1
|
Fermented Rice Bran Supplementation Prevents the Development of Intestinal Fibrosis Due to DSS-Induced Inflammation in Mice. Nutrients 2021; 13:nu13061869. [PMID: 34070845 PMCID: PMC8229226 DOI: 10.3390/nu13061869] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Fermented rice bran (FRB) is known to protect mice intestines against dextran sodium sulfate (DSS)-induced inflammation; however, the restoration of post-colitis intestinal homeostasis using FRB supplementation is currently undocumented. In this study, we observed the effects of dietary FRB supplementation on intestinal restoration and the development of fibrosis after DSS-induced colitis. DSS (1.5%) was introduced in the drinking water of mice for 5 days. Eight mice were sacrificed immediately after the DSS treatment ended. The remaining mice were divided into three groups, comprising the following diets: control, 10% rice bran (RB), and 10% FRB-supplemented. Diet treatment was continued for 2 weeks, after which half the population of mice from each group was sacrificed. The experiment was continued for another 3 weeks before the remaining mice were sacrificed. FRB supplementation could reduce the general observation of colitis and production of intestinal pro-inflammatory cytokines. FRB also increased intestinal mRNA levels of anti-inflammatory cytokine, tight junction, and anti-microbial proteins. Furthermore, FRB supplementation suppressed markers of intestinal fibrosis. This effect might have been achieved via the canonical Smad2/3 activation and the non-canonical pathway of Tgf-β activity. These results suggest that FRB may be an alternative therapeutic agent against inflammation-induced intestinal fibrosis.
Collapse
|
2
|
Li S, Jiang Q, Liu S, Zhang Y, Tian Y, Song C, Wang J, Zou Y, Anderson GJ, Han JY, Chang Y, Liu Y, Zhang C, Chen L, Zhou G, Nie G, Yan H, Ding B, Zhao Y. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat Biotechnol 2018; 36:258-264. [PMID: 29431737 DOI: 10.1038/nbt.4071] [Citation(s) in RCA: 956] [Impact Index Per Article: 136.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/09/2018] [Indexed: 12/15/2022]
Abstract
Nanoscale robots have potential as intelligent drug delivery systems that respond to molecular triggers. Using DNA origami we constructed an autonomous DNA robot programmed to transport payloads and present them specifically in tumors. Our nanorobot is functionalized on the outside with a DNA aptamer that binds nucleolin, a protein specifically expressed on tumor-associated endothelial cells, and the blood coagulation protease thrombin within its inner cavity. The nucleolin-targeting aptamer serves both as a targeting domain and as a molecular trigger for the mechanical opening of the DNA nanorobot. The thrombin inside is thus exposed and activates coagulation at the tumor site. Using tumor-bearing mouse models, we demonstrate that intravenously injected DNA nanorobots deliver thrombin specifically to tumor-associated blood vessels and induce intravascular thrombosis, resulting in tumor necrosis and inhibition of tumor growth. The nanorobot proved safe and immunologically inert in mice and Bama miniature pigs. Our data show that DNA nanorobots represent a promising strategy for precise drug delivery in cancer therapy.
Collapse
Affiliation(s)
- Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiao Jiang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
| | - Shaoli Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
- College of Pharmaceutical Science, Jilin University, Changchun, China
| | - Yanhua Tian
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chen Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
| | - Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
| | - Yiguo Zou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
| | - Gregory J Anderson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yung Chang
- School of Molecular Sciences, Center for Molecular Design and Biomimetics; School of Life Sciences, Center for Immunotherapy, Vaccines, and Virotherapy at the Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Yan Liu
- School of Molecular Sciences, Center for Molecular Design and Biomimetics; School of Life Sciences, Center for Immunotherapy, Vaccines, and Virotherapy at the Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Chen Zhang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liang Chen
- Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Guangbiao Zhou
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Yan
- School of Molecular Sciences, Center for Molecular Design and Biomimetics; School of Life Sciences, Center for Immunotherapy, Vaccines, and Virotherapy at the Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Baoquan Ding
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Zheng B, Morgan ME, van de Kant HJG, Garssen J, Folkerts G, Kraneveld AD. Transcriptional modulation of pattern recognition receptors in chronic colitis in mice is accompanied with Th1 and Th17 response. Biochem Biophys Rep 2017; 12:29-39. [PMID: 28955789 PMCID: PMC5613238 DOI: 10.1016/j.bbrep.2017.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 09/02/2016] [Accepted: 08/17/2017] [Indexed: 02/08/2023] Open
Abstract
Pattern recognition receptors (PRRs) may contribute to inflammatory bowel diseases (IBD) development due to their microbial-sensing ability and the unique microenvironment in the inflamed gut. In this study, the PRR mRNA expression profile together with T cell-associated factors in the colon was examined using a chronic colitis mice model. 8–12 week old C57BL/6 mice were exposed to multiple dextran sodium sulfate (DSS) treatments interspersed with a rest period to mimic the course of chronic colitis. The clinical features and histological data were collected. The mRNA expressions of colonic PRRs, T cell-associated components were measured. Finally, the colons were scored for Foxp3+ cells. During chronic colitis, the histological data, but not the clinical manifestations demonstrated characteristic inflammatory symptoms in the distal colon. In contrast to acute colitis, the expression of all Toll-like receptors (Tlrs), except Tlr5 and Tlr9, was unaffected after repeated DSS treatments. The expression of Nod1 was decreased, while Nod2 increased. After third DSS treatment, only the expressions of Tlr3 and Tlr4 were significantly enhanced. Unlike other PRRs, decreased Tlr5 and increased Tlr9 mRNA expression persisted during the chronic colitis period. As the colitis progress, only the mRNA expression of Ifnγ and Il17 staid increased during chronic colitis, while the acute colitis-associated increase of Il23, and Il10 and Il12 was abolished. Finally, increased histological score of Foxp3+ cell in colon was found during the chronic colitis period. This study provides an expression pattern of PRRs during chronic colitis that is accompanied by a Th1- and Th17 cell-mediated immune response. This study provides an extensive survey of PRRs in the colon during chronic DSS-induced colitis. Chronic DSS colitis upregulates the mRNA expression of Tlr3, Tlr4, Tlr9 and Nod2. As the DSS colitis progresses to a chronic status the expression of Tlr5 decreases. The chronic DSS colitis results in a (progressive) increase of Th1 and Th17 cells.
Collapse
Affiliation(s)
- Bin Zheng
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht 3586 CG, The Netherlands
| | - Mary E Morgan
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht 3586 CG, The Netherlands
| | - Hendrik J G van de Kant
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht 3586 CG, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht 3586 CG, The Netherlands.,Nutricia Research, Utrecht 3508 TB, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht 3586 CG, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht 3586 CG, The Netherlands
| |
Collapse
|
5
|
Waters S, Svensson P, Kullingsjö J, Pontén H, Andreasson T, Sunesson Y, Ljung E, Sonesson C, Waters N. In Vivo Systems Response Profiling and Multivariate Classification of CNS Active Compounds: A Structured Tool for CNS Drug Discovery. ACS Chem Neurosci 2017; 8:785-797. [PMID: 27997108 DOI: 10.1021/acschemneuro.6b00371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This paper describes the application of in vivo systems response profiling in CNS drug discovery by a process referred to as the Integrative Screening Process. The biological response profile, treated as an array, is used as major outcome for selection of candidate drugs. Dose-response data, including ex vivo brain monoaminergic biomarkers and behavioral descriptors, are systematically collected and analyzed by principal component analysis (PCA) and partial least-squares (PLS) regression, yielding multivariate characterization across compounds. The approach is exemplified by assessing a new class of CNS active compounds, the dopidines, compared to other monoamine modulating compounds including antipsychotics, antidepressants, and procognitive agents. Dopidines display a distinct phenotypic profile which has prompted extensive further preclinical and clinical investigations. In summary, in vivo profiles of CNS compounds are mapped, based on dose response studies in the rat. Applying a systematic and standardized work-flow, a database of in vivo systems response profiles is compiled, enabling comparisons and classification. This creates a framework for translational mapping, a crucial component in CNS drug discovery.
Collapse
Affiliation(s)
- Susanna Waters
- Department
of Pharmacology, Gothenburg University, SE-405 30 Gothenburg, Sweden
- Integrative Research Laboratories Sweden AB, Gothenburg SE-413 46, Sweden
| | - Peder Svensson
- Integrative Research Laboratories Sweden AB, Gothenburg SE-413 46, Sweden
| | - Johan Kullingsjö
- Integrative Research Laboratories Sweden AB, Gothenburg SE-413 46, Sweden
| | - Henrik Pontén
- Department
of Pharmacology, Gothenburg University, SE-405 30 Gothenburg, Sweden
| | | | | | - Elisabeth Ljung
- Integrative Research Laboratories Sweden AB, Gothenburg SE-413 46, Sweden
| | - Clas Sonesson
- Integrative Research Laboratories Sweden AB, Gothenburg SE-413 46, Sweden
| | - Nicholas Waters
- Integrative Research Laboratories Sweden AB, Gothenburg SE-413 46, Sweden
| |
Collapse
|
6
|
Ali H, Weigmann B, Neurath MF, Collnot EM, Windbergs M, Lehr CM. Budesonide loaded nanoparticles with pH-sensitive coating for improved mucosal targeting in mouse models of inflammatory bowel diseases. J Control Release 2014; 183:167-77. [PMID: 24685705 DOI: 10.1016/j.jconrel.2014.03.039] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/20/2014] [Accepted: 03/20/2014] [Indexed: 12/27/2022]
Abstract
The purpose of this study was to investigate the therapeutic potential of budesonide loaded nanocarriers for the treatment of inflammatory bowel disease (IBD). First, budesonide was encapsulated in poly(lactic-co-glycolic) acid (PLGA) nanoparticles by an oil in water (O/W) emulsion technique. A second batch of the same nanoparticles was additionally coated with a pH-sensitive methyl-methacrylate-copolymer. The particle sizes of the plain and the coated PLGA were 200±10.1nm and ~240±14.7nm, respectively. As could be shown in vitro, the pH-sensitive coating prevented premature drug release at acidic pH and only releases the drug at neutral to slightly alkaline pH. The efficacy of both coated and plain nanoparticle formulations was assessed in different acute and chronic colitis mouse models, also in comparison to an aqueous solution of the drug. The dose was always the same (0.168mg/kg). It was found that delivery by coated PLGA nanoparticles alleviated the induced colitis significantly better than by plain PLGA particles, which was already more effective than treatment with the same dose of the free drug. These data further corroborate the potential of polymeric nanocarriers for targeted drug delivery to the inflamed intestinal mucosa, and that this concept can still be further improved regarding the oral route of administration by implementing pH-dependent drug release characteristics.
Collapse
Affiliation(s)
- H Ali
- Biopharmaceutics and Pharmaceutical Technology, Campus A 4 1, Saarland University, 66123 Saarbrücken, Germany
| | - B Weigmann
- Medical Clinic 1, University Hospital Erlangen, 91052 Erlangen, Germany
| | - M F Neurath
- Medical Clinic 1, University Hospital Erlangen, 91052 Erlangen, Germany
| | - E M Collnot
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus A 4 1, 66123 Saarbrücken, Germany
| | - M Windbergs
- Biopharmaceutics and Pharmaceutical Technology, Campus A 4 1, Saarland University, 66123 Saarbrücken, Germany; Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus A 4 1, 66123 Saarbrücken, Germany
| | - C-M Lehr
- Biopharmaceutics and Pharmaceutical Technology, Campus A 4 1, Saarland University, 66123 Saarbrücken, Germany; Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus A 4 1, 66123 Saarbrücken, Germany.
| |
Collapse
|