1
|
Jia H, Wu R, Yang H, Luo KQ. FRET-Based Sensor Zebrafish Reveal Muscle Cells Do Not Undergo Apoptosis in Starvation or Natural Aging-Induced Muscle Atrophy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416811. [PMID: 39903762 DOI: 10.1002/advs.202416811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Indexed: 02/06/2025]
Abstract
Muscle atrophy occurs during natural aging and under disease conditions. Muscle cell apoptosis is considered one of the main causes of muscle atrophy, while several recent studies argued that muscle cells do not die during muscle atrophy. Here, sensor zebrafish are generated to visualize muscle cell apoptosis and the engulfment of dead muscle cells by macrophages. Using these sensor zebrafish, starvation, and natural aging-induced muscle atrophy models are established. The data showed that the diameters of muscle cells decreased in both models; however, muscle cell apoptosis is not found in the process of muscle atrophy. In starvation-induced muscle atrophy, it also showed that the number of nuclei in muscle cells remained constant, and there is no increase in the number of macrophages in muscle tissues, both of which further confirmed that muscle cells do not die. In both models, transcriptional analysis showed that the apoptosis pathway is down-regulated, and autophagy and protein degradation pathways are up-regulated. All these data indicated that although there is a great reduction of muscle mass during starvation or aging-induced muscle atrophy, muscle cells do not die by apoptosis. These findings provide new insights into muscle atrophy and can benefit the treatments for muscle atrophy-related diseases.
Collapse
Affiliation(s)
- Hao Jia
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Renfei Wu
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Hongmei Yang
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Kathy Qian Luo
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao SAR, China
| |
Collapse
|
2
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Kim T, Kim H. Pathophysiology and Therapeutic Management of Bone Loss in Patients with Critical Illness. Pharmaceuticals (Basel) 2023; 16:1718. [PMID: 38139844 PMCID: PMC10747168 DOI: 10.3390/ph16121718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Patients with critical illnesses are at higher risk of comorbidities, which can include bone mineral density loss, bone turnover marker increase, and fragility fractures. Patients admitted to intensive care units (ICUs) have a higher risk of bone fractures. Since hypermetabolism is a characteristic of ICU patients, such patients are often rapidly affected by systemic deterioration, which often results in systemic wasting disease. Major risk factors for ICU-related bone loss include physical restraint, inflammation, neuroendocrine stress, malnutrition, and medications. A medical history of critical illness should be acknowledged as a risk factor for impaired bone metabolism. Bone loss associated with ICU admission should be recognized as a key component of post-intensive care syndrome, and further research that focuses on treatment protocols and prevention strategies is required. Studies aimed at maintaining gut integrity have emphasized protein administration and nutrition, while research is ongoing to evaluate the therapeutic benefits of anti-resorptive agents and physical therapy. This review examines both current and innovative clinical strategies that are used for identifying risk factors of bone loss. It provides an overview of perioperative outcomes and discusses the emerging novel treatment modalities. Furthermore, the review presents future directions in the treatment of ICU-related bone loss.
Collapse
Affiliation(s)
- Taejin Kim
- Department of Urology, CHA University Ilsan Medical Center, CHA University School of Medicine, Goyang-si 10414, Republic of Korea;
| | - Hyojin Kim
- Division of Critical Care Medicine, Department of Anesthesiology and Pain Medicine, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong-si 14353, Republic of Korea
| |
Collapse
|
4
|
Katoh K. Effects of Electrical Stimulation of the Cell: Wound Healing, Cell Proliferation, Apoptosis, and Signal Transduction. Med Sci (Basel) 2023; 11:medsci11010011. [PMID: 36810478 PMCID: PMC9944882 DOI: 10.3390/medsci11010011] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Electrical stimulation of the cell can have a number of different effects depending on the type of cell being stimulated. In general, electrical stimulation can cause the cell to become more active, increase its metabolism, and change its gene expression. For example, if the electrical stimulation is of low intensity and short duration, it may simply cause the cell to depolarize. However, if the electrical stimulation is of high intensity or long duration, it may cause the cell to become hyperpolarized. The electrical stimulation of cells is a process by which an electrical current is applied to cells in order to change their function or behavior. This process can be used to treat various medical conditions and has been shown to be effective in a number of studies. In this perspective, the effects of electrical stimulation on the cell are summarized.
Collapse
Affiliation(s)
- Kazuo Katoh
- Laboratory of Human Anatomy and Cell Biology, Faculty of Health Sciences, Tsukuba University of Technology, Tsukuba 305-8521, Japan
| |
Collapse
|
5
|
Fujimaki S, Ono Y. Murine Models of Tenotomy-Induced Mechanical Overloading and Tail-Suspension-Induced Mechanical Unloading. Methods Mol Biol 2023; 2640:207-215. [PMID: 36995597 DOI: 10.1007/978-1-0716-3036-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Skeletal muscle is a highly plastic tissue that can alter its mass and strength in response to mechanical stimulation, such as overloading and unloading, which lead to muscle hypertrophy and atrophy, respectively. Mechanical loading in the muscle influences muscle stem cell dynamics, including activation, proliferation, and differentiation. Although experimental models of mechanical overloading and unloading have been widely used for the investigation of the molecular mechanisms regulating muscle plasticity and stem cell function, few studies have described the methods in detail. Here, we describe the appropriate procedures for tenotomy-induced mechanical overloading and tail-suspension-induced mechanical unloading, which are the most common and simple methods to induce muscle hypertrophy and atrophy in mouse models.
Collapse
Affiliation(s)
- Shin Fujimaki
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
6
|
Rahmati M, McCarthy JJ, Malakoutinia F. Myonuclear permanence in skeletal muscle memory: a systematic review and meta-analysis of human and animal studies. J Cachexia Sarcopenia Muscle 2022; 13:2276-2297. [PMID: 35961635 PMCID: PMC9530508 DOI: 10.1002/jcsm.13043] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 12/09/2022] Open
Abstract
One aspect of skeletal muscle memory is the ability of a previously trained muscle to hypertrophy more rapidly following a period of detraining. Although the molecular basis of muscle memory remains to be fully elucidated, one potential mechanism thought to mediate muscle memory is the permanent retention of myonuclei acquired during the initial phase of hypertrophic growth. However, myonuclear permanence is debated and would benefit from a meta-analysis to clarify the current state of the field for this important aspect of skeletal muscle plasticity. The objective of this study was to perform a meta-analysis to assess the permanence of myonuclei associated with changes in physical activity and ageing. When available, the abundance of satellite cells (SCs) was also considered given their potential influence on changes in myonuclear abundance. One hundred forty-seven peer-reviewed articles were identified for inclusion across five separate meta-analyses; (1-2) human and rodent studies assessed muscle response to hypertrophy; (3-4) human and rodent studies assessed muscle response to atrophy; and (5) human studies assessed muscle response with ageing. Skeletal muscle hypertrophy was associated with higher myonuclear content that was retained in rodents, but not humans, with atrophy (SMD = -0.60, 95% CI -1.71 to 0.51, P = 0.29, and MD = 83.46, 95% CI -649.41 to 816.32, P = 0.82; respectively). Myonuclear and SC content were both lower following atrophy in humans (MD = -11, 95% CI -0.19 to -0.03, P = 0.005, and SMD = -0.49, 95% CI -0.77 to -0.22, P = 0.0005; respectively), although the response in rodents was affected by the type of muscle under consideration and the mode of atrophy. Whereas rodent myonuclei were found to be more permanent regardless of the mode of atrophy, atrophy of ≥30% was associated with a reduction in myonuclear content (SMD = -1.02, 95% CI -1.53 to -0.51, P = 0.0001). In humans, sarcopenia was accompanied by a lower myonuclear and SC content (MD = 0.47, 95% CI 0.09 to 0.85, P = 0.02, and SMD = 0.78, 95% CI 0.37-1.19, P = 0.0002; respectively). The major finding from the present meta-analysis is that myonuclei are not permanent but are lost during periods of atrophy and with ageing. These findings do not support the concept of skeletal muscle memory based on the permanence of myonuclei and suggest other mechanisms, such as epigenetics, may have a more important role in mediating this aspect of skeletal muscle plasticity.
Collapse
Affiliation(s)
- Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human SciencesLorestan UniversityKhorramabadIran
| | - John J. McCarthy
- Department of PhysiologyUniversity of KentuckyLexingtonKYUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKYUSA
| | - Fatemeh Malakoutinia
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human SciencesLorestan UniversityKhorramabadIran
| |
Collapse
|
7
|
Honda Y, Takahashi A, Tanaka N, Kajiwara Y, Sasaki R, Okita S, Sakamoto J, Okita M. Muscle contractile exercise through a belt electrode device prevents myofiber atrophy, muscle contracture, and muscular pain in immobilized rat gastrocnemius muscle. PLoS One 2022; 17:e0275175. [PMID: 36149919 PMCID: PMC9506634 DOI: 10.1371/journal.pone.0275175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022] Open
Abstract
Purpose
Immobilization of skeletal muscles causes muscle atrophy, muscle contracture, and muscle pain, the mechanisms of which are related to macrophage accumulation. However, muscle contractile exercise through a belt electrode device may mitigate macrophage accumulation. We hypothesized that such exercise would be effective in preventing myofiber atrophy, muscle contracture, and muscular pain. This study tested this hypothesis in immobilized rat gastrocnemius muscle.
Materials and methods
A total of 32 rats were divided into the following control and experimental groups: immobilization (immobilized treatment only), low-frequency (LF; immobilized treatment and muscle contractile exercise with a 2 s (do) /6 s (rest) duty cycle), and high-frequency (HF; immobilized treatment and muscle contractile exercise with a 2 s (do)/2 s (rest) duty cycle). Electrical stimulation was performed at 50 Hz and 4.7 mA, and muscle contractile exercise was applied to the lower limb muscles for 15 or 20 min/session (once daily) for 2 weeks (6 times/week). After the behavioral tests, the bilateral gastrocnemius muscles were collected for analysis.
Results
The number of macrophages, the Atrogin-1 and MuRF-1 mRNA expression, and the hydroxyproline content in the HF group were lower than those in the immobilization and LF groups. The cross-sectional area (CSA) of type IIb myofibers in the superficial region, the PGC-1α mRNA expression, and the range of motion of dorsiflexion in the HF group were significantly higher than those in the immobilization and LF groups. The pressure pain thresholds in the LF and HF groups were significantly higher than that in the immobilization group, and the nerve growth factor (NGF) content in the LF and HF groups was significantly lower than that in the immobilization group.
Conclusion
Muscle contractile exercise through the belt electrode device may be effective in preventing immobilization-induced myofiber atrophy, muscle contracture, and muscular pain in the immobilized rat gastrocnemius muscle.
Collapse
Affiliation(s)
- Yuichiro Honda
- Institute of Biomedical Sciences (Health Sciences), Nagasaki University, Nagasaki, Nagasaki, Japan
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
| | - Ayumi Takahashi
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
| | - Natsumi Tanaka
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
- Department of Physical Therapy, School of Rehabilitation Sciences, Seirei Christopher University, Hamamatsu, Shizuoka, Japan
| | - Yasuhiro Kajiwara
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
- Department of Rehabilitation, Nagasaki University Hospital, Nagasaki, Nagasaki, Japan
| | - Ryo Sasaki
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
- Department of Rehabilitation, Jyuzenkai Hospital, Nagasaki, Nagasaki, Japan
| | - Seima Okita
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
- Department of Rehabilitation, The Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Nagasaki, Japan
| | - Junya Sakamoto
- Institute of Biomedical Sciences (Health Sciences), Nagasaki University, Nagasaki, Nagasaki, Japan
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
| | - Minoru Okita
- Institute of Biomedical Sciences (Health Sciences), Nagasaki University, Nagasaki, Nagasaki, Japan
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
8
|
Kotani T, Tamura Y, Kouzaki K, Kato H, Isemura M, Nakazato K. Percutaneous electrical stimulation-induced muscle contraction prevents the decrease in ribosome RNA and ribosome protein during pelvic hindlimb suspension. J Appl Physiol (1985) 2022; 133:822-833. [PMID: 36007895 DOI: 10.1152/japplphysiol.00204.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle unloading leads to muscle atrophy. Ribosome synthesis has been implicated as an important skeletal muscle mass regulator owing to its translational capacity. Muscle unloading induces a reduction in ribosome synthesis and content, with muscle atrophy. Percutaneous electrical muscle stimulation (pEMS)-induced muscle contraction is widely used in clinics to improve muscle mass. However, its efficacy in rescuing the reduction in ribosomal synthesis has not been addressed thus far. We examined the effects of daily pEMS treatment on ribosome synthesis and content during mouse hindlimb unloading. Male C57BL/6J mice were randomly assigned to sedentary (SED) and hindlimb unloading by pelvic suspension (HU) groups. Muscle contraction was triggered by pEMS treatment of the right gastrocnemius muscle of a subset of the HU group (HU+pEMS). Hindlimb unloading for 6 days significantly lowered 28S rRNA, rpL10, and rpS3 expression, which was rescued by daily pEMS treatment. The protein expression of phospho-p70S6K and UBF was significantly higher in the HU+pEMS than in the HU group. The mRNA expression of ribophagy receptor Nufip1 increased in both the HU and HU+pEMS groups. Protein light chain 3 (LC3)-II expression and the LC3-II/LC3-I ratio were increased by HU, but pEMS attenuated this increase. Our findings indicate that during HU, daily pEMS treatment prevents the reduction in the levels of some proteins associated with ribosome synthesis. Additionally, the HU-induced activation of ribosome degradation may be attenuated. These data provide insights into ribosome content regulation and the mechanism of attenuation of muscle atrophy by pEMS treatment during muscle disuse.
Collapse
Affiliation(s)
- Takaya Kotani
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Yuki Tamura
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan.,Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.,Faculty of Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Karina Kouzaki
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan.,Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan
| | - Hikaru Kato
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Mako Isemura
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Koichi Nakazato
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan.,Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.,Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan.,Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
| |
Collapse
|
9
|
Giza S, Mojica‐Santiago JA, Parafati M, Malany LK, Platt D, Schmidt CE, Coen PM, Malany S. Microphysiological system for studying contractile differences in young, active, and old, sedentary adult derived skeletal muscle cells. Aging Cell 2022; 21:e13650. [PMID: 35653714 PMCID: PMC9282836 DOI: 10.1111/acel.13650] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/06/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Microphysiological systems (MPS), also referred to as tissue chips, incorporating 3D skeletal myobundles are a novel approach for physiological and pharmacological studies to uncover new medical treatments for sarcopenia. We characterize a MPS in which engineered skeletal muscle myobundles derived from donor-specific satellite cells that model aged phenotypes are encapsulated in a perfused tissue chip platform containing platinum electrodes. Our myobundles were derived from CD56+ myogenic cells obtained via percutaneous biopsy of the vastus lateralis from adults phenotyped by age and physical activity. Following 17 days differentiation including 5 days of a 3 V, 2 Hz electrical stimulation regime, the myobundles exhibited fused myotube alignment and upregulation of myogenic, myofiber assembly, signaling and contractile genes as demonstrated by gene array profiling and localization of key components of the sarcomere. Our results demonstrate that myobundles derived from the young, active (YA) group showed high intensity immunofluorescent staining of α-actinin proteins and responded to electrical stimuli with a ~1 μm displacement magnitude compared with non-stimulated myobundles. Myobundles derived from older sedentary group (OS) did not display a synchronous contraction response. Hypertrophic potential is increased in YA-derived myobundles in response to stimulation as shown by upregulation of insulin growth factor (IGF-1), α-actinin (ACTN3, ACTA1) and fast twitch troponin protein (TNNI2) compared with OS-derived myobundles. Our MPS mimics disease states of muscle decline and thus provides an aged system and experimental platform to investigate electrical stimulation mimicking exercise regimes and may be adapted to long duration studies of compound efficacy and toxicity for therapeutic evaluation against sarcopenia.
Collapse
Affiliation(s)
- Shelby Giza
- Department of Pharmacodynamics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Jorge A. Mojica‐Santiago
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of EngineeringUniversity of FloridaGainesvilleFloridaUSA
| | - Maddalena Parafati
- Department of Pharmacodynamics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | | | - Don Platt
- Micro Aerospace SolutionsMelbourneFloridaUSA
| | - Christine E. Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of EngineeringUniversity of FloridaGainesvilleFloridaUSA
| | - Paul M. Coen
- Translational Research InstituteAdventHealthOrlandoFloridaUSA
| | - Siobhan Malany
- Department of Pharmacodynamics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
10
|
Schwartz LM, Gundersen K. Cross Talk opposing view: Myonuclei do not undergo apoptosis during skeletal muscle atrophy. J Physiol 2022; 600:2081-2084. [PMID: 35388909 DOI: 10.1113/jp282381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Lawrence M Schwartz
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, MA, USA
| | | |
Collapse
|
11
|
Pei X, Yan R, Jiang G, Qi T, Jin H, Dong S, Feng G. Non-Invasive Muscular Atrophy Causes Evaluation for Limb Fracture Based on Flexible Surface Electromyography System. SENSORS 2022; 22:s22072640. [PMID: 35408254 PMCID: PMC9003361 DOI: 10.3390/s22072640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023]
Abstract
Muscular atrophy after limb fracture is a frequently occurring complication with multiple causes. Different treatments and targeted rehabilitation procedures should be carried out based on the causes. However, bedside evaluation methods are invasive in clinical practice nowadays, lacking reliable non-invasive methods. In this study, we propose a non-invasive flexible surface electromyography system with machine learning algorithms to distinguish nerve-injury and limb immobilization-related atrophy. First, a flexible surface electromyography sensor was designed and verified by in vitro tests for its robustness and flexibility. Then, in vivo tests on rats proved the reliability compared with the traditional invasive diagnosis method. Finally, this system was applied for the diagnosis of muscular atrophy in 10 patients. The flexible surface electromyography sensor can achieve a max strain of 12.0%, which ensures close contact with the skin. The in vivo tests on rats show great comparability with the traditional invasive diagnosis method. It can achieve a high specificity of 95.28% and sensitivity of 98.98%. Application on patients reaches a relatively high specificity of 89.44% and sensitivity of 91.94%. The proposed painless surface electromyography system can be an easy and accurate supplementary for bedside muscular atrophy causes evaluation, holding excellent contact with the body.
Collapse
Affiliation(s)
- Xiachuan Pei
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China; (X.P.); (H.J.); (S.D.)
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (G.J.); (T.Q.); (G.F.)
| | - Ruijian Yan
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (G.J.); (T.Q.); (G.F.)
- Correspondence:
| | - Guangyao Jiang
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (G.J.); (T.Q.); (G.F.)
| | - Tianyu Qi
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (G.J.); (T.Q.); (G.F.)
| | - Hao Jin
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China; (X.P.); (H.J.); (S.D.)
- International Campus, Zhejiang University, Haining 314400, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shurong Dong
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China; (X.P.); (H.J.); (S.D.)
- International Campus, Zhejiang University, Haining 314400, China
| | - Gang Feng
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (G.J.); (T.Q.); (G.F.)
| |
Collapse
|
12
|
Mallard J, Hucteau E, Hureau TJ, Pagano AF. Skeletal Muscle Deconditioning in Breast Cancer Patients Undergoing Chemotherapy: Current Knowledge and Insights From Other Cancers. Front Cell Dev Biol 2021; 9:719643. [PMID: 34595171 PMCID: PMC8476809 DOI: 10.3389/fcell.2021.719643] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/10/2021] [Indexed: 01/18/2023] Open
Abstract
Breast cancer represents the most commonly diagnosed cancer while neoadjuvant and adjuvant chemotherapies are extensively used in order to reduce tumor development and improve disease-free survival. However, chemotherapy also leads to severe off-target side-effects resulting, together with the tumor itself, in major skeletal muscle deconditioning. This review first focuses on recent advances in both macroscopic changes and cellular mechanisms implicated in skeletal muscle deconditioning of breast cancer patients, particularly as a consequence of the chemotherapy treatment. To date, only six clinical studies used muscle biopsies in breast cancer patients and highlighted several important aspects of muscle deconditioning such as a decrease in muscle fibers cross-sectional area, a dysregulation of protein turnover balance and mitochondrial alterations. However, in comparison with the knowledge accumulated through decades of intensive research with many different animal and human models of muscle atrophy, more studies are necessary to obtain a comprehensive understanding of the cellular processes implicated in breast cancer-mediated muscle deconditioning. This understanding is indeed essential to ultimately lead to the implementation of efficient preventive strategies such as exercise, nutrition or pharmacological treatments. We therefore also discuss potential mechanisms implicated in muscle deconditioning by drawing a parallel with other cancer cachexia models of muscle wasting, both at the pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Joris Mallard
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Elyse Hucteau
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Thomas J Hureau
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Allan F Pagano
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
13
|
Guo R, Liao M, Ma X, Hu Y, Qian X, Xiao M, Gao X, Chai R, Tang M. Cochlear implant-based electric-acoustic stimulation modulates neural stem cell-derived neural regeneration. J Mater Chem B 2021; 9:7793-7804. [PMID: 34586130 DOI: 10.1039/d1tb01029h] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cochlear implantation is considered to be the best therapeutic method for profound sensorineural hearing loss, but insufficient numbers of functional spiral ganglion neurons hinder the clinical effects of cochlear implantation. Stem cell transplantation has the potential to provide novel strategies for spiral ganglion neuron regeneration after injury. However, some obstacles still need to be overcome, such as low survival and uncontrolled differentiation. Several novel technologies show promise for modulating neural stem cell behaviors to address these issues. Here, a device capable of electrical stimulation was designed by combining a cochlear implant with a graphene substrate. Neural stem cells (NSCs) were cultured on the graphene substrate and subjected to electrical stimulation transduced from sound waves detected by the cochlear implant. Cell behaviors were studied, and this device showed good biocompatibility for NSCs. More importantly, electric-acoustic stimulation with higher frequencies and amplitudes induced NSC death and apoptosis, and electric-acoustic stimulation could promote NSCs to proliferate and differentiate into neurons only when low-frequency stimulation was supplied. The present study provides experimental evidence for understanding the regulatory role of electric-acoustic stimulation on NSCs and highlights the potentials of the above-mentioned device in stem cell therapy for hearing loss treatment.
Collapse
Affiliation(s)
- Rongrong Guo
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, China. .,State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing 210096, China.
| | - Menghui Liao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing 210096, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaofeng Ma
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China.,Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, China. .,Research Institution of Otorhinolaryngology, Nanjing, Jiangsu 210008, P. R. China
| | - Yangnan Hu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing 210096, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaoyun Qian
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, China. .,Research Institution of Otorhinolaryngology, Nanjing, Jiangsu 210008, P. R. China
| | - Miao Xiao
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, China.
| | - Xia Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, China. .,Research Institution of Otorhinolaryngology, Nanjing, Jiangsu 210008, P. R. China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing 210096, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Mingliang Tang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, China. .,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing 210096, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
14
|
Nakanishi R, Tanaka M, Maeshige N, Kondo H, Roy RR, Fujino H. Nucleoprotein-enriched diet enhances protein synthesis pathway and satellite cell activation via ERK1/2 phosphorylation in unloaded rat muscles. Exp Physiol 2021; 106:1587-1596. [PMID: 33878233 DOI: 10.1113/ep089337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/15/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The purpose of this study was to determine whether the nucleotides in a nucleoprotein-enriched diet could ameliorate the unloading-associated decrease in soleus muscle mass and fibre size. What is the main finding and its importance? The results indicate that the nucleotides in the nucleoprotein-enriched diet could ameliorate the unloading-associated decrease in type I fibre size and muscle mass, most probably owing to the activation of protein synthesis pathways and satellite cell proliferation and differentiation via ERK1/2 phosphorylation. Thus, nucleotide supplementation appears to be an effective countermeasure for muscle atrophy. ABSTRACT Hindlimb unloading decreases both the protein synthesis pathway and satellite cell activation and results in muscle atrophy. Nucleotides are included in nucleoprotein and provide the benefits of increasing extracellular signal-regulated kinase (ERK) 1/2 phosphorylation. ERK1/2 phosphorylation is also important in the activation of satellite cells, especially for myoblast proliferation and stimulating protein synthesis pathways. Therefore, we hypothesized that nucleotides in the nucleoproteins would ameliorate muscle atrophy by increasing the protein synthesis pathways and satellite cell activation during hindlimb unloading in rat soleus muscle. Twenty-four female Wistar rats were divided into four groups: control rats fed a basal diet without nucleoprotein (CON), control rats fed a nucleoprotein-enriched diet (CON+NP), hindlimb-unloaded rats fed a basal diet (HU) or hindlimb-unloaded rats fed a nucleoprotein-enriched diet (HU+NP). HU for 2 weeks resulted in reductions in phosphorylation of p70S6K and rpS6, the numbers of myoblast determination protein (MyoD)- and myogenin- positive nuclei, type I muscle fibre size and muscle mass. Both CON+NP and HU+NP rats showed an increase in ERK1/2, phosphorylation of p70S6K and rpS6, and the numbers of MyoD- and myogenin-positive nuclei compared with their basal diet groups. The NP diet also ameliorated the unloading-associated decrease in type I muscle fibre size and muscle mass. The results indicate that the nucleotides in the nucleoprotein-enriched diet could ameliorate the unloading-associated decrease in type I fibre size and muscle mass, most probably owing to the activation of protein synthesis pathways and satellite cell proliferation and differentiation via ERK1/2 phosphorylation. Thus, nucleotide supplementation appears to be an effective countermeasure for muscle atrophy.
Collapse
Affiliation(s)
- Ryosuke Nakanishi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan.,Department of Physical Therapy, Faculty of Rehabilitation, Kobe International University, Kobe, Hyogo, Japan
| | - Minoru Tanaka
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan.,Department of Physical Therapy, Faculty of Human Science, Osaka University of Human Science, Settsu, Osaka, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan
| | - Hiroyo Kondo
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan
| | - Roland R Roy
- Brain Research Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan
| |
Collapse
|
15
|
Honda Y, Tanaka N, Kajiwara Y, Kondo Y, Kataoka H, Sakamoto J, Akimoto R, Nawata A, Okita M. Effect of belt electrode-skeletal muscle electrical stimulation on immobilization-induced muscle fibrosis. PLoS One 2021; 16:e0244120. [PMID: 33983958 PMCID: PMC8118259 DOI: 10.1371/journal.pone.0244120] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/21/2021] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Macrophage accumulation in response to decreasing myonuclei may be the major mechanism underlying immobilization-induced muscle fibrosis in muscle contracture, an intervention strategy suppressing these lesions is necessary. Therefore, this research investigated the effect of belt electrode-skeletal muscle electrical stimulation (B-SES), a new electrical stimulation device, to the macrophage accumulation via myonuclei decrease in immobilization-induced muscle fibrosis. MATERIALS AND METHODS 18 Wistar male rats were divided into the control group, immobilization group (with plaster cast fixation to immobilize the soleus muscles in a shortened position for 2 weeks), and B-SES group (with muscle contractile exercise through B-SES during the immobilization period). B-SES stimulation was performed at a frequency of 50 Hz and an intensity of 4.7 mA, muscle contractile exercise by B-SES was applied to the lower limb muscles for 20 minutes/session (twice a day) for 2 weeks (6 times/week). The bilateral soleus muscles were used for histological, immunohistochemical, biochemical, and molecular biological analyses. RESULTS The number of myonuclei was significantly higher in the B-SES group than in the immobilization group, and there was no significant difference between the B-SES and control groups. The cross-sectional area of type I and II myofibers in the immobilization and B-SES groups was significantly lower than that in the control group, and the cross-sectional area of type I myofibers in the B-SES group was higher than that in the immobilization group. However, Atrogin-1 and MuRF-1 mRNA expression in the immobilization and B-SES groups was significantly higher than those in the control group. Additionally, the number of macrophages, IL-1β, TGF-β1, and α-SMA mRNA expression, and hydroxyproline expression was significantly lower in the control and B-SES groups than those in the immobilization group. CONCLUSION This research surmised that muscle contractile exercise through B-SES prevented immobilization-induced muscle fibrosis, and this alteration suppressed the development of muscle contracture.
Collapse
Affiliation(s)
- Yuichiro Honda
- Institute of Biomedical Sciences (Health Sciences), Nagasaki University, Nagasaki, Japan
| | - Natsumi Tanaka
- Department of Rehabilitation, Nagasaki University Hospital, Nagasaki, Japan
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasuhiro Kajiwara
- Department of Rehabilitation, Nagasaki University Hospital, Nagasaki, Japan
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasutaka Kondo
- Department of Rehabilitation, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Hideki Kataoka
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Rehabilitation, Nagasaki Memorial Hospital, Nagasaki, Japan
| | - Junya Sakamoto
- Institute of Biomedical Sciences (Health Sciences), Nagasaki University, Nagasaki, Japan
| | - Ryuji Akimoto
- Research and Development Division, HOMER ION Co., Ltd., Shibuya, Tokyo, Japan
| | - Atsushi Nawata
- Medical Engineering Research Laboratory, ALCARE Co., Ltd., Sumida, Tokyo, Japan
| | - Minoru Okita
- Institute of Biomedical Sciences (Health Sciences), Nagasaki University, Nagasaki, Japan
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
16
|
Shenkman BS, Tsaturyan AK, Vikhlyantsev IM, Kozlovskaya IB, Grigoriev AI. Molecular Mechanisms of Muscle Tone Impairment under Conditions of Real and Simulated Space Flight. Acta Naturae 2021; 13:85-97. [PMID: 34377559 PMCID: PMC8327152 DOI: 10.32607/actanaturae.10953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023] Open
Abstract
Kozlovskaya et al. [1] and Grigoriev et al. [2] showed that enormous loss of muscle stiffness (atonia) develops in humans under true (space flight) and simulated microgravity conditions as early as after the first days of exposure. This phenomenon is attributed to the inactivation of slow motor units and called reflectory atonia. However, a lot of evidence indicating that even isolated muscle or a single fiber possesses substantial stiffness was published at the end of the 20th century. This intrinsic stiffness is determined by the active component, i.e. the ability to form actin-myosin cross-bridges during muscle stretch and contraction, as well as by cytoskeletal and extracellular matrix proteins, capable of resisting muscle stretch. The main facts on intrinsic muscle stiffness under conditions of gravitational unloading are considered in this review. The data obtained in studies of humans under dry immersion and rodent hindlimb suspension is analyzed. The results and hypotheses regarding reduced probability of cross-bridge formation in an atrophying muscle due to increased interfilament spacing are described. The evidence of cytoskeletal protein (titin, nebulin, etc.) degradation during gravitational unloading is also discussed. The possible mechanisms underlying structural changes in skeletal muscle collagen and its role in reducing intrinsic muscle stiffness are presented. The molecular mechanisms of changes in intrinsic stiffness during space flight and simulated microgravity are reviewed.
Collapse
Affiliation(s)
- B. S. Shenkman
- State Scientific Center of Russian Federation – Institute of Biomedical Problems, Moscow, 123007 Russia
| | - A. K. Tsaturyan
- Lomonosov Moscow State University Research Institute of Mechanics, Moscow, 119192 Russia
| | - I. M. Vikhlyantsev
- Institute of Experimental and Theoretical Biophysics, Moscow Region, Pushchino, 142290 Russia
| | - I. B. Kozlovskaya
- State Scientific Center of Russian Federation – Institute of Biomedical Problems, Moscow, 123007 Russia
| | - A. I. Grigoriev
- State Scientific Center of Russian Federation – Institute of Biomedical Problems, Moscow, 123007 Russia
| |
Collapse
|
17
|
Rousseau AF, Prescott HC, Brett SJ, Weiss B, Azoulay E, Creteur J, Latronico N, Hough CL, Weber-Carstens S, Vincent JL, Preiser JC. Long-term outcomes after critical illness: recent insights. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:108. [PMID: 33731201 PMCID: PMC7968190 DOI: 10.1186/s13054-021-03535-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/05/2021] [Indexed: 02/08/2023]
Abstract
Intensive care survivors often experience post-intensive care sequelae, which are frequently gathered together under the term “post-intensive care syndrome” (PICS). The consequences of PICS on quality of life, health-related costs and hospital readmissions are real public health problems. In the present Viewpoint, we summarize current knowledge and gaps in our understanding of PICS and approaches to management.
Collapse
Affiliation(s)
- Anne-Françoise Rousseau
- Department of Intensive Care and Burn Center, University Hospital, University of Liège, Liège, Belgium
| | - Hallie C Prescott
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Stephen J Brett
- Department of Critical Care, Imperial College Healthcare NHS Trust, London, UK.,Department of Surgery and Cancer, Imperial College London, London, UK
| | - Björn Weiss
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Elie Azoulay
- Réanimation Médicale, Hôpital St Louis, Paris, France
| | - Jacques Creteur
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicola Latronico
- Department of Anesthesiology, Critical Care and Emergency, Spedali Civili University Hospital, Brescia, Italy.,Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Catherine L Hough
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Steffen Weber-Carstens
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Charles Preiser
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium. .,Erasme University Hospital, Route de Lennik 808, Brussels, Belgium.
| |
Collapse
|
18
|
Wide Pulse Width Electroacupuncture Ameliorates Denervation-Induced Skeletal Muscle Atrophy in Rats via IGF-1/PI3K/Akt Pathway. Chin J Integr Med 2021; 27:446-454. [PMID: 33660125 DOI: 10.1007/s11655-021-2865-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To evaluate the effect of the pulse width of electroacupuncture (EA) in the treatment of denervation-induced skeletal muscle atrophy in rats and examine the role of insulin-like growth factor 1 (IGF-1)/phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway during EA. METHODS Sciatic nerve functional index (SFI), muscle wet weight and the cross-sectional area (CSA) of the gastrocnemius muscle were analyzed after treatment in model rats with EA of various pulse widths (0.5, 50, 100 and 200 ms). The apoptosis index (AI) and paired box (PAX)3 and PAX7 protein expression were also determined. Further, the mRNA and protein expressions of components of IGF-1/PI3K/Akt pathway and their downstream targets were determined, along with the inhibiting effect of the pathway with a PI3-specific inhibitor. RESULTS EA with a pulse width of 200 ms was found to have the best effect with regard to increasing SFI, CSA and muscle weight, decreasing AI, and increasing the expression of PAX3 and PAX7. The IGF-1/PI3K/Akt pathway was found to be activated by denervation, although the downstream forkhead box O (FoxO) pathway was not suppressed by its activation. The PI3K/Akt pathway and its downstream molecule mammalian target of rapamycin (mTOR) were up-regulated further by EA to promote muscle protein synthesis. Meanwhile, the expressions of downstream FoxO and F-box protein 32 (ATROGIN-1) were down-regulated to reduce protein degradation. CONCLUSIONS EA with 200-ms pulse width was found to have a more significant effect than 0.5-ms EA. The positive effects of EA disappeared after inhibition of the PI3K/Akt pathway.
Collapse
|
19
|
Low-Frequency Electrical Stimulation Promotes Satellite Cell Activities to Facilitate Muscle Regeneration at an Early Phase in a Rat Model of Muscle Strain. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4218086. [PMID: 33628781 PMCID: PMC7884111 DOI: 10.1155/2021/4218086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/25/2020] [Accepted: 01/25/2021] [Indexed: 11/21/2022]
Abstract
The capability of regeneration for skeletal muscle after injury depends on the differentiation and proliferation ability of the resident stem cells called satellite cells. It has been reported that electrical stimulation was widely used in clinical conditions to facilitate muscle regeneration after injury, but the characterization of satellite cell responses to the context of low-frequency electrical stimulation in early-phase muscle strain conditions has not been fully clarified. In this study, we aim to investigate the effects of low-frequency electrical stimulation (frequency: 20 Hz; duration: 30 minutes, twice daily) on satellite cell activities in a rat model for the early phase of muscle strain. Firstly, we adopted our previously developed rat model to mimic the early phase of muscle strain in human. After then, we examined the effects of low-frequency electrical stimulation on histopathological changes of the muscle fiber by hematoxylin and eosin (H&E) staining. Finally, we investigated the effects of low-frequency electrical stimulation on satellite cell proliferation and differentiation by quantification of the expression level of the specific proteins using western blot analyses. The muscle strain in biceps femoris muscles of rats can be induced by high-speed rotation from knee flexion 50° to full knee extension at 960°·s−1 angular velocity during its tetany by activating the sciatic nerve, as evidenced by a widening of the interstitial space between fibers, and more edema or necrosis fibers were detected in the model rats without treatment than in control rats. After treatment with low-frequency electrical stimulation (frequency: 20 Hz; duration: 30 minutes, twice daily), the acute strained biceps femoris muscles of rats showed obvious improvement of histomorphology as indicated by more mature muscle fibers with well-ordered formation with clear boundaries. Consistently, the expression levels of the MyoD and myogenin were marked higher than those in the rats in the animal model group, indicating increased satellite cell proliferating and differentiating activities by low-frequency electrical stimulation. This study shows that low-frequency electrical stimulation provides an effective stimulus to upregulate the protein expression of MyoD/myogenin and accelerate the restoration of structure during the early phase of muscle strain. This may have significance for clinical practice. Optimization of low-frequency electrical stimulation parameters may enhance the therapeutic outcome in patients.
Collapse
|
20
|
Ramalingam V, Harshavardhan M, Hwang I. Titanium decorated iron oxide (Ti@Fe2O3) regulates the proliferation of bovine muscle satellite cells through oxidative stress. Bioorg Chem 2020; 105:104459. [DOI: 10.1016/j.bioorg.2020.104459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/12/2023]
|
21
|
Xing HY, Liu N, Zhou MW. Satellite cell proliferation and myofiber cross-section area increase after electrical stimulation following sciatic nerve crush injury in rats. Chin Med J (Engl) 2020; 133:1952-1960. [PMID: 32826459 PMCID: PMC7462209 DOI: 10.1097/cm9.0000000000000822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Electrical stimulation has been recommended as an effective therapy to prevent muscle atrophy after nerve injury. However, the effect of electrical stimulation on the proliferation of satellite cells in denervated muscles has not yet been fully elucidated. This study was aimed to evaluate the changes in satellite cell proliferation after electrical stimulation in nerve injury and to determine whether these changes are related to the restoration of myofiber cross-section area (CSA). METHODS Sciatic nerve crush injury was performed in 48 male Sprague-Dawley rats. In half (24/48) of the rats, the gastrocnemius was electrically stimulated transcutaneously on a daily basis after injury, while the other half were not stimulated. Another group of 24 male Sprague-Dawley rats were used as sham operation controls without injury or stimulation. The rats were euthanized 2, 4, and 6 weeks later. After 5-bromo-2'-deoxyuridine (BrdU) labeling, the gastrocnemia were harvested for the detection of paired box protein 7 (Pax7), BrdU, myofiber CSA, and myonuclei number per fiber. All data were analyzed using two-way analysis of variance and Bonferroni post-hoc test. RESULTS The percentages of Pax7-positive nuclei (10.81 ± 0.56%) and BrdU-positive nuclei (34.29 ± 3.87%) in stimulated muscles were significantly higher compared to those in non-stimulated muscles (2.58 ± 0.33% and 1.30 ± 0.09%, respectively, Bonferroni t = 15.91 and 18.14, P < 0.05). The numbers of myonuclei per fiber (2.19 ± 0.24) and myofiber CSA (1906.86 ± 116.51 μm) were also increased in the stimulated muscles (Bonferroni t = 3.57 and 2.73, P < 0.05), and both were positively correlated with the Pax7-positive satellite cell content (R = 0.52 and 0.60, P < 0.01). There was no significant difference in the ratio of myofiber CSA/myonuclei number per fiber among the three groups. CONCLUSIONS Our results indicate that satellite cell proliferation is promoted by electrical stimulation after nerve injury, which may be correlated with an increase in myonuclei number and myofiber CSA.
Collapse
Affiliation(s)
- Hua-Yi Xing
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China
| | | | | |
Collapse
|
22
|
Zhang W, Chu G, Wang H, Chen S, Li B, Han F. Effects of Matrix Stiffness on the Differentiation of Multipotent Stem Cells. Curr Stem Cell Res Ther 2020; 15:449-461. [PMID: 32268870 DOI: 10.2174/1574888x15666200408114632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 11/22/2022]
Abstract
Differentiation of stem cells, a crucial step in the process of tissue development, repair and regeneration, can be regulated by a variety of mechanical factors such as the stiffness of extracellular matrix. In this review article, the effects of stiffness on the differentiation of stem cells, including bone marrow-derived stem cells, adipose-derived stem cells and neural stem cells, are briefly summarized. Compared to two-dimensional (2D) surfaces, three-dimensional (3D) hydrogel systems better resemble the native environment in the body. Hence, the studies which explore the effects of stiffness on stem cell differentiation in 3D environments are specifically introduced. Integrin is a well-known transmembrane molecule, which plays an important role in the mechanotransduction process. In this review, several integrin-associated signaling molecules, including caveolin, piezo and Yes-associated protein (YAP), are also introduced. In addition, as stiffness-mediated cell differentiation may be affected by other factors, the combined effects of matrix stiffness and viscoelasticity, surface topography, chemical composition, and external mechanical stimuli on cell differentiation are also summarized.
Collapse
Affiliation(s)
- Weidong Zhang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Song Chen
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Fengxuan Han
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
23
|
Hyatt HW, Powers SK. The Role of Calpains in Skeletal Muscle Remodeling with Exercise and Inactivity-induced Atrophy. Int J Sports Med 2020; 41:994-1008. [PMID: 32679598 DOI: 10.1055/a-1199-7662] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calpains are cysteine proteases expressed in skeletal muscle fibers and other cells. Although calpain was first reported to act as a kinase activating factor in skeletal muscle, the consensus is now that calpains play a canonical role in protein turnover. However, recent evidence reveals new and exciting roles for calpains in skeletal muscle. This review will discuss the functions of calpains in skeletal muscle remodeling in response to both exercise and inactivity-induced muscle atrophy. Calpains participate in protein turnover and muscle remodeling by selectively cleaving target proteins and creating fragmented proteins that can be further degraded by other proteolytic systems. Nonetheless, an often overlooked function of calpains is that calpain-mediated cleavage of proteins can result in fragmented proteins that are biologically active and have the potential to actively influence cell signaling. In this manner, calpains function beyond their roles in protein turnover and influence downstream signaling effects. This review will highlight both the canonical and noncanonical roles that calpains play in skeletal muscle remodeling including sarcomere transformation, membrane repair, triad junction formation, regulation of excitation-contraction coupling, protein turnover, cell signaling, and mitochondrial function. We conclude with a discussion of key unanswered questions regarding the roles that calpains play in skeletal muscle.
Collapse
Affiliation(s)
- Hayden W Hyatt
- Applied Physiology and Kinesiology, University of Florida, Gainesville, United States
| | - Scott K Powers
- Applied Physiology, University of Florida, Gainesville, United States
| |
Collapse
|
24
|
Farhang-Sardroodi S, Wilkie KP. Mathematical Model of Muscle Wasting in Cancer Cachexia. J Clin Med 2020; 9:jcm9072029. [PMID: 32605273 PMCID: PMC7409297 DOI: 10.3390/jcm9072029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia is a debilitating condition characterized by an extreme loss of skeletal muscle mass, which negatively impacts patients' quality of life, reduces their ability to sustain anti-cancer therapies, and increases the risk of mortality. Recent discoveries have identified the myostatin/activin A/ActRIIB pathway as critical to muscle wasting by inducing satellite cell quiescence and increasing muscle-specific ubiquitin ligases responsible for atrophy. Remarkably, pharmacological blockade of the ActRIIB pathway has been shown to reverse muscle wasting and prolong the survival time of tumor-bearing animals. To explore the implications of this signaling pathway and potential therapeutic targets in cachexia, we construct a novel mathematical model of muscle tissue subjected to tumor-derived cachectic factors. The model formulation tracks the intercellular interactions between cancer cell, satellite cell, and muscle cell populations. The model is parameterized by fitting to colon-26 mouse model data, and the analysis provides insight into tissue growth in healthy, cancerous, and post-cachexia treatment conditions. Model predictions suggest that cachexia fundamentally alters muscle tissue health, as measured by the stem cell ratio, and this is only partially recovered by anti-cachexia treatment. Our mathematical findings suggest that after blocking the myostatin/activin A pathway, partial recovery of cancer-induced muscle loss requires the activation and proliferation of the satellite cell compartment with a functional differentiation program.
Collapse
|
25
|
Yang JW, Yu ZY, Cheng SJ, Chung JHY, Liu X, Wu CY, Lin SF, Chen GY. Graphene Oxide-Based Nanomaterials: An Insight into Retinal Prosthesis. Int J Mol Sci 2020; 21:E2957. [PMID: 32331417 PMCID: PMC7216005 DOI: 10.3390/ijms21082957] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022] Open
Abstract
Retinal prosthesis has recently emerged as a treatment strategy for retinopathies, providing excellent assistance in the treatment of age-related macular degeneration (AMD) and retinitis pigmentosa. The potential application of graphene oxide (GO), a highly biocompatible nanomaterial with superior physicochemical properties, in the fabrication of electrodes for retinal prosthesis, is reviewed in this article. This review integrates insights from biological medicine and nanotechnology, with electronic and electrical engineering technological breakthroughs, and aims to highlight innovative objectives in developing biomedical applications of retinal prosthesis.
Collapse
Affiliation(s)
- Jia-Wei Yang
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; (J.-W.Y.); (S.-J.C.); (S.-F.L.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan;
| | - Zih-Yu Yu
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan;
| | - Sheng-Jen Cheng
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; (J.-W.Y.); (S.-J.C.); (S.-F.L.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan;
| | - Johnson H. Y. Chung
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2500, Australia; (J.H.Y.C.); (X.L.)
| | - Xiao Liu
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2500, Australia; (J.H.Y.C.); (X.L.)
| | - Chung-Yu Wu
- Department of Electrical Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan;
| | - Shien-Fong Lin
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; (J.-W.Y.); (S.-J.C.); (S.-F.L.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan;
| | - Guan-Yu Chen
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; (J.-W.Y.); (S.-J.C.); (S.-F.L.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan;
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
26
|
Zart S, Berger J, Ludwig O, Knauth J, Fröhlich M. Frequency-Dependent Reaction of the Triceps Surae Muscle of the Mouse During Electromyostimulation. Front Physiol 2020; 11:150. [PMID: 32184734 PMCID: PMC7058786 DOI: 10.3389/fphys.2020.00150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/11/2020] [Indexed: 12/02/2022] Open
Abstract
The difference in the efficacy of altered stimulation parameters in whole-body-electromyostimulation training (WB-EMS) has hardly been examined. Higher impulse frequencies (>50 Hz) might be most adequate for strength gains because of the force frequency relationship (FFR), which describes a greater force production by increasing the applied frequency. Frequencies below this value, however, also seem to have positive influences on muscle strength increases. Therefore, the aim of this study was to analyze possible muscle length changes to different stimulation frequencies of the dissected mouse triceps surae muscle. A bending rod transducer was used to measure and compare changes in muscle lengths at different frequencies in relation to the initial length in the prepared muscle. We found significant differences between the muscle shortening at different frequencies (p < 0.001). At 20 Hz the largest muscle shortening was observed (20 Hz = 3.32 ± 2.06, 60 Hz = 0.77 ± 0.58, 85 Hz = 0.32 ± 0.29, 100 Hz = 0.31 ± 0.29). From a frequency of 60 Hz, the muscle shortening decreased progressively, at stimulation frequencies above 60 Hz the lowest shortenings were recorded. The results demonstrate a different behavior of the isolated triceps surae muscle of the mouse in an ex vivo environment. Even if there is no FFR in this investigation, the results indicate a higher metabolic demand using higher frequencies in electromyostimulation, despite the experimental execution in ex vivo design. Therefore, future studies should take this faster fatigue into account when drawing up training protocols in order to counteract possible frequency modulations.
Collapse
Affiliation(s)
- Sebastian Zart
- Department of Sport Science, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Joshua Berger
- Department of Sport Science, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Oliver Ludwig
- Department of Sport Science, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Janosch Knauth
- Department of Sport Science, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Michael Fröhlich
- Department of Sport Science, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
27
|
Electrical stimulation-based bone fracture treatment, if it works so well why do not more surgeons use it? Eur J Trauma Emerg Surg 2019; 46:245-264. [PMID: 30955053 DOI: 10.1007/s00068-019-01127-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/29/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Electrical stimulation (EStim) has been proven to promote bone healing in experimental settings and has been used clinically for many years and yet it has not become a mainstream clinical treatment. METHODS To better understand this discrepancy we reviewed 72 animal and 69 clinical studies published between 1978 and 2017, and separately asked 161 orthopedic surgeons worldwide about their awareness, experience, and acceptance of EStim for treating fracture patients. RESULTS Of the 72 animal studies, 77% reported positive outcomes, and the most common model, bone, fracture type, and method of administering EStim were dog, tibia, large bone defects, and DC, respectively. Of the 69 clinical studies, 73% reported positive outcomes, and the most common bone treated, fracture type, and method of administration were tibia, delayed/non-unions, and PEMF, respectively. Of the 161 survey respondents, most (73%) were aware of the positive outcomes reported in the literature, yet only 32% used EStim in their patients. The most common fracture they treated was delayed/non-unions, and the greatest problems with EStim were high costs and inconsistent results. CONCLUSION Despite their awareness of EStim's pro-fracture healing effects few orthopedic surgeons use it in their patients. Our review of the literature and survey indicate that this is due to confusion in the literature due to the great variation in methods reported, and the inconsistent results associated with this treatment approach. In spite of this surgeons seem to be open to using this treatment if advancements in the technology were able to provide an easy to use, cost-effective method to deliver EStim in their fracture patients.
Collapse
|
28
|
Bhavsar MB, Cato G, Hauschild A, Leppik L, Costa Oliveira KM, Eischen-Loges MJ, Barker JH. Membrane potential (V mem) measurements during mesenchymal stem cell (MSC) proliferation and osteogenic differentiation. PeerJ 2019; 7:e6341. [PMID: 30775170 PMCID: PMC6369823 DOI: 10.7717/peerj.6341] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/22/2018] [Indexed: 01/30/2023] Open
Abstract
Background Electrochemical signals play an important role in cell communication and behavior. Electrically charged ions transported across cell membranes maintain an electrochemical imbalance that gives rise to bioelectric signaling, called membrane potential or Vmem. Vmem plays a key role in numerous inter- and intracellular functions that regulate cell behaviors like proliferation, differentiation and migration, all playing a critical role in embryonic development, healing, and regeneration. Methods With the goal of analyzing the changes in Vmem during cell proliferation and differentiation, here we used direct current electrical stimulation (EStim) to promote cell proliferation and differentiation and simultaneously tracked the corresponding changes in Vmem in adipose derived mesenchymal stem cells (AT-MSC). Results We found that EStim caused increased AT-MSC proliferation that corresponded to Vmem depolarization and increased osteogenic differentiation that corresponded to Vmem hyperpolarization. Taken together, this shows that Vmem changes associated with EStim induced cell proliferation and differentiation can be accurately tracked during these important cell functions. Using this tool to monitor Vmem changes associated with these important cell behaviors we hope to learn more about how these electrochemical cues regulate cell function with the ultimate goal of developing new EStim based treatments capable of controlling healing and regeneration.
Collapse
Affiliation(s)
- Mit Balvantray Bhavsar
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| | - Gloria Cato
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| | - Alexander Hauschild
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| | - Liudmila Leppik
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| | - Karla Mychellyne Costa Oliveira
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| | - Maria José Eischen-Loges
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| | - John Howard Barker
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| |
Collapse
|
29
|
Schwartz LM. Skeletal Muscles Do Not Undergo Apoptosis During Either Atrophy or Programmed Cell Death-Revisiting the Myonuclear Domain Hypothesis. Front Physiol 2019; 9:1887. [PMID: 30740060 PMCID: PMC6356110 DOI: 10.3389/fphys.2018.01887] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscles are the largest cells in the body and are one of the few syncytial ones. There is a longstanding belief that a given nucleus controls a defined volume of cytoplasm, so when a muscle grows (hypertrophy) or shrinks (atrophy), the number of myonuclei change accordingly. This phenomenon is known as the “myonuclear domain hypothesis.” There is a general agreement that hypertrophy is accompanied by the addition of new nuclei from stem cells to help the muscles meet the enhanced synthetic demands of a larger cell. However, there is a considerable controversy regarding the fate of pre-existing nuclei during atrophy. Many researchers have reported that atrophy is accompanied by the dramatic loss of myonuclei via apoptosis. However, since there are many different non-muscle cell populations that reside within the tissue, these experiments cannot easily distinguish true myonuclei from those of neighboring mononuclear cells. Recently, two independent models, one from rodents and the other from insects, have demonstrated that nuclei are not lost from skeletal muscle fibers when they undergo either atrophy or programmed cell death. These and other data argue against the current interpretation of the myonuclear domain hypothesis and suggest that once a nucleus has been acquired by a muscle fiber it persists.
Collapse
Affiliation(s)
- Lawrence M Schwartz
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
30
|
Effects of Twitch Contraction Induced by Magnetic Stimulation on Expression of Skeletal Muscle Fibrosis Related Genes and Limited Range of Motion in Rats. Am J Phys Med Rehabil 2018; 98:147-153. [PMID: 30212378 DOI: 10.1097/phm.0000000000001042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE We examined the effects of twitch contraction induced by lumbar spinal root magnetic stimulation on immobilization-induced limited range of motion and skeletal muscle fibrosis in rat soleus muscle. DESIGN The groups included male Wistar rats (controls), rats with both bilateral ankle joints immobilized with plaster casts for 4 wks (immobilization [IM]), and rats in which twitch contraction of the soleus muscle was induced by lumbar magnetic stimulation for 4 wks of immobilization (twitch contraction [TC]). Group differences in ankle dorsiflexion range of motion, collagen content as determined by hydroxyproline assay, and the expression of fibrosis-related genes as determined by reverse transcription-polymerase chain reaction (hypoxia inducible factor 1α, α-smooth muscle actin, and types I and III collagen) in the soleus muscle were examined after the 4-wk-long experiment. RESULTS Range of motion in the TC group was significantly greater than that in the IM group. The hydroxyproline content and the expressions of fibrosis-related genes decreased significantly in the TC group compared with those in the IM group. No significant differences were seen in the expression of transforming growth factor β mRNA. CONCLUSIONS These results suggest that twitch contraction induced by lumbar spinal root magnetic stimulation may reduce immobilization-induced limited range of motion and skeletal muscle fibrosis.
Collapse
|
31
|
Abstract
In recent years, electrical myostimulation (EMS) is becoming more and more popular to increase muscle function and muscle weight. Especially it is applied in healthy individual after injury to rebuild muscle mass and in severely atrophic patients who are not able or willing to perform conventional exercise training programs. Studies in experimental models as well as in human subjects confirmed that EMS can increase muscle mass by around 1% and improve muscle function by around 10-15% after 5-6 weeks of treatment. Despite a severe increase in circulating creatine kinase during the first session, EMS can be regarded as a safe therapeutic intervention. At the molecular level, EMS improves the anabolic/catabolic balance and stimulates the regenerative capacity of satellite cells. EMS intensity should be as high as individually tolerated, and a minimum of three sessions per week [large pulses (between 300-450 μs), high frequency (50-100 Hz in young and around 30 Hz in older individuals)] for at least 5-6 weeks should be performed. EMS improved functional performances more effectively than voluntary training and counteracted fast type muscle fibre atrophy, typically associated with sarcopenia. The effect of superimposing EMS on conventional exercise training to achieve more muscle mass and better function is still discussed controversially. Nevertheless, EMS should not be regarded as a replacement of exercise training per se, since the beneficial effect of exercise training is not just relying on building muscle mass but it also exerts positive effects on endothelial, myocardial, and cognitive function.
Collapse
Affiliation(s)
- Volker Adams
- Department of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Dresden, Germany
| |
Collapse
|
32
|
Wang X, Ren Y, Liu J. Liquid Metal Enabled Electrobiology: A New Frontier to Tackle Disease Challenges. MICROMACHINES 2018; 9:E360. [PMID: 30424293 PMCID: PMC6082282 DOI: 10.3390/mi9070360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 01/06/2023]
Abstract
In this article, a new conceptual biomedical engineering strategy to tackle modern disease challenges, called liquid metal (LM) enabled electrobiology, is proposed. This generalized and simple method is based on the physiological fact that specially administrated electricity induces a series of subsequent desired biological effects, either shortly, transitionally, or permanently. Due to high compliance within biological tissues, LM would help mold a pervasive method for treating physiological or psychological diseases. As highly conductive and non-toxic multifunctional flexible materials, such LMs can generate any requested electric treating fields (ETFields), which can adapt to various sites inside the human body. The basic mechanisms of electrobiology in delivering electricity to the target tissues and then inducing expected outputs for disease treatment are interpreted. The methods for realizing soft and conformable electronics based on LM are illustrated. Furthermore, a group of typical disease challenges are observed to illustrate the basic strategies for performing LM electrobiology therapy, which include but are not limited to: tissue electronics, brain disorder, immunotherapy, neural functional recovery, muscle stimulation, skin rejuvenation, cosmetology and dieting, artificial organs, cardiac pacing, cancer therapy, etc. Some practical issues regarding electrobiology for future disease therapy are discussed. Perspectives in this direction for incubating a simple biomedical tool for health care are pointed out.
Collapse
Affiliation(s)
- Xuelin Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Yi Ren
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
33
|
Theilen NT, Jeremic N, Weber GJ, Tyagi SC. Exercise preconditioning diminishes skeletal muscle atrophy after hindlimb suspension in mice. J Appl Physiol (1985) 2018; 125:999-1010. [PMID: 29975600 PMCID: PMC6230574 DOI: 10.1152/japplphysiol.00137.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The aim of the present study was to investigate whether short-term, concurrent exercise training before hindlimb suspension (HLS) prevents or diminishes both soleus and gastrocnemius atrophy and to analyze whether changes in mitochondrial molecular markers were associated. Male C57BL/6 mice were assigned to control at 13 ± 1 wk of age, 7-day HLS at 12 ± 1 wk of age (HLS), 2 wk of exercise training before 7-day HLS at 10 ± 1 wk of age (Ex+HLS), and 2 wk of exercise training at 11 ± 1 wk of age (Ex) groups. HLS resulted in a 27.1% and 21.5% decrease in soleus and gastrocnemius muscle weight-to-body weight ratio, respectively. Exercise training before HLS resulted in a 5.6% and 8.1% decrease in soleus and gastrocnemius weight-to-body weight ratio, respectively. Exercise increased mitochondrial biogenesis- and function-associated markers and slow myosin heavy chain (SMHC) expression, and reduced fiber-type transitioning marker myosin heavy chain 4 (Myh4). Ex+HLS revealed decreased reactive oxygen species (ROS) and oxidative stress compared with HLS. Our data indicated the time before an atrophic setting, particularly caused by muscle unloading, may be a useful period to intervene short-term, progressive exercise training to prevent skeletal muscle atrophy and is associated with mitochondrial biogenesis, function, and redox balance. NEW & NOTEWORTHY Mitochondrial dysfunction is associated with disuse-induced skeletal muscle atrophy, whereas exercise is known to increase mitochondrial biogenesis and function. Here we provide evidence of short-term concurrent exercise training before an atrophic event protecting skeletal muscle from atrophy in two separate muscles with different, dominant fiber-types, and we reveal an association with the adaptive changes of mitochondrial molecular markers to exercise.
Collapse
Affiliation(s)
- Nicholas T Theilen
- Department of Physiology, University of Louisville , Louisville, Kentucky
| | - Nevena Jeremic
- Department of Physiology, University of Louisville , Louisville, Kentucky
| | - Gregory J Weber
- Department of Physiology, University of Louisville , Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville , Louisville, Kentucky
| |
Collapse
|
34
|
Ultimo S, Zauli G, Martelli AM, Vitale M, McCubrey JA, Capitani S, Neri LM. Influence of physical exercise on microRNAs in skeletal muscle regeneration, aging and diseases. Oncotarget 2018; 9:17220-17237. [PMID: 29682218 PMCID: PMC5908319 DOI: 10.18632/oncotarget.24991] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/06/2018] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle is a dynamic tissue with remarkable plasticity and its growth and regeneration are highly organized, with the activation of specific transcription factors, proliferative pathways and cytokines. The decline of skeletal muscle tissue with age, is one of the most important causes of functional loss of independence in older adults. Maintaining skeletal muscle function throughout the lifespan is a prerequisite for good health and independent living. Physical activity represents one of the most effective preventive agents for muscle decay in aging. Several studies have underlined the importance of microRNAs (miRNAs) in the control of myogenesis and of skeletal muscle regeneration and function. In this review, we reported an overview and recent advances about the role of miRNAs expressed in the skeletal muscle, miRNAs regulation by exercise in skeletal muscle, the consequences of different physical exercise training modalities in the skeletal muscle miRNA profile, their regulation under pathological conditions and the role of miRNAs in age-related muscle wasting. Specific miRNAs appear to be involved in response to different types of exercise and therefore to play an important role in muscle fiber identity and myofiber gene expression in adults and elder population. Understanding the roles and regulation of skeletal muscle miRNAs during muscle regeneration may result in new therapeutic approaches in aging or diseases with impaired muscle function or re-growth.
Collapse
Affiliation(s)
- Simona Ultimo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,CoreLab, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, USA
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
35
|
Moon YS, Kwon DR, Lee YJ. Therapeutic effect of microcurrent on calf muscle atrophy in immobilized rabbit. Muscle Nerve 2018; 58:270-276. [PMID: 29466826 DOI: 10.1002/mus.26110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2018] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Immobilization causes significant muscle loss. In this study we assessed the regenerative effect of microcurrent electrical stimulation (MES) on gastrocnemius muscle (GCM) atrophy induced by immobilization by cast (IC) in rabbits. METHODS Fifteen rabbits were divided into 3 groups: IC (group 1); IC and free re-ambulation for 2 weeks after cast removal (CR) (group 2); and IC and MES for 2 weeks after CR (group 3). We evaluated clinical parameters (calf circumference, compound muscle action potential of tibial nerve, and thickness of GCM by ultrasound), histomorphometric data (muscle composition and cross-sectional area), and immunohistochemistry. RESULTS Mean atrophic changes in clinical parameters in group 3 were significantly less than those in groups 1 and 2 (P < 0.05). Histomophometric and immunohistochemical parameters in group 3 were significantly greater than those in groups 1 and 2, respectively (P < 0.05). DISCUSSION MES prevents muscle atrophy and facilitates regeneration of muscle. Muscle Nerve 58: 270-276, 2018.
Collapse
Affiliation(s)
- Yong Suk Moon
- Department of Anatomy, Catholic University of Daegu School of Medicine, Daegu, South Korea
| | - Dong Rak Kwon
- Department of Rehabilitation Medicine, Catholic University of Daegu School of Medicine, 33 Duryugongwon-ro 17-gil Nam-Gu, Daegu, 42472, South Korea
| | - Yoon-Jin Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| |
Collapse
|
36
|
Lu ZY, Zhou HS, Su ZX, Qi J, Zhang J, Xue GH, Li Y, Hao CN, Shi YQ, Duan JL. Therapeutic ultrasound plus pulsed electromagnetic field improves recovery from peripheral arterial disease in hypertension. Am J Transl Res 2017; 9:4184-4194. [PMID: 28979692 PMCID: PMC5622261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
The objective of this investigation was to evaluate the therapy effect of combined therapeutic ultrasound (TUS) treatment and pulsed electromagnetic field (PEMF) therapy on angiogenesis in hypertension-related hindlimb ischemia. After subjecting excision of the left femoral artery, spontaneously hypertensive rats (SHRs) were randomly distributed to one of four groups: SHR; TUS treated SHR (SHR-TUS); PEMF treated SHR (PEMF-TUS); and TUS plus PEMF treated SHR (SHR-TUS-PEMF). Wistar-Kyoto rats (WKYs) with femoral artery excision were regarded as a control group. At day 14 after surgery, the TUS plus PEMF united administration had the greatest blood perfusion accompanied by elevated capillary density and the lowest TUNEL index. Interestingly, the united administration up-regulated the angiogenic factors expression of phosphorylated Akt (p-Akt), phosphorylated endothelial nitric oxide synthase (p-eNOS), vascular endothelial growth factor (VEGF), anti-apoptotic protein of Bcl-2 and down-regulated pro-apoptotic protein levels of Bax and Cleaved caspase-3 in vivo. Our results demonstrated that the united administration could significantly rescue hypertension-related inhibition of ischemia-induced neovascularization partly by promoting angiogenesis and inhibiting apoptosis.
Collapse
Affiliation(s)
- Zhao-Yang Lu
- Department of Gerontology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong UniversityKongjiang Road 1665, Shanghai 200092, China
| | - Hong-Sheng Zhou
- Shanghai Acoustics Laboratory, Chinese Academy of ScienceXiaomuqiao Road 456, Shanghai 200032, China
| | - Zhi-Xiao Su
- Department of Gerontology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong UniversityKongjiang Road 1665, Shanghai 200092, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology130 Meilong Road, Shanghai 200237, China
| | - Jia Qi
- Department of Gerontology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong UniversityKongjiang Road 1665, Shanghai 200092, China
- Department of Pharmacy, Xinhua Hospital, School of Medicine, Shanghai Jiaotong UniversityKongjiang Road 1665, Shanghai 200092, China
| | - Jian Zhang
- Department of Pharmacy, Xinhua Hospital, School of Medicine, Shanghai Jiaotong UniversityKongjiang Road 1665, Shanghai 200092, China
| | - Guan-Hua Xue
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong UniversityDongfang Road 1630, Shanghai 200127, China
| | - Yue Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, University of Maryland20 Penn Street, HSF-2, Room #S112, Baltimore 21201, MD, USA
| | - Chang-Ning Hao
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong UniversityDongfang Road 1630, Shanghai 200127, China
| | - Yi-Qin Shi
- Department of Nephrology, Zhongshan Hospital, Fudan UniversityFenglin Road 180, Shanghai 200032, China
| | - Jun-Li Duan
- Department of Gerontology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong UniversityKongjiang Road 1665, Shanghai 200092, China
| |
Collapse
|
37
|
Di Filippo ES, Mancinelli R, Marrone M, Doria C, Verratti V, Toniolo L, Dantas JL, Fulle S, Pietrangelo T. Neuromuscular electrical stimulation improves skeletal muscle regeneration through satellite cell fusion with myofibers in healthy elderly subjects. J Appl Physiol (1985) 2017; 123:501-512. [DOI: 10.1152/japplphysiol.00855.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to determine whether neuromuscular electrical stimulation (NMES) affects skeletal muscle regeneration through a reduction of oxidative status in satellite cells of healthy elderly subjects. Satellite cells from the vastus lateralis skeletal muscle of 12 healthy elderly subjects before and after 8 wk of NMES were allowed to proliferate to provide myogenic populations of adult stem cells [myogenic precursor cells (MPCs)]. These MPCs were then investigated in terms of their proliferation, their basal cytoplasmic free Ca2+concentrations, and their expression of myogenic regulatory factors ( PAX3, PAX7, MYF5, MYOD, and MYOG) and micro-RNAs (miR-1, miR-133a/b, and miR-206). The oxidative status of these MPCs was evaluated through superoxide anion production and superoxide dismutase and glutathione peroxidase activities. On dissected single skeletal myofibers, the nuclei were counted to determine the myonuclear density, the fiber phenotype, cross-sectional area, and tension developed. The MPCs obtained after NMES showed increased proliferation rates along with increased cytoplasmic free Ca2+concentrations and gene expression of MYOD and MYOG on MPCs. Muscle-specific miR-1, miR-133a/b, and miR-206 were upregulated. This NMES significantly reduced superoxide anion production, along with a trend to reduction of superoxide dismutase activity. The NMES-dependent stimulation of muscle regeneration enhanced satellite cell fusion with mature skeletal fibers. NMES improved the regenerative capacity of skeletal muscle in elderly subjects. Accordingly, the skeletal muscle strength and mobility of NMES-stimulated elderly subjects significantly improved. NMES may thus be further considered for clinical or ageing populations.NEW & NOTEWORTHY The neuromuscular electrical stimulation (NMES) effect on skeletal muscle regeneration was assessed in healthy elderly subjects for the first time. NMES improved the regenerative capacity of skeletal muscle through increased myogenic precursor cell proliferation and fusion with mature myofibers. The increased cytoplasmic free Ca2+concentration along with MYOD, MYOG, and micro-RNA upregulation could be related to reduced O2·−production, which, in turn, favors myogenic regeneration. Accordingly, the skeletal muscle strength of NMES-stimulated lower limbs of healthy elderly subjects improved along with their mobility.
Collapse
Affiliation(s)
- Ester Sara Di Filippo
- Department of Neuroscience Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Interuniversity Institute of Myology, Italy
| | - Rosa Mancinelli
- Department of Neuroscience Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Interuniversity Institute of Myology, Italy
- Laboratory of Functional Evaluation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy; and
| | - Mariangela Marrone
- Department of Neuroscience Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Interuniversity Institute of Myology, Italy
| | - Christian Doria
- Department of Neuroscience Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Interuniversity Institute of Myology, Italy
- Laboratory of Functional Evaluation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy; and
| | - Vittore Verratti
- Department of Neuroscience Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Laboratory of Functional Evaluation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy; and
| | - Luana Toniolo
- Interuniversity Institute of Myology, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - José Luiz Dantas
- Laboratory of Functional Evaluation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy; and
| | - Stefania Fulle
- Department of Neuroscience Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Interuniversity Institute of Myology, Italy
- Laboratory of Functional Evaluation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy; and
| | - Tiziana Pietrangelo
- Department of Neuroscience Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Interuniversity Institute of Myology, Italy
- Laboratory of Functional Evaluation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy; and
| |
Collapse
|
38
|
de Sousa HA, da Silva MDG, Barbosa KDP, Vianna LMDS, Pacheco YG, de Godoy JRP, Kuckelhaus SAS. Electrical stimulation structurally affects the tissues of the rectum and anus of nulliparous rats. J Anat 2017; 231:398-404. [PMID: 28547814 PMCID: PMC5554829 DOI: 10.1111/joa.12635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2017] [Indexed: 12/20/2022] Open
Abstract
Considering that the muscles of the anus perform a critical role in maintaining continence, losses in their structure can negatively affect the physiological control of the intestinal contents. Anorectal electro-stimulation (ARES) has been reported to have a positive effect on the functionality of treated patients, but how ARES affects the structural tissues of the anorectal segment remains unknown. Because the study of how ARES structurally affects human tissues is not possible, this study aimed to clarify these effects in a murine model, which has a similar anorectal segment (structure and physiology) to humans. For the descriptive and comparative study, randomly selected nulliparous adult Wistar rats (n = 5) were submitted to 30 anorectal sessions of ARES with a biphasic current (700 μs, 50 Hz from 2 to 4 mA). After treatment, the animals were euthanized, and the anorectal segments were dissected and processed for histopathological analysis. Our results showed that ARES increased the widths of the mucosal, submucosal and muscle layers of the rectum, as well as the number of leukocytes in the mucosa. ARES also caused hyperplasia of the smooth muscle of the internal anal sphincter and hypertrophy of the external anal sphincter muscle. In conclusion, our results showed that ARES had not only a positive effect on the structure (morphology) of all tissues associated with the rectum and anus but, more importantly, on the structural gain of the muscles (hyperplasia and hypertrophy), which could point to a functional gain of the anal sphincter, reinforcing the applicability of ARES as a non-invasive treatment for anal incontinence.
Collapse
Affiliation(s)
- Hugo Alves de Sousa
- Laboratory of Molecular Anatomy and NanomedicineArea of MorphologyFaculty of MedicineUniversity of BrasiliaBrasiliaFederal DistrictBrazil
| | - Maria da Glória da Silva
- Laboratory of HistologyArea of MorphologyFaculty of MedicineUniversity of BrasiliaBrasiliaFederal DistrictBrazil
| | | | | | - Yolanda Galindo Pacheco
- Laboratory of Molecular Anatomy and NanomedicineArea of MorphologyFaculty of MedicineUniversity of BrasiliaBrasiliaFederal DistrictBrazil
| | - José Roberto Pimenta de Godoy
- Laboratory of Molecular Anatomy and NanomedicineArea of MorphologyFaculty of MedicineUniversity of BrasiliaBrasiliaFederal DistrictBrazil
| | - Selma Aparecida Souza Kuckelhaus
- Laboratory of Molecular Anatomy and NanomedicineArea of MorphologyFaculty of MedicineUniversity of BrasiliaBrasiliaFederal DistrictBrazil
- Laboratory of Cell ImmunologyArea of PathologyFaculty of MedicineUniversity of BrasiliaBrasiliaFederal DistrictBrazil
| |
Collapse
|
39
|
Love MR, Palee S, Chattipakorn SC, Chattipakorn N. Effects of electrical stimulation on cell proliferation and apoptosis. J Cell Physiol 2017; 233:1860-1876. [PMID: 28452188 DOI: 10.1002/jcp.25975] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023]
Abstract
The application of exogenous electrical stimulation (ES) to cells in order to manipulate cell apoptosis and proliferation has been widely investigated as a possible method of treatment in a number of diseases. Alteration of the transmembrane potential of cells via ES can affect various intracellular signaling pathways which are involved in the regulation of cellular function. Controversially, several types of ES have proved to be effective in both inhibiting or inducing apoptosis, as well as increasing proliferation. However, the mechanisms through which ES achieves this remain fairly unclear. The aim of this review was to comprehensively summarize current findings from in vitro and in vivo studies on the effects of different types of ES on cell apoptosis and proliferation, highlighting the possible mechanisms through which ES induced these effects and define the optimum parameters at which ES can be used. Through this we hope to provide a greater insight into how future studies can most effectively use ES at the clinical trial stage.
Collapse
Affiliation(s)
- Maria R Love
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Siripong Palee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
40
|
Electrical Stimulation of Denervated Rat Skeletal Muscle Retards Capillary and Muscle Loss in Early Stages of Disuse Atrophy. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5695217. [PMID: 28497057 PMCID: PMC5406745 DOI: 10.1155/2017/5695217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/29/2017] [Indexed: 12/12/2022]
Abstract
The purpose of the present study is to investigate the effects of low-frequency electrical muscle stimulation (ES) on the decrease in muscle mass, fiber size, capillary supply, and matrix metalloproteinase (MMP) immunoreactivity in the early stages of denervation-induced limb disuse. Direct ES was performed on the tibialis anterior muscle following denervation in seven-week-old male rats. The rats were divided into the following groups: control (CON), denervation (DN), and denervation with direct ES (DN + ES). Direct ES was performed at an intensity of 16 mA and a frequency of 10 Hz for 30 min per day, six days a week, for one week. We performed immunohistochemical staining to determine the expression of dystrophin, CD34, and MMP-2 in transverse sections of TA muscles. The weight, myofiber cross-sectional area (FCSA), and capillary-to-fiber (C/F) ratio of the tibialis anterior (TA) muscle were significantly reduced in the DN group compared to the control and DN + ES groups. The MMP-2 positive area was significantly greater in DN and DN + ES groups compared to the control group. These findings suggest beneficial effects of direct ES in reducing muscle atrophy and capillary regression without increasing MMP-2 immunoreactivity in the early stages of DN-induced muscle disuse in rat hind limbs.
Collapse
|
41
|
Theilen NT, Kunkel GH, Tyagi SC. The Role of Exercise and TFAM in Preventing Skeletal Muscle Atrophy. J Cell Physiol 2017; 232:2348-2358. [PMID: 27966783 DOI: 10.1002/jcp.25737] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 12/31/2022]
Abstract
Skeletal muscle atrophy is the consequence of protein degradation exceeding protein synthesis. This arises for a multitude of reasons including the unloading of muscle during microgravity, post-surgery bedrest, immobilization of a limb after injury, and overall disuse of the musculature. The development of therapies prior to skeletal muscle atrophy settings to diminish protein degradation is scarce. Mitochondrial dysfunction is associated with skeletal muscle atrophy and contributes to the induction of protein degradation and cell apoptosis through increased levels of ROS observed with the loss of organelle function. ROS binds mtDNA, leading to its degradation and decreasing functionality. Mitochondrial transcription factor A (TFAM) will bind and coat mtDNA, protecting it from ROS and degradation while increasing mitochondrial function. Exercise stimulates cell signaling pathways that converge on and increase PGC-1α, a well-known activator of the transcription of TFAM and mitochondrial biogenesis. Therefore, in the present review we are proposing, separately, exercise and TFAM treatments prior to atrophic settings (muscle unloading or disuse) alleviate skeletal muscle atrophy through enhanced mitochondrial adaptations and function. Additionally, we hypothesize the combination of exercise and TFAM leads to a synergistic effect in targeting mitochondrial function to prevent skeletal muscle atrophy. J. Cell. Physiol. 232: 2348-2358, 2017. © 2016 The Authors. Journal of Cellular Physiology Published by © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicholas T Theilen
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - George H Kunkel
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
42
|
Tamaki H, Yotani K, Ogita F, Hayao K, Nakagawa K, Sugawara K, Kirimoto H, Onishi H, Kasuga N, Yamamoto N. Electrical Stimulation of Denervated Rat Skeletal Muscle Ameliorates Bone Fragility and Muscle Loss in Early-Stage Disuse Musculoskeletal Atrophy. Calcif Tissue Int 2017; 100:420-430. [PMID: 28213864 DOI: 10.1007/s00223-017-0250-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/31/2017] [Indexed: 10/20/2022]
Abstract
We tested whether daily muscle electrical stimulation (ES) can ameliorate the decrease in cortical bone strength as well as muscle and bone geometric and material properties in the early stages of disuse musculoskeletal atrophy. 7-week-old male F344 rats were randomly divided into three groups: age-matched control group (Cont); a sciatic denervation group (DN); and a DN + direct electrical stimulation group (DN + ES). Denervated tibialis anterior (TA) muscle in the DN + ES group received ES with 16 mA at 10 Hz for 30 min/day, 6 days/week. Micro CT, the three-point bending test, and immunohistochemistry were used to characterize cortical bone mechanical, structural, and material properties of tibiae. TA muscle in the DN + ES group showed significant improvement in muscle mass and myofiber cross-sectional area relative to the DN group. Maximal load and stiffness of tibiae, bone mineral density estimated by micro CT, and immunoreactivity of DMP1 in the cortical bone tissue were also significantly greater in the DN + ES group than in the DN group. These results suggest that daily ES-induced muscle contraction treatment reduced the decrease in muscle mass and cortical bone strength in early-stage disuse musculoskeletal atrophy and is associated with a beneficial effect on material properties such as mineralization of cortical bone tissue.
Collapse
Affiliation(s)
- Hiroyuki Tamaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami, Kita-ku, Niigata, 950-3198, Japan.
| | - Kengo Yotani
- National Institute of Fitness and Sports in Kanoya, 1 Shiromizu, Kanoya, Kagoshima, 891-2393, Japan
| | - Futoshi Ogita
- National Institute of Fitness and Sports in Kanoya, 1 Shiromizu, Kanoya, Kagoshima, 891-2393, Japan
| | - Keishi Hayao
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami, Kita-ku, Niigata, 950-3198, Japan
| | - Kouki Nakagawa
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami, Kita-ku, Niigata, 950-3198, Japan
| | - Kazuhiro Sugawara
- Tohoku Fukushi University, 1‑8‑1 Kunimi, Aoba‑ku, Sendai, Miyagi, 981‑8522, Japan
| | - Hikari Kirimoto
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami, Kita-ku, Niigata, 950-3198, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami, Kita-ku, Niigata, 950-3198, Japan
| | - Norikatsu Kasuga
- Aichi University of Education, 1 Hirosawa, Igaya, Kariya, Aichi, 448-8542, Japan
| | - Noriaki Yamamoto
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami, Kita-ku, Niigata, 950-3198, Japan
- Niigata Rehabilitation Hospital, 761 Kisaki, Kita-ku, Niigata, 950-3304, Japan
| |
Collapse
|
43
|
Zange J, Schopen K, Albracht K, Gerlach DA, Frings-Meuthen P, Maffiuletti NA, Bloch W, Rittweger J. Using the Hephaistos orthotic device to study countermeasure effectiveness of neuromuscular electrical stimulation and dietary lupin protein supplementation, a randomised controlled trial. PLoS One 2017; 12:e0171562. [PMID: 28207840 PMCID: PMC5313207 DOI: 10.1371/journal.pone.0171562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/16/2016] [Indexed: 01/10/2023] Open
Abstract
Purpose The present study investigated whether neuromuscular electrical stimulation for 20 min twice a day with an electrode placed over the soleus muscle and nutritional supplementation with 19 g of protein rich lupin seeds can reduce the loss in volume and strength of the human calf musculature during long term unloading by wearing an orthotic unloading device. Methods Thirteen healthy male subjects (age of 26.4 ± 3.7 years) wore a Hephaistos orthosis one leg for 60 days during all habitual activities. The leg side was randomly chosen for every subject. Six subjects only wore the orthosis as control group, and 7 subjects additionally received the countermeasure consisting of neuromuscular electrical stimulation of the soleus and lateral gastrocnemius muscles and lupin protein supplementation. Twenty-eight days before and on the penultimate day of the intervention cross-sectional images of the calf muscles were taken by magnetic resonance imaging (controls n = 5), and maximum voluntary torque (controls n = 6) of foot plantar flexion was estimated under isometric (extended knee, 90° knee flexion) and isokinetic conditions (extended knee), respectively. Results After 58 days of wearing the orthosis the percentage loss of volume in the entire triceps surae muscle of the control subjects (-11.9 ± 4.4%, mean ± standard deviation) was reduced by the countermeasure (-3.5 ± 7.2%, p = 0.032). Wearing the orthosis generally reduced plantar flexion torques values, however, only when testing isometric contraction at 90° knee ankle the countermeasure effected a significantly lower percentage decrease of torque (-9.7 ± 7.2%, mean ± SD) in comparison with controls (-22.3 ± 11.2%, p = 0.032). Conclusion Unloading of calf musculature by an orthotic device resulted in the expected loss of muscle volume and maximum of plantar flexion torque. Neuromuscular electrical muscle stimulation and lupin protein supplementation could significantly reduce the process of atrophy. Trial registration ClinicalTrials.gov, identifier NCT02698878
Collapse
Affiliation(s)
- Jochen Zange
- Division of Space Physiology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Kathrin Schopen
- Division of Space Physiology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Kirsten Albracht
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| | - Darius A. Gerlach
- Division of Space Physiology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Petra Frings-Meuthen
- Division of Space Physiology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | | | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Jörn Rittweger
- Division of Space Physiology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Paediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
44
|
Bueno CRDS, Pereira M, Favaretto IA, Bortoluci CHF, dos Santos TCP, Dias DV, Daré LR, Rosa GM. Electrical stimulation attenuates morphological alterations and prevents atrophy of the denervated cranial tibial muscle. EINSTEIN-SAO PAULO 2017; 15:71-76. [PMID: 28444093 PMCID: PMC5433311 DOI: 10.1590/s1679-45082017ao3808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/05/2017] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE To investigate if electrical stimulation through Russian current is able to maintain morphology of the cranial tibial muscle of experimentally denervated rats. METHODS Thirty-six Wistar rats were divided into four groups: the Initial Control Group, Final Control Group, Experimental Denervated and Treated Group, Experimental Denervated Group. The electrostimulation was performed with a protocol of Russian current applied three times per week, for 45 days. At the end, the animals were euthanized and histological and morphometric analyses were performed. Data were submitted to statistical analysis with a significance level of p<0.05. RESULTS The Experimental Denervated Group and the Experimental Denervated and Treated Group had cross-sectional area of smaller fiber compared to the Final Control Group. However, there was significant difference between the Experimental Denervated Group and Experimental Denervated and Treated Group, showing that electrical stimulation minimized muscle atrophy. The Experimental Denervated and Treated Group and Initial Control Group showed similar results. CONCLUSION Electrical stimulation through Russian current acted favorably in maintaining morphology of the cranial tibial muscle that was experimentally denervated, minimizing muscle atrophy. OBJETIVO Investigar se a estimulação elétrica pela corrente russa é capaz de manter a morfologia do músculo tibial cranial de ratos desnervados experimentalmente. MÉTODOS Foram utilizados 36 ratos Wistar, distribuídos em quatro grupos: Grupo Controle Inicial, Grupo Controle Final, Grupo Experimental Desnervado Tratado, Grupo Experimental Desnervado. A eletroestimulação foi realizada com um protocolo de corrente russa aplicada três vezes por semanas, durante 45 dias. Ao final, os animais foram eutanasiados e, em seguida, foram realizadas as análises histológica e morfométrica. Os dados foram submetidos à análise estatística, com nível de significância de p<0,05. RESULTADOS Os Grupos Experimental Desnervado e o Grupo Experimental Desnervado Tratado apresentaram área de secção transversal da fibra menor quando comparados ao Grupo Controle Final. Entretanto, constatou-se diferença significativa entre o Grupo Experimental Desnervado e o Grupo Experimental Desnervado Tratado, mostrando que a estimulação elétrica minimizou atrofia muscular. Ainda, observou-se que o Grupo Experimental Desnervado Tratado apresentou resultados semelhantes ao Grupo Controle Inicial. CONCLUSÃO A estimulação elétrica por meio da corrente russa foi favorável na manutenção da morfologia do músculo tibial cranial desnervado experimentalmente, minimizando a atrofia muscular.
Collapse
Affiliation(s)
| | - Mizael Pereira
- Faculdade de Odontologia, Universidade de São Paulo, Bauru, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
45
|
Itoh Y, Murakami T, Mori T, Agata N, Kimura N, Inoue-Miyazu M, Hayakawa K, Hirano T, Sokabe M, Kawakami K. Training at non-damaging intensities facilitates recovery from muscle atrophy. Muscle Nerve 2016; 55:243-253. [PMID: 27301985 DOI: 10.1002/mus.25218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2016] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Resistance training promotes recovery from muscle atrophy, but optimum training programs have not been established. We aimed to determine the optimum training intensity for muscle atrophy. METHODS Mice recovering from atrophied muscles after 2 weeks of tail suspension underwent repeated isometric training with varying joint torques 50 times per day. RESULTS Muscle recovery assessed by maximal isometric contraction and myofiber cross-sectional areas (CSAs) were facilitated at 40% and 60% maximum contraction strength (MC), but at not at 10% and 90% MC. At 60% and 90% MC, damaged and contained smaller diameter fibers were observed. Activation of myogenic satellite cells and a marked increase in myonuclei were observed at 40%, 60%, and 90% MC. CONCLUSIONS The increases in myofiber CSAs were likely caused by increased myonuclei formed through fusion of resistance-induced myofibers with myogenic satellite cells. These data indicate that resistance training without muscle damage facilitates efficient recovery from atrophy. Muscle Nerve 55: 243-253, 2017.
Collapse
Affiliation(s)
- Yuta Itoh
- Physical and Occupational Therapy Program, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Faculty of Rehabilitation Science, Nagoya Gakuin University, Seto, Japan
| | - Taro Murakami
- Faculty of Wellness, Shigakkan University, Ohbu, Japan
| | - Tomohiro Mori
- Physical and Occupational Therapy Program, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuhide Agata
- Physical and Occupational Therapy Program, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Faculty of Health and Medical Sciences, Tokoha University, Hamamatsu, Japan
| | - Nahoko Kimura
- Aiche Medical College for Physical and Occupational Therapy, Kiyosu, Japan
| | | | - Kimihide Hayakawa
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Hirano
- Faculty of Rehabilitation Science, Nagoya Gakuin University, Seto, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keisuke Kawakami
- Physical and Occupational Therapy Program, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Faculty of Welfare and Health Sciences, Oita University, Dannoharu 700, Oita City, 870-1192, Japan
| |
Collapse
|
46
|
Nakanishi R, Hirayama Y, Tanaka M, Maeshige N, Kondo H, Ishihara A, Roy RR, Fujino H. Nucleoprotein supplementation enhances the recovery of rat soleus mass with reloading after hindlimb unloading-induced atrophy via myonuclei accretion and increased protein synthesis. Nutr Res 2016; 36:1335-1344. [PMID: 27866827 DOI: 10.1016/j.nutres.2016.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 10/06/2016] [Accepted: 10/20/2016] [Indexed: 01/08/2023]
Abstract
Hindlimb unloading results in muscle atrophy and a period of reloading has been shown to partially recover the lost muscle mass. Two of the mechanisms involved in this recovery of muscle mass are the activation of protein synthesis pathways and an increase in myonuclei number. The additional myonuclei are provided by satellite cells that are activated by the mechanical stress associated with the reloading of the muscles and eventually incorporated into the muscle fibers. Amino acid supplementation with exercise also can increase skeletal muscle mass through enhancement of protein synthesis and nucleotide supplements can promote cell cycle activity. Therefore, we hypothesized that nucleoprotein supplementation, a combination of amino acids and nucleotides, would enhance the recovery of muscle mass to a greater extent than reloading alone after a period of unloading. Adult rats were assigned to 4 groups: control, hindlimb unloaded (HU; 14 days), reloaded (5 days) after hindlimb unloading (HUR), and reloaded after hindlimb unloading with nucleoprotein supplementation (HUR + NP). Compared with the HUR group, the HUR + NP group had larger soleus muscles and fiber cross-sectional areas, higher levels of phosphorylated rpS6, and higher numbers of myonuclei and myogenin-positive cells. These results suggest that nucleoprotein supplementation has a synergistic effect with reloading in recovering skeletal muscle properties after a period of unloading via rpS6 activation and satellite cell differentiation and incorporation into the muscle fibers. Therefore, this supplement may be an effective therapeutic regimen to include in rehabilitative strategies for a variety of muscle wasting conditions such as aging, cancer cachexia, muscular dystrophy, bed rest, and cast immobilization.
Collapse
Affiliation(s)
- Ryosuke Nakanishi
- Rehabilitation Science, Graduate School of Health Sciences, Kobe University, 7-10-2 Tomogaoka, Kobe 654-0142, Japan
| | - Yusuke Hirayama
- Rehabilitation Science, Graduate School of Health Sciences, Kobe University, 7-10-2 Tomogaoka, Kobe 654-0142, Japan
| | - Minoru Tanaka
- Rehabilitation Science, Graduate School of Health Sciences, Kobe University, 7-10-2 Tomogaoka, Kobe 654-0142, Japan; Department of Physical Therapy, Osaka Yukioka College of Health Science, 1-1-41 Soujiji, Ibaraki 567-0801, Japan
| | - Noriaki Maeshige
- Rehabilitation Science, Graduate School of Health Sciences, Kobe University, 7-10-2 Tomogaoka, Kobe 654-0142, Japan
| | - Hiroyo Kondo
- Department of Food Science and Nutrition, Nagoya Women's University, 3-40 Shiojicho, Nagoya 467-8611, Japan
| | - Akihiko Ishihara
- Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsucho, Kyoto 606-8501, Japan
| | - Roland R Roy
- Brain Research Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095-7239, USA
| | - Hidemi Fujino
- Rehabilitation Science, Graduate School of Health Sciences, Kobe University, 7-10-2 Tomogaoka, Kobe 654-0142, Japan.
| |
Collapse
|
47
|
Yoshida T, Delafontaine P. An Intronic Enhancer Element Regulates Angiotensin II Type 2 Receptor Expression during Satellite Cell Differentiation, and Its Activity Is Suppressed in Congestive Heart Failure. J Biol Chem 2016; 291:25578-25590. [PMID: 27756842 DOI: 10.1074/jbc.m116.752501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/17/2016] [Indexed: 12/20/2022] Open
Abstract
Patients with advanced congestive heart failure (CHF) or chronic kidney disease often have increased angiotensin II (Ang II) levels and cachexia. We previously demonstrated that Ang II, via its type 1 receptor, causes muscle protein breakdown and apoptosis and inhibits satellite cell (SC) proliferation and muscle regeneration, likely contributing to cachexia in CHF and chronic kidney disease. In contrast, Ang II, via its type 2 receptor (AT2R) expression, is robustly induced during SC differentiation, and it potentiates muscle regeneration. To understand the mechanisms regulating AT2R expression and its potential role in muscle regeneration in chronic diseases, we used a mouse model of CHF and found that muscle regeneration was markedly reduced and that this was accompanied by blunted increase of AT2R expression. We performed AT2R promoter reporter analysis during satellite cell differentiation and found that the 70 bp upstream of the AT2R transcription start site contain a core promoter region, and regions upstream of 70 bp to 3 kbp are dispensable for AT2R induction. Instead, AT2R intron 2 acts as a transcriptional enhancer during SC differentiation. Further deletion/mutation analysis revealed that multiple transcription factor binding sites in the +286/+690 region within intron 2 coordinately regulate AT2R transcription. Importantly, +286/+690 enhancer activity was suppressed in CHF mouse skeletal muscle, suggesting that AT2R expression is suppressed in CHF via inhibition of AT2R intronic enhancer activity, leading to lowered muscle regeneration. Thus targeting intron 2 enhancer element could lead to the development of a novel intervention to increase AT2R expression in SCs and potentiate skeletal muscle regenerative capacity in chronic diseases.
Collapse
Affiliation(s)
- Tadashi Yoshida
- From the Department of Medicine and Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Patrice Delafontaine
- From the Department of Medicine and Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
| |
Collapse
|
48
|
Gundersen K. Muscle memory and a new cellular model for muscle atrophy and hypertrophy. ACTA ACUST UNITED AC 2016; 219:235-42. [PMID: 26792335 DOI: 10.1242/jeb.124495] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Memory is a process in which information is encoded, stored, and retrieved. For vertebrates, the modern view has been that it occurs only in the brain. This review describes a cellular memory in skeletal muscle in which hypertrophy is 'remembered' such that a fibre that has previously been large, but subsequently lost its mass, can regain mass faster than naive fibres. A new cell biological model based on the literature, with the most reliable methods for identifying myonuclei, can explain this phenomenon. According to this model, previously untrained fibres recruit myonuclei from activated satellite cells before hypertrophic growth. Even if subsequently subjected to grave atrophy, the higher number of myonuclei is retained, and the myonuclei seem to be protected against the elevated apoptotic activity observed in atrophying muscle tissue. Fibres that have acquired a higher number of myonuclei grow faster when subjected to overload exercise, thus the nuclei represent a functionally important 'memory' of previous strength. This memory might be very long lasting in humans, as myonuclei are stable for at least 15 years and might even be permanent. However, myonuclei are harder to recruit in the elderly, and if the long-lasting muscle memory also exists in humans, one should consider early strength training as a public health advice. In addition, myonuclei are recruited during steroid use and encode a muscle memory, at least in rodents. Thus, extending the exclusion time for doping offenders should be considered.
Collapse
Affiliation(s)
- Kristian Gundersen
- Department of Biosciences, University of Oslo, Blindernveien 31, Oslo N0316, Norway
| |
Collapse
|
49
|
Kim MJ, Kim ZH, Kim SM, Choi YS. Conditioned medium derived from umbilical cord mesenchymal stem cells regenerates atrophied muscles. Tissue Cell 2016; 48:533-43. [PMID: 27457384 DOI: 10.1016/j.tice.2016.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/10/2016] [Accepted: 06/25/2016] [Indexed: 12/26/2022]
Abstract
We investigated the regenerative effects and regulatory mechanisms of human umbilical cord mesenchymal stem cells (UC-MSCs)-derived conditioned medium (CM) in atrophied muscles using an in vivo model. To determine the appropriate harvest point of UC-CM, active factor content was analyzed in the secretome over time. A muscle atrophy model was induced in rats by hindlimb suspension (HS) for 2 weeks. Next, UC-CM was injected directly into the soleus muscle of both hind legs to assess its regenerative efficacy on atrophy-related factors after 1 week of HS. During HS, muscle mass and muscle fiber size were significantly reduced by over 2-fold relative to untreated controls. Lactate accumulation within the muscles was similarly increased. By contrast, all of the above analytical factors were significantly improved in HS-induced rats by UC-CM injection compared with saline injection. Furthermore, the expression levels of desmin and skeletal muscle actin were significantly elevated by UC-CM treatment. Importantly, UC-CM effectively suppressed expression of the atrophy-related ubiquitin E3-ligases, muscle ring finger 1 and muscle atrophy F-box by 2.3- and 2.1-fold, respectively. UC-CM exerted its actions by stimulating the phosphoinositol-3-kinase (PI3K)/Akt signaling cascade. These findings suggest that UC-CM provides an effective stimulus to recover muscle status and function in atrophied muscles.
Collapse
Affiliation(s)
- Mi Jin Kim
- Department of Biotechnology, CHA University, Seongnam, Republic of Korea
| | - Z-Hun Kim
- Department of Biotechnology, CHA University, Seongnam, Republic of Korea
| | - Sun-Mi Kim
- Department of Biotechnology, CHA University, Seongnam, Republic of Korea
| | - Yong-Soo Choi
- Department of Biotechnology, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
50
|
Electrical Impedance Myography to Detect the Effects of Electrical Muscle Stimulation in Wild Type and Mdx Mice. PLoS One 2016; 11:e0151415. [PMID: 26986564 PMCID: PMC4795734 DOI: 10.1371/journal.pone.0151415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/26/2016] [Indexed: 02/06/2023] Open
Abstract
Objective Tools to better evaluate the impact of therapy on nerve and muscle disease are needed. Electrical impedance myography (EIM) is sensitive to neuromuscular disease progression as well as to therapeutic interventions including myostatin inhibition and antisense oligonucleotide-based treatments. Whether the technique identifies the impact of electrical muscle stimulation (EMS) is unknown. Methods Ten wild-type (wt) C57B6 mice and 10 dystrophin-deficient (mdx) mice underwent 2 weeks of 20 min/day EMS on left gastrocnemius and sham stimulation on the right gastrocnemius. Multifrequency EIM data and limb girth were obtained before and at the conclusion of the protocol. Muscle weight, in situ force measurements, and muscle fiber histology were also assessed at the conclusion of the study. Results At the time of sacrifice, muscle weight was greater on the EMS-treated side than on the sham-stimulated side (p = 0.018 for wt and p = 0.007 for mdx). Similarly, in wt animals, EIM parameters changed significantly compared to baseline (resistance (p = 0.009), reactance (p = 0.0003) and phase (p = 0.002); these changes were due in part to reductions in the EIM values on the EMS-treated side and elevations on the sham-simulated side. Mdx animals showed analogous but non-significant changes (p = 0.083, p = 0.064, and p = 0.57 for resistance, reactance and phase, respectively). Maximal isometric force trended higher on the stimulated side in wt animals only (p = 0.06). Myofiber sizes in wt animals were also larger on the stimulated side than on the sham-stimulated side (p = 0.034); no significant difference was found in the mdx mice (p = 0.79). Conclusion EIM is sensitive to stimulation-induced muscle alterations in wt animals; similar trends are also present in mdx mice. The mechanisms by which these EIM changes develop, however, remains uncertain. Possible explanations include longer-term trophic effects and shorter-term osmotic effects.
Collapse
|