1
|
Kikuchi J, Yamada S. The exposome paradigm to predict environmental health in terms of systemic homeostasis and resource balance based on NMR data science. RSC Adv 2021; 11:30426-30447. [PMID: 35480260 PMCID: PMC9041152 DOI: 10.1039/d1ra03008f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
The environment, from microbial ecosystems to recycled resources, fluctuates dynamically due to many physical, chemical and biological factors, the profile of which reflects changes in overall state, such as environmental illness caused by a collapse of homeostasis. To evaluate and predict environmental health in terms of systemic homeostasis and resource balance, a comprehensive understanding of these factors requires an approach based on the "exposome paradigm", namely the totality of exposure to all substances. Furthermore, in considering sustainable development to meet global population growth, it is important to gain an understanding of both the circulation of biological resources and waste recycling in human society. From this perspective, natural environment, agriculture, aquaculture, wastewater treatment in industry, biomass degradation and biodegradable materials design are at the forefront of current research. In this respect, nuclear magnetic resonance (NMR) offers tremendous advantages in the analysis of samples of molecular complexity, such as crude bio-extracts, intact cells and tissues, fibres, foods, feeds, fertilizers and environmental samples. Here we outline examples to promote an understanding of recent applications of solution-state, solid-state, time-domain NMR and magnetic resonance imaging (MRI) to the complex evaluation of organisms, materials and the environment. We also describe useful databases and informatics tools, as well as machine learning techniques for NMR analysis, demonstrating that NMR data science can be used to evaluate the exposome in both the natural environment and human society towards a sustainable future.
Collapse
Affiliation(s)
- Jun Kikuchi
- Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
- Graduate School of Bioagricultural Sciences, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
- Graduate School of Medical Life Science, Yokohama City University 1-7-29 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
| | - Shunji Yamada
- Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
- Prediction Science Laboratory, RIKEN Cluster for Pioneering Research 7-1-26 Minatojima-minami-machi, Chuo-ku Kobe 650-0047 Japan
- Data Assimilation Research Team, RIKEN Center for Computational Science 7-1-26 Minatojima-minami-machi, Chuo-ku Kobe 650-0047 Japan
| |
Collapse
|
2
|
Wei F, Sakata K, Asakura T, Date Y, Kikuchi J. Systemic Homeostasis in Metabolome, Ionome, and Microbiome of Wild Yellowfin Goby in Estuarine Ecosystem. Sci Rep 2018; 8:3478. [PMID: 29472553 PMCID: PMC5823927 DOI: 10.1038/s41598-018-20120-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 01/09/2018] [Indexed: 01/07/2023] Open
Abstract
Data-driven approaches were applied to investigate the temporal and spatial changes of 1,022 individuals of wild yellowfin goby and its potential interaction with the estuarine environment in Japan. Nuclear magnetic resonance (NMR)-based metabolomics revealed that growth stage is a primary factor affecting muscle metabolism. Then, the metabolic, elemental and microbial profiles of the pooled samples generated according to either the same habitat or sampling season as well as the river water and sediment samples from their habitats were measured using NMR spectra, inductively coupled plasma optical emission spectrometry and next-generation 16 S rRNA gene sequencing. Hidden interactions in the integrated datasets such as the potential role of intestinal bacteria in the control of spawning migration, essential amino acids and fatty acids synthesis in wild yellowfin goby were further extracted using correlation clustering and market basket analysis-generated networks. Importantly, our systematic analysis of both the seasonal and latitudinal variations in metabolome, ionome and microbiome of wild yellowfin goby pointed out that the environmental factors such as the temperature play important roles in regulating the body homeostasis of wild fish.
Collapse
Affiliation(s)
- Feifei Wei
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 235-0045, Japan
| | - Kenji Sakata
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 235-0045, Japan
| | - Taiga Asakura
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 235-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Yasuhiro Date
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 235-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 235-0045, Japan.
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
- Graduate School of Bioagricultural Sciences and School of Agricultural Sciences, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
3
|
Kikuchi J, Ito K, Date Y. Environmental metabolomics with data science for investigating ecosystem homeostasis. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 104:56-88. [PMID: 29405981 DOI: 10.1016/j.pnmrs.2017.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/19/2017] [Accepted: 11/19/2017] [Indexed: 05/08/2023]
Abstract
A natural ecosystem can be viewed as the interconnections between complex metabolic reactions and environments. Humans, a part of these ecosystems, and their activities strongly affect the environments. To account for human effects within ecosystems, understanding what benefits humans receive by facilitating the maintenance of environmental homeostasis is important. This review describes recent applications of several NMR approaches to the evaluation of environmental homeostasis by metabolic profiling and data science. The basic NMR strategy used to evaluate homeostasis using big data collection is similar to that used in human health studies. Sophisticated metabolomic approaches (metabolic profiling) are widely reported in the literature. Further challenges include the analysis of complex macromolecular structures, and of the compositions and interactions of plant biomass, soil humic substances, and aqueous particulate organic matter. To support the study of these topics, we also discuss sample preparation techniques and solid-state NMR approaches. Because NMR approaches can produce a number of data with high reproducibility and inter-institution compatibility, further analysis of such data using machine learning approaches is often worthwhile. We also describe methods for data pretreatment in solid-state NMR and for environmental feature extraction from heterogeneously-measured spectroscopic data by machine learning approaches.
Collapse
Affiliation(s)
- Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, Aichi 464-0810, Japan.
| | - Kengo Ito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yasuhiro Date
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
4
|
Itouga M, Hayatsu M, Sato M, Tsuboi Y, Kato Y, Toyooka K, Suzuki S, Nakatsuka S, Kawakami S, Kikuchi J, Sakakibara H. Protonema of the moss Funaria hygrometrica can function as a lead (Pb) adsorbent. PLoS One 2017; 12:e0189726. [PMID: 29261745 PMCID: PMC5738082 DOI: 10.1371/journal.pone.0189726] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/30/2017] [Indexed: 12/18/2022] Open
Abstract
Water contamination by heavy metals from industrial activities is a serious environmental concern. To mitigate heavy metal toxicity and to recover heavy metals for recycling, biomaterials used in phytoremediation and bio-sorbent filtration have recently drawn renewed attention. The filamentous protonemal cells of the moss Funaria hygrometrica can hyperaccumulate lead (Pb) up to 74% of their dry weight when exposed to solutions containing divalent Pb. Energy-dispersive X-ray spectroscopy revealed that Pb is localized to the cell walls, endoplasmic reticulum-like membrane structures, and chloroplast thylakoids, suggesting that multiple Pb retention mechanisms are operating in living F. hygrometrica. The main Pb-accumulating compartment was the cell wall, and prepared cell-wall fractions could also adsorb Pb. Nuclear magnetic resonance analysis showed that polysaccharides composed of polygalacturonic acid and cellulose probably serve as the most effective Pb-binding components. The adsorption abilities were retained throughout a wide range of pH values, and bound Pb was not desorbed under conditions of high ionic strength. In addition, the moss is highly tolerant to Pb. These results suggest that the moss F. hygrometrica could be a useful tool for the mitigation of Pb-toxicity in wastewater.
Collapse
Affiliation(s)
- Misao Itouga
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Japan
| | - Manabu Hayatsu
- Department of Biological Sciences, Faculty of Science, and Research Institute for Integrated Science, Kanagawa University, Hiratsuka, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Japan
| | - Yuuri Tsuboi
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Japan
| | - Yukari Kato
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Japan
| | - Suechika Suzuki
- Department of Biological Sciences, Faculty of Science, and Research Institute for Integrated Science, Kanagawa University, Hiratsuka, Japan
| | - Seiji Nakatsuka
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Japan.,DOWA Technology Co., Ltd., Chiyoda, Tokyo, Japan
| | | | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Japan.,Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| |
Collapse
|
5
|
Trans-omics approaches used to characterise fish nutritional biorhythms in leopard coral grouper (Plectropomus leopardus). Sci Rep 2017; 7:9372. [PMID: 28839183 PMCID: PMC5570933 DOI: 10.1038/s41598-017-09531-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/14/2017] [Indexed: 01/21/2023] Open
Abstract
Aquaculture is now a major supplier of fish, and has the potential to be a major source of protein in the future. Leopard coral groupers are traded in Asian markets as superior fish, and production via aquaculture has commenced. As feeding efficiency is of great concern in aquaculture, we sought to examine the metabolism of leopard coral groupers using trans-omics approaches. Metabolic mechanisms were comprehensively analysed using transcriptomic and metabolomic techniques. This study focused on the dynamics of muscular metabolites and gene expression. The omics data were discussed in light of circadian rhythms and fasting/feeding. The obtained data suggest that branched-chain amino acids played a role in energy generation in the fish muscle tissues during fasting. Moreover, glycolysis, TCA cycles, and purine metabolic substances exhibited circadian patterns, and gene expression also varied. This study is the first step to understanding the metabolic mechanisms of the leopard coral grouper.
Collapse
|
6
|
Kikuchi J, Yamada S. NMR window of molecular complexity showing homeostasis in superorganisms. Analyst 2017; 142:4161-4172. [DOI: 10.1039/c7an01019b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
NMR offers tremendous advantages in the analyses of molecular complexity. The “big-data” are produced during the acquisition of fingerprints that must be stored and shared for posterior analysis and verifications.
Collapse
Affiliation(s)
- Jun Kikuchi
- RIKEN Center for Sustainable Resource Science
- Yokohama
- Japan
- Graduate School of Bioagricultural Sciences
- Nagoya University
| | - Shunji Yamada
- RIKEN Center for Sustainable Resource Science
- Yokohama
- Japan
- Graduate School of Bioagricultural Sciences
- Nagoya University
| |
Collapse
|
7
|
Shiokawa Y, Misawa T, Date Y, Kikuchi J. Application of Market Basket Analysis for the Visualization of Transaction Data Based on Human Lifestyle and Spectroscopic Measurements. Anal Chem 2016; 88:2714-9. [PMID: 26824632 DOI: 10.1021/acs.analchem.5b04182] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
With the innovation of high-throughput metabolic profiling methods such as nuclear magnetic resonance (NMR), data mining techniques that can reveal valuable information from substantial data sets are constantly desired in this field. In particular, for the analytical assessment of various human lifestyles, advanced computational methods are ultimately needed. In this study, we applied market basket analysis, which is generally applied in social sciences such as marketing, and used transaction data derived from dietary intake information and urinary chemical data generated using NMR and inductively coupled plasma optical emission spectrometry measurements. The analysis revealed several relationships, such as fish diets with high trimethylamine N-oxide excretion and N-methylnicotinamide excreted at higher levels in the morning and produced from a protein that was consumed one day prior. Therefore, market basket analysis can be applied to metabolic profiling to effectively understand the relationships between metabolites and lifestyle.
Collapse
Affiliation(s)
- Yuka Shiokawa
- Graduate School of Medical Life Science, Yokohama City University , 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takuma Misawa
- Graduate School of Medical Life Science, Yokohama City University , 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yasuhiro Date
- Graduate School of Medical Life Science, Yokohama City University , 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Jun Kikuchi
- Graduate School of Medical Life Science, Yokohama City University , 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,Graduate School of Bioagricultural Sciences, Nagoya University , 1 Furo-cho, Chikusa-ku, Nagoya, Aichi 464-0810, Japan
| |
Collapse
|
8
|
Mori T, Tsuboi Y, Ishida N, Nishikubo N, Demura T, Kikuchi J. Multidimensional High-Resolution Magic Angle Spinning and Solution-State NMR Characterization of (13)C-labeled Plant Metabolites and Lignocellulose. Sci Rep 2015; 5:11848. [PMID: 26143886 PMCID: PMC4491710 DOI: 10.1038/srep11848] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/08/2015] [Indexed: 01/18/2023] Open
Abstract
Lignocellulose, which includes mainly cellulose, hemicellulose, and lignin, is a potential resource for the production of chemicals and for other applications. For effective production of materials derived from biomass, it is important to characterize the metabolites and polymeric components of the biomass. Nuclear magnetic resonance (NMR) spectroscopy has been used to identify biomass components; however, the NMR spectra of metabolites and lignocellulose components are ambiguously assigned in many cases due to overlapping chemical shift peaks. Using our 13C-labeling technique in higher plants such as poplar samples, we demonstrated that overlapping peaks could be resolved by three-dimensional NMR experiments to more accurately assign chemical shifts compared with two-dimensional NMR measurements. Metabolites of the 13C-poplar were measured by high-resolution magic angle spinning NMR spectroscopy, which allows sample analysis without solvent extraction, while lignocellulose components of the 13C-poplar dissolved in dimethylsulfoxide/pyridine solvent were analyzed by solution-state NMR techniques. Using these methods, we were able to unambiguously assign chemical shifts of small and macromolecular components in 13C-poplar samples. Furthermore, using samples of less than 5 mg, we could differentiate between two kinds of genes that were overexpressed in poplar samples, which produced clearly modified plant cell wall components.
Collapse
Affiliation(s)
- Tetsuya Mori
- 1] Graduate School of Bioagricultural Sciences, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya 464-0810, Japan [2] Biotechnology Laboratory, Toyota Central R&D Labs, Inc., 41-1, Nagakute 480-1192, Japan
| | - Yuuri Tsuboi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Nobuhiro Ishida
- Biotechnology Laboratory, Toyota Central R&D Labs, Inc., 41-1, Nagakute 480-1192, Japan
| | - Nobuyuki Nishikubo
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Taku Demura
- 1] RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Biomass Engineering Program, RIKEN Research Cluster for Innovation, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Jun Kikuchi
- 1] Graduate School of Bioagricultural Sciences, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya 464-0810, Japan [2] RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [3] Biomass Engineering Program, RIKEN Research Cluster for Innovation, 2-1 Hirosawa, Wako 351-0198, Japan [4] Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
9
|
Komatsu T, Kobayashi T, Hatanaka M, Kikuchi J. Profiling planktonic biomass using element-specific, multicomponent nuclear magnetic resonance spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:7056-62. [PMID: 25973714 DOI: 10.1021/acs.est.5b00837] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Planktonic metabolism plays crucial roles in Earth's elemental cycles. Chemical speciation as well as elemental stoichiometry is important for advancing our understanding of planktonic roles in biogeochemical cycles. In this study, a multicomponent solid-state nuclear magnetic resonance (NMR) approach is proposed for chemical speciation of cellular components, using several advanced NMR techniques. Measurements by ssNMR were performed on (13)C and (15)N-labeled Euglena gracilis, a flagellated protist. 3D dipolar-assisted rotational resonance, double-cross-polarization (1)H-(13)C correlation spectroscopy, and (1)H-(13)C solid-state heteronuclear single quantum correlation spectroscopy successively allowed characterization of cellular components. These techniques were then applied to E. gracilis cultured in high and low ammonium media to demonstrate the power of this method for profiling and comparing cellular components. Cellular NMR spectra indicated that ammonium induced both paramylon degradation and amination. Arginine was stored as a nitrogen reserve and ammonium replaced by arginine catabolism via the arginine dihydrolase pathway. (15)N and (31)P cellular ssNMR indicated arginine and polyphosphate accumulation in E. gracilis, respectively. This chemical speciation technique will contribute to environmental research by providing detailed information on environmental chemical properties.
Collapse
Affiliation(s)
- Takanori Komatsu
- †RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- ‡Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Toshiya Kobayashi
- ‡Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Minoru Hatanaka
- §Bruker Biospin K. K., 3-9, Moriya-cho, Kanagawa-ku, Yokohama, 221-0022, Japan
| | - Jun Kikuchi
- †RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- ‡Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- ∥Graduate School of Bioagricultural Sciences and School of Agricultural Sciences, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
10
|
Wei F, Ito K, Sakata K, Date Y, Kikuchi J. Pretreatment and Integrated Analysis of Spectral Data Reveal Seaweed Similarities Based on Chemical Diversity. Anal Chem 2015; 87:2819-26. [DOI: 10.1021/ac504211n] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Feifei Wei
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 235-0045, Japan
| | - Kengo Ito
- Graduate
School of Medical Life Science, Yokohama City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kenji Sakata
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 235-0045, Japan
| | - Yasuhiro Date
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 235-0045, Japan
- Graduate
School of Medical Life Science, Yokohama City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 235-0045, Japan
- Graduate
School of Medical Life Science, Yokohama City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Biomass
Engineering Research Program, RIKEN Research Cluster for Innovation, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate
School of Bioagricultural Sciences and School of Agricultural Sciences, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
11
|
Larive CK, Barding GA, Dinges MM. NMR spectroscopy for metabolomics and metabolic profiling. Anal Chem 2014; 87:133-46. [PMID: 25375201 DOI: 10.1021/ac504075g] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Cynthia K Larive
- Department of Chemistry, University of California-Riverside , Riverside, California 92521, United States
| | | | | |
Collapse
|
12
|
Ogawa DMO, Moriya S, Tsuboi Y, Date Y, Prieto-da-Silva ÁRB, Rádis-Baptista G, Yamane T, Kikuchi J. Biogeochemical typing of paddy field by a data-driven approach revealing sub-systems within a complex environment--a pipeline to filtrate, organize and frame massive dataset from multi-omics analyses. PLoS One 2014; 9:e110723. [PMID: 25330259 PMCID: PMC4203823 DOI: 10.1371/journal.pone.0110723] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 09/24/2014] [Indexed: 12/11/2022] Open
Abstract
We propose the technique of biogeochemical typing (BGC typing) as a novel methodology to set forth the sub-systems of organismal communities associated to the correlated chemical profiles working within a larger complex environment. Given the intricate characteristic of both organismal and chemical consortia inherent to the nature, many environmental studies employ the holistic approach of multi-omics analyses undermining as much information as possible. Due to the massive amount of data produced applying multi-omics analyses, the results are hard to visualize and to process. The BGC typing analysis is a pipeline built using integrative statistical analysis that can treat such huge datasets filtering, organizing and framing the information based on the strength of the various mutual trends of the organismal and chemical fluctuations occurring simultaneously in the environment. To test our technique of BGC typing, we choose a rich environment abounding in chemical nutrients and organismal diversity: the surficial freshwater from Japanese paddy fields and surrounding waters. To identify the community consortia profile we employed metagenomics as high throughput sequencing (HTS) for the fragments amplified from Archaea rRNA, universal 16S rRNA and 18S rRNA; to assess the elemental content we employed ionomics by inductively coupled plasma optical emission spectroscopy (ICP-OES); and for the organic chemical profile, metabolomics employing both Fourier transformed infrared (FT-IR) spectroscopy and proton nuclear magnetic resonance (1H-NMR) all these analyses comprised our multi-omics dataset. The similar trends between the community consortia against the chemical profiles were connected through correlation. The result was then filtered, organized and framed according to correlation strengths and peculiarities. The output gave us four BGC types displaying uniqueness in community and chemical distribution, diversity and richness. We conclude therefore that the BGC typing is a successful technique for elucidating the sub-systems of organismal communities with associated chemical profiles in complex ecosystems.
Collapse
Affiliation(s)
- Diogo M. O. Ogawa
- Biotechnology and Natural Resources Program, University of the State of the Amazonas, Manaus, AM, Brazil
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Fortaleza, CE, Brazil
- Center for Environment and Biodiversity Studies, University of the State of the Amazonas, Manaus, AM, Brazil
- RIKEN Center for Sustainable Resource Science, and Biomass Engineering Corporation Division, Yokohama, Japan
| | - Shigeharu Moriya
- RIKEN Center for Sustainable Resource Science, and Biomass Engineering Corporation Division, Yokohama, Japan
- RIKEN Antibiotics Laboratory, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| | - Yuuri Tsuboi
- RIKEN Center for Sustainable Resource Science, and Biomass Engineering Corporation Division, Yokohama, Japan
| | - Yasuhiro Date
- RIKEN Center for Sustainable Resource Science, and Biomass Engineering Corporation Division, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| | - Álvaro R. B. Prieto-da-Silva
- Biotechnology and Natural Resources Program, University of the State of the Amazonas, Manaus, AM, Brazil
- Center for Environment and Biodiversity Studies, University of the State of the Amazonas, Manaus, AM, Brazil
- Laboratory of Genetics, Butantan Institute, Sao Paulo, SP, Brazil
| | - Gandhi Rádis-Baptista
- Biotechnology and Natural Resources Program, University of the State of the Amazonas, Manaus, AM, Brazil
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Fortaleza, CE, Brazil
- Center for Environment and Biodiversity Studies, University of the State of the Amazonas, Manaus, AM, Brazil
| | - Tetsuo Yamane
- Biotechnology and Natural Resources Program, University of the State of the Amazonas, Manaus, AM, Brazil
- Center for Environment and Biodiversity Studies, University of the State of the Amazonas, Manaus, AM, Brazil
- Center of Biotechnology of Amazon, Manaus, AM, Brazil
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, and Biomass Engineering Corporation Division, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Suehiro-cho, Tsurumi-ku, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
13
|
Watanabe T, Shino A, Akashi K, Kikuchi J. Chemical profiling of Jatropha tissues under different torrefaction conditions: application to biomass waste recovery. PLoS One 2014; 9:e106893. [PMID: 25191879 PMCID: PMC4156417 DOI: 10.1371/journal.pone.0106893] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 08/10/2014] [Indexed: 12/17/2022] Open
Abstract
Gradual depletion of the world petroleum reserves and the impact of environmental pollution highlight the importance of developing alternative energy resources such as plant biomass. To address these issues, intensive research has focused on the plant Jatropha curcas, which serves as a rich source of biodiesel because of its high seed oil content. However, producing biodiesel from Jatropha generates large amounts of biomass waste that are difficult to use. Therefore, the objective of our research was to analyze the effects of different conditions of torrefaction on Jatropha biomass. Six different types of Jatropha tissues (seed coat, kernel, stem, xylem, bark, and leaf) were torrefied at four different temperature conditions (200°C, 250°C, 300°C, and 350°C), and changes in the metabolite composition of the torrefied products were determined by Fourier transform-infrared spectroscopy and nuclear magnetic resonance analyses. Cellulose was gradually converted to oligosaccharides in the temperature range of 200°C–300°C and completely degraded at 350°C. Hemicellulose residues showed different degradation patterns depending on the tissue, whereas glucuronoxylan efficiently decomposed between 300°C and 350°C. Heat-induced depolymerization of starch to maltodextrin started between 200°C and 250°C, and oligomer sugar structure degradation occurred at higher temperatures. Lignin degraded at each temperature, e.g., syringyl (S) degraded at lower temperatures than guaiacyl (G). Finally, the toxic compound phorbol ester degraded gradually starting at 235°C and efficiently just below 300°C. These results suggest that torrefaction is a feasible treatment for further processing of residual biomass to biorefinery stock or fertilizer.
Collapse
Affiliation(s)
- Taiji Watanabe
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama, Japan
| | - Amiu Shino
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan
| | - Kinya Akashi
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Jun Kikuchi
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama, Japan; RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan; Biomass Engineering Program, RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan; Graduate School of Bioagricultural Sciences and School of Agricultural Sciences, Nagoya University, Chikusa-ku, Nagoya-shi, Japan
| |
Collapse
|
14
|
Asakura T, Date Y, Kikuchi J. Comparative Analysis of Chemical and Microbial Profiles in Estuarine Sediments Sampled from Kanto and Tohoku Regions in Japan. Anal Chem 2014; 86:5425-32. [DOI: 10.1021/ac5005037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Taiga Asakura
- Graduate School
of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yasuhiro Date
- Graduate School
of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Jun Kikuchi
- Graduate School
of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Biomass Engineering Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate School
of Bioagricultural Sciences, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, Aichi 464-0810, Japan
| |
Collapse
|
15
|
Yamazawa A, Date Y, Ito K, Kikuchi J. Visualizing microbial dechlorination processes in underground ecosystem by statistical correlation and network analysis approach. J Biosci Bioeng 2014; 117:305-9. [DOI: 10.1016/j.jbiosc.2013.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 08/02/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
|
16
|
Ito K, Sakata K, Date Y, Kikuchi J. Integrated analysis of seaweed components during seasonal fluctuation by data mining across heterogeneous chemical measurements with network visualization. Anal Chem 2014; 86:1098-105. [PMID: 24401131 DOI: 10.1021/ac402869b] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biological information is intricately intertwined with several factors. Therefore, comprehensive analytical methods such as integrated data analysis, combining several data measurements, are required. In this study, we describe a method of data preprocessing that can perform comprehensively integrated analysis based on a variety of multimeasurement of organic and inorganic chemical data from Sargassum fusiforme and explore the concealed biological information by statistical analyses with integrated data. Chemical components including polar and semipolar metabolites, minerals, major elemental and isotopic ratio, and thermal decompositional data were measured as environmentally responsive biological data in the seasonal variation. The obtained spectral data of complex chemical components were preprocessed to isolate pure peaks by removing noise and separating overlapping signals using the multivariate curve resolution alternating least-squares method before integrated analyses. By the input of these preprocessed multimeasurement chemical data, principal component analysis and self-organizing maps of integrated data showed changes in the chemical compositions during the mature stage and identified trends in seasonal variation. Correlation network analysis revealed multiple relationships between organic and inorganic components. Moreover, in terms of the relationship between metal group and metabolites, the results of structural equation modeling suggest that the structure of alginic acid changes during the growth of S. fusiforme, which affects its metal binding ability. This integrated analytical approach using a variety of chemical data can be developed for practical applications to obtain new biochemical knowledge including genetic and environmental information.
Collapse
Affiliation(s)
- Kengo Ito
- Graduate School of Medical Life Science, Yokohama City University , 1-7-29 Suehirocho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | |
Collapse
|
17
|
Yamazawa A, Iikura T, Morioka Y, Shino A, Ogata Y, Date Y, Kikuchi J. Cellulose digestion and metabolism induced biocatalytic transitions in anaerobic microbial ecosystems. Metabolites 2013; 4:36-52. [PMID: 24958386 PMCID: PMC4018678 DOI: 10.3390/metabo4010036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 01/07/2023] Open
Abstract
Anaerobic digestion of highly polymerized biomass by microbial communities present in diverse microbial ecosystems is an indispensable metabolic process for biogeochemical cycling in nature and for industrial activities required to maintain a sustainable society. Therefore, the evaluation of the complicated microbial metabolomics presents a significant challenge. We here describe a comprehensive strategy for characterizing the degradation of highly crystallized bacterial cellulose (BC) that is accompanied by metabolite production for identifying the responsible biocatalysts, including microorganisms and their metabolic functions. To this end, we employed two-dimensional solid- and one-dimensional solution-state nuclear magnetic resonance (NMR) profiling combined with a metagenomic approach using stable isotope labeling. The key components of biocatalytic reactions determined using a metagenomic approach were correlated with cellulose degradation and metabolic products. The results indicate that BC degradation was mediated by cellulases that contain carbohydrate-binding modules and that belong to structural type A. The degradation reactions induced the metabolic dynamics of the microbial community and produced organic compounds, such as acetic acid and propionic acid, mainly metabolized by clostridial species. This combinatorial, functional and structural metagenomic approach is useful for the comprehensive characterization of biomass degradation, metabolic dynamics and their key components in diverse ecosystems.
Collapse
Affiliation(s)
- Akira Yamazawa
- Research Planning and Management Group, Kajima Technical Research Institute, Kajima Corporation, 2-19-1 Tobitakyu, Chofu, Tokyo 182-0036, Japan.
| | - Tomohiro Iikura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Yusuke Morioka
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Amiu Shino
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Yoshiyuki Ogata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan.
| | - Yasuhiro Date
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Jun Kikuchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
18
|
Brunetti C, George RM, Tattini M, Field K, Davey MP. Metabolomics in plant environmental physiology. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4011-20. [PMID: 23922358 DOI: 10.1093/jxb/ert244] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Changes in plant metabolism are at the heart of plant developmental processes, underpinning many of the ways in which plants respond to the environment. As such, the comprehensive study of plant metabolism, or metabolomics, is highly valuable in identifying phenotypic effects of abiotic and biotic stresses on plants. When study is in reference to analysing samples that are relevant to environmental or ecologically based hypotheses, it is termed 'environmental metabolomics'. The emergence of environmental metabolomics as one of the latest of the omics technologies has been one of the most critically important recent developments in plant physiology. Its applications broach the entire landscape of plant ecology, from the understanding of plant plasticity and adaptation through to community composition and even genetic modification in crops. The multitude of novel studies published utilizing metabolomics methods employ a variety of techniques, from the initial stages of tissue sampling, through to sample preservation, transportation, and analysis. This review introduces the concept and applications of plant environmental metabolomics as an ecologically important investigative tool. It examines the main techniques used in situ within field sites, with particular reference to sampling and processing, and those more appropriate for use in laboratory-based settings with emphasis on secondary metabolite analysis.
Collapse
Affiliation(s)
- Cecilia Brunetti
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell' Ambiente (DISPAA), Sez. Coltivazioni Arboree, Università di Firenze, Viale delle Idee 30, I-50019 Sesto Fiorentino, Firenze, Italy
| | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Shin Haruta
- Graduate School of Science and Engineering, Tokyo Metropolitan University
| |
Collapse
|
20
|
Ogura T, Date Y, Kikuchi J. Differences in Cellulosic Supramolecular Structure of Compositionally Similar Rice Straw Affect Biomass Metabolism by Paddy Soil Microbiota. PLoS One 2013; 8:e66919. [PMID: 23840554 PMCID: PMC3686774 DOI: 10.1371/journal.pone.0066919] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 05/10/2013] [Indexed: 02/01/2023] Open
Abstract
Because they are strong and stable, lignocellulosic supramolecular structures in plant cell walls are resistant to decomposition. However, they can be degraded and recycled by soil microbiota. Little is known about the biomass degradation profiles of complex microbiota based on differences in cellulosic supramolecular structures without compositional variations. Here, we characterized and evaluated the cellulosic supramolecular structures and composition of rice straw biomass processed under different milling conditions. We used a range of techniques including solid- and solution-state nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy followed by thermodynamic and microbial degradability characterization using thermogravimetric analysis, solution-state NMR, and denaturing gradient gel electrophoresis. These measured data were further analyzed using an "ECOMICS" web-based toolkit. From the results, we found that physical pretreatment of rice straw alters the lignocellulosic supramolecular structure by cleaving significant molecular lignocellulose bonds. The transformation from crystalline to amorphous cellulose shifted the thermal degradation profiles to lower temperatures. In addition, pretreated rice straw samples developed different microbiota profiles with different metabolic dynamics during the biomass degradation process. This is the first report to comprehensively characterize the structure, composition, and thermal degradation and microbiota profiles using the ECOMICS toolkit. By revealing differences between lignocellulosic supramolecular structures of biomass processed under different milling conditions, our analysis revealed how the characteristic compositions of microbiota profiles develop in addition to their metabolic profiles and dynamics during biomass degradation.
Collapse
Affiliation(s)
- Tatsuki Ogura
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yasuhiro Date
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Jun Kikuchi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
- Biomass Engineering Program, RIKEN Research Cluster for Innovation, Wako, Saitama, Japan
| |
Collapse
|
21
|
Yang R, Du Z, Han Y, Zhou L, Song Y, Zhou D, Cui Y. Omics strategies for revealing Yersinia pestis virulence. Front Cell Infect Microbiol 2012; 2:157. [PMID: 23248778 PMCID: PMC3521224 DOI: 10.3389/fcimb.2012.00157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/27/2012] [Indexed: 01/12/2023] Open
Abstract
Omics has remarkably changed the way we investigate and understand life. Omics differs from traditional hypothesis-driven research because it is a discovery-driven approach. Mass datasets produced from omics-based studies require experts from different fields to reveal the salient features behind these data. In this review, we summarize omics-driven studies to reveal the virulence features of Yersinia pestis through genomics, trascriptomics, proteomics, interactomics, etc. These studies serve as foundations for further hypothesis-driven research and help us gain insight into Y. pestis pathogenesis.
Collapse
Affiliation(s)
- Ruifu Yang
- Beijing Institute of Microbiology and Epidemiology Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Rigobello-Masini M, Penteado JCP, Masini JC. Monolithic columns in plant proteomics and metabolomics. Anal Bioanal Chem 2012; 405:2107-22. [DOI: 10.1007/s00216-012-6574-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/02/2012] [Accepted: 11/13/2012] [Indexed: 12/16/2022]
|
23
|
Han Y, Yu G, Sarioglu H, Caballero-Martinez A, Schlott F, Ueffing M, Haase H, Peschel C, Krackhardt AM. Proteomic investigation of the interactome of FMNL1 in hematopoietic cells unveils a role in calcium-dependent membrane plasticity. J Proteomics 2012. [PMID: 23182705 DOI: 10.1016/j.jprot.2012.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Formin-like 1 (FMNL1) is a formin-related protein highly expressed in hematopoietic cells and overexpressed in leukemias as well as diverse transformed cell lines. It has been described to play a role in diverse functions of hematopoietic cells such as phagocytosis of macrophages as well as polarization and cytotoxicity of T cells. However, the specific role of FMNL1 in these processes has not been clarified yet and regulation by interaction partners in primary hematopoietic cells has never been investigated. We performed a proteomic screen for investigation of the interactome of FMNL1 in primary hematopoietic cells resulting in the identification of a number of interaction partners. Bioinformatic analysis considering semantic similarity suggested the giant protein AHNAK1 to be an essential interaction partner of FMNL1. We confirmed AHNAK1 as a general binding partner for FMNL1 in diverse hematopoietic cells and demonstrate that the N-terminal part of FMNL1 binds to the C-terminus of AHNAK1. Moreover, we show that the constitutively activated form of FMNL1 (FMNL1γ) induces localization of AHNAK1 to the cell membrane. Finally, we provide evidence that overexpression or knock down of FMNL1 has an impact on the capacitative calcium influx after ionomycin-mediated activation of diverse cell lines and primary cells.
Collapse
Affiliation(s)
- Yanan Han
- Medizinische Klinik III, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Date Y, Iikura T, Yamazawa A, Moriya S, Kikuchi J. Metabolic Sequences of Anaerobic Fermentation on Glucose-Based Feeding Substrates Based on Correlation Analyses of Microbial and Metabolite Profiling. J Proteome Res 2012; 11:5602-10. [DOI: 10.1021/pr3008682] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yasuhiro Date
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho,
Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku,
Yokohama, Kanagawa 230-0045, Japan
| | - Tomohiro Iikura
- Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku,
Yokohama, Kanagawa 230-0045, Japan
| | - Akira Yamazawa
- Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku,
Yokohama, Kanagawa 230-0045, Japan
- Research Planning and Management Group, Kajima Technical Research
Institute, KAJIMA Corporation, 2-19-1 Tobitakyu,
Chofu, Tokyo 182-0036, Japan
| | - Shigeharu Moriya
- Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku,
Yokohama, Kanagawa 230-0045, Japan
- RIKEN Advanced Science Institute, 1-7-22
Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Jun Kikuchi
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho,
Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku,
Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Bioagricultural
Sciences, Nagoya University, 1 Furo-cho,
Chikusa-ku, Nagoya, Aichi 464-0810, Japan
| |
Collapse
|
25
|
Simpson AJ, Simpson MJ, Soong R. Nuclear magnetic resonance spectroscopy and its key role in environmental research. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:11488-11496. [PMID: 22909253 DOI: 10.1021/es302154w] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Nuclear magnetic resonance (NMR) is arguably the most powerful and versatile tool in modern science. It has the capability to solve complex structures and interactions in situ even in complex heterogeneous multiphase samples such as soil, plants, and tissues. NMR has vast potential in environmental research and can provide insight into a diverse range of environmental processes at the molecular level be it identifying the binding site in human blood for a specific contaminant or the compositional dynamics of soil with climate change. Modern NMR-based metabonomics is elucidating contaminant toxicity and toxic mode of action rapidly and at sub lethal concentrations. Combined modern NMR approaches provide a powerful framework to better understand carbon cycling and sustainable agriculture, as well as contaminant fate, bioavailability, toxicity, sequestration, and remediation.
Collapse
Affiliation(s)
- Andre J Simpson
- Environmental NMR Centre, Department of Chemistry, University of Toronto, Toronto, Canada.
| | | | | |
Collapse
|