded by small genomic islands that exhibit conserved organization. In UPEC, the siderophore-microcin gene clusters and biosynthetic pathways differ from the “archetypal” models described in fecal strains. The gene cluster is shorter. Thus, active siderophore-microcin production requires proteins from two other genomic islands that also code for virulence factors. This functional and modular synergy confers a strong selective advantage for the domination of the colonic niche, which is the first step toward infection. This optimization of genetic resources might favor the selection of additional virulence factors, which are essential in the subsequent steps of pathogenesis in E. coli infection.
Collapse
Affiliation(s)
- Clémence Massip
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,Service de Bactériologie-Hygiène, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,Service de Bactériologie-Hygiène, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| |
Collapse
|
20
|
Mazurek-Popczyk J, Pisarska J, Bok E, Baldy-Chudzik K. Antibacterial Activity of Bacteriocinogenic Commensal Escherichia coli against Zoonotic Strains Resistant and Sensitive to Antibiotics. Antibiotics (Basel) 2020; 9:E411. [PMID: 32679778 PMCID: PMC7400030 DOI: 10.3390/antibiotics9070411] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022] Open
Abstract
Antibiotic resistance concerns various areas with high consumption of antibiotics, including husbandry. Resistant strains are transmitted to humans from livestock and agricultural products via the food chain and may pose a health risk. The commensal microbiota protects against the invasion of environmental strains by secretion of bacteriocins, among other mechanisms. The present study aims to characterize the bactericidal potential of bacteriocinogenic Escherichia coli from healthy humans against multidrug-resistant and antibiotic-sensitive strains from pigs and cattle. Bacteriocin production was tested by the double-layer plate method, and bacteriocin genes were identified by the PCR method. At least one bacteriocinogenic E. coli was detected in the fecal samples of 55% of tested individuals, adults and children. Among all isolates (n = 210), 37.1% were bacteriocinogenic and contained genes of colicin (Col) Ib, ColE1, microcin (Mcc) H47, ColIa, ColM, MccV, ColK, ColB, and single ColE2 and ColE7. Twenty-five E. coli carrying various sets of bacteriocin genes were further characterized and tested for their activity against zoonotic strains (n = 60). Strains with ColE7 (88%), ColE1-ColIa-ColK-MccH47 (85%), MccH47-MccV (85%), ColE1-ColIa-ColM (82%), ColE1 (75%), ColM (67%), and ColK (65%) were most active against zoonotic strains. Statistically significant differences in activity toward antibiotic-resistant strains were shown by commensal E. coli carrying MccV, ColK-MccV, and ColIb-ColK. The study demonstrates that bacteriocinogenic commensal E. coli exerts antagonistic activity against zoonotic strains and may constitute a defense line against multidrug-resistant strains.
Collapse
Affiliation(s)
- Justyna Mazurek-Popczyk
- Department of Microbiology and Molecular Biology, Collegium Medicum, University of Zielona Góra, 65-417 Zielona Góra, Poland; (J.P.); (E.B.); (K.B.-C.)
| | | | | | | |
Collapse
|
21
|
Kuznetsova MV, Gizatullina JS, Nesterova LY, Starčič Erjavec M. Escherichia coli Isolated from Cases of Colibacillosis in Russian Poultry Farms (Perm Krai): Sensitivity to Antibiotics and Bacteriocins. Microorganisms 2020; 8:microorganisms8050741. [PMID: 32429211 PMCID: PMC7285186 DOI: 10.3390/microorganisms8050741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022] Open
Abstract
Escherichia coli strains isolated from case of colibacillosis in Russian poultry farms in the region of Perm Krai were analyzed for their sensitivity to main antibiotics and bacteriocins. Sensitivity profiles for 9 antibiotics and 20 bacteriocins were determined with the disc diffusion method and the overlay test, respectively. Further, with the PCR the presence of several bla and integron 1 genes was revealed and the phylogenetic group for each strain determined. Among the 28 studied E. coli strains 85.7% were resistant to at least three antibiotics, 53.6% to five or more drugs, and 10.7% to eight antibiotics. PCR revealed that the blaTEM gene was harbored by 71.4% of strains and the blaCTX-M gene by 53.6% of strains. The class 1 integrons were found in 28.6% of strains. All of the studied strains were insensitive to ten or more bacteriocins. More than 90% of the studied strains were insensitive to pore-forming colicins of group A and B colicins, while 60.7% were insensitive to colicins with DNase and RNase activity. All of the analyzed strains were insensitive to at least two of the tested microcins. Neither the antibiotic resistance profile nor the bacteriocin resistance profile correlated with phylogenetic group of the strains. Thus, the studied strains were shown to possess high levels of multiple resistance to antibiotics and insensitivity to bacteriocins.
Collapse
Affiliation(s)
- Marina V. Kuznetsova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva street 13, 614081 Perm, Russia; (M.V.K.); (J.S.G.); (L.Y.N.)
| | - Julia S. Gizatullina
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva street 13, 614081 Perm, Russia; (M.V.K.); (J.S.G.); (L.Y.N.)
| | - Larisa Yu. Nesterova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva street 13, 614081 Perm, Russia; (M.V.K.); (J.S.G.); (L.Y.N.)
| | - Marjanca Starčič Erjavec
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-320-3402
| |
Collapse
|
22
|
Abd El-Baky RM, Ibrahim RA, Mohamed DS, Ahmed EF, Hashem ZS. Prevalence of Virulence Genes and Their Association with Antimicrobial Resistance Among Pathogenic E. coli Isolated from Egyptian Patients with Different Clinical Infections. Infect Drug Resist 2020; 13:1221-1236. [PMID: 32425560 PMCID: PMC7196243 DOI: 10.2147/idr.s241073] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/04/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction Escherichia (E.) coli can cause intestinal and extra-intestinal infections which ranged from mild to life-threatening infections. The severity of infection is a product of many factors including virulence properties and antimicrobial resistance. Objectives To determine the antibiotic resistance pattern, the distribution of virulence factors and their association with one another and with some selected resistance genes. Methods Virulence properties were analyzed phenotypically while antimicrobial susceptibility was tested by Kirby-Bauer agar disc diffusion method. In addition, 64 E. coli isolates were tested for 6 colicin genes, fimH, hlyA, traT, csgA, crl virulence genes and bla−CTX-M-15, bla−oxa-2, and bla−oxa-10 resistance genes by polymerase chain reaction (PCR). Results Extra-intestinal pathogenic E. coli isolated from urine and blood samples represented a battery of virulence factors and resistance genes with a great ability to produce biofilm. Also, a significant association (P<0.05) among most of the tested colicin, virulence and resistance genes was observed. The observed associations indicate the importance and contribution of the tested factors in the establishment and the progress of infection especially with Extra-intestinal E. coli (ExPEC) which is considered a great challenging health problem. Conclusion There is a need for studying how to control these factors to decrease the rate and the severity of infections. The relationship between virulence factors and resistance genes is complex and needs more studies that should be specific for each area.
Collapse
Affiliation(s)
- Rehab Mahmoud Abd El-Baky
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia 11566, Egypt
| | - Reham Ali Ibrahim
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Doaa Safwat Mohamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia 11566, Egypt
| | - Eman Farouk Ahmed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia 11566, Egypt
| | - Zeinab Shawky Hashem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
23
|
Simons A, Alhanout K, Duval RE. Bacteriocins, Antimicrobial Peptides from Bacterial Origin: Overview of Their Biology and Their Impact against Multidrug-Resistant Bacteria. Microorganisms 2020; 8:E639. [PMID: 32349409 PMCID: PMC7285073 DOI: 10.3390/microorganisms8050639] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
Currently, the emergence and ongoing dissemination of antimicrobial resistance among bacteria are critical health and economic issue, leading to increased rates of morbidity and mortality related to bacterial infections. Research and development for new antimicrobial agents is currently needed to overcome this problem. Among the different approaches studied, bacteriocins seem to be a promising possibility. These molecules are peptides naturally synthesized by ribosomes, produced by both Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB), which will allow these bacteriocin producers to survive in highly competitive polymicrobial environment. Bacteriocins exhibit antimicrobial activity with variable spectrum depending on the peptide, which may target several bacteria. Already used in some areas such as agro-food, bacteriocins may be considered as interesting candidates for further development as antimicrobial agents used in health contexts, particularly considering the issue of antimicrobial resistance. The aim of this review is to present an updated global report on the biology of bacteriocins produced by GPB and GNB, as well as their antibacterial activity against relevant bacterial pathogens, and especially against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Alexis Simons
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- Institut Micalis, équipe Bactéries Pathogènes et Santé, Faculté de Pharmacie, Université Paris-Saclay—INRAE—AgroParisTech, 92296 Châtenay-Malabry, France
| | - Kamel Alhanout
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Raphaël E. Duval
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- ABC Platform, Faculté de Pharmacie, F-54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
24
|
Paquette SJ, Reuter T. Properties of an Antimicrobial Molecule Produced by an Escherichia coli Champion. Antibiotics (Basel) 2019; 9:E6. [PMID: 31877806 PMCID: PMC7168273 DOI: 10.3390/antibiotics9010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/03/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022] Open
Abstract
Over recent decades, the number and frequency of severe pathogen infections have been increasing. Pathogen mitigation strategies in human medicine or in livestock operations are vital to combat emerging arsenals of bacterial virulence and defense mechanisms. Since the emergence of antimicrobial resistance, the competitive nature of bacteria has been considered for the potential treatment or mitigation of pathogens. Previously, we identified a strong E. coli competitor with probiotic properties producing a diffusible antimicrobial molecule(s) that inhibited the growth of Shiga toxin-producing E. coli (STEC). Our current objective was to isolate and examine the properties of this antimicrobial molecule(s). Molecules were isolated by filter sterilization after 12 h incubation, and bacterial inhibition was compared to relevant controls. Isolated antimicrobial molecule(s) and controls were subjected to temperature, pH, or protease digestion treatments. Changes in inhibition properties were evaluated by comparing the incremental cell growth in the presence of treated and untreated antimicrobial molecule(s). No treatment affected the antimicrobial molecule(s) properties of STEC inhibition, suggesting that at least one molecule produced is an efficacious microcin. The molecule persistence to physiochemical and enzymatic treatments could open a wide window to technical industry-scale applications.
Collapse
Affiliation(s)
- Sarah-Jo Paquette
- Alberta Agriculture and Forestry, #100-5401 1st Ave. South, Lethbridge, AB T1J 4V6, Canada;
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1J 4V6, Canada
| | - Tim Reuter
- Alberta Agriculture and Forestry, #100-5401 1st Ave. South, Lethbridge, AB T1J 4V6, Canada;
| |
Collapse
|
25
|
da Cruz Campos AC, Cavallo FM, Andrade NL, van Dijl JM, Couto N, Zrimec J, Lo Ten Foe JR, Rosa ACP, Damasco PV, Friedrich AW, Chlebowicz-Flissikowska MA, Rossen JWA. Determining the Virulence Properties of Escherichia coli ST131 Containing Bacteriocin-Encoding Plasmids Using Short- and Long-Read Sequencing and Comparing Them with Those of Other E. coli Lineages. Microorganisms 2019; 7:E534. [PMID: 31698849 PMCID: PMC6920910 DOI: 10.3390/microorganisms7110534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 01/17/2023] Open
Abstract
Escherichia coli ST131 is a clinical challenge due to its multidrug resistant profile and successful global spread. They are often associated with complicated infections, particularly urinary tract infections (UTIs). Bacteriocins play an important role to outcompete other microorganisms present in the human gut. Here, we characterized bacteriocin-encoding plasmids found in ST131 isolates of patients suffering from a UTI using both short- and long-read sequencing. Colicins Ia, Ib and E1, and microcin V, were identified among plasmids that also contained resistance and virulence genes. To investigate if the potential transmission range of the colicin E1 plasmid is influenced by the presence of a resistance gene, we constructed a strain containing a plasmid which had both the colicin E1 and blaCMY-2 genes. No difference in transmission range was found between transformant and wild-type strains. However, a statistically significantly difference was found in adhesion and invasion ability. Bacteriocin-producing isolates from both ST131 and non-ST131 lineages were able to inhibit the growth of other E. coli isolates, including other ST131. In summary, plasmids harboring bacteriocins give additional advantages for highly virulent and resistant ST131 isolates, improving the ability of these isolates to compete with other microbiota for a niche and thereby increasing the risk of infection.
Collapse
Affiliation(s)
- Ana Carolina da Cruz Campos
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-170, Brazil; (A.C.d.C.C.); (N.L.A.); (A.C.P.R.)
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (F.M.C.); (J.M.v.D.); (N.C.); (J.R.L.T.F.); (A.W.F.); (M.A.C.-F.)
| | - Francis M. Cavallo
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (F.M.C.); (J.M.v.D.); (N.C.); (J.R.L.T.F.); (A.W.F.); (M.A.C.-F.)
| | - Nathália L. Andrade
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-170, Brazil; (A.C.d.C.C.); (N.L.A.); (A.C.P.R.)
| | - Jan Maarten van Dijl
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (F.M.C.); (J.M.v.D.); (N.C.); (J.R.L.T.F.); (A.W.F.); (M.A.C.-F.)
| | - Natacha Couto
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (F.M.C.); (J.M.v.D.); (N.C.); (J.R.L.T.F.); (A.W.F.); (M.A.C.-F.)
| | - Jan Zrimec
- Department of biology and Biological Engineering, Chalmers University of Technology, Chalmersplatsen 4, 412 96 Göteborg, Sweden;
| | - Jerome R. Lo Ten Foe
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (F.M.C.); (J.M.v.D.); (N.C.); (J.R.L.T.F.); (A.W.F.); (M.A.C.-F.)
| | - Ana C. P. Rosa
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-170, Brazil; (A.C.d.C.C.); (N.L.A.); (A.C.P.R.)
| | - Paulo V. Damasco
- Departamento de Doenças Infecciosas e Parasitárias, Universidade Federal do Estado do Rio de Janeiro, Rua Voluntário da Patria, 21, Rio de Janeiro 941-901107, Brazil;
| | - Alex W. Friedrich
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (F.M.C.); (J.M.v.D.); (N.C.); (J.R.L.T.F.); (A.W.F.); (M.A.C.-F.)
| | - Monika A. Chlebowicz-Flissikowska
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (F.M.C.); (J.M.v.D.); (N.C.); (J.R.L.T.F.); (A.W.F.); (M.A.C.-F.)
| | - John W. A. Rossen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (F.M.C.); (J.M.v.D.); (N.C.); (J.R.L.T.F.); (A.W.F.); (M.A.C.-F.)
| |
Collapse
|
26
|
Roy SM, Riley MA. Evaluation of the potential of colicins to prevent extraluminal contamination of urinary catheters by Escherichia coli. Int J Antimicrob Agents 2019; 54:619-625. [DOI: 10.1016/j.ijantimicag.2019.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/09/2019] [Accepted: 07/01/2019] [Indexed: 01/21/2023]
|
27
|
Baquero F, Lanza VF, Baquero MR, Del Campo R, Bravo-Vázquez DA. Microcins in Enterobacteriaceae: Peptide Antimicrobials in the Eco-Active Intestinal Chemosphere. Front Microbiol 2019; 10:2261. [PMID: 31649628 PMCID: PMC6795089 DOI: 10.3389/fmicb.2019.02261] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022] Open
Abstract
Microcins are low-molecular-weight, ribosomally produced, highly stable, bacterial-inhibitory molecules involved in competitive, and amensalistic interactions between Enterobacteriaceae in the intestine. These interactions take place in a highly complex chemical landscape, the intestinal eco-active chemosphere, composed of chemical substances that positively or negatively influence bacterial growth, including those originated from nutrient uptake, and those produced by the action of the human or animal host and the intestinal microbiome. The contribution of bacteria results from their effect on the host generated molecules, on food and digested food, and organic substances from microbial origin, including from bacterial degradation. Here, we comprehensively review the main chemical substances present in the human intestinal chemosphere, particularly of those having inhibitory effects on microorganisms. With this background, and focusing on Enterobacteriaceae, the most relevant human pathogens from the intestinal microbiota, the microcin’s history and classification, mechanisms of action, and mechanisms involved in microcin’s immunity (in microcin producers) and resistance (non-producers) are reviewed. Products from the chemosphere likely modulate the ecological effects of microcin activity. Several cross-resistance mechanisms are shared by microcins, colicins, bacteriophages, and some conventional antibiotics, which are expected to produce cross-effects. Double-microcin-producing strains (such as microcins MccM and MccH47) have been successfully used for decades in the control of pathogenic gut organisms. Microcins are associated with successful gut colonization, facilitating translocation and invasion, leading to bacteremia, and urinary tract infections. In fact, Escherichia coli strains from the more invasive phylogroups (e.g., B2) are frequently microcinogenic. A publicly accessible APD3 database http://aps.unmc.edu/AP/ shows particular genes encoding microcins in 34.1% of E. coli strains (mostly MccV, MccM, MccH47, and MccI47), and much less in Shigella and Salmonella (<2%). Some 4.65% of Klebsiella pneumoniae are microcinogenic (mostly with MccE492), and even less in Enterobacter or Citrobacter (mostly MccS). The high frequency and variety of microcins in some Enterobacteriaceae indicate key ecological functions, a notion supported by their dominance in the intestinal microbiota of biosynthetic gene clusters involved in the synthesis of post-translationally modified peptide microcins.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Val F Lanza
- Bioinformatics Unit, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Maria-Rosario Baquero
- Department of Microbiology, Alfonso X El Sabio University, Villanueva de la Cañada, Spain
| | - Rosa Del Campo
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Daniel A Bravo-Vázquez
- Department of Microbiology, Alfonso X El Sabio University, Villanueva de la Cañada, Spain
| |
Collapse
|
28
|
Montero DA, Canto FD, Velasco J, Colello R, Padola NL, Salazar JC, Martin CS, Oñate A, Blanco J, Rasko DA, Contreras C, Puente JL, Scheutz F, Franz E, Vidal RM. Cumulative acquisition of pathogenicity islands has shaped virulence potential and contributed to the emergence of LEE-negative Shiga toxin-producing Escherichia coli strains. Emerg Microbes Infect 2019; 8:486-502. [PMID: 30924410 PMCID: PMC6455142 DOI: 10.1080/22221751.2019.1595985] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens causing severe gastroenteritis, which may lead to hemolytic uremic syndrome. The Locus of Enterocyte Effacement (LEE), a Pathogenicity Island (PAI), is a major determinant of intestinal epithelium attachment of a group of STEC strains; however, the virulence repertoire of STEC strains lacking LEE, has not been fully characterized. The incidence of LEE-negative STEC strains has increased in several countries, highlighting the relevance of their study. In order to gain insights into the basis for the emergence of LEE-negative STEC strains, we performed a large-scale genomic analysis of 367 strains isolated worldwide from humans, animals, food and the environment. We identified uncharacterized genomic islands, including two PAIs and one Integrative Conjugative Element. Additionally, the Locus of Adhesion and Autoaggregation (LAA) was the most prevalent PAI among LEE-negative strains and we found that it contributes to colonization of the mice intestine. Our comprehensive and rigorous comparative genomic and phylogenetic analyses suggest that the accumulative acquisition of PAIs has played an important, but currently unappreciated role, in the evolution of virulence in these strains. This study provides new knowledge on the pathogenicity of LEE-negative STEC strains and identifies molecular markers for their epidemiological surveillance.
Collapse
Affiliation(s)
- David Arturo Montero
- a Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago , Chile
| | - Felipe Del Canto
- a Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago , Chile
| | - Juliana Velasco
- b Servicio de Urgencia Infantil, Hospital Clínico de la Universidad de Chile "Dr. José Joaquín Aguirre" , Santiago , Chile
| | - Rocío Colello
- c Centro de Investigación Veterinaria Tandil, CONICET-CIC, Facultad de Ciencias Veterinarias, UNCPBA , Tandil , Argentina
| | - Nora Lia Padola
- c Centro de Investigación Veterinaria Tandil, CONICET-CIC, Facultad de Ciencias Veterinarias, UNCPBA , Tandil , Argentina
| | - Juan Carlos Salazar
- a Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago , Chile
| | - Carla San Martin
- d Departamento de Microbiología, Facultad de Ciencias Biológicas , Universidad de Concepción , Concepción , Chile
| | - Angel Oñate
- d Departamento de Microbiología, Facultad de Ciencias Biológicas , Universidad de Concepción , Concepción , Chile
| | - Jorge Blanco
- e Laboratorio de Referencia de E. coli, Facultad de Veterinaria , Universidad de Santiago de Compostela , Lugo , España
| | - David A Rasko
- f Department of Microbiology and Immunology , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Carmen Contreras
- g Departamento de Microbiología Molecular , Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca , México
| | - Jose Luis Puente
- g Departamento de Microbiología Molecular , Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca , México
| | - Flemming Scheutz
- h Department of Bacteria, Parasites and Fungi , The International Collaborating Centre for Reference and Research on Escherichia and Klebsiella, Statens Serum Institut , Copenhagen , Denmark
| | - Eelco Franz
- i National Institute for Public Health, Centre for Infectious Disease Control , Bilthoven , The Netherlands
| | - Roberto M Vidal
- a Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago , Chile.,j Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile , Santiago , Chile
| |
Collapse
|
29
|
Rodrigues G, Silva GGO, Buccini DF, Duque HM, Dias SC, Franco OL. Bacterial Proteinaceous Compounds With Multiple Activities Toward Cancers and Microbial Infection. Front Microbiol 2019; 10:1690. [PMID: 31447795 PMCID: PMC6691048 DOI: 10.3389/fmicb.2019.01690] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022] Open
Abstract
In recent decades, cancer and multidrug resistance have become a worldwide problem, resulting in high morbidity and mortality. Some infectious agents like Streptococcus pneumoniae, Stomatococcus mucilaginous, Staphylococcus spp., E. coli. Klebsiella spp., Pseudomonas aeruginosa, Candida spp., Helicobacter pylori, hepatitis B and C, and human papillomaviruses (HPV) have been associated with the development of cancer. Chemotherapy, radiotherapy and antibiotics are the conventional treatment for cancer and infectious disease. This treatment causes damage in healthy cells and tissues, and usually triggers systemic side-effects, as well as drug resistance. Therefore, the search for new treatments is urgent, in order to improve efficacy and also reduce side-effects. Proteins and peptides originating from bacteria can thus be a promising alternative to conventional treatments used nowadays against cancer and infectious disease. These molecules have demonstrated specific activity against cancer cells and bacterial infection; indeed, proteins and peptides can be considered as future antimicrobial and anticancer drugs. In this context, this review will focus on the desirable characteristics of proteins and peptides from bacterial sources that demonstrated activity against microbial infections and cancer, as well as their efficacy in vitro and in vivo.
Collapse
Affiliation(s)
- Gisele Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | | | - Danieli Fernanda Buccini
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,Pós-Graduação em Biologia Animal, Universidade de Brasilia, Brasília, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
30
|
Colicin Z, a structurally and functionally novel colicin type that selectively kills enteroinvasive Escherichia coli and Shigella strains. Sci Rep 2019; 9:11127. [PMID: 31366939 PMCID: PMC6668396 DOI: 10.1038/s41598-019-47488-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/16/2019] [Indexed: 01/14/2023] Open
Abstract
Colicin production in Escherichia coli (E. coli) strains represents an important trait with regard to microbial survival and competition in the complex intestinal environment. A novel colicin type, colicin Z (26.3 kDa), was described as a product of an original producer, extraintestinal E. coli B1356 strain, isolated from the anorectal abscess of a 17 years-old man. The 4,007 bp plasmid (pColZ) was completely sequenced and colicin Z activity (cza) and colicin Z immunity (czi) genes were identified. The cza and czi genes are transcribed in opposite directions and encode for 237 and 151 amino acid-long proteins, respectively. Colicin Z shows a narrow inhibitory spectrum, being active only against enteroinvasive E. coli (EIEC) and Shigella strains via CjrC receptor recognition and CjrB- and ExbB-, ExbD-mediated colicin translocation. All tested EIEC and Shigella strains isolated between the years 1958–2010 were sensitive to colicin Z. The lethal effect of colicin Z was found to be directed against cell wall peptidoglycan (PG) resulting in PG degradation, as revealed by experiments with Remazol Brilliant Blue-stained purified peptidoglycans and with MALDI-TOF MS analyses of treated PG. Colicin Z represents a new class of colicins that is structurally and functionally distinct from previously studied colicin types.
Collapse
|
31
|
Molan K, Podlesek Z, Hodnik V, Butala M, Oswald E, Žgur Bertok D. The Escherichia coli colibactin resistance protein ClbS is a novel DNA binding protein that protects DNA from nucleolytic degradation. DNA Repair (Amst) 2019; 79:50-54. [DOI: 10.1016/j.dnarep.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/29/2019] [Accepted: 05/18/2019] [Indexed: 01/19/2023]
|
32
|
Krüger W, Vielreicher S, Kapitan M, Jacobsen ID, Niemiec MJ. Fungal-Bacterial Interactions in Health and Disease. Pathogens 2019; 8:E70. [PMID: 31117285 PMCID: PMC6630686 DOI: 10.3390/pathogens8020070] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022] Open
Abstract
Fungi and bacteria encounter each other in various niches of the human body. There, they interact directly with one another or indirectly via the host response. In both cases, interactions can affect host health and disease. In the present review, we summarized current knowledge on fungal-bacterial interactions during their commensal and pathogenic lifestyle. We focus on distinct mucosal niches: the oral cavity, lung, gut, and vagina. In addition, we describe interactions during bloodstream and wound infections and the possible consequences for the human host.
Collapse
Affiliation(s)
- Wibke Krüger
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
| | - Sarah Vielreicher
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
| | - Mario Kapitan
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
| | - Ilse D Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
- Institute of Microbiology, Friedrich Schiller University, Jena 07743, Germany.
| | - Maria Joanna Niemiec
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
| |
Collapse
|
33
|
Genetic analysis of the first mcr-1 positive Escherichia coli isolate collected from an outpatient in Chile. Braz J Infect Dis 2019; 23:203-206. [PMID: 31228460 PMCID: PMC9428235 DOI: 10.1016/j.bjid.2019.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/13/2019] [Accepted: 05/19/2019] [Indexed: 11/21/2022] Open
Abstract
Global dissemination of mcr-like genes represents a serious threat to public health since it jeopardizes the effectiveness of colistin, an antibiotic used as a last-resort treatment against highly antibiotic-resistant bacteria. In 2017, a mcr-1-positive isolate of Escherichia coli was found in Chile for the first time. Herein we report the genetic features of this strain (UCO-457) by whole-genome sequencing (WGS) and conjugation experiments. The UCO-457 strain belonged to ST4204 and carried a 285 kb IncI2-type plasmid containing the mcr-1 gene. Moreover, this plasmid was transferred by conjugation to an E. coli J53 strain at high frequency. The isolate harbored the cma, iroN, and iss virulence genes and did carry resistance genes to trimethoprim/sulfamethoxazole and fluoroquinolones. Other antibiotic resistance determinants such as β-lactamases-encoding genes were not detected, making the isolate highly susceptible to these antibiotics. Our results revealed that such susceptible isolates could be acting as platforms to disseminate plasmid-mediated colistin resistance. Based on this evidence, we consider that mcr-like prevalence deserves urgent attention and should be examined not only in highly resistant bacteria but also in susceptible isolates.
Collapse
|
34
|
Bosák J, Hrala M, Pirková V, Micenková L, Čížek A, Smola J, Kučerová D, Vacková Z, Budinská E, Koláčková I, Šmajs D. Porcine pathogenic Escherichia coli strains differ from human fecal strains in occurrence of bacteriocin types. Vet Microbiol 2019; 232:121-127. [PMID: 31030835 DOI: 10.1016/j.vetmic.2019.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 01/09/2023]
Abstract
Enterotoxigenic and Shiga-toxigenic Escherichia coli (i.e., ETEC and STEC) are important causative agents of human and animal diseases. In humans, infections range from mild diarrhea to severe life-threating conditions, while infections of piglets result in lower weight gain and higher pig mortality with the accompanying significant economic losses. In this study, frequencies of four phylogenetic groups, fourteen virulence- and thirty bacteriocin determinants were analyzed in a set of 443 fecal E. coli isolates from diseased pigs and compared to a previously characterized set of 1283 human fecal E. coli isolates collected in the same geographical region. In addition, these characteristics were compared among ETEC, STEC, and non-toxigenic porcine E. coli isolates. Phylogenetic group A was prevalent among porcine pathogenic E. coli isolates, whereas the frequency of phylogroup B2, adhesion/invasion (fimA, pap, sfa, afaI, ial, ipaH, and pCVD432) and iron acquisition (aer and iucC) determinants were less frequent compared to human fecal isolates. Additionally, porcine isolates differed from human isolates relative to the spectrum of produced bacteriocins. While human fecal isolates encoded colicins and microcins with a similar prevalence, porcine pathogenic E. coli isolates produced predominantly colicins (94% of isolates); especially colicins B (42.6%), M (40.1%), and Ib (34.0%), which are encoded on large conjugative plasmids. The observed high prevalence of these colicin determinants suggests the importance of large colicinogenic plasmids and/or the importance of colicin production in intestinal inflammatory conditions.
Collapse
Affiliation(s)
- Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Matěj Hrala
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Viktória Pirková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Micenková
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Alois Čížek
- Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Jiří Smola
- Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | | | | | - Eva Budinská
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
35
|
Kurnick SA, Mannion AJ, Feng Y, Madden CM, Chamberlain P, Fox JG. Genotoxic Escherichia coli Strains Encoding Colibactin, Cytolethal Distending Toxin, and Cytotoxic Necrotizing Factor in Laboratory Rats. Comp Med 2019; 69:103-113. [PMID: 30902120 PMCID: PMC6464076 DOI: 10.30802/aalas-cm-18-000099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/13/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
Although many Escherichia coli strains are considered commensals in mammals, strains encoding the cyclomodulin genotoxins are associated with clinical and subclinical disease in the urogenital and gastrointestinal tracts, meningitis, and inflammatory disorders. These genotoxins include the polyketide synthase (pks) pathogenicity island, cytolethal distending toxin (cdt), and hemolysin-associated cytotoxic necrotizing factor (cnf). E. coli strains are not excluded from rodents housed under SPF conditions in academic or vendor facilities. This study isolated and characterized genotoxin-encoding E. coli from laboratory rats obtained from 4 academic institutions and 3 vendors. A total of 69 distinct E. coli isolates were cultured from feces, rectal swab, nares, or vaginal swab of 52 rats and characterized biochemically. PCR analysis for cyclomodulin genes and phylogroup was performed on all 69 isolates. Of the 69 isolates, 45 (65%) were positive for pks, 20/69 (29%) were positive for cdt, and 4 (6%) were positive for cnf. Colibactin was the sole genotoxin identified in 21 of 45 pks+ isolates (47%), whereas cdt or cnf was also present in the remaining 24 isolates (53%); cdt and cnf were never present together or without pks. All genotoxin-associated strains were members of pathogen-associated phylogroup B2. Fisher exact and χ² tests demonstrated significant differences in genotoxin prevalence and API code distribution with regard to vendor. Select E. coli isolates were characterized by HeLa cell in vitro cytotoxicity assays, serotyped, and whole-genome sequenced. All isolates encoding cyclomodulins induced megalocytosis. Serotypes corresponded with vendor origin and cyclomodulin composition, with the cnf+ serotype representing a known human uropathogen. Whole-genome sequencing confirmed the presence of complete pks, cdt, and hemolysin-cnf pathogenicity islands. These findings indicate that genotoxin-encoding E. coli colonize laboratory rats from multiple commercial vendors and academic institutions and suggest the potential to contribute to clinical disease and introduce confounding variables into experimental rat models.
Collapse
Affiliation(s)
- Susanna A Kurnick
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Anthony J Mannion
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Carolyn M Madden
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Paul Chamberlain
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts;,
| |
Collapse
|
36
|
Mazaheri Tehrani M, Erfani M, Amirmozafari N, Nejadsattari T. Synthesis of a Peptide Derivative of MicrocinJ25 and Evaluation of Antibacterial and Biological Activities. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:1264-1276. [PMID: 32641937 PMCID: PMC6934971 DOI: 10.22037/ijpr.2019.1100750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
MicrocinJ25 (MccJ25) is a small ribosomally synthesized antimicrobial peptide that is produced by Enterobacteriacea family especially E. coli. The present study focuses on preparation and evaluation of in-vitro antimicrobial and biological properties of a new peptide derived from MccJ25. We prepared a MccJ25-derived peptide containing 14 amino acids and a single intra-molecular disulfide bond according to solid phase synthesis strategy. The purified peptide was characterized by Liquid chromatography-mass spectrometry (LC-MS) and Fourier Transform Infrared (FTIR) spectroscopy. 96-well microdilution plate assay was exerted for determination of minimum inhibitory concentration (MIC) of peptide against different bacterial strains. Cytotoxicity of the peptide derivative on HT-29 cell line assayed using MTT test. The final peptide successfully was prepared with purity more than 99.8% as determined by analytical HPLC. The evaluation of antibacterial activity of the peptide against Gram-positive and Gram- negative bacteria revealed that the peptide was very effective against E. coli 35218 with minimum inhibitory concentration (MIC) at dose 3.9 µM. The hemolytic activity toward human erythrocytes was very minimal below 0.3%. The cell viability percentage of HT-29 cell line after 24 h of contact with the peptide was more than 83%. The high sensitivity of E. coli strain to this new peptide derived from MccJ25 and through minimal toxicity to cancerous cell, suggesting that above synthesized peptide could be considered as a bioactive compound for further investigations.
Collapse
Affiliation(s)
- Maryam Mazaheri Tehrani
- Department of Microbiology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mostafa Erfani
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran.
| | - Nour Amirmozafari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Taher Nejadsattari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
37
|
Le VT, Leelakriangsak M, Lee SW, Panphon S, Utispan K, Koontongkaew S. Characterization and safety evaluation of partially purified bacteriocin produced by Escherichia coli E isolated from fermented pineapple Ananas comosus (L.) Merr. Braz J Microbiol 2019; 50:33-42. [PMID: 30637641 PMCID: PMC6863319 DOI: 10.1007/s42770-018-0014-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 07/30/2018] [Indexed: 11/30/2022] Open
Abstract
Antibacterial activity of cell-free supernatant from Escherichia coli E against selected pathogenic bacteria in food and aquaculture was the highest against Edwardsiella tarda 3, a significant aquaculture pathogen. Biochemical properties of the bacteriocins were studied and bacteriocin was found to be sensitive to proteinase K, demonstrating its proteinaceous nature. In addition, pH and temperature affected bacteriocin activity and stability. The bacteriocins were partially purified by ammonium sulfate precipitation. The antibacterial activity was only detected in 20% ammonium sulfate fraction and direct detection of its activity was performed by overlaying on the indicator strains. The inhibition zone associated with the antibacterial activity was detected in the sample overlaid by E. tarda 3 and Staphylococcus aureus DMST8840 with the relative molecular mass of about 27 kDa and 10 kDa, respectively. Bacteriocin showed no cytotoxic effect on NIH-3T3 cell line; however, two virulence genes, aer and sfa, were detected in the genome of E. coli E by PCR. The characteristics of bacteriocins produced by E. coli E exhibited the antibacterial activity against both Gram-positive and Gram-negative pathogenic bacteria and the safe use determined by cytotoxicity test which may have interesting biotechnological applications.
Collapse
Affiliation(s)
- Van Thi Le
- Biology Division, Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, 94000, Thailand
| | - Montira Leelakriangsak
- Biology Division, Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, 94000, Thailand.
| | - Seong Wei Lee
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan Campus Jeli, Jeli, Kelantan, 17600, Malaysia
| | - Somrak Panphon
- Biology Division, Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, 94000, Thailand
| | | | | |
Collapse
|
38
|
Competition among Escherichia coli Strains for Space and Resources. Vet Sci 2018; 5:vetsci5040093. [PMID: 30400157 PMCID: PMC6313926 DOI: 10.3390/vetsci5040093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/17/2018] [Accepted: 10/30/2018] [Indexed: 12/31/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are a subgroup of E. coli causing human diseases. Methods to control STEC in livestock and humans are limited. These and other emerging pathogens are a global concern and novel mitigation strategies are required. Habitats populated by bacteria are subjected to competition pressures due to limited space and resources but they use various strategies to compete in natural environments. Our objective was to evaluate non-pathogenic E. coli strains isolated from cattle feces for their ability to out-compete STEC. Competitive fitness of non-pathogenic E. coli against STEC were assessed in competitions using liquid, agar, and nutrient limiting assays. Winners were determined by enumeration using O-serogroup specific quantitative PCR or a semi-quantitative grading. Initial liquid competitions identified two strong non-pathogenic competitors (O103F and O26E) capable of eliminating various STEC including O157 and O111. The strain O103F was dominant across permeable physical barriers for all tested E. coli and STEC strains indicating the diffusion of antimicrobial molecules. In direct contact and even with temporal disadvantages, O103F out-competed STEC O157E. The results suggest that O103F or the diffusible molecule(s) it produces have a potential to be used as an alternative STEC mitigation strategy, either in medicine or the food industry.
Collapse
|
39
|
Escherichia coli isolates from patients with inflammatory bowel disease: ExPEC virulence- and colicin-determinants are more frequent compared to healthy controls. Int J Med Microbiol 2018; 308:498-504. [PMID: 29735381 DOI: 10.1016/j.ijmm.2018.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/04/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
A set of 178 Escherichia coli isolates taken from patients with inflammatory bowel disease (IBD) was analyzed for bacteriocin production and tested for the prevalence of 30 bacteriocin and 22 virulence factor determinants. Additionally, E. coli phylogenetic groups were also determined. Pulsed-field gel electrophoresis (PFGE) was used for exclusion of clonal character of isolates. Results were compared to data from a previously published analysis of 1283 fecal commensal E. coli isolates. The frequency of bacteriocinogenic isolates (66.9%) was significantly higher in IBD E. coli compared to fecal commensal E. coli isolates (54.2%, p < 0.01). In the group of IBD E. coli isolates, a higher prevalence of determinants for group B colicins (i.e., colicins B, D, Ia, Ib, M, and 5/10) (p < 0.01), including a higher prevalence of the colicin B determinant (p < 0.01) was found. Virulence factor determinants encoding fimbriae (fimA, 91.0%; pap, 27.5%), cytotoxic necrotizing factor (cnf1, 11.2%), aerobactin synthesis (aer, 43.3%), and the locus associated with invasivity (ial, 9.0%) were more prevalent in IBD E. coli (p < 0.05 for all five determinants). E. coli isolates from IBD mucosal biopsies were more frequently bacteriocinogenic (84.6%, p < 0.01) compared to fecal IBD isolates and fecal commensal E. coli. PFGE analysis revealed clusters specific for IBD E. coli isolates (n = 11), for fecal isolates (n = 13), and clusters containing both IBD and fecal isolates (n = 10). ExPEC (Extraintestinal Pathogenic E. coli) virulence and colicin determinants appear to be important characteristics of IBD E. coli isolates, especially the E. coli isolates obtained directly from biopsy samples.
Collapse
|
40
|
Cabral DJ, Penumutchu S, Norris C, Morones-Ramirez JR, Belenky P. Microbial competition between Escherichia coli and Candida albicans reveals a soluble fungicidal factor. MICROBIAL CELL 2018; 5:249-255. [PMID: 29796389 PMCID: PMC5961918 DOI: 10.15698/mic2018.05.631] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Localized and systemic fungal infections caused by Candida albicans can lead to significant mortality and morbidity. However, severe C. albicans infections are relatively rare, occurring mostly in the very young, the very old, and immunocompromised individuals. The fact that these infections are rare is interesting because as much as 80 percent of the population is asymptomatically colonized with C. albicans. It is thought that members of the human microbiota and the immune system work in concert to reduce C. albicans overgrowth through competition and modification of the growth environment. Here, we report that Escherichia coli (strain MG1655) outcompetes and kills C. albicans (strain SC5314) in vitro. We find that E. coli produces a soluble factor that kills C. albicans in a magnesium-dependent fashion such that depletion of available magnesium is essential for toxicity.
Collapse
Affiliation(s)
- Damien J Cabral
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| | - Colby Norris
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA.,Bryant University, Smithfield, RI, 02917 USA
| | - Jose Ruben Morones-Ramirez
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba, S/N, San Nicolás de los Garza, Nuevo León, México.,Centro de Investigacion en Biotecnologia y Nanotecnologia, Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Quimicas, Parque de Investigacion e Innovacion Tecnologica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca, Nuevo Leon. 66629
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
41
|
Abbasian F, Ghafar-Zadeh E, Magierowski S. Microbiological Sensing Technologies: A Review. Bioengineering (Basel) 2018; 5:E20. [PMID: 29498670 PMCID: PMC5874886 DOI: 10.3390/bioengineering5010020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/13/2022] Open
Abstract
Microorganisms have a significant influence on human activities and health, and consequently, there is high demand to develop automated, sensitive, and rapid methods for their detection. These methods might be applicable for clinical, industrial, and environmental applications. Although different techniques have been suggested and employed for the detection of microorganisms, and the majority of these methods are not cost effective and suffer from low sensitivity and low specificity, especially in mixed samples. This paper presents a comprehensive review of microbiological techniques and associated challenges for bioengineering researchers with an engineering background. Also, this paper reports on recent technological advances and their future prospects for a variety of microbiological applications.
Collapse
Affiliation(s)
- Firouz Abbasian
- Biologically Inspired Sensors and Actuators Laboratory, Department of EECS, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada.
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators Laboratory, Department of EECS, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada.
| | - Sebastian Magierowski
- Biologically Inspired Sensors and Actuators Laboratory, Department of EECS, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
42
|
Grillová L, Sedláček I, Páchníková G, Staňková E, Švec P, Holochová P, Micenková L, Bosák J, Slaninová I, Šmajs D. Characterization of four Escherichia albertii isolates collected from animals living in Antarctica and Patagonia. J Vet Med Sci 2017; 80:138-146. [PMID: 29249728 PMCID: PMC5797873 DOI: 10.1292/jvms.17-0492] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Escherichia albertii is a recently discovered species with a limited number of well characterized strains. The aim of this study was to characterize four of the E. albertii strains, which were among 41 identified Escherichia strains isolated from the feces of living animals on James Ross Island, Antarctica, and Isla Magdalena, Patagonia. Sequencing of 16S rDNA, automated ribotyping, and rep-PCR were used to identify the four E. albertii isolates. Phylogenetic analyses based on multi-locus sequence typing showed these isolates to be genetically most similar to the members of E. albertii phylogroup G3. These isolates encoded several virulence factors including those, which are characteristic of E. albertii (cytolethal distending toxin and intimin) as well as bacteriocin determinants that typically have a very low prevalence in E. coli strains (D, E7). Moreover, E. albertii protein extracts caused cell cycle arrest in human cell line A375, probably because of cytolethal distending toxin activity.
Collapse
Affiliation(s)
- Linda Grillová
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Ivo Sedláček
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Gabriela Páchníková
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Eva Staňková
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Pavel Švec
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Pavla Holochová
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Lenka Micenková
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Iva Slaninová
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| |
Collapse
|
43
|
Feng Y, Mannion A, Madden CM, Swennes AG, Townes C, Byrd C, Marini RP, Fox JG. Cytotoxic Escherichia coli strains encoding colibactin and cytotoxic necrotizing factor (CNF) colonize laboratory macaques. Gut Pathog 2017; 9:71. [PMID: 29225701 PMCID: PMC5718112 DOI: 10.1186/s13099-017-0220-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023] Open
Abstract
Background Many Escherichia coli strains are considered to be a component of the normal flora found in the human and animal intestinal tracts. While most E. coli strains are commensal, some strains encode virulence factors that enable the bacteria to cause intestinal and extra-intestinal clinically-relevant infections. Colibactin, encoded by a genomic island (pks island), and cytotoxic necrotizing factor (CNF), encoded by the cnf gene, are genotoxic and can modulate cellular differentiation, apoptosis and proliferation. Some commensal and pathogenic pks+ and cnf+ E. coli strains have been associated with inflammation and cancer in humans and animals. Results In the present study, E. coli strains encoding colibactin and CNF were identified in macaque samples. We performed bacterial cultures utilizing rectal swabs and extra-intestinal samples from clinically normal macaques. A total of 239 E. coli strains were isolated from 266 macaques. The strains were identified biochemically and selected isolates were serotyped as O88:H4, O25:H4, O7:H7, OM:H14, and OM:H16. Specific PCR for pks and cnf1 gene amplification, and phylogenetic group identification were performed on all E. coli strains. Among the 239 isolates, 41 (17.2%) were pks+/cnf1−, 19 (7.9%) were pks−/cnf1+, and 31 (13.0%) were pks+/cnf1+. One hundred forty-eight (61.9%) E. coli isolates were negative for both genes (pks−/cnf1−). In total, 72 (30.1%) were positive for pks genes, and 50 (20.9%) were positive for cnf1. No cnf2+ isolates were detected. Both pks+ and cnf1+ E. coli strains belonged mainly to phylogenetic group B2, including B21. Colibactin and CNF cytotoxic activities were observed using a HeLa cell cytotoxicity assay in representative isolates. Whole genome sequencing of 10 representative E. coli strains confirmed the presence of virulence factors and antibiotic resistance genes in rhesus macaque E. coli isolates. Conclusions Our findings indicate that colibactin- and CNF-encoding E. coli colonize laboratory macaques and can potentially cause clinical and subclinical diseases that impact macaque models. Electronic supplementary material The online version of this article (10.1186/s13099-017-0220-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825, Cambridge, MA 02139 USA
| | - Anthony Mannion
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825, Cambridge, MA 02139 USA
| | - Carolyn M Madden
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825, Cambridge, MA 02139 USA
| | - Alton G Swennes
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825, Cambridge, MA 02139 USA.,Present Address: Center for Comparative Medicine, Baylor College of Medicine, Houston, TX USA
| | - Catherine Townes
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825, Cambridge, MA 02139 USA
| | - Charles Byrd
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825, Cambridge, MA 02139 USA.,Present Address: North Powers Animal Hospital, Colorado Springs, CO USA
| | - Robert P Marini
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825, Cambridge, MA 02139 USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825, Cambridge, MA 02139 USA
| |
Collapse
|
44
|
Micenková L, Beňová A, Frankovičová L, Bosák J, Vrba M, Ševčíková A, Kmeťová M, Šmajs D. Human Escherichia coli isolates from hemocultures: Septicemia linked to urogenital tract infections is caused by isolates harboring more virulence genes than bacteraemia linked to other conditions. Int J Med Microbiol 2017; 307:182-189. [DOI: 10.1016/j.ijmm.2017.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/17/2017] [Accepted: 02/24/2017] [Indexed: 12/24/2022] Open
|
45
|
Böhnlein C, Kabisch J, Meske D, Franz CMAP, Pichner R. Fitness of Enterohemorrhagic Escherichia coli (EHEC)/Enteroaggregative E. coli O104:H4 in Comparison to That of EHEC O157: Survival Studies in Food and In Vitro. Appl Environ Microbiol 2016; 82:6326-6334. [PMID: 27542931 PMCID: PMC5066349 DOI: 10.1128/aem.01796-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/10/2016] [Indexed: 11/20/2022] Open
Abstract
In 2011, one of the world's largest outbreaks of hemolytic-uremic syndrome (HUS) occurred, caused by a rare Escherichia coli serotype, O104:H4, that shared the virulence profiles of Shiga toxin-producing E. coli (STEC)/enterohemorrhagic E. coli (EHEC) and enteroaggregative E. coli (EAEC). The persistence and fitness factors of the highly virulent EHEC/EAEC O104:H4 strain, grown either in food or in vitro, were compared with those of E. coli O157 outbreak-associated strains. The log reduction rates of the different EHEC strains during the maturation of fermented sausages were not significantly different. Both the O157:NM and O104:H4 serotypes could be shown by qualitative enrichment to be present after 60 days of sausage storage. Moreover, the EHEC/EAEC O104:H4 strain appeared to be more viable than E. coli O157:H7 under conditions of decreased pH and in the presence of sodium nitrite. Analysis of specific EHEC strains in experiments with an EHEC inoculation cocktail showed a dominance of EHEC/EAEC O104:H4, which could be isolated from fermented sausages for 60 days. Inhibitory activities of EHEC/EAEC O104:H4 toward several E. coli strains, including serotype O157 strains, could be determined. Our study suggests that EHEC/EAEC O104:H4 is well adapted to the multiple adverse conditions occurring in fermented raw sausages. Therefore, it is strongly recommended that STEC strain cocktails composed of several serotypes, instead of E. coli O157:H7 alone, be used in food risk assessments. The enhanced persistence of EHEC/EAEC O104:H4 as a result of its robustness, as well as the production of bacteriocins, may account for its extraordinary virulence potential. IMPORTANCE In 2011, a severe outbreak caused by an EHEC/EAEC serovar O104:H4 strain led to many HUS sequelae. In this study, the persistence of the O104:H4 strain was compared with those of other outbreak-relevant STEC strains under conditions of fermented raw sausage production. Both O157:NM and O104:H4 strains could survive longer during the production of fermented sausages than E. coli O157:H7 strains. E. coli O104:H4 was also shown to be well adapted to the multiple adverse conditions encountered in fermented sausages, and the secretion of a bacteriocin may explain the competitive advantage of this strain in an EHEC strain cocktail. Consequently, this study strongly suggests that enhanced survival and persistence, and the presumptive production of a bacteriocin, may explain the increased virulence of the O104:H4 outbreak strain. Furthermore, this strain appears to be capable of surviving in a meat product, suggesting that meat should not be excluded as a source of potential E. coli O104:H4 infection.
Collapse
Affiliation(s)
- Christina Böhnlein
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Jan Kabisch
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Diana Meske
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Rohtraud Pichner
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany Department of Nutritional, Food, and Consumer Sciences, University of Applied Sciences, Fulda, Germany
| |
Collapse
|
46
|
Micenková L, Bosák J, Vrba M, Ševčíková A, Šmajs D. Human extraintestinal pathogenic Escherichia coli strains differ in prevalence of virulence factors, phylogroups, and bacteriocin determinants. BMC Microbiol 2016; 16:218. [PMID: 27646192 PMCID: PMC5028950 DOI: 10.1186/s12866-016-0835-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 09/13/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The study used a set of 407 human extraintestinal pathogenic E. coli strains (ExPEC) isolated from (1) skin and soft tissue infections, (2) respiratory infections, (3) intra-abdominal infections, and (4) genital smears. The set was tested for bacteriocin production, for prevalence of bacteriocin and virulence determinants, and for phylogenetic typing. Results obtained from the group of ExPEC strains were compared to data from our previously published analyses of 1283 fecal commensal E. coli strains. RESULTS The frequency of bacteriocinogeny was significantly higher in the set of ExPEC strains (63.1 %), compared to fecal E. coli (54.2 %; p < 0.01). Microcin producers and microcin determinants dominated in ExPEC strains, while colicin producers and colicin determinants were more frequent in fecal E. coli (p < 0.01). Higher production of microcin M and lower production of microcin B17, colicin Ib, and Js was detected in the set of ExPEC strains. ExPEC strains had a significantly higher prevalence of phylogenetic group B2 (52.6 %) compared to fecal E. coli strains (38.3 %; p < 0.01). CONCLUSIONS Human ExPEC strains were shown to differ from human fecal strains in a number of parameters including bacteriocin production, prevalence of several bacteriocin and virulence determinants, and prevalence of phylogenetic groups. Differences in these parameters were also identified within subgroups of ExPEC strains of diverse origin. While some microcin determinants (mM, mH47) were associated with virulent strains, other bacteriocin types (mB17, Ib, and Js) were associated with fecal flora.
Collapse
Affiliation(s)
- Lenka Micenková
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00 Brno, Czech Republic
| | - Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00 Brno, Czech Republic
| | - Martin Vrba
- Department of Clinical Microbiology, Faculty Hospital Brno, Jihlavská 20, 625 00 Brno, Czech Republic
| | - Alena Ševčíková
- Department of Clinical Microbiology, Faculty Hospital Brno, Jihlavská 20, 625 00 Brno, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00 Brno, Czech Republic
| |
Collapse
|
47
|
Bosák J, Micenková L, Doležalová M, Šmajs D. Colicins U and Y inhibit growth of Escherichia coli strains via recognition of conserved OmpA extracellular loop 1. Int J Med Microbiol 2016; 306:486-494. [PMID: 27510856 DOI: 10.1016/j.ijmm.2016.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/28/2016] [Accepted: 07/31/2016] [Indexed: 01/04/2023] Open
Abstract
Interactions of colicins U and Y with the OmpA (Outer membrane protein A) receptor molecule were studied using site-directed mutagenesis and colicin binding assay. A systematic mutagenesis of the colicin-susceptible OmpA sequence from Escherichia coli (OmpAEC) to the colicin-resistant OmpA sequence from Serratia marcescens (OmpASM) was performed in regions corresponding to extracellular OmpA loops 1-4. Susceptibility to colicins U and Y was significantly affected by the OmpA mutation in loop 1. As with functional analysis, a decrease in binding capacity of His-tagged colicin U was found for recombinant OmpA with a mutated segment in loop 1 compared to control OmpAEC. To verify the importance of the identified amino acid residues in OmpA loop 1, we introduced loop 1 from OmpAEC into OmpASM, which resulted in the substantial increase of susceptibility to colicins U and Y. In addition, colicins U and Y were tested against a panel of 118 bacteriocin non-producing strains of four Escherichia species, including E. coli (39 strains), E. fergusonii (10 strains), E. hermannii (42 strains), and E. vulneris (27 strains). A majority (82%) of E. coli strains was susceptible to colicins U and Y. Interestingly, colicins U and Y also inhibited all of the 30 tested multidrug-resistant E. coli O25b-ST131 isolates. These findings, together with the fact that OmpA loop 1 is important for bacterial virulence and is evolutionary conserved, offer the potential of using colicins U and Y as specific anti-OmpA loop 1 directed antibacterial proteins.
Collapse
Affiliation(s)
- Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00 Brno, Czech Republic
| | - Lenka Micenková
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00 Brno, Czech Republic
| | - Magda Doležalová
- Department of Environment Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, T. G. Masaryk square 275, Zlín, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00 Brno, Czech Republic.
| |
Collapse
|
48
|
Micenková L, Bosák J, Štaudová B, Kohoutová D, Čejková D, Woznicová V, Vrba M, Ševčíková A, Bureš J, Šmajs D. Microcin determinants are associated with B2 phylogroup of human fecal Escherichia coli isolates. Microbiologyopen 2016; 5:490-8. [PMID: 26987297 PMCID: PMC4906000 DOI: 10.1002/mbo3.345] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/22/2016] [Accepted: 02/03/2016] [Indexed: 12/30/2022] Open
Abstract
Escherichia coli strains are classified into four main phylogenetic groups (A, B1, B2, and D) and strains of these phylogroups differ in a number of characteristics. This study tested whether human fecal E. coli isolates belonging to different phylogroups differ in prevalence of bacteriocinogenic isolates and prevalence of individual bacteriocinogenic determinants. A set of 1283 fecal E. coli isolates from patients with different diseases was tested for the presence of DNA regions allowing classification into E. coli phylogroups and for the ability to produce bacteriocins (23 colicins and 7 microcins). Of the isolates tested, the most common was phylogroup B2 (38.3%) followed by phylogroups A (28.3%), D (26.3%) and B1 (7.2%). Altogether, 695 bacteriocin producers were identified representing 54.2% of all tested isolates. The highest prevalence of bacteriocin producers was found in group B2 (60.3%) and the lowest in group B1 (44.6%). Determinants encoding colicins E1, Ia, and microcin mV were most common in phylogroup A, determinants encoding microcins mM and mH47 were most common in phylogroup B2, and determinant encoding mB17 was most common in phylogroup D. The highest prevalence of bacteriocinogeny was found in phylogroup B2, suggesting that bacteriocinogeny and especially the synthesis of microcins was associated with virulent and resident E. coli strains.
Collapse
Affiliation(s)
- Lenka Micenková
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00, Brno, Czech Republic
| | - Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00, Brno, Czech Republic
| | - Barbora Štaudová
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00, Brno, Czech Republic
| | - Darina Kohoutová
- 2nd Department of Internal Medicine - Gastroenterology, Charles University in Prague, Faculty of Medicine at Hradec Králové, University Teaching Hospital, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Darina Čejková
- Department of Immunology, Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Vladana Woznicová
- Department of Microbiology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Pekarˇská 53, 656 91, Brno, Czech Republic
| | - Martin Vrba
- Department of Clinical Microbiology, Faculty Hospital Brno, Jihlavská 20, 625 00, Brno, Czech Republic
| | - Alena Ševčíková
- Department of Clinical Microbiology, Faculty Hospital Brno, Jihlavská 20, 625 00, Brno, Czech Republic
| | - Jan Bureš
- 2nd Department of Internal Medicine - Gastroenterology, Charles University in Prague, Faculty of Medicine at Hradec Králové, University Teaching Hospital, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00, Brno, Czech Republic
| |
Collapse
|
49
|
Fornelos N, Browning DF, Butala M. The Use and Abuse of LexA by Mobile Genetic Elements. Trends Microbiol 2016; 24:391-401. [PMID: 26970840 DOI: 10.1016/j.tim.2016.02.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/12/2016] [Accepted: 02/18/2016] [Indexed: 11/15/2022]
Abstract
The SOS response is an essential process for responding to DNA damage in bacteria. The expression of SOS genes is under the control of LexA, a global transcription factor that undergoes self-cleavage during stress to allow the expression of DNA repair functions and delay cell division until the damage is rectified. LexA also regulates genes that are not part of this cell rescue program, and the induction of bacteriophages, the movement of pathogenicity islands, and the expression of virulence factors and bacteriocins are all controlled by this important transcription factor. Recently it has emerged that when regulating the expression of genes from mobile genetic elements (MGEs), LexA often does so in concert with a corepressor. This accessory regulator can either be a host-encoded global transcription factor, which responds to various metabolic changes, or a factor that is encoded for by the MGE itself. Thus, the coupling of LexA-mediated regulation to a secondary transcription factor not only detaches LexA from its primary SOS role, but also fine-tunes gene expression from the MGE, enabling it to respond to multiple stresses. Here we discuss the mechanisms of such coordinated regulation and its implications for cells carrying such MGEs.
Collapse
Affiliation(s)
- Nadine Fornelos
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, PO Box 35, F-40014 Jyvaskyla, Finland.
| | - Douglas F Browning
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
50
|
Murphy SF, Thumbikat P. The importance of the "V"-Factor: Escherichia coli bacteremia and sepsis. Virulence 2016; 6:107-8. [PMID: 25831399 DOI: 10.1080/21505594.2014.1000766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Stephen F Murphy
- a Urology and Pathology; Urology and Pathology ; Chicago , IL USA
| | | |
Collapse
|