1
|
Sun W, Zhao B, He Z, Chang L, Song W, Chen Y. PLAC8 attenuates pulmonary fibrosis and inhibits apoptosis of alveolar epithelial cells via facilitating autophagy. Commun Biol 2025; 8:48. [PMID: 39810019 PMCID: PMC11733279 DOI: 10.1038/s42003-024-07334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/29/2024] [Indexed: 01/30/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an irreversible lung condition that progresses over time, which ultimately results in respiratory failure and mortality. In this study, we found that PLAC8 was downregulated in the lungs of IPF patients based on GEO data, in bleomycin (BLM)-induced lungs of mice, and in primary murine alveolar epithelial type II (pmATII) cells and human lung epithelial cell A549 cells. Overexpression of PLAC8 facilitated autophagy and inhibited apoptosis of pmATII cells and A549 cells in vitro. Moreover, inhibition of autophagy or overexpression of p53 partially abolished the effects of PLAC8 on cell apoptosis. ATII cell-specific overexpression of PLAC8 alleviated BLM-induced pulmonary fibrosis in mice. Mechanistically, PLAC8 interacts with VCP-UFD1-NPLOC4 complex to promote p53 degradation and facilitate autophagy, resulting in inhibiting apoptosis of alveolar epithelial cells and attenuating pulmonary fibrosis. In summary, these findings indicate that PLAC8 may be a key target for therapeutic interventions in pulmonary fibrosis.
Collapse
Affiliation(s)
- Wei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bo Zhao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhong He
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lihua Chang
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Song
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yingying Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Teles RHG, Villarinho NJ, Yamagata AS, Hiroki CT, de Oliveira MC, Terçarioli GR, Jaeger RG, Meybohm P, Burek M, Freitas VM. Valosin-containing protein (VCP), a component of tumor-derived extracellular vesicles, impairs the barrier integrity of brain microvascular endothelial cells. BBA ADVANCES 2024; 7:100130. [PMID: 39802400 PMCID: PMC11722580 DOI: 10.1016/j.bbadva.2024.100130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Metastases are the leading cause of cancer-related deaths, and their origin is not fully elucidated. Recently, studies have shown that extracellular vesicles (EVs), particularly small extracellular vesicles (sEV), can disrupt the homeostasis of organs, promoting the development of a secondary tumor. However, the role of sEV in brain endothelium and their association with metastasis related to breast cancer is unknown. Thus, this study aimed to investigate sEV-triggered changes in the phosphorylation state of proteins on the surface of brain endothelial cells, as they form the first barrier in contact with circulating tumor cells and EVs, and once identified, to modulate its interactors and effects from this through different functional assays. We used the most aggressive breast cancer cell line, MDA-MB-231, and its brain-seeking variant, MDA-MB-231-br. From these cells, small and large extracellular vesicles were harvested to treat hCMEC/D3 cells, an immortalized cell line from the human brain microvasculature. Higher levels of phosphorylation of VEGFR1 and VEGFR2 were found in hCMEC/D3 cells treated with MDA-MB-231-br sEV. By computational analysis, the Valosin-Containing Protein (VCP) was predicted to be an important sEV cargo affecting the VEGFR2 intracellular trafficking, validated by western blotting analysis. Then, VCP was modulated by cell transfection or chemical inhibition in hCMEC/D3 cells and assessed in different functional in vitro assays evidencing a significant effect on the functionality of these cells. Thus, this study demonstrates that the VCP-containing sEVs induce modifications at different phosphor sites of VEGFR2 and effectively modulate the state of brain microvascular endothelial cells.
Collapse
Affiliation(s)
- Ramon Handerson Gomes Teles
- University of São Paulo, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), São Paulo, 05508-000, Brazil
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, 97080 Würzburg, Germany
- University Würzburg, Graduate School of Life Sciences, Campus Hubland Nord, 97074 Würzburg, Germany
| | - Nicolas Jones Villarinho
- University of São Paulo, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), São Paulo, 05508-000, Brazil
| | - Ana Sayuri Yamagata
- University of São Paulo, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), São Paulo, 05508-000, Brazil
| | - Camila Tamy Hiroki
- University of São Paulo, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), São Paulo, 05508-000, Brazil
| | - Murilo Camargo de Oliveira
- University of São Paulo, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), São Paulo, 05508-000, Brazil
| | - Gisela Ramos Terçarioli
- University of São Paulo, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), São Paulo, 05508-000, Brazil
| | - Ruy Gastaldoni Jaeger
- University of São Paulo, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), São Paulo, 05508-000, Brazil
| | - Patrick Meybohm
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, 97080 Würzburg, Germany
| | - Malgorzata Burek
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, 97080 Würzburg, Germany
| | - Vanessa Morais Freitas
- University of São Paulo, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), São Paulo, 05508-000, Brazil
| |
Collapse
|
3
|
Bartak M, Krahel WD, Chodkowski M, Grel H, Walczak J, Pallepati A, Komorowski M, Cymerys J. ATPase Valosin-Containing Protein (VCP) Is Involved During the Replication and Egress of Sialodacryoadenitis Virus (SDAV) in Neurons. Int J Mol Sci 2024; 25:11633. [PMID: 39519185 PMCID: PMC11546310 DOI: 10.3390/ijms252111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Sialodacryoadenitis virus (SDAV) has been identified as the etiological agent responsible for the respiratory system and salivary gland infections in rats. The existing literature on SDAV infections is insufficient to address the topic adequately, particularly in relation to the central nervous system. In order to ascertain how SDAV gains access to neuronal cells and subsequently exits, our attention was focused on the small molecule valosin-containing protein (VCP), which is an ATPase. VCP is acknowledged for its function in the ubiquitin-mediated proteasomal degradation of proteins, including those of viral origin. To ascertain the potential influence of VCP on SDAV replication and egress, high-content screening was employed to determine the viral titer and protein content. Western blot analysis was employed to ascertain the relative expression of VCP. Real-time imaging of SDAV-infected cells and confocal imaging for qualitative morphological analysis were conducted. The Eeyarestatin I (EerI) inhibitor was employed to disrupt VCP involvement in the endoplasmic reticulum-associated protein degradation pathway (ERAD) in both pre- and post-incubation systems, with concentrations of 5 μM/mL and 25 μM/mL, respectively. We demonstrated for the first time that SDAV productively replicates in cultured primary neurons. VCP expression is markedly elevated during SDAV infection. The application of 5 μM/mL EerI in the post-treatment system yielded a statistically significant inhibition of the SDAV yield. It is likely that this modulates the efficacy of virion assembly by arresting viral proteins in the submembrane area.
Collapse
Affiliation(s)
- Michalina Bartak
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland;
| | - Weronika D. Krahel
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland;
| | - Marcin Chodkowski
- Division of Medical and Environmental Microbiology, Military Institute of Hygiene and Epidemiology, Kozielska 4 St., 01-063 Warsaw, Poland;
| | - Hubert Grel
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Jarosław Walczak
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B St., 02-106 Warsaw, Poland; (J.W.); (A.P.); (M.K.)
| | - Adithya Pallepati
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B St., 02-106 Warsaw, Poland; (J.W.); (A.P.); (M.K.)
- Laboratory of Single-Molecule Biophysics, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4 St., 02-109 Warsaw, Poland
| | - Michał Komorowski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B St., 02-106 Warsaw, Poland; (J.W.); (A.P.); (M.K.)
| | - Joanna Cymerys
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland;
| |
Collapse
|
4
|
Shakya A, Liu P, Godek J, McKee NW, Dodson M, Anandhan A, Ooi A, Garcia JGN, Costa M, Chapman E, Zhang DD. The NRF2-p97-NRF2 negative feedback loop. Redox Biol 2023; 65:102839. [PMID: 37573837 PMCID: PMC10428046 DOI: 10.1016/j.redox.2023.102839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/15/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023] Open
Abstract
p97 is a ubiquitin-targeted ATP-dependent segregase that regulates proteostasis, in addition to a variety of other cellular functions. Previously, we demonstrated that p97 negatively regulates NRF2 by extracting ubiquitylated NRF2 from the KEAP1-CUL3-RBX1 E3 ubiquitin ligase complex, facilitating proteasomal destruction. In the current study, we identified p97 as an NRF2-target gene that contains a functional ARE, indicating the presence of an NRF2-p97-NRF2 negative feedback loop that maintains redox homeostasis. Using CRISPR/Cas9 genome editing, we generated endogenous p97 ARE-mutated BEAS-2B cell lines. These p97 ARE-mutated cell lines exhibit altered expression of p97 and NRF2, as well as a compromised response to NRF2 inducers. Importantly, we also found a positive correlation between NRF2 activation and p97 expression in human cancer patients. Finally, using chronic arsenic-transformed cell lines, we demonstrated a synergistic effect of NRF2 and p97 inhibition in killing cancer cells with high NRF2 and p97 expression. Our study suggests dual upregulation of NRF2 and p97 occurs in certain types of cancers, suggesting that inhibition of both NRF2 and p97 could be a promising treatment strategy for stratified cancer patients.
Collapse
Affiliation(s)
- Aryatara Shakya
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Pengfei Liu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA; National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jack Godek
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Nicholas W McKee
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Annadurai Anandhan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Aikseng Ooi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Joe G N Garcia
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, FL, 33458, USA
| | - Max Costa
- Departments of Environmental Medicine, and Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10010, USA
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA.
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
5
|
Zhang X, Jiang L, Li Y, Feng Q, Sun X, Wang Y, Zhao M. Discovery of novel benzylquinazoline molecules as p97/VCP inhibitors. Front Pharmacol 2023; 14:1209060. [PMID: 37388451 PMCID: PMC10300352 DOI: 10.3389/fphar.2023.1209060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction: Protein p97 is an extensively investigated AAA ATPase with various cellular activities, including cell cycle control, ubiquitin-proteasome system, autophagy, and NF-κB activation. Method: In this study, we designed, synthesized and evaluated eight novel DBeQanalogs as potential p97 inhibitors in vivo and in vitro. Results: In the p97 ATPase inhibition assay, compounds 6 and 7 showed higher potency than the known p97 inhibitors, DBeQ and CB-5083. Compounds 4-6 dramatically induced G0/G1 phase arrest in the HCT116 cells, and compound 7 arrested the cells in both G0/G1 and S phases. Western blots showed elevated levels of SQSTM/p62, ATF-4, and NF-κB in HCT116 cells with the treatment of compounds 4-7, confirming their role in inhibiting the p97 signaling pathway in cells. In addition, the IC50 of compounds 4-6 against HCT116, RPMI-8226, and s180 proliferation were 0.24-6.9 µM with comparable potency as DBeQ. However, compounds 4-6 displayed low toxicity against the normal human colon cell line. Thus, compounds 6 and 7 were proved to be potential p97 inhibitors with less cytotoxicity. In vivo studies using the s180 xenograft model have demonstrated that compound 6 inhibited tumor growth, led to a significant reduction of p97 concentration in the serum and tumor, and indicated non-toxicity on the body weight and organ-to-brain weight ratios except for the spleen at the dose of 90 μmol/kg/day for 10 days. Furthermore, the present study indicated that compound 6 may not induce s180 mice myelosuppression often observed in the p97 inhibitors. Conclusion: Compound 6 displayed high binding affinity to p97, great p97 ATPase inhibition, selective cytotoxicity, remarkable anti-tumor effect, and upregulated safety, which improved the clinical potential of p97 inhibitors.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Lingna Jiang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Yixin Li
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Qiqi Feng
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Xiulin Sun
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Yaonan Wang
- Core Facilities Centre, Capital Medical University, Beijing, China
| | - Ming Zhao
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, China
| |
Collapse
|
6
|
Lee YS, Klomp JE, Stalnecker CA, Goodwin CM, Gao Y, Droby GN, Vaziri C, Bryant KL, Der CJ, Cox AD. VCP/p97, a pleiotropic protein regulator of the DNA damage response and proteostasis, is a potential therapeutic target in KRAS-mutant pancreatic cancer. Genes Cancer 2023; 14:30-49. [PMID: 36923647 PMCID: PMC10010283 DOI: 10.18632/genesandcancer.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/26/2023] [Indexed: 03/12/2023] Open
Abstract
We and others have recently shown that proteins involved in the DNA damage response (DDR) are critical for KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) cell growth in vitro. However, the CRISPR-Cas9 library that enabled us to identify these key proteins had limited representation of DDR-related genes. To further investigate the DDR in this context, we performed a comprehensive, DDR-focused CRISPR-Cas9 loss-of-function screen. This screen identified valosin-containing protein (VCP) as an essential gene in KRAS-mutant PDAC cell lines. We observed that genetic and pharmacologic inhibition of VCP limited cell growth and induced apoptotic death. Addressing the basis for VCP-dependent growth, we first evaluated the contribution of VCP to the DDR and found that loss of VCP resulted in accumulation of DNA double-strand breaks. We next addressed its role in proteostasis and found that loss of VCP caused accumulation of polyubiquitinated proteins. We also found that loss of VCP increased autophagy. Therefore, we reasoned that inhibiting both VCP and autophagy could be an effective combination. Accordingly, we found that VCP inhibition synergized with the autophagy inhibitor chloroquine. We conclude that concurrent targeting of autophagy can enhance the efficacy of VCP inhibitors in KRAS-mutant PDAC.
Collapse
Affiliation(s)
- Ye S. Lee
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jennifer E. Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Clint A. Stalnecker
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig M. Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yanzhe Gao
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gaith N. Droby
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kirsten L. Bryant
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Channing J. Der
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrienne D. Cox
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Rodrigo I, Ballesta C, Nunes EB, Pérez P, García-Arriaza J, Arias A. Eeyarestatin I, an inhibitor of the valosin-containing protein, exhibits potent virucidal activity against the flaviviruses. Antiviral Res 2022; 207:105416. [PMID: 36113629 DOI: 10.1016/j.antiviral.2022.105416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022]
Abstract
Cellular responses to stress generally lead to the activation of the endoplasmic reticulum-associated protein degradation (ERAD) pathway. Several lines of study support that ERAD may be playing a proviral role during flaviviral infection. A key host factor in ERAD is the valosin-containing protein (VCP), an ATPase which ushers ubiquitin-tagged proteins to degradation by the proteasome. VCP exhibits different proviral activities, such as engaging in the biogenesis of viral replication organelles and facilitating flavivirus genome uncoating after the viral particle entry. To investigate the possible antiviral value of drugs targeting VCP, we tested two inhibitors: eeyarestatin I (EEY) and xanthohumol (XAN). Both compounds were highly effective in suppressing Zika virus (ZIKV) and Usutu virus (USUV) replication during infection in cell culture. Further analysis revealed an unexpected virucidal activity for EEY, but not for XAN. Preincubation of ZIKV or USUV with EEY before inoculation to cells resulted in significant decreases in infectivity in a dose- and time-dependent manner. Viral genomes in samples previously treated with EEY were more sensitive to propidium monoazide, an intercalating agent, with 10- to 100-fold decreases observed in viral RNA levels, supporting that EEY affects viral particle integrity. Altogether, these results support that EEY is a strong virucide against two unrelated flaviviruses, encouraging further studies to investigate its potential use as a broad-acting drug or the development of improved derivatives in the treatment of flaviviral infection.
Collapse
Affiliation(s)
- Imanol Rodrigo
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomedicas (CRIB), Universidad de Castilla-La Mancha (UCLM), Albacete, Spain; Unidad de Biomedicina, UCLM-CSIC, Albacete, Spain
| | - Carlos Ballesta
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomedicas (CRIB), Universidad de Castilla-La Mancha (UCLM), Albacete, Spain; Unidad de Biomedicina, UCLM-CSIC, Albacete, Spain
| | - Eliane Blanco Nunes
- Departamento de Vigilância em Zoonoses, Secretaria Municipal de Saúde Goiânia, Rodovia Go-020 km 08, Val Das Pombas, 75250-000, Goiânia, Goias State, Brazil
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologla (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigacion Biomedica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologla (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigacion Biomedica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Armando Arias
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomedicas (CRIB), Universidad de Castilla-La Mancha (UCLM), Albacete, Spain; Unidad de Biomedicina, UCLM-CSIC, Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos, UCLM, Albacete, Spain.
| |
Collapse
|
8
|
Shmara A, Perez-Rosendahl M, Murphy K, Kwon A, Smith C, Kimonis V. A clinicopathologic study of malignancy in VCP-associated multisystem proteinopathy. Orphanet J Rare Dis 2022; 17:272. [PMID: 35841038 PMCID: PMC9287862 DOI: 10.1186/s13023-022-02403-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/26/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Valosin containing protein (VCP) is an important protein with many vital functions mostly related to the ubiquitin-proteasome system that provides protein quality control. VCP-associated inclusion body myopathy with Paget disease of bone and frontotemporal dementia, also termed VCP disease and multisystem proteinopathy (MSP 1), is an autosomal dominant disorder caused by monoallelic variants in the VCP gene on human chromosome 9. VCP has also been strongly involved in cancer, with over-activity of VCP found in several cancers such as prostate, pancreatic, endometrial, esophageal cancers and osteosarcoma. Since MSP1 is caused by gain of function variants in the VCP gene, we hypothesized our patients would show increased risk for developing malignancies. We describe cases of 3 rare malignancies and 4 common cancers from a retrospective dataset. RESULTS Upon surveying 106 families with confirmed VCP variants, we found a higher rate of rare tumors including malignant peripheral nerve sheath tumor, anaplastic pleomorphic xanthoastrocytoma and thymoma. Some of these subjects developed cancer before displaying other classic VCP disease manifestations. We also present cases of common cancers; however, we did not find an increased rate compared to the general population. This could be related to the early mortality associated with this disease, since most patients die in their 50-60 s due to respiratory failure or cardiomyopathy which is earlier than the age at which most cancers appear. CONCLUSION This is the first study that expands the phenotype of VCP disease to potentially include rare cancers and highlights the importance of further investigation of the role of VCP in cancer development. The results of this study in VCP disease patients suggest that patients may be at an increased risk for rare tumors. A larger study will determine if patients with VCP disease develop cancer at a higher rate than the general population. If that is the case, they should be followed up more frequently and screened for recurrence and metastasis of their cancer.
Collapse
Affiliation(s)
- Alyaa Shmara
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California-Irvine, Lab and FEDEX: Hewitt Hall, Rm 2038, Health Sciences Rd., Irvine, CA, 92697, USA
| | | | - Kady Murphy
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California-Irvine, Lab and FEDEX: Hewitt Hall, Rm 2038, Health Sciences Rd., Irvine, CA, 92697, USA
| | - Ashley Kwon
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California-Irvine, Lab and FEDEX: Hewitt Hall, Rm 2038, Health Sciences Rd., Irvine, CA, 92697, USA
| | - Charles Smith
- Department of Neurology and Sanders-Brown Center On Aging, University of Kentucky, Lexington, KY, USA
| | - Virginia Kimonis
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California-Irvine, Lab and FEDEX: Hewitt Hall, Rm 2038, Health Sciences Rd., Irvine, CA, 92697, USA.
| |
Collapse
|
9
|
VCP interaction with HMGB1 promotes hepatocellular carcinoma progression by activating the PI3K/AKT/mTOR pathway. J Transl Med 2022; 20:212. [PMID: 35562734 PMCID: PMC9102726 DOI: 10.1186/s12967-022-03416-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/27/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common pathological type of liver cancer. Valosin-containing protein (VCP) is a member of the AAA-ATPase family associated with multiple molecular functions and involved in tumor metastasis and prognosis. However, the role of VCP in HCC progression is still unclear. METHODS We examined the expression of VCP in HCC using the RNA sequencing and microarray data from public databases and measured it in clinical samples and cell lines by western blot, and immunohistochemistry (IHC). We also evaluated the correlation between VCP and clinical features. The VCP-interacting proteins were identified by co-immunoprecipitation combined with mass spectrometry (CoIP/MS). The underlying molecular mechanisms were investigated using in vitro and in vivo models of HCC. RESULTS We found that VCP expression is significantly increased in tumor tissues and is associated with advanced TNM stages and poorer prognosis in HCC patients. In vitro analyses revealed that VCP overexpression promoted HCC cell proliferation, migration, and invasion via PI3K/AKT/mTOR pathway activation. Conversely, VCP knockdown resulted in the reverse phenotypes. In vivo studies indicated that up-regulated VCP expression accelerated tumor growth in a subcutaneous HCC model. The D1 domain of VCP and A box of HMGB1 were identified as the critical regions for their interaction, and D1 area was required for the tumor-promoting effects induced by VCP expression. VCP enhanced the protein stability of HMGB1 by decreasing its degradation via ubiquitin-proteasome process. Inhibition of HMGB1 markedly attenuated VCP-mediated HCC progression and downstream activation of PI3K/AKT/mTOR signals. CONCLUSION Collectively, these findings demonstrate that VCP is a potential prognostic biomarker in HCC and exhibits oncogenic roles via PI3K/AKT/mTOR pathway activation. HMGB1 played an essential role in VCP-mediated HCC progression, indicating that VCP and HMGB1 are potential therapeutic targets in human HCC.
Collapse
|
10
|
Ge Y, Lin X, Zhang Q, Lin D, Luo L, Wang H, Li Z. Xp11.2 Translocation Renal Cell Carcinoma With TFE3 Rearrangement: Distinct Morphological Features and Prognosis With Different Fusion Partners. Front Oncol 2021; 11:784993. [PMID: 34917511 PMCID: PMC8668609 DOI: 10.3389/fonc.2021.784993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/08/2021] [Indexed: 01/20/2023] Open
Abstract
BackgroundRenal cell carcinoma (RCC) associated with Xp11.2 translocation/TFE3 gene fusion is a rare and new subtype of RCC and was classified by the WHO in 2004. Since then, multiple 5′ fusion partners for TFE3 have been reported; however, the impact of individual fusion variant on specific clinicopathologic features of Xp11.2 RCCs has not been well defined.MethodsFour Xp11.2 translocation RCCs were identified by morphological, immunostaining, and fluorescence in situ hybridization (FISH) assays from 200 patients who attended Guangdong General Hospital between January 2017 and January 2020. All these four cases were further analyzed by RNA sequencing to explore their TFE3 gene fusion partners. The clinicopathologic features, including clinical manifestations, pathological findings, treatment strategies, clinical outcomes, and follow-up information on Xp11.2 translocation RCCs, were recorded and evaluated.ResultsThese four cases affected one male and three females. The median age was 13 years at the time of diagnosis (range = 4–20 years). All the examined tumors were unilateral and unifocal. The largest diameter of these tumors ranged from 2.0 to 10.0 cm, and the average was 5.55 cm. Regional lymph node or distant metastasis developed in two patients. Three cases demonstrated known fusions: ASPCR1–TFE3 (two cases) and PRCC–TFE3 (one case). However, one case showed an unreported VCP–TFE3 fusion gene in Xp11.2 translocation RCCs. Immunohistochemistry results revealed tumor cells diffusely positive for TFE3, but have no consistency in other markers. Moreover, there were different clinical prognoses among the different variant TFE3 rearrangements; RCC patients with VCP–TFE3 translocation had worse prognosis compared to those with other fusion types. Follow-up were available for all the patients and ranged from 3 to 36 months. Three patients were without evidence of disease progression, while that with VCP–TFE3 fusion died of the disease 3 months after the diagnosis.ConclusionIn conclusion, our data expand the list of TFE3 gene fusion partners and the clinicopathologic features of Xp11.2 RCCs with specific TFE3 gene fusions. We identified a novel VCP–TFE3 fusion in Xp11.2 translocation RCCs for the first time, which has unique morphology and worse prognosis than those with other variant TFE3 rearrangements. Integration of morphological, immunohistochemical, and molecular methods is often necessary for the precise diagnosis and optimal clinical management of malignant tumors.
Collapse
Affiliation(s)
- Yan Ge
- Department of Pathology, Guangdong Provincial People’s Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xingtao Lin
- Department of Pathology, Guangdong Provincial People’s Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qingling Zhang
- Department of Pathology, Guangdong Provincial People’s Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Danyi Lin
- Department of Pathology, Guangdong Provincial People’s Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Luqiao Luo
- Department of Pathology, Guangdong Provincial People’s Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huiling Wang
- Department of General Surgery, Guangdong Provincial People’s Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Huiling Wang, ; Zhi Li,
| | - Zhi Li
- Department of Pathology, Guangdong Provincial People’s Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Huiling Wang, ; Zhi Li,
| |
Collapse
|
11
|
Valosin-Containing Protein (VCP)/p97: A Prognostic Biomarker and Therapeutic Target in Cancer. Int J Mol Sci 2021; 22:ijms221810177. [PMID: 34576340 PMCID: PMC8469696 DOI: 10.3390/ijms221810177] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/02/2023] Open
Abstract
Valosin-containing protein (VCP)/p97, a member of the AAA+ ATPase family, is a molecular chaperone recruited to the endoplasmic reticulum (ER) membrane by binding to membrane adapters (nuclear protein localization protein 4 (NPL4), p47 and ubiquitin regulatory X (UBX) domain-containing protein 1 (UBXD1)), where it is involved in ER-associated protein degradation (ERAD). However, VCP/p97 interacts with many cofactors to participate in different cellular processes that are critical for cancer cell survival and aggressiveness. Indeed, VCP/p97 is reported to be overexpressed in many cancer types and is considered a potential cancer biomarker and therapeutic target. This review summarizes the role of VCP/p97 in different cancers and the advances in the discovery of small-molecule inhibitors with therapeutic potential, focusing on the challenges associated with cancer-related VCP mutations in the mechanisms of resistance to inhibitors.
Collapse
|
12
|
Hoq MR, Vago FS, Li K, Kovaliov M, Nicholas RJ, Huryn DM, Wipf P, Jiang W, Thompson DH. Affinity Capture of p97 with Small-Molecule Ligand Bait Reveals a 3.6 Å Double-Hexamer Cryoelectron Microscopy Structure. ACS NANO 2021; 15:8376-8385. [PMID: 33900731 PMCID: PMC11752781 DOI: 10.1021/acsnano.0c10185] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent progress in the development of affinity grids for cryoelectron microscopy (cryo-EM) typically employs genetic engineering of the protein sample such as histidine or Spy tagging, immobilized antibody capture, or nonselective immobilization via electrostatic interactions or Schiff base formation. We report a powerful and flexible method for the affinity capture of target proteins for cryo-EM analysis that utilizes small-molecule ligands as bait for concentrating human target proteins directly onto the grid surface for single-particle reconstruction. This approach is demonstrated for human p97, captured using two different small-molecule high-affinity ligands of this AAA+ ATPase. Four electron density maps are revealed, each representing a p97 conformational state captured from solution, including a double-hexamer structure resolved to 3.6 Å. These results demonstrate that the noncovalent capture of protein targets on EM grids modified with high-affinity ligands can enable the structure elucidation of multiple configurational states of the target and potentially inform structure-based drug design campaigns.
Collapse
Affiliation(s)
- Md Rejaul Hoq
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Frank S. Vago
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Kunpeng Li
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Marina Kovaliov
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh Pennsylvania 15261, USA
| | - Robert J. Nicholas
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Donna M. Huryn
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh Pennsylvania 15261, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Wen Jiang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Center for Cancer Research, West Lafayette, Indiana 47907, USA
| | - David H. Thompson
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Center for Cancer Research, West Lafayette, Indiana 47907, USA
| |
Collapse
|
13
|
Zhang Y, Xie X, Wang X, Wen T, Zhao C, Liu H, Zhao B, Zhu Y. Discovery of novel pyrimidine molecules containing boronic acid as VCP/p97 Inhibitors. Bioorg Med Chem 2021; 38:116114. [PMID: 33831696 DOI: 10.1016/j.bmc.2021.116114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 01/08/2023]
Abstract
Valine-containing protein (VCP) is a member of the adenosine triphosphate family involved in a variety of cellular activities. VCP/p97 is capable of maintaining protein homeostasis and mediating the degradation of misfolded polypeptides by the ubiquitin-proteasome system (UPS). In this manuscript, a series of novel p97 inhibitors with pyrimidine as core structure were designed, synthesized and biologically evaluated. Based on the enzymatic results, a detailed structure-activity relationship discussion of the synthesized compounds was carried out. Furthermore, cellular activities of the compounds with enzymatic potency of less than 200 nM were investigated by using A549 and RPMI8226 cell lines. Among the screened inhibitors, compound 17 (IC50, 54.7 nM) showed good enzymatic activity. Investigation of cellular activities with non-small cell lung cancer A549 and multiple myeloma (MM) RPMI8226 further confirmed the potency of 17 with the IC50 values of 2.80 μM and 0.86 μM, respectively. Compound 17 is now being developed as a candidate. Finally, docking studies were carried out to explore the possible binding mode between the active inhibitor 17 and p97.
Collapse
Affiliation(s)
- Yonglei Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, PR China
| | - Xiaomin Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, PR China
| | - Xueyuan Wang
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, PR China
| | - Tiantian Wen
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, PR China
| | - Chi Zhao
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, PR China
| | - Hailong Liu
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, PR China
| | - Bo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, PR China.
| | - Yongqiang Zhu
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, PR China.
| |
Collapse
|
14
|
Bouwer MF, Hamilton KE, Jonker PB, Kuiper SR, Louters LL, Looyenga BD. NMS-873 functions as a dual inhibitor of mitochondrial oxidative phosphorylation. Biochimie 2021; 185:33-42. [PMID: 33727138 DOI: 10.1016/j.biochi.2021.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 11/18/2022]
Abstract
Small-molecule inhibitors of enzyme function are critical tools for the study of cell biological processes and for treatment of human disease. Identifying inhibitors with suitable specificity and selectivity for single enzymes, however, remains a challenge. In this study we describe our serendipitous discovery that NMS-873, a compound that was previously identified as a highly selective allosteric inhibitor of the ATPase valosin-containing protein (VCP/p97), rapidly induces aerobic fermentation in cultured human and mouse cells. Our further investigation uncovered an unexpected off-target effect of NMS-873 on mitochondrial oxidative phosphorylation, specifically as a dual inhibitor of Complex I and ATP synthase. This work points to the need for caution regarding the interpretation of cell survival data associated with NMS-873 treatment and indicates that cellular toxicity associated with its use may be caused by both VCP/p97-dependent and VCP/p97-independent mechanisms.
Collapse
Affiliation(s)
- Miranda F Bouwer
- Calvin University, Department of Chemistry & Biochemistry, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Kathryn E Hamilton
- Calvin University, Department of Chemistry & Biochemistry, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Patrick B Jonker
- Calvin University, Department of Chemistry & Biochemistry, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Sam R Kuiper
- Calvin University, Department of Chemistry & Biochemistry, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Larry L Louters
- Calvin University, Department of Chemistry & Biochemistry, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Brendan D Looyenga
- Calvin University, Department of Chemistry & Biochemistry, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA.
| |
Collapse
|
15
|
Desdicioglu R, Sahin C, Yavuz F, Cayli S. Disruption of p97/VCP induces autophagosome accumulation, cell cycle arrest and apoptosis in human choriocarcinoma cells. Mol Biol Rep 2021; 48:2163-2171. [PMID: 33620660 DOI: 10.1007/s11033-021-06225-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/09/2021] [Indexed: 12/26/2022]
Abstract
Gestational choriocarcinoma is aggressive trophoblastic disease. The development, progression and the cure of this disease is not well-established. p97/Valosin containing protein has been shown to play critical roles in many cellular processes. In various cancers, higher expression of p97/VCP has been reported and targeting of p97/VCP with its spesific inhibitors or siRNA's (siVCP) in cancer therapy was suggested. However, no study is avaible about the expression and function of p97/VCP in gestational choriocarcinoma. Hence, the aim of the study was to evaluate effects of p97/VCP inhibitor, DBeQ and siVCP on choriocarcinoma cells. We use human placental choriocarcinoma cell line (Jeg3) as model to find out the effects of DBeQ and VCP siRNA's (siVCP) on apoptotic and autophagic pathway by immunflouroscence staining, Western blotting, qPCR and flow-cytometry. p97/VCP siRNA's and DBeQ induced accumulation of autophagic proteins, LC3II and p62 in the cytoplasm of Jeg3 cells detected. Concurrently, Jeg3 cells treated with DBeQ and siVCP demonstrated G0/G1 cell cycle arrest, accompanied by accumulation of poly-ubiquitinated proteins. Moreover, disruption of p97/VCP by siRNA and DBeQ inhibited cancer cell growth managing the caspases-3 and -7. Our results show that inhibition of p97/VCP activity with DBeQ and depletion of p97/VCP expression with siRNA in Jeg3 cells induce caspase activation, inhibits cell proliferation and leads to a defect in autophagosome maturation, thus providing potential target for the prevention and treatment of choriocarcinoma.
Collapse
Affiliation(s)
- Raziye Desdicioglu
- Department of Obstetrics and Gynecology, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Cansu Sahin
- Department of Histology and Embryology, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Filiz Yavuz
- Department of Obstetrics and Gynecology, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Sevil Cayli
- Department of Histology and Embryology, Ankara Yıldırım Beyazıt University, Ankara, Turkey.
| |
Collapse
|
16
|
Feng Q, Zheng J, Zhang J, Zhao M. Synthesis and In Vitro Evaluation of 2-[3-(2-Aminoethyl)-1 H-indol-1-yl]- N-benzylquinazolin-4-amine as a Novel p97/VCP Inhibitor Lead Capable of Inducing Apoptosis in Cancer Cells. ACS OMEGA 2020; 5:31784-31791. [PMID: 33344832 PMCID: PMC7745420 DOI: 10.1021/acsomega.0c04478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
P97/VCP, an endoplasmic reticulum associated protein, belongs to AAA ATPase family, ubiquitous ATPases associated with various cellular activities. Recent research has elucidated the roles of p97/VCP and evaluated its potential as a therapeutic target for some kinds of cancer diseases. We screened the small molecule compounds from a previously established library and found promise in the compound 2-[3-(2-aminoethyl)-1H-indol-1-yl]-N-benzylquinazolin-4-amine (FQ393). Data from docking simulation indicates FQ393 acts as an ATP competitor, and ATPase activity assays showed FQ393 was an inhibitor of p97/VCP. Furthermore, in vitro FQ393 is able to promote apoptosis and prohibit proliferation in a variety of cancer cell lines. Using comparative proteomic profiling of HCT-116 cells, we found significantly different canonical KEGG pathways, which revealed that the protein changes in FQ393 groups were associated with p97/VCP or tumor-related pathways. The present data suggests that FQ393 exerts antitumor activity, at least in part through p97/VCP inhibition.
Collapse
Affiliation(s)
- Qiqi Feng
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing 100069, People’s Republic
of China
- Area
Major Laboratory of Peptide and Small Molecular Drugs, Engineering
Research Center of Endogenous Prophylactic of Ministry of Education
of China, Capital Medical University, Beijing 100069, People’s Republic of China
| | - Jiaying Zheng
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing 100069, People’s Republic
of China
- Area
Major Laboratory of Peptide and Small Molecular Drugs, Engineering
Research Center of Endogenous Prophylactic of Ministry of Education
of China, Capital Medical University, Beijing 100069, People’s Republic of China
| | - Jie Zhang
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing 100069, People’s Republic
of China
- Area
Major Laboratory of Peptide and Small Molecular Drugs, Engineering
Research Center of Endogenous Prophylactic of Ministry of Education
of China, Capital Medical University, Beijing 100069, People’s Republic of China
| | - Ming Zhao
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing 100069, People’s Republic
of China
- Department
of Biomaterials, Beijing Laboratory of Biomedical Materials and Key
Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Beijing 100026, People’s Republic of China
- Area
Major Laboratory of Peptide and Small Molecular Drugs, Engineering
Research Center of Endogenous Prophylactic of Ministry of Education
of China, Capital Medical University, Beijing 100069, People’s Republic of China
| |
Collapse
|
17
|
Raudenska M, Balvan J, Fojtu M, Gumulec J, Masarik M. Unexpected therapeutic effects of cisplatin. Metallomics 2020; 11:1182-1199. [PMID: 31098602 DOI: 10.1039/c9mt00049f] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cisplatin is a widely used chemotherapeutic agent that is clinically approved to fight both carcinomas and sarcomas. It has relatively high efficiency in treating ovarian cancers and metastatic testicular cancers. It is generally accepted that the major mechanism of cisplatin anti-cancer action is DNA damage. However, cisplatin is also effective in metastatic cancers and should, therefore, affect slow-cycling cancer stem cells in some way. In this review, we focused on the alternative effects of cisplatin that can support a good therapeutic response. First, attention was paid to the effects of cisplatin at the cellular level such as changes in intracellular pH and cellular mechanical properties. Alternative cellular targets of cisplatin, and the effects of cisplatin on cancer cell metabolism and ER stress were also discussed. Furthermore, the impacts of cisplatin on the tumor microenvironment and in the whole organism context were reviewed. In this review, we try to reveal possible causes of the unexpected effectiveness of this anti-cancer drug.
Collapse
Affiliation(s)
- Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | - Jan Balvan
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Michaela Fojtu
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | - Jaromir Gumulec
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, CZ-252 50 Vestec, Czech Republic
| |
Collapse
|
18
|
Pradeep Yeola A, Akbar I, Baillargeon J, Mercy Ignatius Arokia Doss P, Paavilainen VO, Rangachari M. Protein translocation and retro-translocation across the endoplasmic reticulum are crucial to inflammatory effector CD4 + T cell function. Cytokine 2020; 129:154944. [PMID: 32146280 DOI: 10.1016/j.cyto.2019.154944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 10/24/2022]
Abstract
Effector CD4+ T cells can be classified by the cytokines they secrete, with T helper 1 (Th1) cells generating interferon (IFN)γ and Th17 cells secreting interleukin (IL)-17. Both Th1 and Th17 cells are strongly implicated in the initiation and chronicity of autoimmune diseases such as multiple sclerosis. The endoplasmic reticulum (ER) has been implicated as a potentially crucial site in regulating CD4+ T cell function. Secretory and transmembrane proteins are shuttled into the ER via the Sec61 translocon, where they undergo appropriate folding; misfolded proteins are retro-translocated from the ER in a p97-dependent manner. Here, we provide evidence that both processes are crucial to the secretion of inflammatory cytokines from effector CD4+ T cells. The pan-ER inhibitor eeeyarestatin-1 (ESI), which interferes with both Sec61 translocation and p97 retro-translocation, inhibited secretion of interferon (IFN)γ, interleukin (IL)-2 and tumor necrosis factor (TNF)α from Th1 cells in a dose-dependent manner. Selective inhibition of Sec61 by Apratoxin A (ApraA) revealed that ER translocation is crucial for Th1 cytokine secretion, while inhibition of p97 by NMS-873 also inhibited Th1 function, albeit to a lesser degree. By contrast, none of ESI, ApraA or NMS-873 could significantly reduce IL-17 secretion from Th17 cells. ApraA, but not NMS-873, reduced phosphorylation of Stat1 in Th1 cells, indicating the involvement of ER translocation in Th1 differentiation pathways. ApraA had modest effects on activation of the Th17 transcription factor Stat3, while NMS-873 had no effect. Interestingly, NMS-873 was able to reduce disease severity in CD4+ T cell-driven experimental autoimmune encephalomyelitis (EAE). Together, our data indicate that CD4+ T cell function, and Th1 cell function in particular, is dependent on protein translocation and dislocation across the ER.
Collapse
Affiliation(s)
- Asmita Pradeep Yeola
- axe Neurosciences, Centre de recherche du CHU de Québec - Université Laval, Quebec City, QC, Canada
| | - Irshad Akbar
- axe Neurosciences, Centre de recherche du CHU de Québec - Université Laval, Quebec City, QC, Canada
| | - Joanie Baillargeon
- axe Neurosciences, Centre de recherche du CHU de Québec - Université Laval, Quebec City, QC, Canada
| | | | | | - Manu Rangachari
- axe Neurosciences, Centre de recherche du CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada.
| |
Collapse
|
19
|
Sui X, Pan M, Li YM. Insights into the Design of p97-targeting Small Molecules from Structural Studies on p97 Functional Mechanism. Curr Med Chem 2020; 27:298-316. [PMID: 31584361 DOI: 10.2174/0929867326666191004162411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022]
Abstract
p97, also known as valosin-containing protein or CDC48, is a member of the AAA+ protein family that is highly conserved in eukaryotes. It binds to various cofactors in the body to perform its protein-unfolding function and participates in DNA repair, degradation of subcellular membrane proteins, and protein quality control pathways, among other processes. Its malfunction can lead to many diseases, such as inclusion body myopathy, associated with Paget's disease of bone and/or frontotemporal dementia, amyotrophic lateral sclerosis disease, and others. In recent years, many small-molecule inhibitors have been deployed against p97, including bis (diethyldithiocarbamate)- copper and CB-5083, which entered the first phase of clinical tests but failed. One bottleneck in the design of p97 drugs is that its molecular mechanism remains unclear. This paper summarizes recent studies on the molecular mechanisms of p97, which may lead to insight into how the next generation of small molecules targeting p97 can be designed.
Collapse
Affiliation(s)
- Xin Sui
- Department of Chemistry, Tsinghua University, Beijing 100086, China
| | - Man Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
| | - Yi-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| |
Collapse
|
20
|
Nam SM, Jeon YJ. Proteostasis In The Endoplasmic Reticulum: Road to Cure. Cancers (Basel) 2019; 11:E1793. [PMID: 31739582 PMCID: PMC6895847 DOI: 10.3390/cancers11111793] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
The endoplasmic reticulum (ER) is an interconnected organelle that is responsible for the biosynthesis, folding, maturation, stabilization, and trafficking of transmembrane and secretory proteins. Therefore, cells evolve protein quality-control equipment of the ER to ensure protein homeostasis, also termed proteostasis. However, disruption in the folding capacity of the ER caused by a large variety of pathophysiological insults leads to the accumulation of unfolded or misfolded proteins in this organelle, known as ER stress. Upon ER stress, unfolded protein response (UPR) of the ER is activated, integrates ER stress signals, and transduces the integrated signals to relive ER stress, thereby leading to the re-establishment of proteostasis. Intriguingly, severe and persistent ER stress and the subsequently sustained unfolded protein response (UPR) are closely associated with tumor development, angiogenesis, aggressiveness, immunosuppression, and therapeutic response of cancer. Additionally, the UPR interconnects various processes in and around the tumor microenvironment. Therefore, it has begun to be delineated that pharmacologically and genetically manipulating strategies directed to target the UPR of the ER might exhibit positive clinical outcome in cancer. In the present review, we summarize recent advances in our understanding of the UPR of the ER and the UPR of the ER-mitochondria interconnection. We also highlight new insights into how the UPR of the ER in response to pathophysiological perturbations is implicated in the pathogenesis of cancer. We provide the concept to target the UPR of the ER, eventually discussing the potential of therapeutic interventions for targeting the UPR of the ER for cancer treatment.
Collapse
Affiliation(s)
- Su Min Nam
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Young Joo Jeon
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
| |
Collapse
|
21
|
Luo H, Song H, Mao R, Gao Q, Feng Z, Wang N, Song S, Jiao R, Ni P, Ge H. Targeting valosin-containing protein enhances the efficacy of radiation therapy in esophageal squamous cell carcinoma. Cancer Sci 2019; 110:3464-3475. [PMID: 31454136 PMCID: PMC6825005 DOI: 10.1111/cas.14184] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 01/02/2023] Open
Abstract
Overcoming resistance to radiation is a great challenge in cancer therapy. Here, we highlight that targeting valosin‐containing protein (VCP) improves radiation sensitivity in esophageal squamous cell carcinoma (ESCC) cell lines and show the potential of using VCP as a prognosis marker in locally advanced ESCC treated with radiation therapy. Esophageal squamous cell carcinoma cell lines with high VCP expression were treated with VCP inhibitor combined with radiotherapy. Cell proliferation, colony formation, cell death, and endoplasmic reticulum (ER) stress signaling were evaluated. Moreover, patients with newly diagnosed locally advanced ESCC who were treated with radiotherapy were analyzed. Immunohistochemistry was used to detect the expression of VCP. The correlation between overall survival and VCP was investigated. Esophageal squamous cell carcinoma cells treated with VCP inhibitor and radiotherapy showed attenuated cell proliferation and colony formation and enhanced apoptosis. Further investigation showed this combined strategy activated the ER stress signaling involved in unfolded protein response, and inhibited the ER‐associated degradation (ERAD) pathway. Clinical analysis revealed a significant survival benefit in the low VCP expression group. Targeting VCP resulted in antitumor activity and enhanced the efficacy of radiation therapy in ESCC cells in vitro. Valosin‐containing protein is a promising and novel target. In patients with locally advanced ESCC who received radiotherapy, VCP can be considered as a useful prognostic indicator of overall survival. Valosin‐containing protein inhibitors could be developed for use as effective cancer therapies, in combination with radiation therapy.
Collapse
Affiliation(s)
- Hui Luo
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Hengli Song
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Ronghu Mao
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiang Gao
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuo Feng
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Nan Wang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuai Song
- The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ruidi Jiao
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Peizan Ni
- The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Morozov AV, Karpov VL. Proteasomes and Several Aspects of Their Heterogeneity Relevant to Cancer. Front Oncol 2019; 9:761. [PMID: 31456945 PMCID: PMC6700291 DOI: 10.3389/fonc.2019.00761] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/29/2019] [Indexed: 01/19/2023] Open
Abstract
The life of every organism is dependent on the fine-tuned mechanisms of protein synthesis and breakdown. The degradation of most intracellular proteins is performed by the ubiquitin proteasome system (UPS). Proteasomes are central elements of the UPS and represent large multisubunit protein complexes directly responsible for the protein degradation. Accumulating data indicate that there is an intriguing diversity of cellular proteasomes. Different proteasome forms, containing different subunits and attached regulators have been described. In addition, proteasomes specific for a particular tissue were identified. Cancer cells are highly dependent on the proper functioning of the UPS in general, and proteasomes in particular. At the same time, the information regarding the role of different proteasome forms in cancer is limited. This review describes the functional and structural heterogeneity of proteasomes, their association with cancer as well as several established and novel proteasome-directed therapeutic strategies.
Collapse
Affiliation(s)
- Alexey V. Morozov
- Laboratory of Regulation of Intracellular Proteolysis, W.A. Engelhardt Institute of Molecular Biology RAS, Moscow, Russia
| | | |
Collapse
|
23
|
Suvarna K, Honda K, Muroi M, Kondoh Y, Osada H, Watanabe N. A small-molecule ligand of valosin-containing protein/p97 inhibits cancer cell-accelerated fibroblast migration. J Biol Chem 2019; 294:2988-2996. [PMID: 30610116 DOI: 10.1074/jbc.ra118.004741] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/21/2018] [Indexed: 12/21/2022] Open
Abstract
Carcinoma-associated fibroblasts are fibroblasts activated by surrounding cancer cells. Carcinoma-associated fibroblasts exhibit enhanced cell migration, which plays an important role in cancer metastasis. Previously, we demonstrated enhanced migration of NIH3T3 fibroblasts when they were cultured in the presence of MCF7 breast cancer cells. Human fibroblasts displayed a similar phenomenon even when they were co-cultured with cancer cells other than MCF7 cells. In this study, we screened ∼16,000 compounds from the RIKEN Natural Products Depository chemical library for inhibitors of enhanced NIH3T3 cell migration in the presence of MCF7. We identified NPD8733 as an inhibitor of cancer cell-enhanced fibroblast migration. This inhibition was observed not only in a wound-healing co-culture assay but also in a Transwell migration assay. Using NPD8733 and a structurally similar but inactive derivative, NPD8126, on immobilized beads, we found that NPD8733, but not NPD8126, specifically binds to valosin-containing protein (VCP)/p97, a member of the ATPase-associated with diverse cellular activities (AAA+) protein family. Using VCP truncation variants, we found that NPD8733 binds to the D1 domain of VCP. Because VCP's D1 domain is important for its function, we concluded that NPD8733 may act on VCP by binding to this domain. siRNA-mediated silencing of VCP in NIH3T3 fibroblasts, but not in MCF7 cells, reduced the migration of the co-cultured NIH3T3 fibroblasts. These results indicate that MCF7 activates the migration of NIH3T3 cells through VCP and that NPD8733 binds VCP and thereby inhibits its activity.
Collapse
Affiliation(s)
- Kruthi Suvarna
- From the Bio-Active Compounds Discovery Research Unit.,the Tokyo Medical Dental University, Yushima, Tokyo 113-8510, Japan
| | - Kaori Honda
- From the Bio-Active Compounds Discovery Research Unit.,Chemical Biology Research Group, and
| | | | | | - Hiroyuki Osada
- Chemical Biology Research Group, and.,RIKEN-Max Planck Joint Research Division, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan and
| | - Nobumoto Watanabe
- From the Bio-Active Compounds Discovery Research Unit, .,the Tokyo Medical Dental University, Yushima, Tokyo 113-8510, Japan.,RIKEN-Max Planck Joint Research Division, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan and
| |
Collapse
|
24
|
Milone MR, Lombardi R, Roca MS, Bruzzese F, Addi L, Pucci B, Budillon A. Novel pathways involved in cisplatin resistance identified by a proteomics approach in non‐small‐cell lung cancer cells. J Cell Physiol 2018; 234:9077-9092. [DOI: 10.1002/jcp.27585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/18/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Maria Rita Milone
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS‐Fondazione G. Pascale Napoli Italy
| | - Rita Lombardi
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS‐Fondazione G. Pascale Napoli Italy
| | - Maria Serena Roca
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS‐Fondazione G. Pascale Napoli Italy
| | - Francesca Bruzzese
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS‐Fondazione G. Pascale Napoli Italy
| | - Laura Addi
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS‐Fondazione G. Pascale Napoli Italy
| | - Biagio Pucci
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS‐Fondazione G. Pascale Napoli Italy
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS‐Fondazione G. Pascale Napoli Italy
| |
Collapse
|
25
|
Almiron Bonnin DA, Havrda MC, Israel MA. Glioma Cell Secretion: A Driver of Tumor Progression and a Potential Therapeutic Target. Cancer Res 2018; 78:6031-6039. [PMID: 30333116 DOI: 10.1158/0008-5472.can-18-0345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/30/2018] [Accepted: 08/14/2018] [Indexed: 11/16/2022]
Abstract
Cellular secretion is an important mediator of cancer progression. Secreted molecules in glioma are key components of complex autocrine and paracrine pathways that mediate multiple oncogenic pathologies. In this review, we describe tumor cell secretion in high-grade glioma and highlight potential novel therapeutic opportunities. Cancer Res; 78(21); 6031-9. ©2018 AACR.
Collapse
Affiliation(s)
- Damian A Almiron Bonnin
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Matthew C Havrda
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Mark A Israel
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. .,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.,Departments of Medicine and Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
26
|
Bastola P, Oien DB, Cooley M, Chien J. Emerging Cancer Therapeutic Targets in Protein Homeostasis. AAPS JOURNAL 2018; 20:94. [PMID: 30151644 DOI: 10.1208/s12248-018-0254-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022]
Abstract
Genomic aberrations inside malignant cells through copy number alterations, aneuploidy, and mutations can exacerbate misfolded and unfolded protein burden resulting in increased proteotoxic stress. Increased proteotoxic stress can be deleterious to malignant cells; therefore, these cells rely heavily on the protein quality control mechanisms for survival and proliferation. Components of the protein quality control, such as the unfolded protein response, heat shock proteins, autophagy, and the ubiquitin proteasome system, orchestrate a cascade of downstream events that allow the mitigation of the proteotoxic stress. This dependency makes components of the protein quality control mechanisms attractive targets in cancer therapeutics. In this review, we explore the components of the protein homeostasis especially focusing on the emerging cancer therapeutic agents/targets that are being actively pursued actively.
Collapse
Affiliation(s)
- Prabhakar Bastola
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM, 87131, USA.,Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66130, USA
| | - Derek B Oien
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM, 87131, USA
| | - Megan Cooley
- Methods Development, Small Molecules, PRA Health Sciences, Lenexa, KS, 66215, USA
| | - Jeremy Chien
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM, 87131, USA.
| |
Collapse
|
27
|
Parisi E, Yahya G, Flores A, Aldea M. Cdc48/p97 segregase is modulated by cyclin-dependent kinase to determine cyclin fate during G1 progression. EMBO J 2018; 37:embj.201798724. [PMID: 29950310 DOI: 10.15252/embj.201798724] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/14/2018] [Accepted: 06/12/2018] [Indexed: 01/26/2023] Open
Abstract
Cells sense myriad signals during G1, and a rapid response to prevent cell cycle entry is of crucial importance for proper development and adaptation. Cln3, the most upstream G1 cyclin in budding yeast, is an extremely short-lived protein subject to ubiquitination and proteasomal degradation. On the other hand, nuclear accumulation of Cln3 depends on chaperones that are also important for its degradation. However, how these processes are intertwined to control G1-cyclin fate is not well understood. Here, we show that Cln3 undergoes a challenging ubiquitination step required for both degradation and full activation. Segregase Cdc48/p97 prevents degradation of ubiquitinated Cln3, and concurrently stimulates its ER release and nuclear accumulation to trigger Start. Cdc48/p97 phosphorylation at conserved Cdk-target sites is important for recruitment of specific cofactors and, in both yeast and mammalian cells, to attain proper G1-cyclin levels and activity. Cdk-dependent modulation of Cdc48 would subjugate G1 cyclins to fast and reversible state switching, thus arresting cells promptly in G1 at developmental or environmental checkpoints, but also resuming G1 progression immediately after proliferative signals reappear.
Collapse
Affiliation(s)
- Eva Parisi
- Molecular Biology Institute of Barcelona IBMB-CSIC, Barcelona, Catalonia, Spain
| | - Galal Yahya
- Molecular Biology Institute of Barcelona IBMB-CSIC, Barcelona, Catalonia, Spain.,Department of Microbiology and Immunology, School of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Alba Flores
- Molecular Biology Institute of Barcelona IBMB-CSIC, Barcelona, Catalonia, Spain
| | - Martí Aldea
- Molecular Biology Institute of Barcelona IBMB-CSIC, Barcelona, Catalonia, Spain .,Departament de Ciències Bàsiques, Universitat Internacional de Catalunya, Barcelona, Catalonia, Spain
| |
Collapse
|
28
|
Duscharla D, Reddy Kami Reddy K, Dasari C, Bhukya S, Ummanni R. Interleukin-6 induced overexpression of valosin-containing protein (VCP)/p97 is associated with androgen-independent prostate cancer (AIPC) progression. J Cell Physiol 2018; 233:7148-7164. [PMID: 29693262 DOI: 10.1002/jcp.26639] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/30/2018] [Indexed: 12/21/2022]
Abstract
Though Androgen deprivation therapy (ADT) is effective initially, numerous patients become resistant to it and develop castration resistant PCa (CRPC). Cytokines promotes ligand independent activation of AR. Interleukin-6 (IL-6) levels are elevated in CRPC patients and regulate AR activity. However, progression to CRPC is not fully understood. In this study, we analyzed differential protein expression in LNCaP cells treated with IL-6 using proteomics. Results revealed altered expression of 27 proteins and Valosin-containing protein (VCP)/p97 plays a predominant role in co-regulation of altered proteins. Interestingly, IL-6 induced VCP expression through Pim-1 via STAT3 is AR independent there by suggesting a role for VCP in CRPC. Transfection of LNCaP cells for VCP overexpression showed an increased cell proliferation, migration, and invasion where as its inhibition by NMS-873 showed the reverse effect causing cell death. Mechanistic studies demonstrate that cell death occurs due to apoptosis by endoplasmic reticulum (ER) stress, elevated cell cycle inhibitors p21, p27kip1, and active PARP and reduced Bcl-2. VCP promotes cell invasion and migration by altering E-cadherin and Vimentin levels inversely triggering EMT of PCa cells. VCP immunostaining revealed no staining in BPH but strong staining in PCa. This study determines VCP may play an important role in progression to CRPC and it can be a favorable target with to develop new therapies to treat ADT resistant prostate cancer.
Collapse
Affiliation(s)
- Divya Duscharla
- Center for Chemical Biology, Indian Institute of Chemical Technology (IICT), Hyderabad, India.,Center for Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Karthik Reddy Kami Reddy
- Center for Chemical Biology, Indian Institute of Chemical Technology (IICT), Hyderabad, India.,Center for Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Chandrashekhar Dasari
- Center for Chemical Biology, Indian Institute of Chemical Technology (IICT), Hyderabad, India.,Center for Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Supriya Bhukya
- Center for Chemical Biology, Indian Institute of Chemical Technology (IICT), Hyderabad, India
| | - Ramesh Ummanni
- Center for Chemical Biology, Indian Institute of Chemical Technology (IICT), Hyderabad, India.,Center for Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| |
Collapse
|
29
|
AAA-ATPase p97 suppresses apoptotic and autophagy-associated cell death in rheumatoid arthritis synovial fibroblasts. Oncotarget 2018; 7:64221-64232. [PMID: 27623077 PMCID: PMC5325437 DOI: 10.18632/oncotarget.11890] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 09/02/2016] [Indexed: 01/02/2023] Open
Abstract
Valosin containing protein (p97) is a chaperone implicated in a large number of biological processes including endoplasmic reticulum (ER)-associated protein degradation and autophagy. Silencing of p97 in rheumatoid arthritis (RA) synovial fibroblasts (RASFs) increased the amount of polyubiquitinated proteins, whereas silencing of its interaction partner histone deacetylase 6 (HDAC6) had no effect. Furthermore, silencing of p97 in RASFs increased not only rates of apoptotic cell death induced by TRAIL but also induced an autophagy-associated cell death during ER stress that was accompanied by the formation of polyubiquitinated protein aggregates and large vacuoles. Finally, we demonstrated an anti-arthritic effect of siRNAs targeting p97 in collagen-induced arthritis in rats. Our data indicate that p97 may be a new potential target in the treatment of RA.
Collapse
|
30
|
Interplay between P-Glycoprotein Expression and Resistance to Endoplasmic Reticulum Stressors. Molecules 2018; 23:molecules23020337. [PMID: 29415493 PMCID: PMC6017601 DOI: 10.3390/molecules23020337] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
Multidrug resistance (MDR) is a phenotype of cancer cells with reduced sensitivity to a wide range of unrelated drugs. P-glycoprotein (P-gp)—a drug efflux pump (ABCB1 member of the ABC transporter gene family)—is frequently observed to be a molecular cause of MDR. The drug-efflux activity of P-gp is considered as the underlying mechanism of drug resistance against P-gp substrates and results in failure of cancer chemotherapy. Several pathological impulses such as shortages of oxygen and glucose supply, alterations of calcium storage mechanisms and/or processes of protein N-glycosylation in the endoplasmic reticulum (ER) leads to ER stress (ERS), characterized by elevation of unfolded protein cell content and activation of the unfolded protein response (UPR). UPR is responsible for modification of protein folding pathways, removal of misfolded proteins by ER associated protein degradation (ERAD) and inhibition of proteosynthesis. However, sustained ERS may result in UPR-mediated cell death. Neoplastic cells could escape from the death pathway induced by ERS by switching UPR into pro survival mechanisms instead of apoptosis. Here, we aimed to present state of the art information about consequences of P-gp expression on mechanisms associated with ERS development and regulation of the ERAD system, particularly focused on advances in ERS-associated therapy of drug resistant malignancies.
Collapse
|
31
|
Co-selected mutations in VCP: a novel mechanism of resistance to VCP inhibitors. Cell Death Dis 2018; 9:35. [PMID: 29348605 PMCID: PMC5833740 DOI: 10.1038/s41419-017-0049-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 11/08/2022]
|
32
|
Gareau A, Rico C, Boerboom D, Nadeau ME. In vitro efficacy of a first-generation valosin-containing protein inhibitor (CB-5083) against canine lymphoma. Vet Comp Oncol 2018; 16:311-317. [PMID: 29314493 DOI: 10.1111/vco.12380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 11/26/2022]
Abstract
Valosin-containing protein (VCP), through its critical role in the maintenance of protein homeostasis, is a promising target for the treatment of several malignancies, including canine lymphoma. CB-5083, a first-in-class VCP inhibitor, exerts cytotoxicity through the induction of irreversible proteotoxic stress and possesses a broad spectrum of anticancer activity. Here, we determined the cytotoxicity CB-5083 in canine lymphoma cells and its mechanism of action in vitro. Canine lymphoma cell lines were treated with varying concentrations of CB-5083 and assessed for viability by trypan blue exclusion and apoptosis by caspase activity assays. The mechanism of CB-5083 action was determined by immunoblotting and RT-qPCR analyses of Lys48 ubiquitination and markers of ER stress (DDIT3), autophagy (SQSTM1, MAP1LC3A) and DNA damage (γH2AX). Unfolded protein response markers were also evaluated by immunoblotting (eIF2α, P-eIF2α) and RT-qPCR (ATF4). CB-5083 treatment resulted in preferential cytotoxicity in canine lymphoma cell lines over control peripheral blood mononuclear cells. CB-5083 rapidly disrupted the ubiquitin-dependent protein degradation system, inducing sustained ER stress as indicated by a dramatic increase in DDIT3. Activation of the unfolded protein response occurred through the increase eIF2α phosphorylation and increased transcription of ATF4, but did not re-establish protein homeostasis. Cells rapidly underwent apoptosis through activation of the caspase cascade. These results further validate VCP as an attractive target for the treatment of canine lymphoma and identify CB-5083 as a novel therapy with clinical potential for this malignancy.
Collapse
Affiliation(s)
- A Gareau
- Faculté de Médecine vétérinaire, Université de Montreal, St-Hyacinthe, Québec, Canada J2C 7C6
| | - C Rico
- Faculté de Médecine vétérinaire, Université de Montreal, St-Hyacinthe, Québec, Canada J2C 7C6
| | - D Boerboom
- Faculté de Médecine vétérinaire, Université de Montreal, St-Hyacinthe, Québec, Canada J2C 7C6
| | - M-E Nadeau
- Faculté de Médecine vétérinaire, Université de Montreal, St-Hyacinthe, Québec, Canada J2C 7C6
| |
Collapse
|
33
|
Brockman SM, Bodas M, Silverberg D, Sharma A, Vij N. Dendrimer-based selective autophagy-induction rescues ΔF508-CFTR and inhibits Pseudomonas aeruginosa infection in cystic fibrosis. PLoS One 2017; 12:e0184793. [PMID: 28902888 PMCID: PMC5597233 DOI: 10.1371/journal.pone.0184793] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 08/31/2017] [Indexed: 12/11/2022] Open
Abstract
Background Cystic Fibrosis (CF) is a genetic disorder caused by mutation(s) in the CF-transmembrane conductance regulator (Cftr) gene. The most common mutation, ΔF508, leads to accumulation of defective-CFTR protein in aggresome-bodies. Additionally, Pseudomonas aeruginosa (Pa), a common CF pathogen, exacerbates obstructive CF lung pathology. In the present study, we aimed to develop and test a novel strategy to improve the bioavailability and potentially achieve targeted drug delivery of cysteamine, a potent autophagy-inducing drug with anti-bacterial properties, by developing a dendrimer (PAMAM-DEN)-based cysteamine analogue. Results We first evaluated the effect of dendrimer-based cysteamine analogue (PAMAM-DENCYS) on the intrinsic autophagy response in IB3-1 cells and observed a significant reduction in Ub-RFP and LC3-GFP co-localization (aggresome-bodies) by PAMAM-DENCYS treatment as compared to plain dendrimer (PAMAM-DEN) control. Next, we observed that PAMAM-DENCYS treatment shows a modest rescue of ΔF508-CFTR as the C-form. Moreover, immunofluorescence microscopy of HEK-293 cells transfected with ΔF508-CFTR-GFP showed that PAMAM-DENCYS is able to rescue the misfolded-ΔF508-CFTR from aggresome-bodies by inducing its trafficking to the plasma membrane. We further verified these results by flow cytometry and observed significant (p<0.05; PAMAM-DEN vs. PAMAM-DENCYS) rescue of membrane-ΔF508-CFTR with PAMAM-DENCYS treatment using non-permeabilized IB3-1 cells immunostained for CFTR. Finally, we assessed the autophagy-mediated bacterial clearance potential of PAMAM-DENCYS by treating IB3-1 cells infected with PA01-GFP, and observed a significant (p<0.01; PAMAM-DEN vs. PAMAM-DENCYS) decrease in intracellular bacterial counts by immunofluorescence microscopy and flow cytometry. Also, PAMAM-DENCYS treatment significantly inhibits the growth of PA01-GFP bacteria and demonstrates potent mucolytic properties. Conclusions We demonstrate here the efficacy of dendrimer-based autophagy-induction in preventing sequestration of ΔF508-CFTR to aggresome-bodies while promoting its trafficking to the plasma membrane. Moreover, PAMAM-DENCYS decreases Pa infection and growth, while showing mucolytic properties, suggesting its potential in rescuing Pa-induced ΔF508-CF lung disease that warrants further investigation in CF murine model.
Collapse
Affiliation(s)
- Scott Mackenzie Brockman
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Manish Bodas
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - David Silverberg
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Ajit Sharma
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Neeraj Vij
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
- Department of Pediatric Respiratory Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
34
|
The AAA+ ATPase p97, a cellular multitool. Biochem J 2017; 474:2953-2976. [PMID: 28819009 PMCID: PMC5559722 DOI: 10.1042/bcj20160783] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 12/17/2022]
Abstract
The AAA+ (ATPases associated with diverse cellular activities) ATPase p97 is essential to a wide range of cellular functions, including endoplasmic reticulum-associated degradation, membrane fusion, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation and chromatin-associated processes, which are regulated by ubiquitination. p97 acts downstream from ubiquitin signaling events and utilizes the energy from ATP hydrolysis to extract its substrate proteins from cellular structures or multiprotein complexes. A multitude of p97 cofactors have evolved which are essential to p97 function. Ubiquitin-interacting domains and p97-binding domains combine to form bi-functional cofactors, whose complexes with p97 enable the enzyme to interact with a wide range of ubiquitinated substrates. A set of mutations in p97 have been shown to cause the multisystem proteinopathy inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia. In addition, p97 inhibition has been identified as a promising approach to provoke proteotoxic stress in tumors. In this review, we will describe the cellular processes governed by p97, how the cofactors interact with both p97 and its ubiquitinated substrates, p97 enzymology and the current status in developing p97 inhibitors for cancer therapy.
Collapse
|
35
|
Ding R, Zhang T, Xie J, Williams J, Ye Y, Chen L. Eeyarestatin I derivatives with improved aqueous solubility. Bioorg Med Chem Lett 2016; 26:5177-5181. [DOI: 10.1016/j.bmcl.2016.09.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 12/17/2022]
|
36
|
Arai MA, Taguchi S, Komatsuzaki K, Uchiyama K, Masuda A, Sampei M, Satoh M, Kado S, Ishibashi M. Valosin-containing Protein is a Target of 5'-l Fuligocandin B and Enhances TRAIL Resistance in Cancer Cells. ChemistryOpen 2016; 5:574-579. [PMID: 28032027 PMCID: PMC5167318 DOI: 10.1002/open.201600081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Indexed: 01/25/2023] Open
Abstract
Fuligocandin B (2) is a novel natural product that can overcome TRAIL resistance. We synthesized enatiomerically pure fuligocandin B (2) and its derivative 5′‐I fuligocandin B (4), and found that the latter had an improved biological activity against the human gastric cancer cell line, AGS. We attached a biotin linker and photoactivatable aryl diazirine group to 5′‐I fuligocandin B (4), and employed a pull‐down assay to identify valosin‐containing protein (VCP/p97), an AAA ATPase, as a 5′‐I fuligocandin B (4) target protein. Knock‐down of VCP by siRNA enhanced sensitivity to TRAIL in AGS cells. In addition, 4 enhanced CHOP and DR5 protein expression, and overall intracellular levels of ubiquitinated protein. These data suggest that endoplasmic reticulum stress caused through VCP inhibition by 4 increases CHOP‐mediated DR5 up‐regulation, which enhances TRAIL‐induced cell death in AGS cells. To the best of our knowledge, this is the first example to show a relationship between VCP and TRAIL‐resistance‐overcoming activity in cancer cells.
Collapse
Affiliation(s)
- Midori A Arai
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Shota Taguchi
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Kazuhiro Komatsuzaki
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Kento Uchiyama
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Ayaka Masuda
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Mana Sampei
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Mamoru Satoh
- Division of Clinical Mass Spectrometry Chiba University Hospital 1-8-1 Inohana, Chuo-ku Chiba260-8670 Japan; Chemical Analysis Center Chiba University 1-33 Yayoi-cho, Inage-ku Chiba263-8522 Japan
| | - Sayaka Kado
- Chemical Analysis Center Chiba University 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana, Chuo-ku Chiba 260-8675 Japan
| |
Collapse
|
37
|
Walworth K, Bodas M, Campbell RJ, Swanson D, Sharma A, Vij N. Dendrimer-Based Selective Proteostasis-Inhibition Strategy to Control NSCLC Growth and Progression. PLoS One 2016; 11:e0158507. [PMID: 27434122 PMCID: PMC4951140 DOI: 10.1371/journal.pone.0158507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/16/2016] [Indexed: 02/06/2023] Open
Abstract
Elevated valosin containing protein (VCP/p97) levels promote the progression of non-small cell lung carcinoma (NSCLC). Although many VCP inhibitors are available, most of these therapeutic compounds have low specificity for targeted tumor cell delivery. Hence, the primary aim of this study was to evaluate the in vitro efficacy of dendrimer-encapsulated potent VCP-inhibitor drug in controlling non-small cell lung carcinoma (NSCLC) progression. The VCP inhibitor(s) (either in their pure form or encapsulated in generation-4 PAMAM-dendrimer with hydroxyl surface) were tested for their in vitro efficacy in modulating H1299 (NSCLC cells) proliferation, migration, invasion, apoptosis and cell cycle progression. Our results show that VCP inhibition by DBeQ was significantly more potent than NMS-873 as evident by decreased cell proliferation (p<0.0001, MTT-assay) and migration (p<0.05; scratch-assay), and increased apoptosis (p<0.05; caspase-3/7-assay) as compared to untreated control cells. Next, we found that dendrimer-encapsulated DBeQ (DDNDBeQ) treatment increased ubiquitinated-protein accumulation in soluble protein-fraction (immunoblotting) of H1299 cells as compared to DDN-control, implying the effectiveness of DBeQ in proteostasis-inhibition. We verified by immunostaining that DDNDBeQ treatment increases accumulation of ubiquitinated-proteins that co-localizes with an ER-marker, KDEL. We observed that proteostasis-inhibition with DDNDBeQ, significantly decreased cell migration rate (scratch-assay and transwell-invasion) as compared to the control-DDN treatment (p<0.05). Moreover, DDNDBeQ treatment showed a significant decrease in cell proliferation (p<0.01, MTT-assay) and increased caspase-3/7 mediated apoptotic cell death (p<0.05) as compared to DDN-control. This was further verified by cell cycle analysis (propidium-iodide-staining) that demonstrated significant cell cycle arrest in the G2/M-phase (p<0.001) by DDNDBeQ treatment as compared to control-DDN. Moreover, we confirmed by clonogenic-assay that DDNDBeQ treatment significantly (p<0.001) inhibits H1299 colony-formation as compared to control/DDN. Overall, encapsulation of potent VCP-inhibitor DBeQ into a dendrimer allows selective VCP-mediated proteostasis-inhibition for controlling NSCLC-tumor growth and progression to allow tumor-targeted sustained drug delivery.
Collapse
Affiliation(s)
- Kyla Walworth
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Manish Bodas
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Ryan John Campbell
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Doug Swanson
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Ajit Sharma
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Neeraj Vij
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
- Department of Pediatric Respiratory Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: ;
| |
Collapse
|
38
|
Vij N, Chandramani-Shivalingappa P, Van Westphal C, Hole R, Bodas M. Cigarette smoke-induced autophagy impairment accelerates lung aging, COPD-emphysema exacerbations and pathogenesis. Am J Physiol Cell Physiol 2016; 314:C73-C87. [PMID: 27413169 DOI: 10.1152/ajpcell.00110.2016] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cigarette-smoke (CS) exposure and aging are the leading causes of chronic obstructive pulmonary disease (COPD)-emphysema development, although the molecular mechanism that mediates disease pathogenesis remains poorly understood. Our objective was to investigate the impact of CS exposure and aging on autophagy and the pathophysiological changes associated with lung aging (senescence) and emphysema progression. Beas2b cells, C57BL/6 mice, and human (GOLD 0-IV) lung tissues were used to determine the central mechanism involved in CS/age-related COPD-emphysema pathogenesis. Beas2b cells and murine lungs exposed to cigarette smoke extract (CSE)/CS showed a significant ( P < 0.05) accumulation of poly-ubiquitinated proteins and impaired autophagy marker, p62, in aggresome bodies. Moreover, treatment with the autophagy-inducing antioxidant drug cysteamine significantly ( P < 0.001) decreased CSE/CS-induced aggresome bodies. We also found a significant ( P < 0.001) increase in levels of aggresome bodies in the lungs of smokers and COPD subjects in comparison to nonsmoker controls. Furthermore, the presence and levels of aggresome bodies statistically correlated with severity of emphysema and alveolar senescence. In addition to CS exposure, lungs from old mice also showed accumulation of aggresome bodies, suggesting this as a common mechanism to initiate cellular senescence and emphysema. Additionally, Beas2b cells and murine lungs exposed to CSE/CS showed cellular apoptosis and senescence, which were both controlled by cysteamine treatment. In parallel, we evaluated the impact of CS on pulmonary exacerbation, using mice exposed to CS and/or infected with Pseudomonas aeruginosa ( Pa), and confirmed cysteamine's potential as an autophagy-inducing antibacterial drug, based on its ability to control CS-induced pulmonary exacerbation ( Pa-bacterial counts) and resulting inflammation. CS induced autophagy impairment accelerates lung aging and COPD-emphysema exacerbations and pathogenesis.
Collapse
Affiliation(s)
- Neeraj Vij
- College of Medicine, Central Michigan University, Mt. Pleasant, Michigan.,Department of Pediatric Respiratory Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | | | - Colin Van Westphal
- College of Medicine, Central Michigan University, Mt. Pleasant, Michigan
| | - Rachel Hole
- College of Medicine, Central Michigan University, Mt. Pleasant, Michigan
| | - Manish Bodas
- College of Medicine, Central Michigan University, Mt. Pleasant, Michigan
| |
Collapse
|
39
|
Regulation of VCP/p97 demonstrates the critical balance between cell death and epithelial-mesenchymal transition (EMT) downstream of ER stress. Oncotarget 2016; 6:17725-37. [PMID: 25970786 PMCID: PMC4627341 DOI: 10.18632/oncotarget.3918] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/08/2015] [Indexed: 11/28/2022] Open
Abstract
Valosin-containing protein (VCP), also called p97, is a AAA+ ATPase that has been shown to be involved in endoplasmic reticulum-associated protein degradation (ERAD), mitochondria quality control and vesicle transport. We and others have previously found that disruption of VCP is sufficient to cause endoplasmic reticulum (ER) stress. We observed that induction of ER stress either following siRNA mediated loss of VCP or inhibition of VCP with eeyarestatin I potently activates an EMT-like state in cells. Interestingly, both ER stress and EMT are reversible events. Further, brief treatment of cells with eeyarestatin I increases EMT markers, and migratory and invasive properties of lung cancer cells. By examining primary lung adenocarcinoma patient samples we find that the VCP locus is heterozygously lost in nearly half of lung adenocarcinomas and VCP protein expression is decreased in nearly all primary lung tumors. Further, primary lung adenocarcinomas have increased ER stress and EMT markers. These observations have potential clinical relevance because increased ER stress and EMT markers are known to contribute to chemoresistance and poor survival of patients with lung adenocarcinoma.
Collapse
|
40
|
Wang T, Xu W, Qin M, Yang Y, Bao P, Shen F, Zhang Z, Xu J. Pathogenic Mutations in the Valosin-containing Protein/p97(VCP) N-domain Inhibit the SUMOylation of VCP and Lead to Impaired Stress Response. J Biol Chem 2016; 291:14373-14384. [PMID: 27226613 DOI: 10.1074/jbc.m116.729343] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Indexed: 11/06/2022] Open
Abstract
Valosin-containing protein/p97(VCP) is a hexameric ATPase vital to protein degradation during endoplasmic reticulum stress. It regulates diverse cellular functions including autophagy, chromatin remodeling, and DNA repair. In addition, mutations in VCP cause inclusion body myopathy, Paget disease of the bone, and frontotemporal dementia (IBMPFD), as well as amyotrophic lateral sclerosis. Nevertheless, how the VCP activities were regulated and how the pathogenic mutations affect the function of VCP during stress are not unclear. Here we show that the small ubiquitin-like modifier (SUMO)-ylation of VCP is a normal stress response inhibited by the disease-causing mutations in the N-domain. Under oxidative and endoplasmic reticulum stress conditions, the SUMOylation of VCP facilitates the distribution of VCP to stress granules and nucleus, and promotes the VCP hexamer assembly. In contrast, pathogenic mutations in the VCP N-domain lead to reduced SUMOylation and weakened VCP hexamer formation upon stress. Defective SUMOylation of VCP also causes altered co-factor binding and attenuated endoplasmic reticulum-associated protein degradation. Furthermore, SUMO-defective VCP fails to protect against stress-induced toxicity in Drosophila Therefore, our results have revealed SUMOylation as a molecular signaling switch to regulate the distribution and functions of VCP during stress response, and suggest that deficiency in VCP SUMOylation caused by pathogenic mutations will render cells vulnerable to stress insults.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Wangchao Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031,; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Meiling Qin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Yi Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031,; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Puhua Bao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Fuxiao Shen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Zhenlin Zhang
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetic Research Unit, Shanghai Jiao Tong University Affiliated People's No.6 Hospital, Shanghai 200233, China
| | - Jin Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031,.
| |
Collapse
|
41
|
Banerjee S, Bartesaghi A, Merk A, Rao P, Bulfer SL, Yan Y, Green N, Mroczkowski B, Neitz RJ, Wipf P, Falconieri V, Deshaies RJ, Milne JLS, Huryn D, Arkin M, Subramaniam S. 2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Science 2016; 351:871-5. [PMID: 26822609 PMCID: PMC6946184 DOI: 10.1126/science.aad7974] [Citation(s) in RCA: 265] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/14/2016] [Indexed: 12/13/2022]
Abstract
p97 is a hexameric AAA+ adenosine triphosphatase (ATPase) that is an attractive target for cancer drug development. We report cryo-electron microscopy (cryo-EM) structures for adenosine diphosphate (ADP)-bound, full-length, hexameric wild-type p97 in the presence and absence of an allosteric inhibitor at resolutions of 2.3 and 2.4 angstroms, respectively. We also report cryo-EM structures (at resolutions of ~3.3, 3.2, and 3.3 angstroms, respectively) for three distinct, coexisting functional states of p97 with occupancies of zero, one, or two molecules of adenosine 5'-O-(3-thiotriphosphate) (ATPγS) per protomer. A large corkscrew-like change in molecular architecture, coupled with upward displacement of the N-terminal domain, is observed only when ATPγS is bound to both the D1 and D2 domains of the protomer. These cryo-EM structures establish the sequence of nucleotide-driven structural changes in p97 at atomic resolution. They also enable elucidation of the binding mode of an allosteric small-molecule inhibitor to p97 and illustrate how inhibitor binding at the interface between the D1 and D2 domains prevents propagation of the conformational changes necessary for p97 function.
Collapse
Affiliation(s)
- Soojay Banerjee
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Alberto Bartesaghi
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Alan Merk
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Prashant Rao
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Stacie L Bulfer
- Small Molecule Discovery Center, Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94143, USA
| | - Yongzhao Yan
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Neal Green
- Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Barbara Mroczkowski
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - R Jeffrey Neitz
- Small Molecule Discovery Center, Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94143, USA
| | - Peter Wipf
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Veronica Falconieri
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Raymond J Deshaies
- Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91107, USA
| | | | - Donna Huryn
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Michelle Arkin
- Small Molecule Discovery Center, Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94143, USA
| | - Sriram Subramaniam
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
42
|
Alverez C, Bulfer SL, Chakrasali R, Chimenti MS, Deshaies RJ, Green N, Kelly M, LaPorte MG, Lewis TS, Liang M, Moore WJ, Neitz RJ, Peshkov VA, Walters MA, Zhang F, Arkin MR, Wipf P, Huryn DM. Allosteric Indole Amide Inhibitors of p97: Identification of a Novel Probe of the Ubiquitin Pathway. ACS Med Chem Lett 2016; 7:182-7. [PMID: 26985295 DOI: 10.1021/acsmedchemlett.5b00396] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/22/2015] [Indexed: 11/28/2022] Open
Abstract
A high-throughput screen to discover inhibitors of p97 ATPase activity identified an indole amide that bound to an allosteric site of the protein. Medicinal chemistry optimization led to improvements in potency and solubility. Indole amide 3 represents a novel uncompetitive inhibitor with excellent physical and pharmaceutical properties that can be used as a starting point for drug discovery efforts.
Collapse
Affiliation(s)
- Celeste Alverez
- Department
of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stacie L. Bulfer
- Department
of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, California 94158, United States
| | - Ramappa Chakrasali
- Department
of Medicinal Chemistry, and the Institute for Therapeutics Discovery
and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Michael. S. Chimenti
- Department
of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, California 94158, United States
| | - Raymond J. Deshaies
- Division
of Biology and Biological Engineering, California Institute of Technology and Howard Hughes Medical Institute, Pasadena, California 91007, United States
| | - Neal Green
- Leidos Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Mark Kelly
- Department
of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, California 94158, United States
| | - Matthew G. LaPorte
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Taber S. Lewis
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Mary Liang
- Department
of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - William J. Moore
- Leidos Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - R. Jeffrey Neitz
- Department
of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, California 94158, United States
| | - Vsevolod A. Peshkov
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael A. Walters
- Department
of Medicinal Chemistry, and the Institute for Therapeutics Discovery
and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Feng Zhang
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michelle R. Arkin
- Department
of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, California 94158, United States
| | - Peter Wipf
- Department
of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Donna M. Huryn
- Department
of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
43
|
Shivalingappa PC, Hole R, Westphal CV, Vij N. Airway Exposure to E-Cigarette Vapors Impairs Autophagy and Induces Aggresome Formation. Antioxid Redox Signal 2016; 24:186-204. [PMID: 26377848 PMCID: PMC4744882 DOI: 10.1089/ars.2015.6367] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Electronic cigarettes (e-cigarettes) are proposed to be a safer alternative to tobacco cigarettes. Hence, we evaluated if e-cigarette vapors (eCV) impair cellular proteostasis similar to cigarette smoke exposure. RESULTS First, we evaluated the impact of eCV exposure (2.5 or 7.5 mg) on Beas2b cells that showed significant increase in accumulation of total polyubiquitinated proteins (Ub, insoluble fractions) with time-dependent decrease in proteasomal activities from 1 h (p < 0.05), 3 h (p < 0.001) to 6 h (p < 0.001) of eCV exposure compared to room air control. We verified that even minimal eCV exposure (1 h) induces valosin-containing protein (VCP; p < 0.001), sequestosome-1/p62 (aberrant autophagy marker; p < 0.05), and aggresome formation (total poly-Ub-accumulation; p < 0.001) using immunoblotting (IB), fluorescence microscopy, and immunoprecipitation (IP). The inhibition of protein synthesis by 6 h of cycloheximide (50 μg/ml) treatment significantly (p < 0.01) alleviates eCV-induced (1 h) aggresome bodies. We also observed that eCV (1 h)-induced protein aggregation can activate oxidative stress, apoptosis (caspase-3/7), and senescence (p < 0.01) compared to room air controls. We verified using an autophagy inducer carbamazepine (20 μM, 6 h) or cysteamine (250 μM; 6 h, antioxidant) that eCV-induced changes in oxidative stress, poly-ub-accumulation, proteasomal activity, autophagy, apoptosis, and/or senescence could be controlled by autophagy induction. We further confirmed the role of acute eCV exposure on autophagy impairment in murine lungs (C57BL/6 and CD1) by IB (Ub, p62, VCP) and IP (VCP, p62), similar to in-vitro experiments. INNOVATION In this study, we report for the first time that eCV exposure induces proteostasis/autophagy impairment leading to oxidative stress, apoptosis, and senescence that can be ameliorated by an autophagy inducer. CONCLUSION eCV-induced autophagy impairment and aggresome formation suggest their potential role in chronic obstructive pulmonary disease-emphysema pathogenesis. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
| | - Rachel Hole
- 1 College of Medicine, Central Michigan University , Mt Pleasant, Michigan
| | - Colin Van Westphal
- 1 College of Medicine, Central Michigan University , Mt Pleasant, Michigan
| | - Neeraj Vij
- 1 College of Medicine, Central Michigan University , Mt Pleasant, Michigan.,2 Department of Pediatric Respiratory Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| |
Collapse
|
44
|
Barthelme D, Sauer RT. Origin and Functional Evolution of the Cdc48/p97/VCP AAA+ Protein Unfolding and Remodeling Machine. J Mol Biol 2015; 428:1861-9. [PMID: 26608813 DOI: 10.1016/j.jmb.2015.11.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/03/2015] [Accepted: 11/16/2015] [Indexed: 01/25/2023]
Abstract
The AAA+ Cdc48 ATPase (alias p97 or VCP) is a key player in multiple ubiquitin-dependent cell signaling, degradation, and quality control pathways. Central to these broad biological functions is the ability of Cdc48 to interact with a large number of adaptor proteins and to remodel macromolecular proteins and their complexes. Different models have been proposed to explain how Cdc48 might couple ATP hydrolysis to forcible unfolding, dissociation, or remodeling of cellular clients. In this review, we provide an overview of possible mechanisms for substrate unfolding/remodeling by this conserved and essential AAA+ protein machine and their adaption and possible biological function throughout evolution.
Collapse
Affiliation(s)
- Dominik Barthelme
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
45
|
Tran I, Ji C, Ni I, Min T, Tang D, Vij N. Role of Cigarette Smoke-Induced Aggresome Formation in Chronic Obstructive Pulmonary Disease-Emphysema Pathogenesis. Am J Respir Cell Mol Biol 2015; 53:159-73. [PMID: 25490051 DOI: 10.1165/rcmb.2014-0107oc] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cigarette smoke (CS) exposure is known to induce proteostasis imbalance that can initiate accumulation of ubiquitinated proteins. Therefore, the primary goal of this study was to determine if first- and secondhand CS induces localization of ubiquitinated proteins in perinuclear spaces as aggresome bodies. Furthermore, we sought to determine the mechanism by which smoke-induced aggresome formation contributes to chronic obstructive pulmonary disease (COPD)-emphysema pathogenesis. Hence, Beas2b cells were treated with CS extract (CSE) for in vitro experimental analysis of CS-induced aggresome formation by immunoblotting, microscopy, and reporter assays, whereas chronic CS-exposed murine model and human COPD-emphysema lung tissues were used for validation. In preliminary analysis, we observed a significant (P < 0.01) increase in ubiquitinated protein aggregation in the insoluble protein fraction of CSE-treated Beas2b cells. We verified that CS-induced ubiquitin aggregrates are localized in the perinuclear spaces as aggresome bodies. These CS-induced aggresomes (P < 0.001) colocalize with autophagy protein microtubule-associated protein 1 light chain-3B(+) autophagy bodies, whereas U.S. Food and Drug Administration-approved autophagy-inducing drug (carbamazepine) significantly (P < 0.01) decreases their colocalization and expression, suggesting CS-impaired autophagy. Moreover, CSE treatment significantly increases valosin-containing protein-p62 protein-protein interaction (P < 0.0005) and p62 expression (aberrant autophagy marker; P < 0.0001), verifying CS-impaired autophagy as an aggresome formation mechanism. We also found that inhibiting protein synthesis by cycloheximide does not deplete CS-induced ubiquitinated protein aggregates, suggesting the role of CS-induced protein synthesis in aggresome formation. Next, we used an emphysema murine model to verify that chronic CS significantly (P < 0.0005) induces aggresome formation. Moreover, we observed that autophagy induction by carbamazepine inhibits CS-induced aggresome formation and alveolar space enlargement (P < 0.001), confirming involvement of aggresome bodies in COPD-emphysema pathogenesis. Finally, significantly higher p62 accumulation in smokers and severe COPD-emphysema lungs (Global Initiative for Chronic Obstructive Lung Disease Stage III/IV) as compared with normal nonsmokers (Global Initiative for Chronic Obstructive Lung Disease Stage 0) substantiates the pathogenic role of autophagy impairment in aggresome formation and COPD-emphysema progression. In conclusion, CS-induced aggresome formation is a novel mechanism involved in COPD-emphysema pathogenesis.
Collapse
Affiliation(s)
- Ian Tran
- Departments of 1 Pediatric Respiratory Science and.,2 Biomedical Engineering, the Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Changhoon Ji
- Departments of 1 Pediatric Respiratory Science and.,2 Biomedical Engineering, the Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Inzer Ni
- Departments of 1 Pediatric Respiratory Science and.,2 Biomedical Engineering, the Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Taehong Min
- Departments of 1 Pediatric Respiratory Science and.,2 Biomedical Engineering, the Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Danni Tang
- Departments of 1 Pediatric Respiratory Science and.,2 Biomedical Engineering, the Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Neeraj Vij
- Departments of 1 Pediatric Respiratory Science and.,3 College of Medicine, Central Michigan University, Mount Pleasant, Michigan
| |
Collapse
|
46
|
Hao Q, Jiao S, Shi Z, Li C, Meng X, Zhang Z, Wang Y, Song X, Wang W, Zhang R, Zhao Y, Wong CCL, Zhou Z. A non-canonical role of the p97 complex in RIG-I antiviral signaling. EMBO J 2015; 34:2903-20. [PMID: 26471729 DOI: 10.15252/embj.201591888] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/17/2015] [Indexed: 01/13/2023] Open
Abstract
RIG-I is a well-studied sensor of viral RNA that plays a key role in innate immunity. p97 regulates a variety of cellular events such as protein quality control, membrane reassembly, DNA repair, and the cell cycle. Here, we report a new role for p97 with Npl4-Ufd1 as its cofactor in reducing antiviral innate immune responses by facilitating proteasomal degradation of RIG-I. The p97 complex is able to directly bind both non-ubiquitinated RIG-I and the E3 ligase RNF125, promoting K48-linked ubiquitination of RIG-I at residue K181. Viral infection significantly strengthens the interaction between RIG-I and the p97 complex by a conformational change of RIG-I that exposes the CARDs and through K63-linked ubiquitination of these CARDs. Disruption of the p97 complex enhances RIG-I antiviral signaling. Consistently, administration of compounds targeting p97 ATPase activity was shown to inhibit viral replication and protect mice from vesicular stomatitis virus (VSV) infection. Overall, our study uncovered a previously unrecognized role for the p97 complex in protein ubiquitination and revealed the p97 complex as a potential drug target in antiviral therapy.
Collapse
Affiliation(s)
- Qian Hao
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shi Jiao
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhubing Shi
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chuanchuan Li
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xia Meng
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhen Zhang
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanyan Wang
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaomin Song
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenjia Wang
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rongguang Zhang
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yun Zhao
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Catherine C L Wong
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhaocai Zhou
- National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
47
|
Tao S, Tillotson J, Wijeratne EMK, Xu YM, Kang M, Wu T, Lau EC, Mesa C, Mason DJ, Brown RV, Clair JJL, Gunatilaka AAL, Zhang DD, Chapman E. Withaferin A Analogs That Target the AAA+ Chaperone p97. ACS Chem Biol 2015; 10:1916-1924. [PMID: 26006219 PMCID: PMC4593394 DOI: 10.1021/acschembio.5b00367] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Understanding the mode of action (MOA) of many natural products can be puzzling with mechanistic clues that seem to lack a common thread. One such puzzle lies in the evaluation of the antitumor properties of the natural product withaferin A (WFA). A variety of seemingly unrelated pathways have been identified to explain its activity, suggesting a lack of selectivity. We now show that WFA acts as an inhibitor of the chaperone, p97, both in vitro and in cell models in addition to inhibiting the proteasome in vitro. Through medicinal chemistry, we have refined the activity of WFA toward p97 and away from the proteasome. Subsequent studies indicated that these WFA analogs retained p97 activity and cytostatic activity in cell models, suggesting that the modes of action reported for WFA could be connected by proteostasis modulation. Through this endeavor, we highlight how the parallel integration of medicinal chemistry with chemical biology offers a potent solution to one of natures' intriguing molecular puzzles.
Collapse
Affiliation(s)
- Shasha Tao
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - Joseph Tillotson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - E. M. Kithsiri Wijeratne
- Southwest Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Ya-ming Xu
- Southwest Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - MinJin Kang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - Tongde Wu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - Eric C. Lau
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - Celestina Mesa
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - Damian J. Mason
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - Robert V. Brown
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - James J. La Clair
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - A. A. Leslie Gunatilaka
- Southwest Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States,Corresponding Authors.
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States,Corresponding Authors.
| |
Collapse
|
48
|
Cui Y, Niu M, Zhang X, Zhong Z, Wang J, Pang D. High expression of valosin-containing protein predicts poor prognosis in patients with breast carcinoma. Tumour Biol 2015; 36:9919-27. [PMID: 26168958 DOI: 10.1007/s13277-015-3748-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/02/2015] [Indexed: 02/03/2023] Open
Abstract
Valosin-containing protein (VCP) is one of the AAA-ATPase superfamily members. The correlation between elevated expression of VCP and progression, prognosis, and the metastatic potential has been identified in various tumor types. However, the clinical impact of VCP in breast carcinoma has not been investigated. In the current study, the expression of VCP in 421 breast tumors and adjacent normal breast tissues was examined to investigate the correlation between VCP expression and clinicopathological features in patients with breast carcinoma. We found that the expression of VCP correlated with the TNM stage, Ki67 labeling, and lymph node metastasis (LNM). The expression of VCP was increased significantly in the cytoplasm of cancer cells compared to normal mammary epithelial cells, which was associated with decreased overall survival rates of patients with breast carcinoma (P < 0.001). In conclusion, this study demonstrates significant correlation between the cytoplasmic expression of VCP and adverse prognosis in breast carcinoma, suggesting that VCP may serve as a prognostic biomarker in breast carcinoma.
Collapse
Affiliation(s)
- Yan Cui
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin, 150081, Heilongjiang Province, China
| | - Ming Niu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin, 150081, Heilongjiang Province, China
| | - Xianyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin, 150081, Heilongjiang Province, China
| | - Zhenbin Zhong
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin, 150081, Heilongjiang Province, China
| | - Ji Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin, 150081, Heilongjiang Province, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin, 150081, Heilongjiang Province, China.
| |
Collapse
|
49
|
Nadeau MÈ, Rico C, Tsoi M, Vivancos M, Filimon S, Paquet M, Boerboom D. Pharmacological targeting of valosin containing protein (VCP) induces DNA damage and selectively kills canine lymphoma cells. BMC Cancer 2015; 15:479. [PMID: 26104798 PMCID: PMC4479320 DOI: 10.1186/s12885-015-1489-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 06/14/2015] [Indexed: 12/20/2022] Open
Abstract
Background Valosin containing protein (VCP) is a critical mediator of protein homeostasis and may represent a valuable therapeutic target for several forms of cancer. Overexpression of VCP occurs in many cancers, and often in a manner correlating with malignancy and poor outcome. Here, we analyzed VCP expression in canine lymphoma and assessed its potential as a therapeutic target for this disease. Methods VCP expression in canine lymphomas was evaluated by immunoblotting and immunohistochemistry. The canine lymphoma cell lines CLBL-1, 17–71 and CL-1 were treated with the VCP inhibitor Eeyarestatin 1 (EER-1) at varying concentrations and times and were assessed for viability by trypan blue exclusion, apoptosis by TUNEL and caspase activity assays, and proliferation by propidium iodide incorporation and FACS. The mechanism of EER-1 action was determined by immunoblotting and immunofluorescence analyses of Lys48 ubiquitin and markers of ER stress (DDIT3), autophagy (SQSTM1, MAP1LC3A) and DNA damage (γH2AFX). TRP53/ATM-dependent signaling pathway activity was assessed by immunoblotting for TRP53 and phospho-TRP53 and real-time RT-PCR measurement of Cdkn1a mRNA. Results VCP expression levels in canine B cell lymphomas were found to increase with grade. EER-1 treatment killed canine lymphoma cells preferentially over control peripheral blood mononuclear cells. EER-1 treatment of CLBL-1 cells was found to both induce apoptosis and cell cycle arrest in G1. Unexpectedly, EER-1 did not appear to act either by inducing ER stress or inhibiting the aggresome-autophagy pathway. Rather, a rapid and dramatic increase in γH2AFX expression was noted, indicating that EER-1 may act by promoting DNA damage accumulation. Increased TRP53 phosphorylation and Cdkn1a mRNA levels indicated an activation of the TRP53/ATM DNA damage response pathway in response to EER-1, likely contributing to the induction of apoptosis and cell cycle arrest. Conclusions These results correlate VCP expression with malignancy in canine B cell lymphoma. The selective activity of EER-1 against lymphoma cells suggests that VCP will represent a clinically useful therapeutic target for the treatment of lymphoma. We further suggest a mechanism of EER-1 action centered on the DNA repair response that may be of central importance for the design and characterization of VCP inhibitory compounds for therapeutic use. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1489-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie-Ève Nadeau
- Département des Sciences Cliniques, Université de Montréal, Saint-Hyacinthe, QC, J2S7C6, Canada.
| | - Charlène Rico
- Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, J2S7C6, Canada.
| | - Mayra Tsoi
- Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, J2S7C6, Canada.
| | - Mélanie Vivancos
- Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, J2S7C6, Canada.
| | - Sabin Filimon
- Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, J2S7C6, Canada.
| | - Marilène Paquet
- Département de Pathologie et de Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, J2S7C6, Canada.
| | - Derek Boerboom
- Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, J2S7C6, Canada.
| |
Collapse
|
50
|
Xiao Y, Li X, Wang H, Wen R, He J, Tang J. Epigenetic regulation of miR-129-2 and its effects on the proliferation and invasion in lung cancer cells. J Cell Mol Med 2015; 19:2172-80. [PMID: 26081366 PMCID: PMC4568922 DOI: 10.1111/jcmm.12597] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/19/2015] [Indexed: 01/11/2023] Open
Abstract
MicroRNAs (miRNAs) play a pivotal role in carcinogenesis. Dysregulation of miRNAs, both oncogenic miRNAs and tumour-suppressive miRNAs, is closely associated with cancer development and progression. The levels of miRNAs could be changed epigenetically by DNA methylation in the 5′ untranslated region (UTR) of pre-mature miRNAs. To investigate whether DNA methylation alters the expression of miR-129 in lung cancer, we did DNA methylation assays and found that 5′ UTR region of miR-129-2 gene was absolutely methylated in both A549 and SPCA-1 lung cancer cells, but totally un-methylated in 95-D cells. The expression of miR-129 was restored by 5-Aza-2’-deoxycytidine (DAC), a de-methylation agent, in both A549 and SPCA-1 cells, resulting in attenuated cell migration and invasion ability, and decreased protein level of NF-κB, which indicates the involvement of NF-κB pathway. To further illustrate the roles of miR-129 in lung tumourigenesis, we overexpressed miR-129 in lung cancer cells by transfection of miR-129 mimics, and found arrested cell proliferation at G2/M phase of cell cycle and inhibited cell invasion. These findings strongly suggest that miR-129 is a tumour suppressive miRNA, playing important roles in the development and progression of human lung cancer.
Collapse
Affiliation(s)
- Yingying Xiao
- KingMed Diagnostics and KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaoxia Li
- KingMed Diagnostics and KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Haoli Wang
- KingMed Diagnostics and KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Ruiling Wen
- KingMed Diagnostics and KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Juan He
- KingMed Diagnostics and KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jun Tang
- KingMed Diagnostics and KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|