1
|
|
2
|
Brown AG, Tulina NM, Barila GO, Hester MS, Elovitz MA. Exposure to intrauterine inflammation alters metabolomic profiles in the amniotic fluid, fetal and neonatal brain in the mouse. PLoS One 2017; 12:e0186656. [PMID: 29049352 PMCID: PMC5648237 DOI: 10.1371/journal.pone.0186656] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/04/2017] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Exposure to prenatal inflammation is associated with diverse adverse neurobehavioral outcomes in exposed offspring. The mechanism by which inflammation negatively impacts the developing brain is poorly understood. Metabolomic profiling provides an opportunity to identify specific metabolites, and novel pathways, which may reveal mechanisms by which exposure to intrauterine inflammation promotes fetal and neonatal brain injury. Therefore, we investigated whether exposure to intrauterine inflammation altered the metabolome of the amniotic fluid, fetal and neonatal brain. Additionally, we explored whether changes in the metabolomic profile from exposure to prenatal inflammation occurs in a sex-specific manner in the neonatal brain. METHODS CD-1, timed pregnant mice received an intrauterine injection of lipopolysaccharide (50 μg/dam) or saline on embryonic day 15. Six and 48 hours later mice were sacrificed and amniotic fluid, and fetal brains were collected (n = 8/group). Postnatal brains were collected on day of life 1 (n = 6/group/sex). Global biochemical profiles were determined using ultra performance liquid chromatography/tandem mass spectrometry (Metabolon Inc.). Statistical analyses were performed by comparing samples from lipopolysaccharide and saline treated animals at each time point. For the P1 brains, analyses were stratified by sex. RESULTS/CONCLUSIONS Exposure to intrauterine inflammation induced unique, temporally regulated changes in the metabolic profiles of amniotic fluid, fetal brain and postnatal brain. Six hours after exposure to intrauterine inflammation, the amniotic fluid and the fetal brain metabolomes were dramatically altered with significant enhancements of amino acid and purine metabolites. The amniotic fluid had enhanced levels of several members of the (hypo) xanthine pathway and this compound was validated as a potential biomarker. By 48 hours, the number of altered biochemicals in both the fetal brain and the amniotic fluid had declined, yet unique profiles existed. Neonatal pups exposed to intrauterine inflammation have significant alterations in their lipid metabolites, in particular, fatty acids. These sex-specific metabolic changes within the newborn brain offer an explanation regarding the sexual dimorphism of certain psychiatric and neurobehavioral disorders associated with exposure to prenatal inflammation.
Collapse
Affiliation(s)
- Amy G. Brown
- Maternal Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Natalia M. Tulina
- Maternal Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Guillermo O. Barila
- Maternal Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael S. Hester
- Maternal Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michal A. Elovitz
- Maternal Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
3
|
Liu K, Pi F, Zhang H, Ji J, Xia S, Cui F, Sun J, Sun X. Metabolomics Analysis To Evaluate the Anti-Inflammatory Effects of Polyphenols: Glabridin Reversed Metabolism Change Caused by LPS in RAW 264.7 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6070-6079. [PMID: 28644019 DOI: 10.1021/acs.jafc.7b01692] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Inflammation has been shown to play a critical role in the development of many diseases. In this study, we used metabolomics to evaluate the inflammatory effect of lipopolysaccharide (LPS) and the anti-inflammatory effect of glabridin (GB, a polyphenol from Glycurrhiza glabra L. roots) in RAW 264.7 cells. Multivariate statistical analysis showed that in comparison with the LPS group, the metabolic profile of the GB group was more similar to that of the control group. LPS impacted the amino acid, energy, and lipid metabolisms in RAW 264.7 cells, and metabolic pathway analysis showed that GB reversed some of those LPS impacts. Metabolomics analysis provided us with a new perspective to better understand the inflammatory response and the anti-inflammatory effects of GB. Metabolic pathway analysis can be an effective tool to elucidate the mechanism of inflammation and to potentially find new anti-inflammatory agents.
Collapse
Affiliation(s)
- Kaiqin Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Hongxia Zhang
- School of Foreign Studies, Shaanxi University of Technology , Xianyang, Shaanxi 723000, People's Republic of China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Shuang Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Fangchao Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
4
|
Zhu Y, Liu C, Sun Z. Early Combined Therapy with Pharmacologically Induced Hypothermia and Edaravone Exerts Neuroprotective Effects in a Rat Model of Intracerebral Hemorrhage. Cell Biochem Biophys 2017; 73:581-587. [PMID: 27352357 DOI: 10.1007/s12013-015-0584-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In present study, we evaluated acute neuroprotective effects of combined therapy with pharmacologically induced hypothermia and edaravone in a rat model of intracerebral hemorrhage (ICH). ICH was caused by injection of 0.5 U of collagenase VII to the caudate nucleus of male Sprague-Dawley rats. Sham-treated animals receive injections of normal saline instead of collagenase VII. All animals were randomly divided into five groups: sham group, ICH group, hypothermia group, edavarone (10 mg/kg) group, and combined hypothermia + edavarone group. Hypothermia was induced by injection of the second-generation neurotensin receptor agonist HPI-201 (2 mg/kg at 1 h after ICH; 1 mg/kg at 4 and 7 h after ICH). Hypothermia was sustained for at least 6 h. The study outcomes were the extent of brain edema, permeability of the blood-brain barrier (Evan's blue dye), expression of matrix metalloproteinase-9 and inflammatory cytokines (IL-1β, IL-4, IL-6, and TNF-α), and expression of apoptosis-related proteins (caspase-3, cytochrome C, Bcl-2, and Bax). Brain edema, permeability of the blood-brain barrier, and expression of metalloproteinase-9 were increased, while expression of caspase-3 and Bcl-2 was decreased by ICH. We observed that the combined therapy was significantly more potent in reverting the above negative trends induced by ICH. In conclusion, our results indicate that a combination of pharmacologically induced hypothermia and edavarone leads to potentiation of their respective neuroprotective effects.
Collapse
Affiliation(s)
- Yonglin Zhu
- Department of Geriatrics, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, 450014, Henan, China.
| | - Chunling Liu
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhikun Sun
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
5
|
Rao R, Ennis K, Lubach GR, Lock EF, Georgieff MK, Coe CL. Metabolomic analysis of CSF indicates brain metabolic impairment precedes hematological indices of anemia in the iron-deficient infant monkey. Nutr Neurosci 2016; 21:40-48. [PMID: 27499134 DOI: 10.1080/1028415x.2016.1217119] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Iron deficiency (ID) anemia leads to long-term neurodevelopmental deficits by altering iron-dependent brain metabolism. The objective of the study was to determine if ID induces metabolomic abnormalities in the cerebrospinal fluid (CSF) in the pre-anemic stage and to ascertain the aspects of abnormal brain metabolism affected. METHODS Standard hematological parameters [hemoglobin (Hgb), mean corpuscular volume (MCV), transferrin (Tf) saturation, and zinc protoporphyrin/heme (ZnPP/H)] were compared at 2, 4, 6, 8, and 12 months in iron-sufficient (IS; n = 7) and iron-deficient (ID; n = 7) infant rhesus monkeys. Five CSF metabolite ratios were determined at 4, 8, and 12 months using 1H NMR spectroscopy at 16.4 T and compared between groups and in relation to hematologic parameters. RESULTS ID infants developed ID (Tf saturation < 25%) by 4 months of age and all became anemic (Hgb < 110 g/L and MCV < 60 fL) at 6 months. Their heme indices normalized by 12 months. Pyruvate/glutamine and phosphocreatine/creatine (PCr/Cr) ratios in CSF were lower in the ID infants by 4 months (P < 0.05). The PCr/Cr ratio remained lower at 8 months (P = 0.02). ZnPP/H, an established blood marker of pre-anemic ID, was positively correlated with the CSF citrate/glutamine ratio (marginal correlation, 0.34; P < 0.001; family wise error rate = 0.001). DISCUSSION Metabolomic analysis of the CSF is sensitive for detecting the effects of pre-anemic ID on brain energy metabolism. Persistence of a lower PCr/Cr ratio at 8 months, even as hematological measures demonstrated recovery from anemia, indicate that the restoration of brain energy metabolism is delayed. Metabolomic platforms offer a useful tool for early detection of the impact of ID on brain metabolism in infants.
Collapse
Affiliation(s)
- Raghavendra Rao
- a Department of Pediatrics, Division of Neonatology , University of Minnesota , Minneapolis , USA.,b Center for Neurobehavioral Development , University of Minnesota , Minneapolis , USA
| | - Kathleen Ennis
- a Department of Pediatrics, Division of Neonatology , University of Minnesota , Minneapolis , USA
| | - Gabriele R Lubach
- c Harlow Center for Biological Psychology , University of Wisconsin-Madison , USA
| | - Eric F Lock
- d Division of Biostatistics , School of Public Health, University of Minnesota , Minneapolis , USA
| | - Michael K Georgieff
- a Department of Pediatrics, Division of Neonatology , University of Minnesota , Minneapolis , USA.,b Center for Neurobehavioral Development , University of Minnesota , Minneapolis , USA
| | - Christopher L Coe
- c Harlow Center for Biological Psychology , University of Wisconsin-Madison , USA
| |
Collapse
|
6
|
Abstract
Over the past two decades, host-response biomarkers have been extensively used by clinicians for a better understanding of normal biological processes, the complexity and severity of illnesses, or pharmacological responses to therapeutic intervention. A myriad of information can be drawn from the gender, age, dietary intake and the disease history of an individual. These biomarkers may be promising for the complete phenotyping of a cell, tissue or an organism. In neonatology, these molecular markers may help in prediction of disease severity and its outcome, thus allowing personalized interventions. In this Review, existing data in the literature on metabolites in plasma, urine and maternal milk that may offer a unique insight into the host's dynamic behavior in different neonatal conditions will be examined.
Collapse
|
7
|
Potential of metabolomics in preclinical and clinical drug development. Pharmacol Rep 2014; 66:956-63. [PMID: 25443721 DOI: 10.1016/j.pharep.2014.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 06/03/2014] [Accepted: 06/10/2014] [Indexed: 12/29/2022]
Abstract
Metabolomics is an upcoming technology system which involves detailed experimental analysis of metabolic profiles. Due to its diverse applications in preclinical and clinical research, it became an useful tool for the drug discovery and drug development process. This review covers the brief outline about the instrumentation and interpretation of metabolic profiles. The applications of metabolomics have a considerable scope in the pharmaceutical industry, almost at each step from drug discovery to clinical development. These include finding drug target, potential safety and efficacy biomarkers and mechanisms of drug action, the validation of preclinical experimental models against human disease profiles, and the discovery of clinical safety and efficacy biomarkers. As we all know, nowadays the drug discovery and development process is a very expensive, and risky business. Failures at any stage of drug discovery and development process cost millions of dollars to the companies. Some of these failures or the associated risks could be prevented or minimized if there were better ways of drug screening, drug toxicity profiling and monitoring adverse drug reactions. Metabolomics potentially offers an effective route to address all the issues associated with the drug discovery and development.
Collapse
|
8
|
Microglia toxicity in preterm brain injury. Reprod Toxicol 2014; 48:106-12. [PMID: 24768662 PMCID: PMC4155935 DOI: 10.1016/j.reprotox.2014.04.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/01/2014] [Accepted: 04/14/2014] [Indexed: 01/07/2023]
Abstract
Microglia responses in the preterm human brain in association with injury. Microglia responses in animal models of preterm brain injury. Mechanisms of microglia toxicity from in vitro primary microglia cell culture experiments.
Microglia are the resident phagocytic cells of the central nervous system. During brain development they are also imperative for apoptosis of excessive neurons, synaptic pruning, phagocytosis of debris and maintaining brain homeostasis. Brain damage results in a fast and dynamic microglia reaction, which can influence the extent and distribution of subsequent neuronal dysfunction. As a consequence, microglia responses can promote tissue protection and repair following brain injury, or become detrimental for the tissue integrity and functionality. In this review, we will describe microglia responses in the human developing brain in association with injury, with particular focus on the preterm infant. We also explore microglia responses and mechanisms of microglia toxicity in animal models of preterm white matter injury and in vitro primary microglia cell culture experiments.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW The aim of this review is to update readers on the most recent publications concerning clinical metabolomics in developing infants. RECENT FINDINGS Only a limited number of neonatal and pediatric metabolomic studies have been published, in comparison to the adult. However, this number of pediatric and neonatal papers is constantly increasing. The latest papers are related to intrauterine growth restricted and small for gestational age neonates, prematurity, mode of delivery, hypoxic ischemic encephalopathy, persistent ductus arteriosus, respiratory syndrome and surfactant therapy, cytomegalovirus infection, nephrouropathy, inborn errors of metabolism, pharmametabolomics, and nutrimetabolomics (including study of maternal milk and formula). Also numerous papers have been presented in experimental neonatology. In particular, the fluids most frequently used were as follows: urine, cord blood plasma, but also milk and stools. Each condition or disease presents a specific discriminating set of metabolites, which can be considered like a 'bar code'. SUMMARY In the near future, improved tools for metabolomic analysis (like simplified 'dipsticks' for urine) and its integration with other 'omics' will make this technology available in the clinical setting, leading to better or easier clinical decision making. Urinary metabolomics will probably be one of the most used tools in pediatrics and the metabolome will be 'our world'.
Collapse
|
10
|
Abstract
The newest 'omics' science is metabolomics, the latest offspring of genomics, considered the most innovative of the 'omics' sciences. Metabolomics, also called the 'new clinical biochemistry', is an approach based on the systematic study of the complete set of metabolites in a biological sample. The metabolome is considered the most predictive phenotype and is capable of considering epigenetic differences. It is so close to the phenotype that it can be considered the phenotype itself. In the last three years about 5000 papers have been listed in PubMed on this topic, but few data are available in the newborn. The aim of this review, after a description of background and technical procedures, is to analyse the clinical applications of metabolomics in neonatology, covering the following points: gestational age, postnatal age, type of delivery, zygosity, perinatal asphyxia, intrauterine growth restriction, prenatal inflammation and brain injury, respiratory, cardiovascular renal, metabolic diseases; sepsis, necrotizing enterocolitis and antibiotic treatment; nutritional studies on maternal milk and formula, pharma-metabolomics, long-term diseases. Pros and cons of metabolomics are also discussed. All this comes about with the non-invasive collection of a few drops of urine (exceptionally important for the neonate, especially those of low birth weight). Only time and large-scale studies to validate initial results will place metabolomics within neonatology. In any case, it is important for perinatologists to learn and understand this new technology to offer their patients the utmost in diagnostic and therapeutic opportunities.
Collapse
|
11
|
Mallard C. Innate immune regulation by toll-like receptors in the brain. ISRN NEUROLOGY 2012; 2012:701950. [PMID: 23097717 PMCID: PMC3477747 DOI: 10.5402/2012/701950] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/04/2012] [Indexed: 01/29/2023]
Abstract
The innate immune system plays an important role in cerebral health and disease. In recent years the role of innate immune regulation by toll-like receptors in the brain has been highlighted. In this paper the expression of toll-like receptors and endogenous toll-like receptor ligands in the brain and their role in cerebral ischemia will be discussed. Further, the ability of systemic toll-like receptor ligands to induce cerebral inflammation will be reviewed. Finally, the capacity of toll-like receptors to both increase (sensitization) and decrease (preconditioning/tolerance) the vulnerability of the brain to damage will be disclosed. Studies investigating the role of toll-like receptors in the developing brain will be emphasized.
Collapse
Affiliation(s)
- Carina Mallard
- Institute for Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 40530 Gothenburg, Sweden
| |
Collapse
|
12
|
Syggelou A, Iacovidou N, Atzori L, Xanthos T, Fanos V. Metabolomics in the developing human being. Pediatr Clin North Am 2012; 59:1039-58. [PMID: 23036243 DOI: 10.1016/j.pcl.2012.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Metabolomics is based on the detailed analysis of metabolites and represents a unique chemical fingerprint of an organism. This approach allows assessing the dynamic behavior of biologic systems with multiple network interactions among individual components. The field of metabolic profiling has rapidly developed over the last decade, with successful applications in various research areas including toxicology, disease diagnosis and classification, pharmacology, and nutrition. This article provides a comprehensive account of existing data in the literature from animal and clinical studies on the use of metabolomics for improved understanding of medical conditions affecting the neonate and the developing human being.
Collapse
Affiliation(s)
- Aggeliki Syggelou
- Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Athens 11527, Greece
| | | | | | | | | |
Collapse
|