1
|
Wang C, Shu Q, Zeng N, Xie S, Zou J, Tang H, Zhou A. Immune response for acute Aeromonas hydrophila infection in two distinct color morphs of northern snakehead, Channa argus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101321. [PMID: 39260082 DOI: 10.1016/j.cbd.2024.101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
To compare and analyze the differences in immunological response between the two color morphs of Channa argus, a fish cohort was divided into four groups: black C argus + PBS (B-PBS), black C argus + Aeromonas hydrophila (B-Ah), white C. argus + PBS (W-PBS), and white C. argus + A hydrophila (W-Ah). The B-PBS and W-PBS groups received 100 μL PBS, while the B-Ah and W-Ah groups received 3.6 × 105 CFU/mL A. hydrophila in the same volume. The death rate in each group was noted, changes in plasma biochemical indicators and the expression of liver immune-related genes were examined, and transcriptome techniques were used to compare the differences between the two colors of C. argus following stress. No mortality occurred in the B-PBS and W-PBS groups. Mortality in the W-Ah and B-Ah groups showed an upward and then downward trend after A. hydrophila injection. The highest mortality occurred within 24 h and was higher in the W-Ah group than in the B-Ah group. MDA levels in the B-Ah and W-Ah groups increased and then decreased, while SOD and T-AOC showed the reverse tendency. The W-Ah and W-PBS groups differed significantly in MDA at 3, 12, and 24 h, SOD from 6 to 96 h, and T-AOC between 6 and 48 h. Plasma MDA and T-AOC levels at 12 h and SOD levels at 24 and 48 h differed significantly between the B-PBS and B-Ah groups. In both the W-Ah and B-Ah groups, the expression levels of IL-1β and IL-8 in the liver showed a temporal pattern with an initial increase followed by a decrease, reaching peak levels after 24 h, while IL-10 showed the reverse pattern. Transcriptome analysis of the liver revealed significant differences between the two C. argus colors. Differential genes in black C. argus were mainly enriched in steroid biosynthesis, glycolysis/gluconeogenesis, and glutathione and propanoate metabolism pathways 24 h after infection. In contrast, differential genes in white C. argus were mainly enriched in pathways such as oxidative phosphorylation, pancreatic secretion, and protein digestion and absorption 24 h after infection. After A. hydrophila infection, white C. argus had higher mortality, more severe oxidative stress and inflammatory responses, and lower antioxidant capacity than black C. argus.
Collapse
Affiliation(s)
- Chong Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Qingsong Shu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Nanyang Zeng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shaolin Xie
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Huijuan Tang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Aiguo Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
2
|
Munoz LR, Krehling JT, Bailey MA, Bourassa DV, Pacheco WJ, Chaves-Cordoba B, Escobar C, Orellana-Galindo L, Adhikari Y, Macklin KS. The Role of Dietary Supplementation of Yeast Cell Walls in Response to a Campylobacter jejuni Inoculation in Broiler Chickens. Avian Dis 2023; 67:245-253. [PMID: 39126411 DOI: 10.1637/aviandiseases-d-23-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/26/2023] [Indexed: 08/12/2024]
Abstract
Controlling Campylobacter jejuni during broiler production is a topic of interest from a public health standpoint, as colonized birds can contaminate poultry products during processing and sicken humans if not properly cooked or handled before consumption. The aim of this study was to evaluate dietary yeast cell wall (YCW) as a potential alternative to antibiotic growth promoters with or without a C. jejuni challenge. A total of 2240 day-old Ross 708 males were randomly assigned within 8 experimental groups with a 4 × 2 factorial design, with 4 diets (negative control [CTL-], positive control [CTL+, bacitracin, 50 g/ ton], YCW constant dose [400 g/ton], and YCW step-down dose [SD, 800, 400, and 200 g/ton in the starter, grower, and finisher periods, respectively]) and with or without a Day-16 C. jejuni oral gavage challenge at a 103-colony-forming-units (CFU)/ml dose. Body weights and feed consumption were measured on Days 0, 14, 28, and 41 to determine broiler performance. Ileum tissue samples were collected from 24 birds per treatment on Days 17 and 24 (1 and 8 days postinoculation [PI]) for relative gene expression (RGE) analysis. Cecal content samples were collected from 24 birds per treatment on Days 24, 34, and 42 for C. jejuni enumeration and prevalence calculation. A total of 80 birds per treatment were processed to determine carcass yield on Day 44, and on Day 45, 16 carcass rinsates per treatment were collected for C. jejuni enumeration and prevalence calculation. The interaction between diet and inoculation did not influence growth performance (P > 0.05). However, a diet effect was observed in the starter period where birds fed SD diet had a lower feed conversion ratio than birds fed CTL- diet (P = 0.0165). Additionally, the treatment of birds inoculated with C. jejuni fed with SD had a trend to a lower feed conversion ratio during the grower period (P = 0.0550). The RGE of interleukin 1β and interleukin 10 was similar in all treatments 1 and 8 days PI. The RGE of avian beta defensin 10 was similar in all treatments on Day 1 PI, but different on Day 8 PI (P = 0.0476). All birds inoculated with C. jejuni had similar CFU per milliliter counts in the cecal contents at Days 24, 34, and 42 (P > 0.05), and all birds inoculated with phosphate-buffered saline were negative for C. jejuni after prevalence testing. After processing 1) carcass yield was similar in all treatments (P > 0.05); 2) C. jejuni-inoculated birds fed CTL- had lower CFU per milliliter counts than birds provided CTL+ and constant-dose diets (P = 0.0383); and 3) all birds inoculated with PBS were negative for Campylobacter. Overall, under the conditions of this study, the addition of YCW during a C. jejuni challenge did not have an impact on growth performance, innate immune response, cecal colonization, carcass yield, or carcass colonization after processing.
Collapse
Affiliation(s)
- Luis R Munoz
- Department of Poultry Science, Auburn University, Auburn, AL 36849
| | - James T Krehling
- Department of Poultry Science, Auburn University, Auburn, AL 36849
| | - Matthew A Bailey
- Department of Poultry Science, Auburn University, Auburn, AL 36849
| | | | - Wilmer J Pacheco
- Department of Poultry Science, Auburn University, Auburn, AL 36849
| | | | - Cesar Escobar
- Department of Poultry Science, Auburn University, Auburn, AL 36849
| | | | - Yagya Adhikari
- Department of Poultry Science, Auburn University, Auburn, AL 36849
| | - Ken S Macklin
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762,
| |
Collapse
|
3
|
Munoz LR, Bailey MA, Krehling JT, Bourassa DV, Hauck R, Pacheco WJ, Chaves-Cordoba B, Chasteen KS, Talorico AA, Escobar C, Pietruska A, Macklin KS. Effects of dietary yeast cell wall supplementation on growth performance, intestinal Campylobacter jejuni colonization, innate immune response, villus height, crypt depth, and slaughter characteristics of broiler chickens inoculated with Campylobacter jejuni at d 21. Poult Sci 2023; 102:102609. [PMID: 36963334 PMCID: PMC10060741 DOI: 10.1016/j.psj.2023.102609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023] Open
Abstract
A study was conducted to assess the effects of a dietary yeast cell wall (YCW) with and without a Campylobacter jejuni (CJ) challenge. A total of 2,240-day-old Ross 708 males were randomly assigned within 8 treatments with a 4 × 2 factorial design, with 4 diets (negative control, positive control, YCW constant dose (400 g/ton), and YCW step-down dose (800/400/200 g/ton in the starter/grower/finisher diets, respectively) and with and without d 21 CJ oral gavage challenge at 5.2 × 107 CFU/mL. At d 0, 14, 28, and 41 body weights and feed consumption were measured to determine performance. At d 14, 28, and 42, 8 jejunal and ileal histology samples per treatment were collected for villi morphology measurements. At d 22 and 28 (1- and 7-days postinoculation), 24 ileal tissue samples per treatment were collected for relative gene expression analysis. At d 42, 24 cecal content samples per treatment were collected for CJ enumeration. Finally, on d 44, 96 birds per treatment were processed to determine carcass yield and 16 carcass rinses per treatment were collected to determine CJ prevalence after processing. Diet or inoculation did not impact broiler performance (P > 0.05). Limited differences were observed in intestinal morphology, and villus height and crypt depth were different only in the ileum at d 42 (P = 0.0280 and P = 0.0162, respectively). At d 1 postinoculation, differences between treatments inoculated with CJ and PBS were observed in the expression of avian beta defensin 10 (AvBD10), interleukin 1ß (IL-1ß), and interleukin 10 (IL-10) (P < 0.05). At d 7 postinoculation, expression of AvBD10, IL-1ß, and IL-10 was similar among all treatments (P > 0.05). At d 42, all birds, regardless the inoculation, had similar levels of CJ recovered from cecal contents (P > 0.05). After processing, carcass yield and CJ prevalence postchilling was similar in all treatments (P > 0.05). Overall, under the conditions of this study, the addition of YCW during a CJ challenge did not have an impact in growth performance, innate immune response, cecal colonization, carcass yield, or CJ prevalence after processing.
Collapse
Affiliation(s)
- Luis R Munoz
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - Matthew A Bailey
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - James T Krehling
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - Dianna V Bourassa
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - Ruediger Hauck
- Department of Pathobiology, Auburn University, Auburn, AL 36849, USA
| | - Wilmer J Pacheco
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | | | - Kaicie S Chasteen
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - Aidan A Talorico
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - Cesar Escobar
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - Andrea Pietruska
- Department of Pathobiology, Auburn University, Auburn, AL 36849, USA
| | - Ken S Macklin
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
4
|
Kim K, Jinno C, Ji P, Liu Y. Trace amounts of antibiotic altered metabolomic and microbial profiles of weaned pigs infected with a pathogenic E. coli. J Anim Sci Biotechnol 2022; 13:59. [PMID: 35527278 PMCID: PMC9082874 DOI: 10.1186/s40104-022-00703-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/03/2022] [Indexed: 11/18/2022] Open
Abstract
Background Our previous study has shown that supplementation of trace amounts of antibiotic exacerbated the detrimental effects of enterotoxigenic E. coli (ETEC) infection and delayed the recovery of pigs that may be associated with modified metabolites and metabolic pathways. Therefore, the objective of this study was to explore the impacts of trace levels of antibiotic (carbadox) on host metabolic profiles and colon microbiota of weaned pigs experimentally infected with ETEC F18. Results The multivariate analysis highlighted a distinct metabolomic profile of serum and colon digesta between trace amounts of antibiotic (TRA; 0.5 mg/kg carbadox) and label-recommended dose antibiotic (REC; 50 mg/kg carbadox) on d 5 post-inoculation (PI). The relative abundance of metabolomic markers of amino acids, carbohydrates, and purine metabolism were significantly differentiated between the TRA and REC groups (q < 0.2). In addition, pigs in REC group had the highest (P < 0.05) relative abundance of Lactobacillaceae and tended to have increased (P < 0.10) relative abundance of Lachnospiraceae in the colon digesta on d 5 PI. On d 11 PI, pigs in REC had greater (P < 0.05) relative abundance of Clostridiaceae compared with other groups, whereas had reduced (P < 0.05) relative abundance of Prevotellaceae than pigs in control group. Conclusions Trace amounts of antibiotic resulted in differential metabolites and metabolic pathways that may be associated with its slow responses against ETEC F18 infection. The altered gut microbiota profiles by label-recommended dose antibiotic may contribute to the promotion of disease resistance in weaned pigs. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00703-5.
Collapse
|
5
|
Singh AK, Tiwari UP, Mishra B, Jha R. Effects of in ovo delivered xylo- and mannan- oligosaccharides on growth performance, intestinal immunity, cecal short-chain fatty acids, and cecal microbiota of broilers. J Anim Sci Biotechnol 2022; 13:13. [PMID: 35130986 PMCID: PMC8822640 DOI: 10.1186/s40104-021-00666-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
Background This study investigated a novel in ovo feeding strategy to determine the prebiotic effects of xylo- and mannan- oligosaccharides (XOS and MOS) differing in the degree of polymerization. A total of 192 fertilized eggs were divided into 6 treatment groups: i) normal saline control (NSC), ii) xylotriose (XOS3), iii) xylotetraose (XOS4), iv) mannotriose (MOS3), v) mannotetraose (MOS4), and vi) no injection control (NIC), each containing 4 replicate trays with 8 eggs per replicate. On d 17 of incubation, 3 mg of oligosaccharides (except for controls) dissolved in 0.5 mL of 0.85% normal saline were injected into the amnion of Cobb 500 broilers eggs. After hatch, the chicks were raised for 28 d under standard husbandry practices and were fed a commercial broilers diet ad libitum, and samples were collected periodically. Results The hatchability, growth performance, and relative weights of breast, drumstick, liver, and proventriculus were not different among the treatments (P > 0.05). The XOS3 injection increased the total short-chain fatty acid production at d 28 compared with both control groups (P < 0.05). The villus height to crypt depth ratio was significantly higher in the XOS4 group than both controls on the hatch day (P < 0.01) but were not different among any treatments on d 7 and 28 (P > 0.05). On the hatch day, the expression level of the CD3 gene (a T cell marker) was increased by XOS3, while the IL-10 gene (a marker of anti-inflammatory cytokine) was reduced by MOS4 (P < 0.05) compared with both controls. Compared with both controls, XOS3 exhibited a trend of reduction for IL-10 (P = 0.074). No cytokines or lymphocyte markers were affected by the treatments on d 7 (P > 0.05), except XOS4 increased IL-4 compared with NSC (P < 0.05). The broilers in the MOS4 group had higher operational taxonomic units (OTUs) and had more differentially abundant taxa, including order Lactobacillales and family Leuconostocaceae (P < 0.05) than both controls on d 28. The predictive functional profiling indicated that the linoleic acid metabolism pathway was enriched in the cecal microbiota of the XOS3 group compared with both controls (P < 0.05). Conclusion The effects of these XOS and MOS on ileal mucosa and immunity are transient, but the effects on fermentation and cecal microbiota are prolonged, and further research is warranted to determine their use as a gut health promoter in poultry. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00666-z.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Utsav Prakash Tiwari
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East-West Rd, Honolulu, HI, 96822, USA.
| |
Collapse
|
6
|
Meijerink N, de Oliveira JE, van Haarlem DA, Hosotani G, Lamot DM, Stegeman JA, Rutten VPMG, Jansen CA. Glucose Oligosaccharide and Long-Chain Glucomannan Feed Additives Induce Enhanced Activation of Intraepithelial NK Cells and Relative Abundance of Commensal Lactic Acid Bacteria in Broiler Chickens. Vet Sci 2021; 8:110. [PMID: 34204778 PMCID: PMC8231533 DOI: 10.3390/vetsci8060110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/25/2022] Open
Abstract
Restrictions on the use of antibiotics in the poultry industry stimulate the development of alternative nutritional solutions to maintain or improve poultry health. This requires more insight in the modulatory effects of feed additives on the immune system and microbiota composition. Compounds known to influence the innate immune system and microbiota composition were selected and screened in vitro, in ovo, and in vivo. Among all compounds, 57 enhanced NK cell activation, 56 increased phagocytosis, and 22 increased NO production of the macrophage cell line HD11 in vitro. Based on these results, availability and regulatory status, six compounds were selected for further analysis. None of these compounds showed negative effects on growth, hatchability, and feed conversion in in ovo and in vivo studies. Based on the most interesting numerical results and highest future potential feasibility, two compounds were analyzed further. Administration of glucose oligosaccharide and long-chain glucomannan in vivo both enhanced activation of intraepithelial NK cells and led to increased relative abundance of lactic acid bacteria (LAB) amongst ileum and ceca microbiota after seven days of supplementation. Positive correlations between NK cell subsets and activation, and relative abundance of LAB suggest the involvement of microbiota in the modulation of the function of intraepithelial NK cells. This study identifies glucose oligosaccharide and long-chain glucomannan supplementation as effective nutritional strategies to modulate the intestinal microbiota composition and strengthen the intraepithelial innate immune system.
Collapse
Affiliation(s)
- Nathalie Meijerink
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (N.M.); (D.A.v.H.); (V.P.M.G.R.)
| | | | - Daphne A. van Haarlem
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (N.M.); (D.A.v.H.); (V.P.M.G.R.)
| | - Guilherme Hosotani
- Cargill R&D Center Europe, B-1800 Vilvoorde, Belgium; (J.E.d.O.); (G.H.)
| | - David M. Lamot
- Cargill Animal Nutrition and Health Innovation Center, 5334 LD Velddriel, The Netherlands;
| | - J. Arjan Stegeman
- Department Population Health Sciences, Division Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Victor P. M. G. Rutten
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (N.M.); (D.A.v.H.); (V.P.M.G.R.)
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa
| | - Christine A. Jansen
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (N.M.); (D.A.v.H.); (V.P.M.G.R.)
| |
Collapse
|
7
|
Marín-Garzón NA, Magalhães AFB, Mota LFM, Fonseca LFS, Chardulo LAL, Albuquerque LG. Genome-wide association study identified genomic regions and putative candidate genes affecting meat color traits in Nellore cattle. Meat Sci 2020; 171:108288. [PMID: 32949820 DOI: 10.1016/j.meatsci.2020.108288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 01/08/2023]
Abstract
Single and multiple-trait GWAS were conducted to detect genomic regions and candidate genes associated with meat color traits (L*, lightness; a*, redness; b*, yellowness) in Nellore cattle. Phenotypic records of 5000 animals, and 3794 genotypes for 614,274 SNPs were used. The BLUPF90 family programs were used through single step GWAS approach. The top 10 genomic regions from single-trait GWAS explained 13.64%, 15.12% and 13% of genetic variance of L*, a* and b*, which harbored 129, 70, and 84 candidate genes, respectively. Regarding multiple-trait GWAS, the top 10 SNP windows explained 17.46%, 18.98% and 13.74% of genetic variance of L*, a* and b*, and harbored 124, 86, and 82 candidate genes, respectively. Pleiotropic effects were evidenced by the overlapping regions detected on BTA 15 and 26 associated with L* and a* (genetic correlation of -0.53), and on BTA 18 associated with a* and b* (genetic correlation of 0.60). Similar genomic regions located on BTA 2, 5, 6, and 18 were detected through single and multi-trait GWAS. Overlapped regions harbored a total of 30 functional candidate genes involved in mitochondrial activity, structural integrity of muscles, lipid oxidation, anaerobic metabolism, and muscular pH.
Collapse
Affiliation(s)
- N A Marín-Garzón
- São Paulo State University (Unesp), College of Agricultural and Veterinarian Sciences, Via de Acesso Professor Paulo Donato Castelane Castellane S/N - Vila Industrial, 14884-900 Jaboticabal, SP, Brazil.
| | - A F B Magalhães
- APTA Beef Cattle Center, Animal Science Institute, Sertãozinho, São Paulo, Brazil
| | - L F M Mota
- São Paulo State University (Unesp), College of Agricultural and Veterinarian Sciences, Via de Acesso Professor Paulo Donato Castelane Castellane S/N - Vila Industrial, 14884-900 Jaboticabal, SP, Brazil
| | - L F S Fonseca
- São Paulo State University (Unesp), College of Agricultural and Veterinarian Sciences, Via de Acesso Professor Paulo Donato Castelane Castellane S/N - Vila Industrial, 14884-900 Jaboticabal, SP, Brazil
| | - L A L Chardulo
- São Paulo State University (Unesp), College of Veterinary and Animal Science, Botucatu, SP, Brazil; National Council for Science and Technological Development (CNPq), Brasília, Brazil
| | - L G Albuquerque
- São Paulo State University (Unesp), College of Agricultural and Veterinarian Sciences, Via de Acesso Professor Paulo Donato Castelane Castellane S/N - Vila Industrial, 14884-900 Jaboticabal, SP, Brazil; National Council for Science and Technological Development (CNPq), Brasília, Brazil
| |
Collapse
|
8
|
Jin X, Tian QZ, Zhang M, Cao GF, Yang YF. Modulation of SBD-1 expression by Saccharomyces cerevisiae cell wall components in ovine ruminal epithelial cells. Res Vet Sci 2020; 129:28-38. [PMID: 31927467 DOI: 10.1016/j.rvsc.2020.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 12/26/2019] [Accepted: 01/02/2020] [Indexed: 11/28/2022]
Abstract
The ovine rumen is an immune interface with the external environment, participating in host defence responses. Ovine ruminal epithelial cells (ORECs) not only have a physical barrier function, but also secrete sheep β-defensin-1 (SBD-1), which plays a key role in innate and adaptive immunity. Prebiotics are potential alternatives to infeed antibiotics. Saccharomyces cerevisiae cell wall (S.c.CW) is rich in prebiotics, which play roles in improving the growth performance of animals and regulating immunity. Here, we investigated whether S.c.CW induces SBD-1 expression in ORECs, as well as the underlying mechanism. The regulatory mechanisms of S.c.CW-induced up-regulation of SBD-1 were determined using quantitative real-time PCR, enzyme-linked immunosorbent assay, and western blotting. S.c.CW significantly increased the expression of Toll-like receptor 2 (TLR2) and nuclear factor-kappa B (NF-κB), but had no effect on TLR4 expression. TLR2, MyD88, and NF-κB inhibition attenuated the induction of SBD-1 expression by S.c.CW. However, TLR4 inhibition only resulted in attenuated SBD-1 mRNA, having no effect on SBD-1 protein expression. Thus, we conclude that S.c.CW can induce SBD-1 expression and that this induction is regulated by the TLR2-MyD88-NF-κB pathway.
Collapse
Affiliation(s)
- Xin Jin
- Veterinary Medicine College of Inner Mongolia Agricultural University, Hohhot 010018, People's Republic of China; Animal Science and Veterinary Medicine College of Henan Agricultural University, Zhengzhou 450046, People's Republic of China
| | - Qiao-Zhen Tian
- Veterinary Medicine College of Inner Mongolia Agricultural University, Hohhot 010018, People's Republic of China; Medicine college of Shanxi Datong University, Datong 037009, People's Republic of China
| | - Man Zhang
- Veterinary Medicine College of Inner Mongolia Agricultural University, Hohhot 010018, People's Republic of China; Animal Medicine College of Henan University of Animal Husbandry and Economy, Zhengzhou 450046, People's Republic of China
| | - Gui-Fang Cao
- Veterinary Medicine College of Inner Mongolia Agricultural University, Hohhot 010018, People's Republic of China
| | - Yin-Feng Yang
- Veterinary Medicine College of Inner Mongolia Agricultural University, Hohhot 010018, People's Republic of China.
| |
Collapse
|
9
|
Ahiwe EU, Abdallh ME, Chang'a EP, Al-Qahtani M, Omede AA, Graham H, Iji PA. Influence of autolyzed whole yeast and yeast components on broiler chickens challenged with salmonella lipopolysaccharide. Poult Sci 2019; 98:7129-7138. [PMID: 31392341 PMCID: PMC6870557 DOI: 10.3382/ps/pez452] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
The objective of this study was to assess the effect of dietary yeast products on broiler chickens challenged with salmonella lipopolysaccharide (LPS). The chicks were divided into 8 treatments with 6 replicates and 9 birds per replicate. The treatments consisted of a positive control (PC) [without supplementation and not challenged]; negative control (NC) [without supplementation but challenged]; whole yeast and challenged; yeast cell wall and challenged; yeast glucan and challenged; yeast mannan and challenged; zinc bacitracin and challenged; and Salinomycin and challenged. Whole yeast or Yeast cell wall was included at 2.0 g/kg diet. Yeast glucan or mannan was added at 0.20 g/kg diet. Zinc bacitracin (ZNB) and Salinomycin (SAL) was included at 50 and 60 ppm, respectively. Dietary treatments had no effect (P > 0.05) on feed intake (FI) at day 10. Supplementation with yeast and its derivatives improved (P < 0.05) body weight gain (BWG) and feed conversion ratio (FCR) on day 10. On days 24 and 35, LPS challenge declined FI, BWG, FCR, and flock uniformity (day 28) in the NC group compared to the PC group. Yeast products and antibiotics improved (P < 0.05) FI, BWG, FCR, and flock uniformity in LPS-challenged birds. On day 24, spleen weight increased while bursa weight decreased in the NC group relative to the PC group; this effect was reversed (P < 0.05) by feeding all yeasts and antibiotics. On day 24, application of all the dietary treatments ameliorated the changes observed in white blood cell, lymphocyte and monocyte counts as well as albumin and immunoglobulin G of NC birds. On day 35, all yeasts additives, ZNB and SAL improved (P < 0.05) the meat yield of broilers challenged with LPS. In conclusion, supplementation of diets with yeast and its derivatives can ameliorate the negative effects of salmonella LPS challenge on broiler chicks, thus improving the performance, flock uniformity, and meat yield.
Collapse
Affiliation(s)
- E U Ahiwe
- School of Environmental and Rural Sciences, University of New England, Armidale NSW 2351 Australia
- Department of Animal Science and Technology, Federal University of Technology, Owerri PMB 1526, Imo State, Nigeria
| | - M E Abdallh
- School of Environmental and Rural Sciences, University of New England, Armidale NSW 2351 Australia
- Department of Poultry Production, University of Khartoum, Khartoum 13314, Sudan
| | - E P Chang'a
- School of Environmental and Rural Sciences, University of New England, Armidale NSW 2351 Australia
- Tanzania Livestock Research Institute (TALIRI), P. O. Box 352, Mwanza, Tanzania
| | - M Al-Qahtani
- School of Environmental and Rural Sciences, University of New England, Armidale NSW 2351 Australia
| | - A A Omede
- School of Environmental and Rural Sciences, University of New England, Armidale NSW 2351 Australia
- Department of Animal Production, Kogi State University, Anyigba PMB 1008, Kogi State, Nigeria
| | - H Graham
- AB Vista UK, Marlborough, Wiltshire SN8 4AN, UK
| | - P A Iji
- School of Environmental and Rural Sciences, University of New England, Armidale NSW 2351 Australia
- College of Agriculture, Fisheries and Forestry, Fiji National University, Koronivia 1544, Fiji
| |
Collapse
|
10
|
Ahiwe E, Omede A, Abdallh M, Chang'a E, Al-Qahtani M, Gausi H, Graham H, Iji P. Response of Broiler Chickens to Dietary Supplementation of Enzymatically Hydrolyzed Glucan or Mannan Yeast Products. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfz047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
11
|
The use of random forests modelling to detect yeast-mannan sensitive bacterial changes in the broiler cecum. Sci Rep 2018; 8:13270. [PMID: 30185819 PMCID: PMC6125325 DOI: 10.1038/s41598-018-31438-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/16/2018] [Indexed: 02/08/2023] Open
Abstract
In this study, sequencing of the 16S rRNA gene targeting the V4-V6 regions was conducted to assess the cecal microbial alterations in response to dietary supplementation with a yeast derived mannan rich fraction (MRF) in standard commercial broiler production settings across four separate broiler trials. The resulting data was analysed to identify consistent changes in the bacterial community structure of the broiler cecum in response to MRF supplementation. Subsequently, the datasets from each individual trial were pooled and analysed for differences between control and MRF supplemented diets at day 35 posthatch. The results from this analysis showed that Phylum Firmicutes was decreased and Phylum Bacteroidetes was increased across all four trials at day 35 posthatch when compared to the control. An extension of the random forest bioinformatics approach to discover a highly relevant set of microbial operational taxonomic units (OTUs) which are indicative of MRF supplementation in the broiler cecum was then used. This approach has enabled the identification of a novel set of yeast-mannan sensitive bacterial OTUs in the cecal microbiome. This information will be helpful in developing potential future nutritional strategies and will be favourable to the poultry industry.
Collapse
|
12
|
Hoving LR, van der Zande HJP, Pronk A, Guigas B, Willems van Dijk K, van Harmelen V. Dietary yeast-derived mannan oligosaccharides have immune-modulatory properties but do not improve high fat diet-induced obesity and glucose intolerance. PLoS One 2018; 13:e0196165. [PMID: 29723205 PMCID: PMC5933760 DOI: 10.1371/journal.pone.0196165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
The indigestible mannan oligosaccharides (MOS) derived from the outer cell wall of yeast Saccharomyces cerevisiae have shown potential to reduce inflammation. Since inflammation is one of the underlying mechanisms involved in the development of obesity-associated metabolic dysfunctions, we aimed to determine the effect of dietary supplementation with MOS on inflammation and metabolic homeostasis in lean and diet-induced obese mice. Male C57BL/6 mice were fed either a low fat diet (LFD) or a high fat diet (HFD) with, respectively, 10% or 45% energy derived from lard fat, with or without 1% MOS for 17 weeks. Body weight and composition were measured throughout the study. After 12 weeks of intervention, whole-body glucose tolerance was assessed and in week 17 immune cell composition was determined in mesenteric white adipose tissue (mWAT) and liver by flow cytometry and RT-qPCR. In LFD-fed mice, MOS supplementation induced a significant increase in the abundance of macrophages and eosinophils in mWAT. A similar trend was observed in hepatic macrophages. Although HFD feeding induced a classical shift from the anti-inflammatory M2-like macrophages towards the pro-inflammatory M1-like macrophages in both mWAT and liver from control mice, MOS supplementation had no effect on this obesity-driven immune response. Finally, MOS supplementation did not improve whole-body glucose homeostasis in both lean and obese mice.Altogether, our data showed that MOS had extra-intestinal immune modulatory properties in mWAT and liver. However these effects were not substantial enough to significantly ameliorate HFD-induced glucose intolerance or inflammation.
Collapse
Affiliation(s)
- Lisa R. Hoving
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| | | | - Amanda Pronk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Medicine, division Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vanessa van Harmelen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Xue GD, Wu SB, Choct M, Swick RA. Effects of yeast cell wall on growth performance, immune responses and intestinal short chain fatty acid concentrations of broilers in an experimental necrotic enteritis model. ACTA ACUST UNITED AC 2017; 3:399-405. [PMID: 29767160 PMCID: PMC5941278 DOI: 10.1016/j.aninu.2017.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/23/2017] [Accepted: 08/05/2017] [Indexed: 12/28/2022]
Abstract
Subclinical necrotic enteritis (NE) causes devastating economic losses in the broiler chicken industry, especially in birds raised free of in-feed antibiotics. Prebiotics are potential alternatives to in-feed antibiotics. Yeast cell wall extract (YCW) derived from Saccharomyces cerevisiae is a prebiotic with known immune modulating effects. This study examined the effects of YCW and antibiotics (AB) during subclinical NE on broiler growth performance, intestinal lesions, humoral immune response and gut microflora metabolites. The study employed a 2 × 3 factorial arrangement of treatments. Factors were: NE challenge (yes or no) and feed additive (control, AB, or YCW). Each treatment was replicated in 8 floor pens with 15 birds per pen. Challenged birds had higher feed conversion ratio (FCR) than unchallenged birds on d 35 (P < 0.05). Dietary inclusion of AB decreased FCR regardless of challenge (P < 0.05) on d 24 and 35. Inclusion of YCW reduced serum interleukin-1 (IL-1) concentration in NE challenged birds (P < 0.01) and increased immunoglobulin (Ig) G (P < 0.05) and Ig M (P < 0.05) levels compared to other dietary treatments regardless of challenge. Yeast cell wall extract increased formic acid concentration in cecal contents during challenge and increased butyric acid concentration in unchallenged birds on d 16. This study indicates YCW suppressed inflammatory response, promoted generation of immunoglobulin and increased short chain fatty acid production suggesting potential benefits to bird health.
Collapse
Affiliation(s)
- Guang-Da Xue
- Animal Science, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, Australia
| | - Shu-Biao Wu
- Animal Science, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, Australia
| | - Mingan Choct
- Animal Science, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, Australia
| | - Robert A Swick
- Animal Science, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
14
|
Huynh TG, Shiu YL, Nguyen TP, Truong QP, Chen JC, Liu CH. Current applications, selection, and possible mechanisms of actions of synbiotics in improving the growth and health status in aquaculture: A review. FISH & SHELLFISH IMMUNOLOGY 2017; 64:367-382. [PMID: 28336489 DOI: 10.1016/j.fsi.2017.03.035] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 06/06/2023]
Abstract
Synbiotics, a conjunction between prebiotics and probiotics, have been used in aquaculture for over 10 years. However, the mechanisms of how synbiotics work as growth and immunity promoters are far from being unraveled. Here, we show that a prebiotic as part of a synbiotic is hydrolyzed to mono- or disaccharides as the sole carbon source with diverse mechanisms, thereby increasing biomass and colonization that is established by specific crosstalk between probiotic bacteria and the surface of intestinal epithelial cells of the host. Synbiotics may indirectly and directly promote the growth of aquatic animals through releasing extracellular bacterial enzymes and bioactive products from synbiotic metabolic processes. These compounds may activate precursors of digestive enzymes of the host and augment the nutritional absorptive ability that contributes to the efficacy of food utilization. In fish immune systems, synbiotics cause intestinal epithelial cells to secrete cytokines which modulate immune functional cells as of dendritic cells, T cells, and B cells, and induce the ability of lipopolysaccharides to trigger tumor necrosis factor-α and Toll-like receptor 2 gene transcription leading to increased respiratory burst activity, phagocytosis, and nitric oxide production. In shellfish, synbiotics stimulate the proliferation and degranulation of hemocytes of shrimp due to the presence of bacterial cell walls. Pathogen-associated molecular patterns are subsequently recognized and bound by specific pattern-recognition proteins, triggering melanization and phagocytosis processes.
Collapse
Affiliation(s)
- Truong-Giang Huynh
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan, ROC; College of Aquaculture and Fisheries, CanTho University, CanTho, Viet Nam
| | - Ya-Li Shiu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan, ROC
| | | | - Quoc-Phu Truong
- College of Aquaculture and Fisheries, CanTho University, CanTho, Viet Nam
| | - Jiann-Chu Chen
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan, ROC.
| |
Collapse
|
15
|
Pourabedin M, Chen Q, Yang M, Zhao X. Mannan- and xylooligosaccharides modulate caecal microbiota and expression of inflammatory-related cytokines and reduce caecal Salmonella Enteritidis colonisation in young chickens. FEMS Microbiol Ecol 2016; 93:fiw226. [PMID: 27810877 DOI: 10.1093/femsec/fiw226] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/23/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022] Open
Abstract
Salmonella Enteritidis is a pathogen, which can infect humans and chickens. This study was designed to address the impact of two potential prebiotics, mannanoligosaccharides (MOS) and xylooligosaccharides (XOS), on the caecal microbiota and expression of cytokines in chickens infected with S. Enteritidis. Newly hatched chicks were assigned to one of five groups: (1) uninfected control, (2) infected control, (3) infected + XOS, (4) infected + MOS and (5) infected + virginiamycin. The number of S. Enteritidis recovered from the caecum was significantly lower, by 1.6 log, in the MOS, and to a less extent (1.0 log) in the XOS-fed birds compared to the infected control. Coprococcus, Ruminococcus and Enterococcus genera were increased in response to MOS, whereas XOS enriched Clostridium, Lactobacillus and Roseburia MOS, but not XOS, lessened the increase of lipopolysaccharide-induced tumour necrosis factor alpha factor and interferon-γ in caecal tonsils after challenge. The canonical correspondence analysis for cytokine genes showed a correlation with the composition of the microbial community at the genus level. Thus, MOS and XOS differently changed the relative abundance of specific microbial genera and the immune response during infection, and these changes were correlated with their abilities to reduce S. Enteritidis colonisation.
Collapse
Affiliation(s)
- Mohsen Pourabedin
- Department of Animal Science, McGill University, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada
| | - Qiaoling Chen
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - MingMing Yang
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Xin Zhao
- Department of Animal Science, McGill University, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
16
|
Zhang Y, Guo F, Zhao R. Hepatic expression of FTO and fatty acid metabolic genes changes in response to lipopolysaccharide with alterations in m 6A modification of relevant mRNAs in the chicken. Br Poult Sci 2016; 57:628-635. [PMID: 27398647 DOI: 10.1080/00071668.2016.1201199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fat mass and obesity associated (FTO) gene, which encodes a demethylase of m6A, has been reported to respond to lipopolysaccharide (LPS) and to serve as a link between inflammation and metabolic responses. The objective of this study was to determine whether LPS-induced changes in the expression of FTO and metabolic genes are associated with alterations of m6A in relevant mRNAs. LPS challenge significantly decreased hepatic mRNA expression of carnitine palmitoyl transferase 1 (CPT1) and CPT2, which coincided with a tendency of higher triglyceride accumulation in the liver. LPS significantly down-regulated the full length cFTO1, yet up-regulated the truncated cFTO4 protein in the liver nuclear extracts. Nuclear protein content of cFTO4 in the liver was negatively correlated with the mRNA abundances of CPT1 (r = 0.629) and CPT2 (r = 0.622). Methylated RNA immunoprecipitation analysis revealed that the m6A level around the translation start site of CPT1 was markably decreased in the liver of LPS-treated chickens. These results indicate that LPS-induced changes in FTO protein expression are associated with alteration of mRNA m6A modification in chicken liver.
Collapse
Affiliation(s)
- Y Zhang
- a Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing , China
| | - F Guo
- a Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing , China
| | - R Zhao
- a Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing , China.,b Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing , China
| |
Collapse
|
17
|
Abstract
The large number of intestinal microorganisms, which exceeds the total number of human cells by ten folds, alludes to a significant contribution to human health. This is vivid in enteric and some systemic diseases emanating from disruption of the microbiota. As life style keeps shifting towards disruption of the microbiota in most societies worldwide, interest in the contribution of the microbiota to gut health has grown enormously. Many studies have been conducted to elucidate the exact contribution of the microbiota to human health. The knowledge gained from these studies indicates that the microbiota interacts with the intestinal milieu to maintain gut health. In this review, the crosstalk of microbiota with the intestinal physicochemical barrier pivotal to the gut innate immunity is highlighted. In particular, the review focuses on the role of the microbiota on competitive exclusion of pathogens, intestinal pH, epithelial mechanical barrier integrity, apical actin cytoskeleton, antimicrobial peptides, and the mucus layer. Understanding this microbe-host relationship will provide useful insight into overcoming some diseases related to the disruption of the host microbiota.
Collapse
Affiliation(s)
- J J Malago
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Sokoine University of Agriculture, P.O. Box 3203, Chuo Kikuu, Morogoro, Tanzania
| |
Collapse
|
18
|
Abstract
Prebiotics are non-digestible feed ingredients that are metabolized by specific members of intestinal microbiota and provide health benefits for the host. Fermentable oligosaccharides are best known prebiotics that have received increasing attention in poultry production. They act through diverse mechanisms, such as providing nutrients, preventing pathogen adhesion to host cells, interacting with host immune systems and affecting gut morphological structure, all presumably through modulation of intestinal microbiota. Currently, fructooligosaccharides, inulin and mannanoligosaccharides have shown promising results while other prebiotic candidates such as xylooligosaccharides are still at an early development stage. Despite a growing body of evidence reporting health benefits of prebiotics in chickens, very limited studies have been conducted to directly link health improvements to prebiotic-dependent changes in the gut microbiota. This article visits the current knowledge of the chicken gastrointestinal microbiota and reviews most recent publications related to the roles played by prebiotics in modulation of the gut microbiota and immune functions. Progress in this field will help us better understand how the gut microbiota contributes to poultry health and productivity, and support the development of new prebiotic products as an alternative to in-feed antibiotics.
Collapse
Affiliation(s)
- Mohsen Pourabedin
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Xin Zhao
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
19
|
Phylogenetic and functional alterations in bacterial community compositions in broiler ceca as a result of mannan oligosaccharide supplementation. Appl Environ Microbiol 2015; 81:3460-70. [PMID: 25769823 DOI: 10.1128/aem.04194-14] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/05/2015] [Indexed: 12/20/2022] Open
Abstract
This study focused on identifying reproducible effects of dietary supplementation with a mannan oligosaccharide (MOS) on the broiler cecal bacterial community structure and function in a commercial production setting. Two separate trials, each with a control and a supplemented group, were carried out in the same commercial location and run concurrently. Approximately 10,000 birds from the same commercial hatchery were mirror imaged into each of four commercial broiler sheds and fed either a control or supplemented diet. Cecal contents were obtained on days 7, 21, and 35 posthatch from 12 randomly caught broilers from each group. Bacterial pyrosequencing was performed on all samples, with approximately 250,000 sequences obtained per treatment per time point. The predominant phyla identified at all three time points in both trials were Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Tenericutes, representing >99% of all sequences. MOS supplementation altered the bacterial community composition from 7 days supplementation through 35 days supplementation. Bacteroidetes appeared to be replacing Firmicutes as a result of supplementation, with the most noticeable effects after 35 days. The effects of supplementation were reproducible across both trials. PICRUSt was used to identify differences between the functional potentials of the bacterial communities as a result of MOS supplementation. Using level 3 KEGG ortholog function predictions, differences between control and supplemented groups were observed, with very strong segregation noted on day 35 posthatch in both trials. This indicated that alterations of bacterial communities as a result of MOS are likely to alter the functional capability of the cecum.
Collapse
|
20
|
Jordan K, Dalmasso M, Zentek J, Mader A, Bruggeman G, Wallace J, De Medici D, Fiore A, Prukner-Radovcic E, Lukac M, Axelsson L, Holck A, Ingmer H, Malakauskas M. Microbes versus microbes: control of pathogens in the food chain. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:3079-3089. [PMID: 24816992 DOI: 10.1002/jsfa.6735] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 02/07/2014] [Accepted: 05/06/2014] [Indexed: 06/03/2023]
Abstract
Foodborne illness continues as a considerable threat to public health. Despite improved hygiene management systems and increased regulation, pathogenic bacteria still contaminate food, causing sporadic cases of illness and disease outbreaks worldwide. For many centuries, microbial antagonism has been used in food processing to improve food safety. An understanding of the mode of action of this microbial antagonism has been gained in recent years and potential applications in food and feed safety are now being explored. This review focuses on the potential opportunities presented, and the limitations, of using microbial antagonism as a biocontrol mechanism to reduce contamination along the food chain; including animal feed as its first link. © 2014 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kieran Jordan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang HT, Shih WY, Chen SW, Wang SY. Effect of yeast with bacteriocin from rumen bacteria on laying performance, blood biochemistry, faecal microbiota and egg quality of laying hens. J Anim Physiol Anim Nutr (Berl) 2014; 99:1105-15. [DOI: 10.1111/jpn.12262] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 09/09/2014] [Indexed: 01/09/2023]
Affiliation(s)
- H. T. Wang
- Department of Animal Science; Chinese Culture University; Taipei Taiwan 111 ROC
| | - W. Y. Shih
- Graduate Institute of Biotechnology; Chinese Culture University; Taipei Taiwan 111 ROC
| | - S. W. Chen
- Graduate Institute of Animal Science and Technology; National Taiwan University; Taipei Taiwan 106 ROC
| | - S. Y. Wang
- Department of Animal Science; Chinese Culture University; Taipei Taiwan 111 ROC
- Graduate Institute of Biotechnology; Chinese Culture University; Taipei Taiwan 111 ROC
| |
Collapse
|
22
|
Shanmugasundaram R, Sifri M, Jeyabalan R, Selvaraj RK. Effect of yeast cell product (CitriStim) supplementation on turkey performance and intestinal immune cell parameters during an experimental lipopolysaccharide injection. Poult Sci 2014; 93:2763-71. [DOI: 10.3382/ps.2014-04174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Meitern R, Andreson R, Hõrak P. Profile of whole blood gene expression following immune stimulation in a wild passerine. BMC Genomics 2014; 15:533. [PMID: 24972896 PMCID: PMC4092216 DOI: 10.1186/1471-2164-15-533] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/24/2014] [Indexed: 12/22/2022] Open
Abstract
Background Immunoecology aims to explain variation among hosts in the strength and efficacy of immunological defences in natural populations. This requires development of biomarkers of the activation of the immune system so that they can be collected non-lethally and sampled from small amounts of easily obtainable tissue. We used transcriptome profiling in wild greenfinches (Carduelis chloris) to detect whole blood transcripts that most profoundly indicate upregulation of antimicrobial defences during acute phase response. The more general aim of this study was to obtain a functional annotation of a substantial portion of the greenfinch transcriptome that would enable to gain access to more specific genomic tools in subsequent studies. The birds received either bacterial lipopolysaccharide or saline injections and RNA-seq transcriptional profiling was performed 12 h after treatment to provide initial functional annotation of the transcriptome and assess whole blood response to immune stimulation. Results A total of 66,084 transcripts were obtained from de novo Trinty assembly, out of which 23,153 could be functionally annotated. Only 1,911 of these were significantly upregulated or downregulated. The manipulation caused marked upregulation of several transcripts related to immune activation. These included avian-specific antimicrobial agents avidin and gallinacin, but also some more general host response genes, such as serum amyloid A protein, lymphocyte antigen 75 and copper-transporting ATPase 1. However, links with avian immunity for most differentially regulated transcripts remained rather hypothetical, as a large set of differentially expressed transcripts lacked functional annotation. Conclusions This appears to be the first large scale transcriptional profiling of immune function in passerine birds. The transcriptomic data obtained suggest novel markers for the assessment of the immunological state of wild passerines. Characterizing the function of those possible novel infection markers would assist future vertebrate genome annotation. The extensive sequence information collected enables to identify possible target and housekeeping genes needed to gain access to more specific genomic tools in future studies. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-533) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Richard Meitern
- Department of Zoology, Institute of Ecology and Earth Sciences, Tartu University, Vanemuise 46, 51014 Tartu, Estonia.
| | | | | |
Collapse
|
24
|
Pourabedin M, Xu Z, Baurhoo B, Chevaux E, Zhao X. Effects of mannan oligosaccharide and virginiamycin on the cecal microbial community and intestinal morphology of chickens raised under suboptimal conditions. Can J Microbiol 2014; 60:255-66. [DOI: 10.1139/cjm-2013-0899] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is an increasing movement against use of antibiotic growth promoters in animal feed. Prebiotic supplementation is a potential alternative to enhance the host’s natural defense through modulation of gut microbiota. In the present study, the effect of mannan oligosaccharide (MOS) and virginiamycin (VIRG) on cecal microbial ecology and intestinal morphology of broiler chickens raised under suboptimal conditions was evaluated. MOS and VIRG induced different bacterial community structures, as revealed by denaturing gradient gel electrophoresis of 16S rDNA. The antibiotic treatment reduced cecal microbial diversity while the community equitability increased. A higher bacterial diversity was observed in the cecum of MOS-supplemented birds. Quantitative polymerase chain reaction results indicated that MOS changed the cecal microbiota in favor of the Firmicutes population but not the Bacteroidetes population. No difference was observed in total bacterial counts among treatments. MOS promoted the growth of Lactobacillus spp. and Bifidobacterium spp. in the cecum and increased villus height and goblet cell numbers in the ileum and jejunum. These results provide a deeper insight into the microbial ecological changes after supplementation of MOS prebiotic in poultry diets.
Collapse
Affiliation(s)
- Mohsen Pourabedin
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Que., Canada
| | - Zhengxin Xu
- Department of Pharmacology, Medical School of Yangzhou University, Yangzhou, People’s Republic of China
| | - Bushansingh Baurhoo
- Belisle Solution and Nutrition Inc., Saint-Mathias-sur-Richelieu, Que., Canada
| | - Eric Chevaux
- Lallemand Animal Nutrition, Milwaukee, Wis., USA
| | - Xin Zhao
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Que., Canada
| |
Collapse
|
25
|
Liu X, Byrd JA, Farnell M, Ruiz-Feria CA. Arginine and vitamin E improve the immune response after a Salmonella challenge in broiler chicks. Poult Sci 2014; 93:882-90. [PMID: 24706965 DOI: 10.3382/ps.2013-03723] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Two experiments were conducted to evaluate the effects of Arg, vitamin E (VE), and mannanoligosaccharide (MOS) on the immune response and clearance of Salmonella in broiler chickens. In each experiment, 1-d-old chicks (n = 160) were randomly distributed into 4 groups: antibiotic-free diet (negative control, CTL-), antibiotic-supplemented diet (positive control, CTL+), antibiotic free-diet plus Arg and VE (AVE), or antibiotic-free diet plus Arg, VE, and MOS (AVM). Birds were orally challenged with 10(6) cfu of a novobiocyn and nalidixic acid-resistant Salmonella enterica serovar Typhimurium strain at d 7 (experiment 1) or at d 3 (experiment 2). Heterophil- (HOB) and monocyte- (MOB) oxidative burst and lymphocyte proliferation (LPR), antibody titers, and Salmonella content in the ceca were measured at several intervals postinfection (PI). In experiment 1, both AVM and AVE decreased HOB compared with the controls 5 and 9 d PI, but increased LPR 9 d PI. In the same experiment, birds fed the AVE diet had higher MOB than birds fed CTL+ or the AVM diet at 7 d PI, whereas 9 d PI birds fed the AVM diet had the highest MOB. In experiment 2, birds fed the AVE diet had higher MOB, HOB, and LPR than birds in the other treatments 7 and 14 d PI, except at 7 d PI, when MOB was not different among treatments. Birds fed the AVM diet had the highest IgA antibody titer, and a higher IgM antibody titer than the CTL+ birds. In experiment 1, Salmonella Typhimurium content in the ceca was lower in birds fed the AVM diet compared with birds fed the CTL- diet 3 d PI, but later on (10 and 17 d PI), and in experiment 2 (7, 14, and 21 d PI), Salmonella Typhimurium concentrations were not different among treatments. Thus, Arg and VE improved immune response after a Salmonella Typhimurium challenge in young chicks, and although they did not reduce Salmonella Typhimurium concentrations in the ceca, they may improve bacterial resistance against other pathogens in commercial growing conditions.
Collapse
Affiliation(s)
- X Liu
- Poultry Science Department, Texas A&M University, College Station 77843-2472
| | | | | | | |
Collapse
|
26
|
Proteomic analysis of intestinal mucosa responses to Salmonella enterica serovar typhimurium in naturally infected pig. Comp Immunol Microbiol Infect Dis 2013; 37:59-67. [PMID: 24268431 DOI: 10.1016/j.cimid.2013.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 02/07/2023]
Abstract
Salmonella enterica serovar typhimurium (S. typhimurium) is one of the most frequent Salmonella serotypes isolated from European pigs. Despite the advances in understanding the mechanisms involved in host-pathogen interactions and host cell responses to S. typhimurium, the global change that occurs in naturally exposed populations has been poorly characterized. Here, we present a proteomics study on intestinal mucosa of pigs naturally infected with S. typhimurium, in order to better understand the pathogenesis of salmonellosis and the pathways which might be affected after infection. Samples were analyzed by 2D-DIGE and 44 different proteins exhibited statistically significant differences. The data set was analyzed by employing the Ingenuity Pathway Analysis and the physiological function most significantly perturbed were immunological and infectious disease, cellular assembly and organization and metabolism. The pathways implicated in the porcine immune response to S. typhimurium were gluconeogenesis and Rho GDI/RhoA signaling, and our results suggest that keratins and the intermediate filaments could play an important role in the damage of the mucosa and in the success of infection. The role of these findings in salmonellosis has been discussed, as well as the importance of analyzing naturally infected animals to have a complete picture of the infection. Also, we compared the results found in this work with those obtained in a similar study using experimentally infected animals.
Collapse
|
27
|
Huff G, Huff W, Jalukar S, Oppy J, Rath N, Packialakshmi B. The effects of yeast feed supplementation on turkey performance and pathogen colonization in a transport stress/Escherichia coli challenge. Poult Sci 2013; 92:655-62. [DOI: 10.3382/ps.2012-02787] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|