1
|
Zheng D, Zhang Y, Yang S, Su N, Bakhoum M, Zhang G, Naderinezhad S, Mao Z, Wang Z, Zhou T, Li W. Androgen deprivation induces neuroendocrine phenotypes in prostate cancer cells through CREB1/EZH2-mediated downregulation of REST. Cell Death Discov 2024; 10:246. [PMID: 38777812 PMCID: PMC11111810 DOI: 10.1038/s41420-024-02031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Although effective initially, prolonged androgen deprivation therapy (ADT) promotes neuroendocrine differentiation (NED) and prostate cancer (PCa) progression. It is incompletely understood how ADT transcriptionally induces NE genes in PCa cells. CREB1 and REST are known to positively and negatively regulate neuronal gene expression in the brain, respectively. No direct link between these two master neuronal regulators has been elucidated in the NED of PCa. We show that REST mRNA is downregulated in NEPC cell and mouse models, as well as in patient samples. Phenotypically, REST overexpression increases ADT sensitivity, represses NE genes, inhibits colony formation in culture, and xenograft tumor growth of PCa cells. As expected, ADT downregulates REST in PCa cells in culture and in mouse xenografts. Interestingly, CREB1 signaling represses REST expression. In studying the largely unclear mechanism underlying transcriptional repression of REST by ADT, we found that REST is a direct target of EZH2 epigenetic repression. Finally, genetic rescue experiments demonstrated that ADT induces NED through EZH2's repression of REST, which is enhanced by ADT-activated CREB1 signaling. In summary, our study has revealed a key pathway underlying NE gene upregulation by ADT, as well as established novel relationships between CREB1 and REST, and between EZH2 and REST, which may also have implications in other cancer types and in neurobiology.
Collapse
Affiliation(s)
- Dayong Zheng
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Oncology, Shunde Hospital, Southern Medical University, Foshan, China
- The First People's Hospital of Shunde, Foshan, China
| | - Yan Zhang
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sukjin Yang
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ning Su
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael Bakhoum
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Guoliang Zhang
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Samira Naderinezhad
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Zhengmei Mao
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zheng Wang
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ting Zhou
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wenliang Li
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
2
|
Li W, Zheng D, Zhang Y, Yang S, Su N, Bakhoum M, Zhang G, Naderinezhad S, Mao Z, Wang Z, Zhou T. Androgen deprivation induces neuroendocrine phenotypes in prostate cancer cells through CREB1/EZH2-mediated downregulation of REST. RESEARCH SQUARE 2023:rs.3.rs-3270539. [PMID: 37886478 PMCID: PMC10602109 DOI: 10.21203/rs.3.rs-3270539/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Although effective initially, prolonged androgen deprivation therapy (ADT) promotes neuroendocrine differentiation (NED) and prostate cancer (PCa) progression. It is incompletely understood how ADT transcriptionally induces NE genes in PCa cells. CREB1 and REST are known to positively and negatively regulate neuronal gene expression in the brain, respectively. No direct link between these two master neuronal regulators has been elucidated in the NED of PCa. We show that REST mRNA is downregulated in NEPC cell and mouse models, as well as in patient samples. Phenotypically, REST overexpression increases ADT sensitivity, represses NE genes, inhibits colony formation in culture, and xenograft tumor growth of PCa cells. As expected, ADT downregulates REST in PCa cells in culture and in mouse xenografts. Interestingly, CREB1 signaling represses REST expression. In studying the largely unclear mechanism underlying transcriptional repression of REST by ADT, we found that REST is a direct target of EZH2 epigenetic repression. Finally, genetic rescue experiments demonstrated that ADT induces NED through EZH2's repression of REST, which is enhanced by ADT-activated CREB signaling. In summary, our study has revealed a key pathway underlying NE gene upregulation by ADT, as well as established novel relationships between CREB1 and REST, and between EZH2 and REST, which may also have implications in other cancer types and in neurobiology.
Collapse
Affiliation(s)
- Wenliang Li
- The University of Texas Health Science Center at Houston
| | - Dayong Zheng
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University
| | - Yan Zhang
- The University of Texas Health Science Center at Houston
| | - Sukjin Yang
- The University of Texas Health Science Center at Houston
| | - Ning Su
- The University of Texas Health Science Center at Houston
| | | | - Guoliang Zhang
- Shanghai Sixth People's Hospital, Shanghai Jiaotong University
| | | | - Zhengmei Mao
- The University of Texas Health Science Center at Houston
| | - Zheng Wang
- The University of Texas Health Science Center at Houston
| | - Ting Zhou
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston
| |
Collapse
|
3
|
Song J, He GN, Dai L. A comprehensive review on celastrol, triptolide and triptonide: Insights on their pharmacological activity, toxicity, combination therapy, new dosage form and novel drug delivery routes. Biomed Pharmacother 2023; 162:114705. [PMID: 37062220 DOI: 10.1016/j.biopha.2023.114705] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/01/2023] [Accepted: 04/12/2023] [Indexed: 04/18/2023] Open
Abstract
Celastrol, triptolide and triptonide are the most significant active ingredients of Tripterygium wilfordii Hook F (TWHF). In 2007, the 'Cell' journal ranked celastrol, triptolide, artemisinin, capsaicin and curcumin as the five natural drugs that can be developed into modern medicinal compounds. In this review, we collected relevant data from the Web of Science, PubMed and China Knowledge Resource Integrated databases. Some information was also acquired from government reports and conference papers. Celastrol, triptolide and triptonide have potent pharmacological activity and evident anti-cancer, anti-tumor, anti-obesity and anti-diabetes effects. Because these compounds have demonstrated unique therapeutic potential for acute and chronic inflammation, brain injury, vascular diseases, immune diseases, renal system diseases, bone diseases and cardiac diseases, they can be used as effective drugs in clinical practice in the future. However, celastrol, triptolide and triptonide have certain toxic effects on the liver, kidney, cholangiocyte heart, ear and reproductive system. These shortcomings limit their clinical application. Suitable combination therapy, new dosage forms and new routes of administration can effectively reduce toxicity and increase the effect. In recent years, the development of different targeted drug delivery formulations and administration routes of celastrol and triptolide to overcome their toxic effects and maximise their efficacy has become a major focus of research. However, in-depth investigation is required to elucidate the mechanisms of action of celastrol, triptolide and triptonide, and more clinical trials are required to assess the safety and clinical value of these compounds.
Collapse
Affiliation(s)
- Jing Song
- School of Pharmacy, Binzhou Medical University, Yantai, China; Shandong Yuze Pharmaceutical Industry Technology Research Institute Co., Ltd, Dezhou, China
| | - Guan-Nan He
- Shandong University of Traditional Chinese Medicine, Ji'nan 250014, China
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai, China.
| |
Collapse
|
4
|
Kim MK, Shin HS, Shin MH, Kim H, Lee DH, Chung JH. Dual role of enhancer of zeste homolog 2 in the regulation of ultraviolet radiation-induced matrix metalloproteinase-1 and type I procollagen expression in human dermal fibroblasts. Matrix Biol 2023; 119:112-124. [PMID: 37031807 DOI: 10.1016/j.matbio.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/13/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Abnormalities in the extracellular matrix (ECM) caused by ultraviolet (UV) radiation are mediated by epigenetic mechanisms. Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that is implicated in inflammation, immune regulation, and senescence. However, its role in controlling UV-induced ECM alterations in the skin remains elusive. Here, we investigated the role of EZH2 in UV-induced expression of matrix metalloproteinase (MMP)-1 and type I procollagen. We found that UV induced EZH2 expression in human skin in vivo and in human dermal fibroblasts (HDFs). EZH2 knockdown reduced the expression and promoter activity of MMP-1 and increased those of type I procollagen, whereas EZH2 overexpression had the opposite effects. Mechanistically, EZH2 increased NF-κB activity, and p65 and p50 expression and promoter activity. Intriguingly, chromatin immunoprecipitation assays revealed that the EZH2/p65/p50 complex was recruited and bound to the MMP-1 promoter after UV irradiation, independent of its histone methyltransferase activity. In contrast, EZH2-induced DNA methyltransferase 1 (DNMT1) formed a complex with EZH2 and enhanced the enrichment of H3K27me3 on the COL1A2 promoter following UV irradiation. These findings indicate that EZH2 plays a dual role in regulating MMP-1 and type I procollagen expression and improve our understanding of how this epigenetic mechanism contributes to UV-induced skin responses and photoaging. This study shows that inhibiting EZH2 is a potential anti-aging strategy for preventing UV-induced skin aging by reducing MMP-1 expression and inducing type I procollagen expression.
Collapse
Affiliation(s)
- Min-Kyoung Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Hye Sun Shin
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Mi Hee Shin
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Haesoo Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Institute on Aging, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Apelin Promotes Prostate Cancer Metastasis by Downregulating TIMP2 via Increases in miR-106a-5p Expression. Cells 2022; 11:cells11203285. [PMID: 36291151 PMCID: PMC9600532 DOI: 10.3390/cells11203285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer commonly affects the urinary tract of men and metastatic prostate cancer has a very low survival rate. Apelin belongs to the family of adipokines and is associated with cancer development and metastasis. However, the effects of apelin in prostate cancer metastasis is undetermined. Analysis of the database revealed a positive correlation between apelin level with the progression and metastasis of prostate cancer patients. Apelin treatment facilitates cell migration and invasion through inhibiting tissue inhibitor of metalloproteinase 2 (TIMP2) expression. The increasing miR-106a-5p synthesis via c-Src/PI3K/Akt signaling pathway is controlled in apelin-regulated TIMP2 production and cell motility. Importantly, apelin blockade inhibits prostate cancer metastasis in the orthotopic mouse model. Thus, apelin is a promising therapeutic target for curing metastatic prostate cancer.
Collapse
|
6
|
The Effect of Encapsulated Apigenin Nanoparticles on HePG-2 Cells through Regulation of P53. Pharmaceutics 2022; 14:pharmaceutics14061160. [PMID: 35745733 PMCID: PMC9228521 DOI: 10.3390/pharmaceutics14061160] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 05/26/2022] [Indexed: 01/27/2023] Open
Abstract
Apigenin (Ap) is one of the most important natural flavonoids that has potent anticancer activity. This study was designed, for the first time, to load Ap into chitosan to improve its hydrophobicity and then it was coated with albumin-folic acid to increase its stability and bioavailability and to target cancer cells. The newly developed encapsulated Ap (Ap-CH-BSA-FANPs) was characterized and tested in vitro. The zeta potential of −17.0 mV was within the recommended range (−30 mV to +30 mV), indicating that encapsulated apigenin would not quickly settle and would be suspended. The in vitro results proved the great anticancer activity of the encapsulated apigenin on HePG-2 cells compared to pure Ap. The treated HePG-2 cells with Ap-CH-BSA-FANPs demonstrated the induction of apoptosis by increasing p53 gene expression, arresting the cell cycle, increasing caspase-9 levels, and decreasing both the MMP9 gene and Bcl-2 protein expression levels. Moreover, the higher antioxidant activity of the encapsulated apigenin treatment was evident through increasing SOD levels and decreasing the CAT concentration. In conclusion, the Ap-CH-BSA-FANPs were easy to produce with low coast, continued drug release, good loading capacity, high solubility in physiological pH, and were more stable than the formerly Ap-loaded liposomes or PLGA. Moreover, Ap-CH-BSA-FANPs may be a promising chemotherapeutic agent in the treatment of HCC.
Collapse
|
7
|
Kim T, Jeong K, Kim E, Yoon K, Choi J, Park JH, Kim JH, Kim HS, Youn HD, Cho EJ. Menin Enhances Androgen Receptor-Independent Proliferation and Migration of Prostate Cancer Cells. Mol Cells 2022; 45:202-215. [PMID: 35014621 PMCID: PMC9001152 DOI: 10.14348/molcells.2021.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022] Open
Abstract
The androgen receptor (AR) is an important therapeutic target for treating prostate cancer (PCa). Moreover, there is an increasing need for understanding the AR-independent progression of tumor cells such as neuroendocrine prostate cancer (NEPC). Menin, which is encoded by multiple endocrine neoplasia type 1 (MEN1), serves as a direct link between AR and the mixed-lineage leukemia (MLL) complex in PCa development by activating AR target genes through histone H3 lysine 4 methylation. Although menin is a critical component of AR signaling, its tumorigenic role in AR-independent PCa cells remains unknown. Here, we compared the role of menin in AR-positive and AR-negative PCa cells via RNAi-mediated or pharmacological inhibition of menin. We demonstrated that menin was involved in tumor cell growth and metastasis in PCa cells with low or deficient levels of AR. The inhibition of menin significantly diminished the growth of PCa cells and induced apoptosis, regardless of the presence of AR. Additionally, transcriptome analysis showed that the expression of many metastasis-associated genes was perturbed by menin inhibition in AR-negative DU145 cells. Furthermore, wound-healing assay results showed that menin promoted cell migration in AR-independent cellular contexts. Overall, these findings suggest a critical function of menin in tumorigenesis and provide a rationale for drug development against menin toward targeting high-risk metastatic PCa, especially those independent of AR.
Collapse
Affiliation(s)
- Taewan Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Kwanyoung Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Eunji Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Kwanghyun Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Jinmi Choi
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Jae-Hwan Kim
- NineBiopharm, Co., Ltd., Cheongju 28161, Korea
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Hong-Duk Youn
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Eun-Jung Cho
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
8
|
Zhou X, Chen H, Li J, Shi Y, Zhuang S, Liu N. The Role and Mechanism of Lysine Methyltransferase and Arginine Methyltransferase in Kidney Diseases. Front Pharmacol 2022; 13:885527. [PMID: 35559246 PMCID: PMC9086358 DOI: 10.3389/fphar.2022.885527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Methylation can occur in both histones and non-histones. Key lysine and arginine methyltransferases under investigation for renal disease treatment include enhancer of zeste homolog 2 (EZH2), G9a, disruptor of telomeric silencing 1-like protein (DOT1L), and protein arginine methyltransferases (PRMT) 1 and 5. Recent studies have shown that methyltransferases expression and activity are also increased in several animal models of kidney injury, such as acute kidney injury(AKI), obstructive nephropathy, diabetic nephropathy and lupus nephritis. The inhibition of most methyltransferases can attenuate kidney injury, while the role of methyltransferase in different animal models remains controversial. In this article, we summarize the role and mechanism of lysine methyltransferase and arginine methyltransferase in various kidney diseases and highlight methyltransferase as a potential therapeutic target for kidney diseases.
Collapse
Affiliation(s)
- Xun Zhou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinqing Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Parreno V, Martinez AM, Cavalli G. Mechanisms of Polycomb group protein function in cancer. Cell Res 2022; 32:231-253. [PMID: 35046519 PMCID: PMC8888700 DOI: 10.1038/s41422-021-00606-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/10/2021] [Indexed: 02/01/2023] Open
Abstract
Cancer arises from a multitude of disorders resulting in loss of differentiation and a stem cell-like phenotype characterized by uncontrolled growth. Polycomb Group (PcG) proteins are members of multiprotein complexes that are highly conserved throughout evolution. Historically, they have been described as essential for maintaining epigenetic cellular memory by locking homeotic genes in a transcriptionally repressed state. What was initially thought to be a function restricted to a few target genes, subsequently turned out to be of much broader relevance, since the main role of PcG complexes is to ensure a dynamically choregraphed spatio-temporal regulation of their numerous target genes during development. Their ability to modify chromatin landscapes and refine the expression of master genes controlling major switches in cellular decisions under physiological conditions is often misregulated in tumors. Surprisingly, their functional implication in the initiation and progression of cancer may be either dependent on Polycomb complexes, or specific for a subunit that acts independently of other PcG members. In this review, we describe how misregulated Polycomb proteins play a pleiotropic role in cancer by altering a broad spectrum of biological processes such as the proliferation-differentiation balance, metabolism and the immune response, all of which are crucial in tumor progression. We also illustrate how interfering with PcG functions can provide a powerful strategy to counter tumor progression.
Collapse
Affiliation(s)
- Victoria Parreno
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| |
Collapse
|
10
|
Albaradei S, Uludag M, Thafar MA, Gojobori T, Essack M, Gao X. Predicting Bone Metastasis Using Gene Expression-Based Machine Learning Models. Front Genet 2021; 12:771092. [PMID: 34858485 PMCID: PMC8631472 DOI: 10.3389/fgene.2021.771092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Bone is the most common site of distant metastasis from malignant tumors, with the highest prevalence observed in breast and prostate cancers. Such bone metastases (BM) cause many painful skeletal-related events, such as severe bone pain, pathological fractures, spinal cord compression, and hypercalcemia, with adverse effects on life quality. Many bone-targeting agents developed based on the current understanding of BM onset's molecular mechanisms dull these adverse effects. However, only a few studies investigated potential predictors of high risk for developing BM, despite such knowledge being critical for early interventions to prevent or delay BM. This work proposes a computational network-based pipeline that incorporates a ML/DL component to predict BM development. Based on the proposed pipeline we constructed several machine learning models. The deep neural network (DNN) model exhibited the highest prediction accuracy (AUC of 92.11%) using the top 34 featured genes ranked by betweenness centrality scores. We further used an entirely separate, "external" TCGA dataset to evaluate the robustness of this DNN model and achieved sensitivity of 85%, specificity of 80%, positive predictive value of 78.10%, negative predictive value of 80%, and AUC of 85.78%. The result shows the models' way of learning allowed it to zoom in on the featured genes that provide the added benefit of the model displaying generic capabilities, that is, to predict BM for samples from different primary sites. Furthermore, existing experimental evidence provides confidence that about 50% of the 34 hub genes have BM-related functionality, which suggests that these common genetic markers provide vital insight about BM drivers. These findings may prompt the transformation of such a method into an artificial intelligence (AI) diagnostic tool and direct us towards mechanisms that underlie metastasis to bone events.
Collapse
Affiliation(s)
- Somayah Albaradei
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmut Uludag
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Maha A Thafar
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
| | - Takashi Gojobori
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Magbubah Essack
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
11
|
Yildirim-Buharalioglu G. KDM6B Regulates Prostate Cancer Cell Proliferation by Controlling c-MYC Expression. Mol Pharmacol 2021; 101:106-119. [PMID: 34862309 DOI: 10.1124/molpharm.121.000372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022] Open
Abstract
Elevated expression of lysine demethylase 6A (KDM6A) and 6B (KDM6B) has been reported in prostate cancer (PCa). However, the mechanism underlying the specific role of KDM6A/B in PCa is still fragmentary. Here, we report novel KDM6A/B downstream targets involved in controlling PCa cell proliferation. KDM6A and KDM6B mRNAs were higher in LNCaP but not in PC3 and DU145 cells. Higher KDM6A mRNA was confirmed at the protein level. A metastasis associated gene focussed oligonucleotide array was performed to identify KDM6A/B dependent genes in LNCaP cells treated with a KDM6 family selective inhibitor, GSK-J4. This identified 5 genes (c-MYC, NF2, CTBP1, EPHB2, PLAUR) that were decreased more than 50 % by GSK-J4 and c-MYC was the most downregulated gene. Array data was validated by quantitative RT-PCR, which detected a reduction in c-MYC steady state mRNA and pre-spliced mRNA, indicative of transcriptional repression of c-MYC gene expression. Furthermore, c-MYC protein was also decreased by GSK-J4. Importantly, GSK-J4 reduced mRNA and protein levels of c-MYC target gene, CyclinD1 (CCND1). Silencing of KDM6A/B with siRNA confirmed that expression of both c-MYC and CCND1 are dependent on KDM6B. Phosphorylated Retinoblastoma (pRb), a marker of G1 to S-phase transition, was decreased by GSK-J4 and KDM6B silencing. GSK-J4 treatment resulted decrease in cell proliferation and cell number, detected by MTS assay and conventional cell counting, respectively. Consequently, we conclude that KDM6B controlling c-MYC, CCND1 and pRb contribute regulation of PCa cell proliferation, which represents KDM6B as a promising epigenetic target for the treatment of advanced PCa. Significance Statement Lysine demethylase 6A (KDM6A) and 6B (KDM6B) were upregulated in prostate cancer (PCa). Here, we reported novel KDM6A/B downstream targets involved in controlling PCa cell proliferation. Amongst 84 metastasis associated genes, c-MYC was the most inhibited gene by KDM6 family inhibitor, GSK-J4. This was accompanied by decreased c-MYC target gene, CCND1 and pRb, which were selectively dependent on KDM6B. GSK-J4 decreased proliferation and cell counting. Consequently, we conclude that KDM6B controlling c-MYC, CCND1 and pRb contribute regulation of PCa proliferation.
Collapse
|
12
|
Huq S, Kannapadi NV, Casaos J, Lott T, Felder R, Serra R, Gorelick NL, Ruiz-Cardozo MA, Ding AS, Cecia A, Medikonda R, Ehresman J, Brem H, Skuli N, Tyler BM. Preclinical efficacy of ribavirin in SHH and group 3 medulloblastoma. J Neurosurg Pediatr 2021; 27:482-488. [PMID: 33545678 DOI: 10.3171/2020.8.peds20561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/24/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Medulloblastoma, the most common pediatric brain malignancy, has Sonic Hedgehog (SHH) and group 3 (Myc driven) subtypes that are associated with the activity of eukaryotic initiation factor 4E (eIF4E), a critical mediator of translation, and enhancer of zeste homolog 2 (EZH2), a histone methyltransferase and master regulator of transcription. Recent drug repurposing efforts in multiple solid and hematologic malignancies have demonstrated that eIF4E and EZH2 are both pharmacologically inhibited by the FDA-approved antiviral drug ribavirin. Given the molecular overlap between medulloblastoma biology and known ribavirin activity, the authors investigated the preclinical efficacy of repurposing ribavirin as a targeted therapeutic in cell and animal models of medulloblastoma. METHODS Multiple in vitro assays were performed using human ONS-76 (a primitive SHH model) and D425 (an aggressive group 3 model) cells. The impacts of ribavirin on cellular growth, death, migration, and invasion were quantified using proliferation and Cell Counting Kit-8 (CCK-8) assays, flow cytometry with annexin V (AnnV) staining, scratch wound assays, and Matrigel invasion chambers, respectively. Survival following daily ribavirin treatment (100 mg/kg) was assessed in vivo in immunodeficient mice intracranially implanted with D425 cells. RESULTS Compared to controls, ribavirin treatment led to a significant reduction in medulloblastoma cell growth (ONS-76 proliferation assay, p = 0.0001; D425 CCK-8 assay, p < 0.0001) and a significant increase in cell death (flow cytometry for AnnV, ONS-76, p = 0.0010; D425, p = 0.0284). In ONS-76 cells, compared to controls, ribavirin significantly decreased cell migration and invasion (Matrigel invasion chamber assay, p = 0.0012). In vivo, ribavirin significantly extended survival in an aggressive group 3 medulloblastoma mouse model compared to vehicle-treated controls (p = 0.0004). CONCLUSIONS The authors demonstrate that ribavirin, a clinically used drug known to inhibit eIF4E and EZH2, has significant antitumor effects in multiple preclinical models of medulloblastoma, including an aggressive group 3 animal model. Ribavirin may represent a promising targeted therapeutic in medulloblastoma.
Collapse
|
13
|
Park SH, Fong KW, Kim J, Wang F, Lu X, Lee Y, Brea LT, Wadosky K, Guo C, Abdulkadir SA, Crispino JD, Fang D, Ntziachristos P, Liu X, Li X, Wan Y, Goodrich DW, Zhao JC, Yu J. Posttranslational regulation of FOXA1 by Polycomb and BUB3/USP7 deubiquitin complex in prostate cancer. SCIENCE ADVANCES 2021; 7:7/15/eabe2261. [PMID: 33827814 PMCID: PMC8026124 DOI: 10.1126/sciadv.abe2261] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/19/2021] [Indexed: 05/29/2023]
Abstract
Forkhead box protein A1 (FOXA1) is essential for androgen-dependent prostate cancer (PCa) growth. However, how FOXA1 levels are regulated remains elusive and its therapeutic targeting proven challenging. Here, we report FOXA1 as a nonhistone substrate of enhancer of zeste homolog 2 (EZH2), which methylates FOXA1 at lysine-295. This methylation is recognized by WD40 repeat protein BUB3, which subsequently recruits ubiquitin-specific protease 7 (USP7) to remove ubiquitination and enhance FOXA1 protein stability. They functionally converge in regulating cell cycle genes and promoting PCa growth. FOXA1 is a major therapeutic target of the inhibitors of EZH2 methyltransferase activities in PCa. FOXA1-driven PCa growth can be effectively mitigated by EZH2 enzymatic inhibitors, either alone or in combination with USP7 inhibitors. Together, our study reports EZH2-catalyzed methylation as a key mechanism to FOXA1 protein stability, which may be leveraged to enhance therapeutic targeting of PCa using enzymatic EZH2 inhibitors.
Collapse
Affiliation(s)
- Su H Park
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ka-Wing Fong
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jung Kim
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fang Wang
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xiaodong Lu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yongik Lee
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lourdes T Brea
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kristine Wadosky
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Chunming Guo
- Department of Urology and Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarki A Abdulkadir
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John D Crispino
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Hospital, Memphis, TN, USA
| | - Deyu Fang
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Panagiotis Ntziachristos
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xin Liu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xue Li
- Department of Urology and Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yong Wan
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine Chicago, IL, USA
| | - David W Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jonathan C Zhao
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
14
|
Tao Z, Suo H, Zhang L, Jin Z, Wang Z, Wang D, Wu M, Peng N, Zhao Y, Chen B. MRPL13 is a Prognostic Cancer Biomarker and Correlates with Immune Infiltrates in Breast Cancer. Onco Targets Ther 2020; 13:12255-12268. [PMID: 33273831 PMCID: PMC7708783 DOI: 10.2147/ott.s263998] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/13/2020] [Indexed: 01/19/2023] Open
Abstract
Objective To study the expression of MRPL13 in breast cancer tissues using TCGA database, analyze the correlation between the expression and clinicopathological characteristics of patients, and explore the role of MRPL13 in the development of breast cancer (BC). Methods The BC mRNA data and clinical information were downloaded from TCGA database. The correlation between MRPL13 expression and clinicopathological parameters was analyzed. Cox regression multivariate analysis was used to explore the factors affecting the prognosis of BC patients. The UALCAN database was used to analyze the expression level of MRPL13 in BC and its relationship with clinical pathological factors. The GSEA method was used to predict the possible regulatory pathways of MRPL13. Immune responses of MRPL13 expression were analyzed using TISIDB and CIBERSORT. Additionally, GEPIA, K-M survival analysis and data from the HPA were used to validate the outcomes. Results The expression of MRPL13 in BC tissues was significantly higher than normal counterparts, patients with low MRPL13 expression had a better survival prognosis, also indicated an independent prognostic factor. GSEA analysis showed that the regulation of cell migration, positive regulation of endothelial cell migration, and Notch signaling pathway were enriched in tissues with low expression of MRPL13. Additionally, depleting MRPL13 expression inhibited invasion in MCF-10A and MCF-7 cells. Furthermore, PCR showed that MRPL13 affected VEGFA and MMP gene expression. CIBERSORT analysis revealed that the amount of NK cells decreased when MRPL13 expression was high. Conclusion The expression of MRPL13 mRNA is upregulated in BC tissues, and the expression level of MRPL13 is significantly related to the clinicopathological factors of patients. High MRPL13 expression is a poor prognostic factor for BC, and it can be used as a molecular marker for prognosis judgment and as a potential therapeutic target.
Collapse
Affiliation(s)
- Zuo Tao
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Huandan Suo
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Lei Zhang
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Zining Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Zhen Wang
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Danyu Wang
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Ming Wu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Nanxi Peng
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Yujie Zhao
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Bo Chen
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| |
Collapse
|
15
|
Martin CJ, Moorehead RA. Polycomb repressor complex 2 function in breast cancer (Review). Int J Oncol 2020; 57:1085-1094. [PMID: 33491744 PMCID: PMC7549536 DOI: 10.3892/ijo.2020.5122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/07/2020] [Indexed: 11/24/2022] Open
Abstract
Epigenetic modifications are important contributors to the regulation of genes within the chromatin. The polycomb repressive complex 2 (PRC2) is a multi‑subunit protein complex that is involved in silencing gene expression through the trimethylation of lysine 27 at histone 3 (H3K27me3). The dysregulation of this modification has been associated with tumorigenicity through the increased repression of tumour suppressor genes via condensing DNA to reduce access to the transcription start site (TSS) within tumor suppressor gene promoters. In the present review, the core proteins of PRC2, as well as key accessory proteins, will be described. In addition, mechanisms controlling the recruitment of the PRC2 complex to H3K27 will be outlined. Finally, literature identifying the role of PRC2 in breast cancer proliferation, apoptosis and migration, including the potential roles of long non‑coding RNAs and the miR‑200 family will be summarized as will the potential use of the PRC2 complex as a therapeutic target.
Collapse
Affiliation(s)
- Courtney J. Martin
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Roger A. Moorehead
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G2W1, Canada
| |
Collapse
|
16
|
Kong WQ, Liang JJ, Du J, Ye ZX, Gao P, Liang YL. Long Noncoding RNA DLX6-AS1 Regulates the Growth and Aggressiveness of Colorectal Cancer Cells Via Mediating miR-26a/EZH2 Axis. Cancer Biother Radiopharm 2020; 36:753-764. [PMID: 32379493 DOI: 10.1089/cbr.2020.3589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective: To understand the regulation of long noncoding RNA DLX6-AS1-mediated miR-26a/EZH2 axis in the growth of colorectal cancer (CRC) cells. Methods: The expression of DLX6-AS1, miR-26a, and EZH2 was detected in CRC tissues by quantitative reverse transcription-polymerase chain reaction. The CRC HT-29 cell line was selected for transfection and subjected to observe the growth by MTT and colony formation assays, cell cycle by flow cytometry, and migration and invasion by wound healing and Transwell assays, respectively. Finally, the expression of cycle- and metastasis-related proteins was detected by western blotting. Results: DLX6-AS1 and EZH2 were increased, with a decreased miR-26a in CRC tissues, showing significant negative correlations between DLX6-AS1 and miR-26a, and between miR-26a and EZH2. CRC patients at advanced stage or with lymphatic metastasis had higher DLX6-AS1 expression. Dual-luciferase reporter gene assay uncovered the targeting correlations between DLX6-AS1 and miR-26a, or miR-26a and EZH2. After transfection of DLX6-AS1 siRNA or EZH2 siRNA, the growth and metastasis of CRC cells were suppressed, arresting the cells in G0/G1 phase, with a magnificent reduction in the ratio of cells in S phase or G2/M phase; meanwhile, Cyclin D1, Vimentin, and MMP9 expressions decreased evidently, whereas E-cadherin expression was upregulated. Changes above were fully reversed after transfection of miR-26a inhibitor, whereas si-EZH2 transfection abolished the positive role of miR-26a inhibitor on growth of CRC cells. Conclusion: Silencing DLX6-AS1 may block the malignant features of CRC cells by inhibiting the expression of EZH2 through upregulation of miR-26a. Thus, it is critical to the development and progression of CRC.
Collapse
Affiliation(s)
- Wei-Qi Kong
- Department of General Surgery, Tongji University School of Medicine, Yangpu Hospital, Shanghai, China
| | - Jian-Jing Liang
- Medical Department of Hebei University, Hebei University, Baoding, China
| | - Jing Du
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Zhen-Xiong Ye
- Department of General Surgery, Tongji University School of Medicine, Yangpu Hospital, Shanghai, China
| | - Ping Gao
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yu-Long Liang
- Department of General Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
17
|
Jain P, Ballare C, Blanco E, Vizan P, Di Croce L. PHF19 mediated regulation of proliferation and invasiveness in prostate cancer cells. eLife 2020; 9:51373. [PMID: 32155117 PMCID: PMC7064337 DOI: 10.7554/elife.51373] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
The Polycomb-like protein PHF19/PCL3 associates with PRC2 and mediates its recruitment to chromatin in embryonic stem cells. PHF19 is also overexpressed in many cancers. However, neither PHF19 targets nor misregulated pathways involving PHF19 are known. Here, we investigate the role of PHF19 in prostate cancer cells. We find that PHF19 interacts with PRC2 and binds to PRC2 targets on chromatin. PHF19 target genes are involved in proliferation, differentiation, angiogenesis, and extracellular matrix organization. Depletion of PHF19 triggers an increase in MTF2/PCL2 chromatin recruitment, with a genome-wide gain in PRC2 occupancy and H3K27me3 deposition. Transcriptome analysis shows that PHF19 loss promotes deregulation of key genes involved in growth, metastasis, invasion, and of factors that stimulate blood vessels formation. Consistent with this, PHF19 silencing reduces cell proliferation, while promotes invasive growth and angiogenesis. Our findings reveal a role for PHF19 in controlling the balance between cell proliferation and invasiveness in prostate cancer.
Collapse
Affiliation(s)
- Payal Jain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cecilia Ballare
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pedro Vizan
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
18
|
Li Y, Li L. Prognostic values and prospective pathway signaling of MicroRNA-182 in ovarian cancer: a study based on gene expression omnibus (GEO) and bioinformatics analysis. J Ovarian Res 2019; 12:106. [PMID: 31703725 PMCID: PMC6839211 DOI: 10.1186/s13048-019-0580-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Ovarian carcinoma (OC) is a common cause of death among women with gynecological cancer. MicroRNAs (miRNAs) are believed to have vital roles in tumorigenesis of OC. Although miRNAs are broadly recognized in OC, the role of has-miR-182-5p (miR-182) in OC is still not fully elucidated. METHODS We evaluated the significance of miR-182 expression in OC by using analysis of a public dataset from the Gene Expression Omnibus (GEO) database and a literature review. Furthermore, we downloaded three mRNA datasets of OC and normal ovarian tissues (NOTs), GSE14407, GSE18520 and GSE36668, from GEO to identify differentially expressed genes (DEGs). Then the targeted genes of hsa-miR-182-5p (TG_miRNA-182-5p) were predicted using miRWALK3.0. Subsequently, we analyzed the gene overlaps integrated between DEGs in OC and predicted target genes of miR-182 by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. STRING and Cytoscape were used to construct a protein-protein interaction (PPI) network and the prognostic effects of the hub genes were analyzed. RESULTS A common pattern of up-regulation for miR-182 in OC was found in our review of the literature. A total of 268 DEGs, both OC-related and miR-182-related, were identified, of which 133 genes were discovered from the PPI network. A number of DEGs were enriched in extracellular matrix organization, pathways in cancer, focal adhesion, and ECM-receptor interaction. Two hub genes, MCM3 and GINS2, were significantly associated with worse overall survival of patients with OC. Furthermore, we identified covert miR-182-related genes that might participate in OC by network analysis, such as DCN, AKT3, and TIMP2. The expressions of these genes were all down-regulated and negatively correlated with miR-182 in OC. CONCLUSIONS Our study suggests that miR-182 is essential for the biological progression of OC.
Collapse
Affiliation(s)
- Yaowei Li
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, China
- Department of Gynecology and obstetrics, Shangyu People's Hospital, Shangyu, Zhejiang, China
| | - Li Li
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, China.
| |
Collapse
|
19
|
Colón-Caraballo M, Torres-Reverón A, Soto-Vargas JL, Young SL, Lessey B, Mendoza A, Urrutia R, Flores I. Effects of histone methyltransferase inhibition in endometriosis. Biol Reprod 2019; 99:293-307. [PMID: 29408993 DOI: 10.1093/biolre/ioy030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
Although the histone methyltransferase EZH2 and its product H3K27me3 are well studied in cancer, little is known about their role and potential as therapeutic targets in endometriosis. We have previously reported that endometriotic lesions are characterized by global enrichment of H3K27me3. Therefore, we aimed to (1) characterize the expression levels of EZH2 in endometriotic tissues; (2) assess H3K27me3 enrichment in candidate genes promoter regions; and (3) determine if pharmacological inhibition of EZH2 impacts migration, proliferation, and invasion of endometriotic cells. Immunohistochemistry of an endometriosis-focused tissue microarray was used to assess the EZH2 protein levels in tissues. Chromatin immunoprecipitation-qPCR was conducted to assess enrichment of H3K27me3 in candidate gene promoter regions in tissues. Immunofluorescence was performed to assess the effect of an EZH2-specific pharmacological inhibitor on H3K27me3 global enrichment in cell lines. To measure effects of the inhibitor in migration, proliferation, and invasion in vitro we used Scratch, BrdU, and Matrigel assays, respectively. Endometriotic lesions had significantly higher EZH2α nuclear immunostaining levels compared to eutopic endometrium from patients (glands, stroma) and controls (glands). H3K27me3 was enriched within promoter regions of candidate genes in some but not all of the endometriotic lesions. Inhibition of EZH2 reduced H3K27me3 levels in the endometriotic cells specifically, and also reduced migration, proliferation but not invasion of endometriotic epithelial cells (12Z). These findings support future preclinical studies to determine in vivo efficacy of EZH2 inhibitors as promising nonhormonal treatments for endometriosis, still an incurable gynecological disease.
Collapse
Affiliation(s)
- Mariano Colón-Caraballo
- Department of Basic Sciences-Microbiology Division, Ponce Health Sciences University, Ponce, Puerto Rico, USA
| | - Annelyn Torres-Reverón
- Department of Biomedical Sciences, Division of Neurosciences, University of Texas at Rio Grande Valley-School of Medicine, Texas, USA
| | - John Lee Soto-Vargas
- Department of Basic Sciences-Microbiology Division, Step-Up Summer Program, Ponce, Puerto Rico, USA
| | - Steven L Young
- Department of Ob/Gyn, University of North Carolina, Chapel Hill, USA
| | - Bruce Lessey
- Department of Ob/Gyn, University of North Carolina, Chapel Hill, USA
| | - Adalberto Mendoza
- Southern Pathology Inc., Ponce, Puerto Rico, USA.,Department of Basic Sciences-Pathology Division, Ponce Health Sciences University, Ponce, Puerto Rico, USA
| | - Raúl Urrutia
- Epigenetics and Chromatin Dynamics Research Program, Mayo Clinic, Rochester, Minnesota, USA
| | - Idhaliz Flores
- Department of Basic Sciences-Microbiology Division, Ponce Health Sciences University, Ponce, Puerto Rico, USA.,Department of Ob/Gyn, Ponce, Puerto Rico, USA
| |
Collapse
|
20
|
Huang HL, Liu YM, Sung TY, Huang TC, Cheng YW, Liou JP, Pan SL. TIMP3 expression associates with prognosis in colorectal cancer and its novel arylsulfonamide inducer, MPT0B390, inhibits tumor growth, metastasis and angiogenesis. Theranostics 2019; 9:6676-6689. [PMID: 31588243 PMCID: PMC6771239 DOI: 10.7150/thno.34020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022] Open
Abstract
Tissue inhibitors of metalloproteinase 3 (TIMP3) are a major endogenous inhibitor of matrix metalloproteinase (MMPs) that inhibit tumor growth, invasion, metastasis and angiogenesis. In this study, we found that TIMP3 expression is associated with positive prognosis of colorectal cancer (CRC) clinicopathologically. Therefore, we developed a series of arylsulfonamide derivatives as TIMP3 inducers in order to define potential colorectal cancer therapeutic agent. Among these, MPT0B390 was selected for anti-tumor, anti-metastasis, and anti-angiogenesis property determination. Methods: The relationship between TIMP3 expression and clinical pathological features in colorectal patients and cell lines were determined by immunohistochemistry, bioinformatics analysis and western blotting. The anti-tumor function was validated by using MTT, apoptosis pathway detection and in vivo xenograft model for tumor growth inhibition determination. The anti-metastatic function was validated using a transwell migration assay, and using in vivo lung metastasis and liver metastasis models. The mechanism of MPT0B390-induced TIMP3 expression was further tested using qPCR and Chromatin IP assay. The anti-angiogenesis function was examined by using transwell migration assay, and in vivo Matrigel plug assay. Results: After screening candidate compounds, we identified MPT0B390 as an effective inducer of TIMP3. We showed that MPT0B390 induces TIMP3 expression significantly and inhibits CRC cell growth in vitro and in vivo. By inducing TIMP3 expression, MPT0B390 can also exert its anti-metastasis effect to inhibit CRC cell migration and invasion and downregulates migration markers such as uPA, uPAR, and c-Met. Subsequent Chromatin immunoprecipitation assay revealed that MPT0B390 can significantly inhibit EZH2 expression as well as its binding to TIMP3 promoter region to regulate TIMP3 induction. In addition to the anti-tumor and anti-metastasis capability, MPT0B390 can also induce TIMP3 expression in endothelial cells to inhibit tumor angiogenesis. Conclusion: These data suggest the potential therapeutic applications of the TIMP3 inducer, MPT0B390, for colorectal cancer treatment.
Collapse
|
21
|
HOXA11-AS promotes the migration and invasion of hepatocellular carcinoma cells by inhibiting miR-124 expression by binding to EZH2. Hum Cell 2019; 32:504-514. [DOI: 10.1007/s13577-019-00269-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/29/2019] [Indexed: 12/19/2022]
|
22
|
Deb G, Shankar E, Thakur VS, Ponsky LE, Bodner DR, Fu P, Gupta S. Green tea-induced epigenetic reactivation of tissue inhibitor of matrix metalloproteinase-3 suppresses prostate cancer progression through histone-modifying enzymes. Mol Carcinog 2019; 58:1194-1207. [DOI: 10.1002/mc.23003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/11/2019] [Accepted: 02/24/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Gauri Deb
- Department of Urology; Case Western Reserve University; Cleveland Ohio
- Department of Biotechnology; Indian Institute of Technology; Guwahati Assam India
| | - Eswar Shankar
- Department of Urology; Case Western Reserve University; Cleveland Ohio
| | - Vijay S. Thakur
- Department of Urology; Case Western Reserve University; Cleveland Ohio
| | - Lee E. Ponsky
- Department of Urology; Case Western Reserve University; Cleveland Ohio
- Department of Urology; The Urology Institute, University Hospitals Cleveland Medical Center; Cleveland Ohio
| | - Donald R. Bodner
- Department of Urology; Case Western Reserve University; Cleveland Ohio
- Department of Urology; The Urology Institute, University Hospitals Cleveland Medical Center; Cleveland Ohio
| | - Pingfu Fu
- Department of Population and Quantitative Health Sciences; Case Western Reserve University; Cleveland Ohio
- Department of Nutrition; Case Western Reserve University; Cleveland Ohio
| | - Sanjay Gupta
- Department of Urology; Case Western Reserve University; Cleveland Ohio
- Department of Urology; The Urology Institute, University Hospitals Cleveland Medical Center; Cleveland Ohio
- Division of General Medical Sciences; Case Comprehensive Cancer Center; Cleveland Ohio
- Department of Nutrition; Case Western Reserve University; Cleveland Ohio
- Department of Urology; Louis Stokes Cleveland Veterans Affairs Medical Center; Cleveland Ohio
| |
Collapse
|
23
|
Wang HJ, Pochampalli M, Wang LY, Zou JX, Li PS, Hsu SC, Wang BJ, Huang SH, Yang P, Yang JC, Chu CY, Hsieh CL, Sung SY, Li CF, Tepper CG, Ann DK, Gao AC, Evans CP, Izumiya Y, Chuu CP, Wang WC, Chen HW, Kung HJ. KDM8/JMJD5 as a dual coactivator of AR and PKM2 integrates AR/EZH2 network and tumor metabolism in CRPC. Oncogene 2019; 38:17-32. [PMID: 30072740 PMCID: PMC6755995 DOI: 10.1038/s41388-018-0414-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/19/2018] [Accepted: 06/21/2018] [Indexed: 01/05/2023]
Abstract
During the evolution into castration or therapy resistance, prostate cancer cells reprogram the androgen responses to cope with the diminishing level of androgens, and undergo metabolic adaption to the nutritionally deprived and hypoxia conditions. AR (androgen receptor) and PKM2 (pyruvate kinase M2) have key roles in these processes. We report in this study, KDM8/JMJD5, a histone lysine demethylase/dioxygnase, exhibits a novel property as a dual coactivator of AR and PKM2 and as such, it is a potent inducer of castration and therapy resistance. Previously, we showed that KDM8 is involved in the regulation of cell cycle and tumor metabolism in breast cancer cells. Its role in prostate cancer has not been explored. Here, we show that KDM8's oncogenic properties in prostate cancer come from its direct interaction (1) with AR to affect androgen response and (2) with PKM2 to regulate tumor metabolism. The interaction with AR leads to the elevated expression of androgen response genes in androgen-deprived conditions. They include ANCCA/ATAD2 and EZH2, which are directly targeted by KDM8 and involved in sustaining the survival of the cells under hormone-deprived conditions. Notably, in enzalutamide-resistant cells, the expressions of both KDM8 and EZH2 are further elevated, so are neuroendocrine markers. Consequently, EZH2 inhibitors or KDM8 knockdown both resensitize the cells toward enzalutamide. In the cytosol, KDM8 associates with PKM2, the gatekeeper of pyruvate flux and translocates PKM2 into the nucleus, where the KDM8/PKM2 complex serves as a coactivator of HIF-1α to upregulate glycolytic genes. Using shRNA knockdown, we validate KDM8's functions as a regulator for both androgen-responsive and metabolic genes. KDM8 thus presents itself as an ideal therapeutic target for metabolic adaptation and castration-resistance of prostate cancer cells.
Collapse
MESH Headings
- ATPases Associated with Diverse Cellular Activities/physiology
- Active Transport, Cell Nucleus
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Animals
- Benzamides
- Carrier Proteins/metabolism
- Cell Line, Tumor
- DNA-Binding Proteins/physiology
- Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors
- Enhancer of Zeste Homolog 2 Protein/biosynthesis
- Enhancer of Zeste Homolog 2 Protein/genetics
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Glycolysis/genetics
- Heterografts
- Histone Demethylases/biosynthesis
- Histone Demethylases/genetics
- Histone Demethylases/physiology
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Male
- Membrane Proteins/metabolism
- Mice, Nude
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Nitriles
- Phenylthiohydantoin/analogs & derivatives
- Phenylthiohydantoin/pharmacology
- Phenylthiohydantoin/therapeutic use
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Protein Interaction Mapping
- RNA, Small Interfering/genetics
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Thyroid Hormones/metabolism
- Thyroid Hormone-Binding Proteins
Collapse
Affiliation(s)
- Hung-Jung Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35053, Miaoli County, Taiwan.
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35053, Miaoli County, Taiwan.
| | - Mamata Pochampalli
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, 95817, USA
| | - Ling-Yu Wang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, 95817, USA
| | - June X Zou
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, 95817, USA
| | - Pei-Shan Li
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35053, Miaoli County, Taiwan
| | - Sheng-Chieh Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35053, Miaoli County, Taiwan
- Institute of Biotechnology, National Tsing-Hua University, 30035, Hsinchu, Taiwan
| | - Bi-Juan Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, 35053, Miaoli County, Taiwan
| | - Shih-Han Huang
- Institute of Cellular and System Medicine, National Health Research Institutes, 35053, Miaoli County, Taiwan
| | - Ping Yang
- Department of Urology, School of Medicine, University of California, Davis, CA, 95817, USA
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Joy C Yang
- Department of Urology, School of Medicine, University of California, Davis, CA, 95817, USA
| | - Cheng-Ying Chu
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan
| | - Chia-Ling Hsieh
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan
| | - Shian-Ying Sung
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan
| | - Chien-Feng Li
- National Institute of Cancer Research, National Health Research Institutes, 35053, Miaoli County, Taiwan
| | - Clifford G Tepper
- Department of Urology, School of Medicine, University of California, Davis, CA, 95817, USA
| | - David K Ann
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Allen C Gao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35053, Miaoli County, Taiwan
- Department of Urology, School of Medicine, University of California, Davis, CA, 95817, USA
| | - Christopher P Evans
- Department of Urology, School of Medicine, University of California, Davis, CA, 95817, USA
- Comprehensive Cancer Center, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Yoshihiro Izumiya
- Comprehensive Cancer Center, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Chi-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, 35053, Miaoli County, Taiwan
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing-Hua University, Hsinchu, Taiwan
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, 95817, USA
- Comprehensive Cancer Center, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35053, Miaoli County, Taiwan.
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, 95817, USA.
- Institute of Biotechnology, National Tsing-Hua University, 30035, Hsinchu, Taiwan.
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan.
| |
Collapse
|
24
|
Lv S, Wang N, Lv H, Yang J, Liu J, Li WP, Zhang C, Chen ZJ. The Attenuation of Trophoblast Invasion Caused by the Downregulation of EZH2 Is Involved in the Pathogenesis of Human Recurrent Miscarriage. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 14:377-387. [PMID: 30710891 PMCID: PMC6356049 DOI: 10.1016/j.omtn.2018.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 10/28/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022]
Abstract
Recurrent miscarriage (RM) is currently defined as two or more losses of a clinically established intrauterine pregnancy. Despite years of research, RM continues to be a clinically frustrating challenge for patients and physicians, and its etiology remains poorly understood. Accumulating evidence has suggested that epigenetic modifications are involved in early embryogenesis, and defects in epigenetic patterning contribute to the development of RM. Here, we studied the role of enhancer of zeste homolog 2 (EZH2) in the pathogenesis of RM and found that the EZH2 expression was significantly decreased in the villi from women with RM compared with that in control villi. EZH2 promoted the invasion of trophoblast cells. Moreover, EZH2 could promote epithelial-mesenchymal transition by epigenetically silencing CDX1. Both chromatin immunoprecipitation (ChIP)-PCR and dual-luciferase report assays demonstrated that EZH2 repressed CDX1 transcription via direct binding to its promoter region and then trimethylating Histone3-Lysine27. Furthermore, we discovered that progesterone, which is used extensively in the treatment of miscarriage and RM, increased the expression of EZH2 via the extracellular signaling-regulated kinase (ERK1/2) pathway. These findings revealed that EZH2 may regulate trophoblast invasion as an epigenetic factor, suggesting that EZH2 might be a potential therapeutic target for RM.
Collapse
Affiliation(s)
- Shijian Lv
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Na Wang
- Obstetrical Department, Obstetrics and Gynecology Hospital of Fudan University, No. 128, Shenyang Road, Yangpu District, Shanghai 200090, China
| | - Hong Lv
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Jieqiong Yang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Jianwei Liu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Wei-Ping Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.
| | - Cong Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Ji'nan, Shandong 250014, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.
| |
Collapse
|
25
|
Roshankhah S, Mansouri K, Bakhtiari M, Salahshoor MR, Asgari R. Synergistic effects of TIMP2-418G/C and MMP9-1562C/T variants on the male infertility risk. Mol Biol Rep 2018; 46:861-866. [PMID: 30515695 DOI: 10.1007/s11033-018-4541-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/28/2018] [Indexed: 11/26/2022]
Abstract
Matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) involve in the degradation of the extracellular matrix (ECM) that imbalances their activity and may lead to various diseases. The present study aims to evaluate the association between MMP9-1562C/T and TIMP2-418G/C variants and synergistic effects of both variants on male infertility in an Iranian population. We analyzed these polymorphisms in 101 infertile men and 106 fertile men as a control group using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. Based on the obtained results, no considerable association was observed in MMP9-1562C/T polymorphism frequency between infertile men and controls while frequencies of TIMP2-418G/C variant were significantly different in infertile and control groups (P = 0.028). Men with CC, GC and CC + GC genotypes for TIMP2-418G/C polymorphism had an increased risk of infertility compared to men with GG genotype [OR = 1.85, 95% CI (0.917-3.734, P = 0.086), OR = 1.94, 95% CI (1.098-3.437, P = 0.023) and OR = 2.053 95% CI (1.179-3.577, P = 0.011), respectively]. Also, in the presence of both TIMP2-418C and MMP9-1562T alleles the male infertility risk was significantly increased (P = 0.032). The current study suggests that the variation of TIMP2 gene and its interaction with MMP9 gene might be associated with male infertility. However, to confirm these findings, further studies are required in different ethnicities and with a larger sample size.
Collapse
Affiliation(s)
- Shiva Roshankhah
- Fertility and Sterility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mitra Bakhtiari
- Fertility and Sterility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Salahshoor
- Fertility and Sterility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rezvan Asgari
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
26
|
Loh JT, Lim TJF, Ikumi K, Matoba T, Janela B, Gunawan M, Toyama T, Bunjamin M, Ng LG, Poidinger M, Morita A, Ginhoux F, Yamazaki S, Lam KP, Su IH. Ezh2 Controls Skin Tolerance through Distinct Mechanisms in Different Subsets of Skin Dendritic Cells. iScience 2018; 10:23-39. [PMID: 30496973 PMCID: PMC6260444 DOI: 10.1016/j.isci.2018.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/24/2018] [Accepted: 11/09/2018] [Indexed: 11/16/2022] Open
Abstract
Ezh2, a well-established epigenetic repressor, can down-regulate leukocyte inflammatory responses, but its role in cutaneous health remains elusive. Here we demonstrate that Ezh2 controls cutaneous tolerance by regulating Langerhans cell (LC) transmigration across the epidermal basement membrane directly via Talin1 methylation. Ezh2 deficiency impaired disassembly of adhesion structures in LCs, leading to their defective integrin-dependent emigration from the epidermis and failure in tolerance induction. Moreover, mobilization of Ezh2-deficient Langerin– dermal dendritic cells (dDCs) via high-dose treatment with a weak allergen restored tolerance, which is associated with an increased tolerogenic potential of Langerin– dDCs likely due to epigenetic de-repression of Aldh in the absence of Ezh2. Our data reveal novel roles for Ezh2 in governing LC- and dDC-mediated host protection against cutaneous allergen via distinct mechanisms. Ezh2 regulates LC transmigration across basement membrane via Talin1 methylation Ezh2-mediated LC migration is required for cutaneous tolerance induction Ezh2 represses Aldh epigenetically in dermal DCs Ezh2-deficient dermal DCs exhibit increased tolerogenicity
Collapse
Affiliation(s)
- Jia Tong Loh
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore; Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Singapore 138668, Republic of Singapore
| | - Thomas Jun Feng Lim
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Kyoko Ikumi
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Takuma Matoba
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; Department of Otorhinolaryngology and Head and Neck Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Baptiste Janela
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Singapore 138648, Republic of Singapore
| | - Merry Gunawan
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Tatsuya Toyama
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Maegan Bunjamin
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Lai Guan Ng
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Singapore 138648, Republic of Singapore
| | - Michael Poidinger
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Singapore 138648, Republic of Singapore
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Singapore 138648, Republic of Singapore
| | - Sayuri Yamazaki
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Kong-Peng Lam
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Singapore 138668, Republic of Singapore
| | - I-Hsin Su
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| |
Collapse
|
27
|
Wang C, Su K, Zhang Y, Zhang W, Chu D, Zhao Q, Guo R. MicroRNA-365 targets multiple oncogenes to inhibit proliferation, invasion, and self-renewal of aggressive endometrial cancer cells. Cancer Manag Res 2018; 10:5171-5185. [PMID: 30464615 PMCID: PMC6215916 DOI: 10.2147/cmar.s174889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background MicroRNA-365 (miR-365) has been reported to be a tumor suppressor miRNA. However, the role of miR-365 in progression of endometrial cancer (EC) has not been explored, in this study, we have found that re-expression of miRNA-365 inhibits cell proliferation, causes apoptosis and senescence. Materials and methods Overexpression of miR-365 attenuated cell migration and invasion, inhibited sphere-forming capacity, and enhanced the chemosensitivity to paclitaxel. In silico prediction tools identified the potential targets of miR-365. Results We identified EZH2 and FOS as targets of miR-365 and found that downregulating these genes imitated the tumor suppressive effect of miR-365. The outcomes of the study suggested that a reverse correlation existed between low miR-365 and overexpression of FOS and EZH2 in EC tissue specimens. Conclusion The study concludes that miR-365 acts as an important tumor suppressor and contributes by suppressing cell invasiveness, proliferation, and self-renewal in cancer cell lines by regulating multiple oncogenes. We establish that miR-365-EZH2/FOS pathway is an important target for treating EC.
Collapse
Affiliation(s)
- Chunfang Wang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Ke Su
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Yanyan Zhang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Weiwei Zhang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Danxia Chu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Qian Zhao
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Ruixia Guo
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| |
Collapse
|
28
|
Targeting enhancer of zeste homolog 2 protects against acute kidney injury. Cell Death Dis 2018; 9:1067. [PMID: 30341286 PMCID: PMC6195522 DOI: 10.1038/s41419-018-1012-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/03/2018] [Accepted: 08/20/2018] [Indexed: 11/08/2022]
Abstract
Despite the established oncogenic and profibrotic functions of enhancer of zeste homolog 2 (EZH2), a methyltransferase that induces histone H3 lysine 27 trimethylation (H3K27me3), its role in acute kidney injury (AKI) remains unclear. In this study, we demonstrated that EZH2 and H3K27me3 were upregulated in the murine kidney with AKI induced by either ischemia-reperfusion (I/R) or folic acid (FA). Pharmacologic inhibition of EZH2 with 3-deazaneplanocin A (3-DZNeP) prevented tubular injury in both models as demonstrated by reduced renal dysfunction, diminished neutrophil gelatinase-associated lipocalin expression and decreased renal tubular cell death. Injury to the kidney resulted in reduced expression of E-cadherin and ZO-1, whereas EZH2 inhibition largely preserved their expression. Moreover, 3-DZNep was effective in counteracting the increased expression of matrix metalloproteinase (MMP)-2 and MMP-9, as well as the phosphorylation of Raf-1 and ERK1/2 in the injured kidney. Conversely, blocking EZH2 reversed the decrease of tissue inhibitor of metalloproteinase (TIMP)-2 and metalloproteinase (TIMP)-3, and Raf kinase inhibitor protein (RKIP) in the kidney after acute injury. Similarly, oxidant injury to cultured kidney proximal tubular epithelial cells caused a decrease in the expression of E-cadherin, ZO-1, TIMP-2/-3, and RKIP, as well as an increase in the expression of MMP-2/9 and phosphorylation of Raf-1 ERK1/2. Blocking EZH2 with 3-DZNep or SiRNA hindered these responses. Thus, these results suggest that targeting EZH2 protects against AKI through a mechanism associated with the preservation of adhesion/junctions, reduction of matrix metalloproteinases and attenuation of the Raf-1/ERK1/2 pathway.
Collapse
|
29
|
Lei Y, Liu Z, Yang W. Negative correlation of cytoplasm TIMP3 with miR-222 indicates a good prognosis for NSCLC. Onco Targets Ther 2018; 11:5551-5557. [PMID: 30233216 PMCID: PMC6134957 DOI: 10.2147/ott.s172522] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background The aim of this study was to observe the expression of microRNA-222 (miR-222) and matrix metalloproteinase inhibitor 3 (TIMP3) in non-small cell lung cancer (NSCLC) and discuss their significance. Methods A total of 230 patients with NSCLC were enrolled in the observation group during the operation. Ninety-eight normal adjacent tissues were used as the control group. Two groups of miR-222 and TIMP3 were detected by in situ hybridization and immunohistochemistry. The distribution of miR-222 and TIMP3 in A549/H358/PC9 cells was observed by immunofluorescence. Chi-squared and Spearman correlation tests were used to analyze the relationship among miR-222, TIMP3 expression, and clinicopathological parameters of NSCLC. Kaplan-Meier and Cox proportional hazards regression were used to analyze the prognostic impact of miR-222 and TIMP3. Results Immunohistochemistry showed that the expression of miR-222 in lung cancer tissue was significantly higher, but TIMP3 was lower than that in normal lung tissue (P = 0.0001 for the former and P = 0.0002 for the latter). Meanwhile, miR-222 and TIMP3 were mainly distributed in the cytoplasm. Among them, cTIMP3 accounted for 70.29% (72/101), cmiR-222 for 59.35% (92/155), 14.85% for nTIMP3 (15/101), and 18.06% for nmiR-222 (28/155). There was a significant difference in distribution (both P < 0.0001). The expression of miR-222 and TIMP3 were negatively correlated in lung cancer tissues (r = -0.43, P = 0.0219). With the progression of clinical stage, the positive intensity of cTIMP3 showed a decreasing trend, while the cmiR-222 showed a reverse trend (the former P = 0.0024 and the latter P < 0.0001). In the Kaplan-Meier prognostic analysis, we found that the high expression of cTIMP3 could predict a better prognosis (P = 0.0040), whereas cmiR-222 was the opposite (P = 0.0016). Multivariate analysis shows that both can be used as independent factors. Conclusion TIMP3 expression in lung cancer is relatively low and has a negative correlation with lung cancer staging and prognosis, suggesting that it may play a defensive function in the development of lung cancer, while miR-222 has the opposite effect, and the expression of both proteins is negatively correlated, suggesting that in lung cancer progresses, both proteins may play some role together.
Collapse
Affiliation(s)
- Yiyan Lei
- Department of General Thoracic Surgery, The First Affiliated Hospital, Sun-Yat Sen University, Guangzhou, Guandong, People's Republic of China,
| | - Zhaoguo Liu
- Department of General Thoracic Surgery, The First Affiliated Hospital, Sun-Yat Sen University, Guangzhou, Guandong, People's Republic of China,
| | - Weilin Yang
- Department of General Thoracic Surgery, The First Affiliated Hospital, Sun-Yat Sen University, Guangzhou, Guandong, People's Republic of China,
| |
Collapse
|
30
|
Wei S, Li C, Yin Z, Wen J, Meng H, Xue L, Wang J. Histone methylation in DNA repair and clinical practice: new findings during the past 5-years. J Cancer 2018; 9:2072-2081. [PMID: 29937925 PMCID: PMC6010677 DOI: 10.7150/jca.23427] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 03/31/2018] [Indexed: 12/12/2022] Open
Abstract
DNA double-strand breaks (DSBs) are highly toxic lesions that can impair cellular homeostasis and genome stability to result in tumorigenesis for inappropriate repair. Although DSBs are repaired by homologous recombination (HR) or non-homologous end-joining (NHEJ), the related mechanisms are still incompletely unclear. Indeed, more and more evidences indicate that the methylation of histone lysine has an important role in choosing the pathways of DNA repair. For example, tri-methylated H3K36 is required for HR repair, while di-methylated H4K20 can recruit 53BP1 for NHEJ repair. Here, we reviewed the recent progress in the molecular mechanisms by which histone methylation functions in DNA double-strand breaks repair (DSBR). The insight into the mechanisms of histone methylation repairing DNA damage will supply important cues for clinical cancer treatment.
Collapse
Affiliation(s)
- Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
| | - Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
| | - Zhongnan Yin
- Medical Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Jie Wen
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
| | - Hui Meng
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
| | - Lixiang Xue
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China.,Medical Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
31
|
Liu X, Wu Q, Li L. Functional and therapeutic significance of EZH2 in urological cancers. Oncotarget 2018; 8:38044-38055. [PMID: 28410242 PMCID: PMC5514970 DOI: 10.18632/oncotarget.16765] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/04/2017] [Indexed: 11/25/2022] Open
Abstract
The enhancer of zeste homolog 2 (EZH2) is a core subunit of the polycomb repressor complex 2 (PRC2), which is overexpressed in numerous cancers and mutated in several others. Notably, EZH2 acts not only a critical epigenetic repressor through its role in histone methylation, it is also an activator of gene expression, acting through multiple signaling pathways in distinct cancer types. Increasing evidence suggests that EZH2 is an oncogene and is central to initiation, growth and progression of urological cancers. In this review, we highlight the critical role of EZH2 as a master regulator of tumorigenesis in the prostate, bladder and the kidney through epigenetic control of transcription as well as a modulation of various critical signaling pathways. We also discuss the promise and challenges for EZH2 inhibitors as future anticancer therapeutics, some of which are currently in clinical trials.
Collapse
Affiliation(s)
- Xiaobing Liu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qingjian Wu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Longkun Li
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
32
|
Zhang K, Chen X, Zhou J, Yang C, Zhang M, Chao M, Zhang L, Liang C. Association between MMP2-1306 C/T polymorphism and prostate cancer susceptibility: a meta-analysis based on 3906 subjects. Oncotarget 2018; 8:45020-45029. [PMID: 28445160 PMCID: PMC5546537 DOI: 10.18632/oncotarget.16972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/14/2017] [Indexed: 12/16/2022] Open
Abstract
Numerous investigations have addressed the correlation between MMP2-1306C/T polymorphism and prostate cancer (PCa) susceptibility. However, these conclusions were controversial. Thus, we conducted this current meta-analysis based on six studies from PubMed, Embase, Cochrane Library, China Biology Medicine disc (CBM), China National Knowledge Infrastructure (CNKI) up to October 21st, 2016. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to evaluate the strength of the correlations. Additionally, different subgroup analyses and publication bias tests were performed. Eventually, six previous investigations consisted of 1920 cases and 1986 controls were identified and involved in this meta-analysis. Consequently, our evidence indicates a certain association between MMP2-1306C/T polymorphism and PCa risk among overall population (T vs C: OR = 1.12, 95% CI = 1.00-1.24, P = 0.040; TT+CT vs CC: OR = 1.16, 95% CI = 1.02-1.32, P = 0.026; respectively), as well as the subgroups of Asian population (T vs C: OR=1.48, 95% CI=1.13-1.94, P=0.004; TT+CT vs CC: OR = 1.66, 95% CI = 1.21-2.28, P = 0.002; respectively) and PCR-RFLP genotyped method (T vs C: OR = 1.58, 95% CI = 1.19-2.10, P = 0.001; TT+CT vs CC: OR = 1.71, 95% CI = 1.23-2.38, P = 0.001; respectively). However, no association was detected in MMP2-1306C/T polymorphism with Gleason grading or pathological stage of PCa. Our study indicates MMP2-1306 C/T polymorphism might increase PCa risk, particularly for Asian population. However, future studies comprising large cohort size from multicenter are required to confirm our conclusions.
Collapse
Affiliation(s)
- Kaiping Zhang
- Department of Urology, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology, AHMU, Hefei, Anhui, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology, AHMU, Hefei, Anhui, China
| | - Cheng Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology, AHMU, Hefei, Anhui, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology, AHMU, Hefei, Anhui, China
| | - Min Chao
- Department of Urology, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology, AHMU, Hefei, Anhui, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology, AHMU, Hefei, Anhui, China
| |
Collapse
|
33
|
Chien YC, Liu LC, Ye HY, Wu JY, Yu YL. EZH2 promotes migration and invasion of triple-negative breast cancer cells via regulating TIMP2-MMP-2/-9 pathway. Am J Cancer Res 2018; 8:422-434. [PMID: 29636998 PMCID: PMC5883093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/01/2018] [Indexed: 06/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) has a higher potential for invasion and metastasis than other types of breast cancer. Enhancer of zeste homolog 2 (EZH2) is the catalytic core protein in the polycomb repressive complex 2 (PRC2), which catalyzes the trimethylation of histone H3 at lysine 27 (H3K27me3) and mediates gene silencing of the target genes that are involved in fundamental cellular processes, such as the cell fate decision, cell cycle regulation, senescence, cell differentiation, and cancer formation. A consistent association between TNBC metastasis and EZH2 has not been confirmed. The aim of this study was to investigate the role of EZH2 in the regulation of tissue inhibitor of metalloproteinase (TIMPs) and matrix metalloproteinases (MMPs) to promote metastasis of TNBC cells and to characterize the metastasis-associated genes regulated by EZH2 in TNBC cells. We found that high levels of EZH2 expression induce repression of TIMP2 transcription, leading to increased activity of MMP-2 and MMP-9 and thus to increased invasive activity of TNBC cells.
Collapse
Affiliation(s)
- Yi-Chung Chien
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 40454, Taiwan
- Center for Molecular Medicine, China Medical University HospitalTaichung 404, Taiwan
| | - Liang-Chih Liu
- Department of Surgery, China Medical University HospitalTaichung 404, Taiwan
- School of Medicine, College of Medicine, China Medical UniversityTaichung 404, Taiwan
| | - Han-Yu Ye
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 40454, Taiwan
- Center for Molecular Medicine, China Medical University HospitalTaichung 404, Taiwan
| | - Jia-Yan Wu
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 40454, Taiwan
- Center for Molecular Medicine, China Medical University HospitalTaichung 404, Taiwan
| | - Yung-Luen Yu
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 40454, Taiwan
- Center for Molecular Medicine, China Medical University HospitalTaichung 404, Taiwan
- Department of Biotechnology, Asia UniversityTaichung 413, Taiwan
| |
Collapse
|
34
|
Abstract
MiR-221 is frequently upregulated in papillary thyroid cancer (PTC) tissues and cell lines, and this study was designed to validate the association of miR-221 with PTC proliferation, apoptosis, and migration. We observed that miR-221 suppressed TIMP3 expression by binding to 3' untranslated region of TIMP3 mRNA, and TIMP3 expression was increased with the presence of miR-221 inhibitors; TIMP3 siRNA could reverse the effects of miR-221 inhibitors on PTC cells. The results indicated that miR-221 exacerbated PTC by downregulating the expression of TIMP3. The effects of miR-221 and TIMP3 in vivo were also confirmed by human PTC-bearing mice models which suggest consistent results with those in vitro studies. In summary, miR-221 could aggravate cell proliferation and invasion of PTC by targeting TIMP3.
Collapse
|
35
|
Integrated bioinformatics analysis of chromatin regulator EZH2 in regulating mRNA and lncRNA expression by ChIP sequencing and RNA sequencing. Oncotarget 2018; 7:81715-81726. [PMID: 27835578 PMCID: PMC5348424 DOI: 10.18632/oncotarget.13169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/24/2016] [Indexed: 12/16/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2), a dynamic chromatin regulator in cancer, represents a potential therapeutic target showing early signs of promise in clinical trials. EZH2 ChIP sequencing data in 19 cell lines and RNA sequencing data in ten cancer types were downloaded from GEO and TCGA, respectively. Integrated ChIP sequencing analysis and co-expressing analysis were conducted and both mRNA and long noncoding RNA (lncRNA) targets were detected. We detected a median of 4,672 mRNA targets and 4,024 lncRNA targets regulated by EZH2 in 19 cell lines. 20 mRNA targets and 27 lncRNA targets were found in all 19 cell lines. These mRNA targets were enriched in pathways in cancer, Hippo, Wnt, MAPK and PI3K-Akt pathways. Co-expression analysis confirmed numerous targets, mRNA genes (RRAS, TGFBR2, NUF2 and PRC1) and lncRNA genes (lncRNA LINC00261, DIO3OS, RP11-307C12.11 and RP11-98D18.9) were potential targets and were significantly correlated with EZH2. We predicted genome-wide potential targets and the role of EZH2 in regulating as a transcriptional suppressor or activator which could pave the way for mechanism studies and the targeted therapy of EZH2 in cancer.
Collapse
|
36
|
Jia J, Li F, Tang XS, Xu S, Gao Y, Shi Q, Guo W, Wang X, He D, Guo P. Long noncoding RNA DANCR promotes invasion of prostate cancer through epigenetically silencing expression of TIMP2/3. Oncotarget 2018; 7:37868-37881. [PMID: 27191265 PMCID: PMC5122356 DOI: 10.18632/oncotarget.9350] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 05/01/2016] [Indexed: 01/22/2023] Open
Abstract
LncRNA DANCR suppresses differentiation of epithelial cells, however, its function in prostate cancer development is still unknown. In the present study, we found the expression of DANCR increases in prostate cancer tissues and cells compared to normal prostate tissues and cells, moreover, DANCR promotes invasion and migration of prostate cancer cells in vitro and metastasis of tumor xenografts in nude mice. Mechanistically, we found that TIMP2/3, which are critical metastasis inhibitor of prostate cancer, were down-regulated by DANCR synergistically with EZH2 through epigenetically silencing their promoter by chromatin immunoprecipitation assay. In addition, we further investigated whether DANCR is regulated by the differentiation-promoting androgen-androgen receptor (AR) pathway and found that DANCR expression is repressed by androgen-AR; furthermore, DANCR impedes the upregulation of TIMP2/3 and the suppression of invasion and migration by androgen-AR. On the other hand, interestingly, we found that in prostate cancer cells DANCR knockdown decreased the promotion of invasion and migration by the treatment of enzalutamide, which is an AR inhibitor. In summary, our results indicate that DANCR promotes prostate cancer invasion and metastasis through repressing the expression of TIMP2/3, and suggest that DANCR could be a potential target for preventing prostate cancer metastasis, and knockdown DANCR may lessen the potential side effect of AR inhibitor.
Collapse
Affiliation(s)
- Jing Jia
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Feng Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiao-Shuang Tang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shan Xu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Yang Gao
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qi Shi
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenhuan Guo
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Peng Guo
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| |
Collapse
|
37
|
Kong L, Zhang P, Li W, Yang Y, Tian Y, Wang X, Chen S, Yang Y, Huang T, Zhao T, Tang L, Su B, Li F, Liu XS, Zhang F. KDM1A promotes tumor cell invasion by silencing TIMP3 in non-small cell lung cancer cells. Oncotarget 2018; 7:27959-74. [PMID: 27058897 PMCID: PMC5053702 DOI: 10.18632/oncotarget.8563] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 03/26/2016] [Indexed: 12/15/2022] Open
Abstract
Epigenetic regulation plays an important role in tumor metastasis. KDM1A is a histone demethylase specific for H3K4me2/me1 demethylation, and has been found to be overexpressed in many cancers, including non-small cell lung cancer (NSCLC). However, the role of KDM1A in lung cancer remains unclear. Here, we show that KDM1A promotes cancer metastasis in NSCLC cells by repressing TIMP3 (tissue inhibitor of metalloproteinase 3) expression. Consistently with this, overexpression of TIMP3 inhibited MMP2 expression and JNK phosphorylation, both of which are known to be important for cell invasion and migration. Importantly, knockdown of TIMP3 in KDM1A-deficient cells rescued the metastatic capability of NSCLC cells. These findings were also confirmed by pharmacological inhibition assays. We further demonstrate that KDM1A removes H3K4me2 at the promoter of TIMP3, thus repressing the transcription of TIMP3. Finally, high expression of KDM1A and low expression of TIMP3 significantly correlate with a poor prognosis in NSCLC patients. This study establishes a mechanism by which KDM1A promotes cancer metastasis in NSCLC cells, and we suggest that KDM1A may be a potential therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Lingzhi Kong
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Wang Li
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yan Yang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Ye Tian
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xujun Wang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Sujun Chen
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yuxin Yang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Tianhao Huang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Tian Zhao
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Liang Tang
- The Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Bo Su
- The Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Fei Li
- Department of Biology, New York University, New York, NY 10003, USA
| | - X Shirley Liu
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02215, USA
| | - Fan Zhang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
38
|
Duraisamy AJ, Mishra M, Kowluru RA. Crosstalk Between Histone and DNA Methylation in Regulation of Retinal Matrix Metalloproteinase-9 in Diabetes. Invest Ophthalmol Vis Sci 2017; 58:6440-6448. [PMID: 29261844 PMCID: PMC5737805 DOI: 10.1167/iovs.17-22706] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose Diabetes activates matrix metalloproteinase-9 (MMP-9), and MMP-9 via damaging retinal mitochondria, activates capillary cell apoptosis. MMP-9 promoter has binding sites for many transcription factors, and in diabetes its promoter undergoes epigenetic modifications, including histone modifications and DNA methylation. Enhancer of Zeste homolog 2 (Ezh2), which catalyzes dimethylation/trimethylation of histone 3 lysine 27 (H3K27me2 and me3), is also associated with DNA methylation. Our aim was to investigate link(s) between histone and DNA modifications in the regulation of MMP-9. Methods Using human retinal endothelial cells, and also retinal microvessels from diabetic rats, effect of hyperglycemia on H3K27me3, and recruitment of Ezh2 at the MMP-9 promoter were quantified by chromatin-immunoprecipitation technique. Role of H3K27 trimethylation in regulating DNA methylation-transcription of MMP-9 was determined by regulating Ezh2 by its specific siRNA and also a pharmacologic inhibitor. Results Hyperglycemia elevated H3K27me3 levels and the recruitment of Ezh2 at the MMP-9 promoter, and increased the enzyme activity of Ezh2. Inhibition of Ezh2 attenuated recruitment of both DNA methylating (Dnmt1) and hydroxymethylating (Tet2) enzymes and 5 hydroxymethyl cytosine at the same region of the MMP-9 promoter, and prevented increase in MMP-9 transcription and mitochondrial damage. Conclusions Activation of Ezh2 in diabetes, via trimethylation of H3K27, facilitates recruitment of the enzymes responsible for regulation of DNA methylation of the MMP-9 promoter, resulting in its transcriptional activation. Thus, a close crosstalk between H3K27 trimethylation and DNA methylation in diabetes plays a critical role in the maintenance of cellular epigenetic integrity of MMP-9.
Collapse
Affiliation(s)
- Arul J Duraisamy
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| | - Manish Mishra
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| | - Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
39
|
Lo UG, Lee CF, Lee MS, Hsieh JT. The Role and Mechanism of Epithelial-to-Mesenchymal Transition in Prostate Cancer Progression. Int J Mol Sci 2017; 18:ijms18102079. [PMID: 28973968 PMCID: PMC5666761 DOI: 10.3390/ijms18102079] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/21/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022] Open
Abstract
In prostate cancer (PCa), similar to many other cancers, distant organ metastasis symbolizes the beginning of the end disease, which eventually leads to cancer death. Many mechanisms have been identified in this process that can be rationalized into targeted therapy. Among them, epithelial-to-mesenchymal transition (EMT) is originally characterized as a critical step for cell trans-differentiation during embryo development and now recognized in promoting cancer cells invasiveness because of high mobility and migratory abilities of mesenchymal cells once converted from carcinoma cells. Nevertheless, the underlying pathways leading to EMT appear to be very diverse in different cancer types, which certainly represent a challenge for developing effective intervention. In this article, we have carefully reviewed the key factors involved in EMT of PCa with clinical correlation in hope to facilitate the development of new therapeutic strategy that is expected to reduce the disease mortality.
Collapse
Affiliation(s)
- U-Ging Lo
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Cheng-Fan Lee
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Ming-Shyue Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
40
|
EZH2 upregulation correlates with tumor invasiveness, proliferation, and angiogenesis in human pituitary adenomas. Hum Pathol 2017; 66:101-107. [PMID: 28666925 DOI: 10.1016/j.humpath.2017.03.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/10/2017] [Accepted: 03/23/2017] [Indexed: 02/06/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) is a critical component of the polycomb repressive complex 2, which epigenetically represses genes involved in tumorigenesis and is highly expressed in tumors. However, no studies have investigated EZH2 expression and its clinical significance in human pituitary adenomas (PAs). Therefore, we examined the expression pattern of EZH2 in PAs and studied the correlations between protein expression and invasiveness, proliferation, angiogenesis, hormone functioning, and some other factors. We measured EZH2 and MMP-14 protein and EZH2 mRNA expression in 62 samples of PAs by immunohistochemistry staining and quantitative real-time polymerase chain reaction and correlated protein expression relative to clinicopathologic features. The immunopositive rate of EZH2 was 88.7% (55/62). The extent of expression was associated with invasiveness, microvessel density, and proliferation (Ki-67 index). Moreover, EZH2 expression correlated with MMP-14 expression. We did not find any correlation between EZH2 overexpression and hormone-secreting function or patient age or sex. The quantitative real-time polymerase chain reaction analysis revealed that the amount of EZH2 mRNA was significantly higher in invasive than in noninvasive adenomas. This is the first report to describe EZH2 overexpression in human PAs, especially invasive adenomas. Thus, EZH2 is a potentially useful diagnostic marker and pharmacotherapeutic target for invasive PAs.
Collapse
|
41
|
Yi X, Guo J, Guo J, Sun S, Yang P, Wang J, Li Y, Xie L, Cai J, Wang Z. EZH2-mediated epigenetic silencing of TIMP2 promotes ovarian cancer migration and invasion. Sci Rep 2017; 7:3568. [PMID: 28620234 PMCID: PMC5472630 DOI: 10.1038/s41598-017-03362-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/28/2017] [Indexed: 12/27/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is often increased in malignant tumors and is involved in metastasis. EZH2 silences gene expression by tri-methylating the lysine 27 residue of histone H3 (H3K27me3). However, the mechanism underlying EZH2 promotion of ovarian cancer metastasis remains elusive. Here, we showed that EZH2 is up-regulated in ovarian cancer and is associated with tumor metastasis and poor survival by mRNA sequencing and microarray results from databases. Tissue microarray and immunohistochemistry results revealed that EZH2 was negatively correlated with the expression of tissue inhibitor of metalloproteinases 2 (TIMP2). EZH2 overexpression inhibited TIMP2 expression and promoted proteolytic activities of matrix metalloproteinases 2 and 9 and vice versa. EZH2 promoted ovarian cancer invasion and migration, which could be largely reversed by TIMP2 down-regulation in vitro and in vivo. Both H3K27me3 inhibition and demethylation could reduce methylation of the TIMP2 promoter and finally reactivate TIMP2 transcription. The presence of EZH2 and H3K27me3 at the TIMP2 promoter was confirmed by chromatin immunoprecipitation. H3K27me3 and DNA methyltransferases at the promoter were significantly increased by EZH2 overexpression. These results suggest that EZH2 inhibits TIMP2 expression via H3K27me3 and DNA methylation, which relieve the repression of MMP and facilitate ovarian cancer invasion and migration.
Collapse
Affiliation(s)
- Xiaoqing Yi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jianfeng Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Si Sun
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ping Yang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, China
| | - Junjie Wang
- Department of Obstetrics and Gynecology, Renhe Hospital, Three Gorges University, Yichang, 443001, China
| | - Yuan Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lisha Xie
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
42
|
Okada Y, Sonoshita M, Kakizaki F, Aoyama N, Itatani Y, Uegaki M, Sakamoto H, Kobayashi T, Inoue T, Kamba T, Suzuki A, Ogawa O, Taketo MM. Amino-terminal enhancer of split gene AES encodes a tumor and metastasis suppressor of prostate cancer. Cancer Sci 2017; 108:744-752. [PMID: 28178391 PMCID: PMC5406606 DOI: 10.1111/cas.13187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 12/19/2022] Open
Abstract
A major cause of cancer death is its metastasis to the vital organs. Few effective therapies are available for metastatic castration‐resistant prostate cancer (PCa), and progressive metastatic lesions such as lymph nodes and bones cause mortality. We recently identified AES as a metastasis suppressor for colon cancer. Here, we have studied the roles of AES in PCa progression. We analyzed the relationship between AES expression and PCa stages of progression by immunohistochemistry of human needle biopsy samples. We then performed overexpression and knockdown of AES in human PCa cell lines LNCaP, DU145 and PC3, and determined the effects on proliferation, invasion and metastasis in culture and in a xenograft model. We also compared the PCa phenotypes of Aes/Pten compound knockout mice with those of Pten simple knockout mice. Expression levels of AES were inversely correlated with clinical stages of human PCa. Exogenous expression of AES suppressed the growth of LNCaP cells, whereas the AES knockdown promoted it. We also found that AES suppressed transcriptional activities of androgen receptor and Notch signaling. Notably, AES overexpression in AR‐defective DU145 and PC3 cells reduced invasion and metastasis to lymph nodes and bones without affecting proliferation in culture. Consistently, prostate epithelium‐specific inactivation of Aes in Ptenflox/flox mice increased expression of Snail and MMP9, and accelerated growth, invasion and lymph node metastasis of the mouse prostate tumor. These results suggest that AES plays an important role in controlling tumor growth and metastasis of PCa by regulating both AR and Notch signaling pathways.
Collapse
Affiliation(s)
- Yoshiyuki Okada
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masahiro Sonoshita
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fumihiko Kakizaki
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoki Aoyama
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiro Itatani
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masayuki Uegaki
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiromasa Sakamoto
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Kobayashi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiro Inoue
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomomi Kamba
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akira Suzuki
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - M Mark Taketo
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
43
|
Abstract
A compelling long-term goal of cancer biology is to understand the crucial players during tumorigenesis in order to develop new interventions. Here, we review how the four non-redundant tissue inhibitors of metalloproteinases (TIMPs) regulate the pericellular proteolysis of a vast range of matrix and cell surface proteins, generating simultaneous effects on tumour architecture and cell signalling. Experimental studies demonstrate the contribution of TIMPs to the majority of cancer hallmarks, and human cancers invariably show TIMP deregulation in the tumour or stroma. Of the four TIMPs, TIMP1 overexpression or TIMP3 silencing is consistently associated with cancer progression or poor patient prognosis. Future efforts will align mouse model systems with changes in TIMPs in patients, will delineate protease-independent TIMP function, will pinpoint therapeutic targets within the TIMP-metalloproteinase-substrate network and will use TIMPs in liquid biopsy samples as biomarkers for cancer prognosis.
Collapse
Affiliation(s)
- Hartland W Jackson
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
- Bodenmiller Laboratory, University of Zürich, Institute for Molecular Life Sciences, Winterthurstrasse 190, 8057 Zürich, Switzerland
| | - Virginie Defamie
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
| | - Paul Waterhouse
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
| | - Rama Khokha
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
| |
Collapse
|
44
|
Kwegyir-Afful AK, Murigi FN, Purushottamachar P, Ramamurthy VP, Martin MS, Njar VCO. Galeterone and its analogs inhibit Mnk-eIF4E axis, synergize with gemcitabine, impede pancreatic cancer cell migration, invasion and proliferation and inhibit tumor growth in mice. Oncotarget 2016; 8:52381-52402. [PMID: 28881737 PMCID: PMC5581036 DOI: 10.18632/oncotarget.14154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/19/2016] [Indexed: 12/22/2022] Open
Abstract
Survival rate for pancreatic cancer (pancreatic ductal adenocarcinoma, PDAC) is poor, with about 80% of patients presenting with the metastatic disease. Gemcitabine, the standard chemotherapeutic agent for locally advanced and metastatic PDAC has limited efficacy, attributed to innate/acquired resistance and activation of pro-survival pathways. The Mnk1/2-eIF4E and NF-κB signaling pathways are implicated in PDAC disease progression/metastasis and also associated with gemcitabine-induced resistance in PDAC. Galeterone (gal), a multi-target, agent in phase III clinical development for prostate cancer has also shown effects on the aforementioned pathways. We show for the first time, that gal/analogs (VNPT55, VNPP414 and VNPP433-3β) profoundly inhibited cell viability of gemcitabine-naive/resistance PDAC cell lines and strongly synergized with gemcitabine in gemcitabine-resistant PDAC cells. In addition, to inducing G1 cell cycle arrest, gal/analogs induced caspase 3-mediated cell-death of PDAC cells. Gal/analogs caused profound downregulation of Mnk1/2, peIF4E and NF-κB (p-p65), metastatic inducing factors (N-cadherin, MMP-1/-2/-9, Slug, Snail and CXCR4) and putative stem cell factors, (β-Catenin, Nanog, BMI-1 and Oct-4). Gal/analog also depleted EZH2 and upregulated E-Cadherin. These effects resulted in significant inhibition of PDAC cell migration, invasion and proliferation. Importantly, we also observed strong MiaPaca-2 tumor xenograft growth inhibition (61% to 92%). Collectively, these promising findings strongly support further development of gal/analogs as novel therapeutics for PDAC.
Collapse
Affiliation(s)
- Andrew K Kwegyir-Afful
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201-1559, USA.,Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201-1559, USA
| | - Francis N Murigi
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201-1559, USA.,Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201-1559, USA
| | - Puranik Purushottamachar
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201-1559, USA.,Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201-1559, USA
| | - Vidya P Ramamurthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201-1559, USA.,Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201-1559, USA
| | - Marlena S Martin
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201-1559, USA.,Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201-1559, USA.,Current Address: Bernard J. Dunn School of Pharmacy, Shenandoah University, Ashburn, VA 20147, USA
| | - Vincent C O Njar
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201-1559, USA.,Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201-1559, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201-1559, USA
| |
Collapse
|
45
|
Pan YM, Wang CG, Zhu M, Xing R, Cui JT, Li WM, Yu DD, Wang SB, Zhu W, Ye YJ, Wu Y, Wang S, Lu YY. STAT3 signaling drives EZH2 transcriptional activation and mediates poor prognosis in gastric cancer. Mol Cancer 2016; 15:79. [PMID: 27938379 PMCID: PMC5148878 DOI: 10.1186/s12943-016-0561-z] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/23/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND STAT3 signaling plays the pivotal role in tumorigenesis through EZH2 epigenetic modification, which enhanced STAT3 activity by increased tyrosine phosphorylation of STAT3. Here, another possible feedback mechanism and clinical significance of EZH2 and STAT3 were investigated in gastric cancer (GC). METHODS STAT3, p-STAT3 (Tyr 705) and EZH2 expression were examined in 63 GC specimens with matched normal tissues by IHC staining. EZH2 and STAT3 were also identified in five GC cell lines using RT-PCR and western blot analyses. p-STAT3 protein was detected by western blotting. In order to investigate whether EZH2 expression was directly regulated by STAT3, EZH2 expression was further detected using siRNA for STAT3 or IL-6 stimulation, with dual luciferase reporter analyses, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assays. The clinical significance of STAT3, p-STAT3 and EZH2 expression was evaluated by multi-factor COX regression and Kaplan-Meier analyses. RESULTS Hyper-activation of STAT3, p-STAT3 and EZH2 expression were observed in GC cells and tissues. STAT3 signaling was correlated with EZH2 expression in GC (R = 0.373, P = 0.003), which was consistent with our data showing that STAT3 as the transcriptional factor enhanced EZH2 transcriptional activity by binding the relative promoter region (-214 ~ -206). STAT3 was an independent signature for poor survival (P = 0.002). Patients with STAT3+/EZH2+ or p-STAT3+/EZH2+ had a worse outcome than others (P < 0.001); Besides, high levels of STAT3 and EZH2 was associated with advanced TNM staging (P = 0.017). Moreover, treatment with a combination of siSTAT3 and EZH2-specific inhibitor, 3-deazaneplanocin A (DZNEP), increased the apoptotic ratio of cells. It is benefit for targeting STAT3-EZH2 interplay in GC treatment. CONCLUSIONS Our results indicate that STAT3 status mediated EZH2 upregulation, associated with advanced TNM stage and poor prognosis, suggesting that combination with knockdown of STAT3 and EZH2 inhibitor might be a novel therapy in GC treatment. Collectively, STAT3, p-STAT3 and EZH2 expression were provided for the precision medicine in GC patients.
Collapse
Affiliation(s)
- Yuan-Ming Pan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute , 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Cheng-Gang Wang
- Department of Gastroenterology Surgery, Surgical Oncology Laboratory, People's Hospital, Peking University, Beijing, 100044, China.,Department of Cardiology, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Min Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute , 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Rui Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute , 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Jian-Tao Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute , 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Wen-Mei Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute , 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - De-Dong Yu
- Department of Oncology/Institute for Cancer Research, Baotou Central Hospital, Inner Mongolia, 014040, China
| | - Shu-Bin Wang
- Department of Oncology/Institute for Cancer Research, Baotou Central Hospital, Inner Mongolia, 014040, China
| | - Wei Zhu
- Department of Oncology/Institute for Cancer Research, Baotou Central Hospital, Inner Mongolia, 014040, China
| | - Ying-Jiang Ye
- Department of Gastroenterology Surgery, Surgical Oncology Laboratory, People's Hospital, Peking University, Beijing, 100044, China
| | - Yun Wu
- Department of Oncology/Institute for Cancer Research, Baotou Central Hospital, Inner Mongolia, 014040, China. .,Department of Oncology/Institute for Cancer Research, Baotou Central Hospital, Baotou, 014040, People's Republic of China.
| | - Shan Wang
- Department of Gastroenterology Surgery, Surgical Oncology Laboratory, People's Hospital, Peking University, Beijing, 100044, China. .,Department of Gastroenterological Surgery, Surgical Oncology Laboratory, People's Hospital, Beijing University, No. 11, South Xizhimen Street, Beijing, 100044, People's Republic of China.
| | - You-Yong Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute , 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
46
|
Fisher ML, Adhikary G, Grun D, Kaetzel DM, Eckert RL. The Ezh2 polycomb group protein drives an aggressive phenotype in melanoma cancer stem cells and is a target of diet derived sulforaphane. Mol Carcinog 2016; 55:2024-2036. [PMID: 26693692 PMCID: PMC4919248 DOI: 10.1002/mc.22448] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 12/16/2022]
Abstract
Melanoma is a metastatic cancer associated with poor survival. Here, we study a subpopulation of melanoma cancer cells displaying melanoma cancer stem cell (MCS cells) properties including elevated expression of stem cell markers, increased ability to survive as spheroids, and enhanced cell migration and invasion. We show that the Ezh2 stem cell survival protein is enriched in MCS cells and that Ezh2 knockdown or treatment with small molecule Ezh2 inhibitors, GSK126 or EPZ-6438, reduces Ezh2 activity. This reduction is associated with a reduced MCS cell spheroid formation, migration, and invasion. Moreover, the diet-derived cancer prevention agent, sulforaphane (SFN), suppresses MCS cell survival and this is associated with loss of Ezh2. Forced expression of Ezh2 partially reverses SFN suppression of MCS cell spheroid formation, migration, and invasion. A375 melanoma cell-derived MCS cells form rapidly growing tumors in immune-compromised mice and SFN treatment of these tumors reduces tumor growth and this is associated with reduced Ezh2 level and H3K27me3 formation, reduced matrix metalloproteinase expression, increased TIMP3 expression and increased apoptosis. These studies identify Ezh2 as a MCS cell marker and cancer stem cell prevention target, and suggest that SFN acts to reduce melanoma tumor formation via a mechanism that includes suppression of Ezh2 function. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Matthew L Fisher
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Dan Grun
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - David M Kaetzel
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum Cancer, University of Maryland School of Medicine, Baltimore, Maryland
| | - Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum Cancer, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Reproductive Biology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
47
|
Segura Moreno YY, Serrano López ML. Estandarización del protocolo para la detección de las fusiones TMPRSS2:ERG y de la expresión de los genes EZH2, SPINK-1 y NKX3.1 en cáncer de próstata (CaP). ACTA BIOLÓGICA COLOMBIANA 2016. [DOI: 10.15446/abc.v21n3.50477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
En la actualidad no existe una herramienta que permita diferenciar pacientes con cáncer de próstata (CaP) de mal pronóstico de aquellos con enfermedad indolente que sólo requieren un seguimiento controlado de la enfermedad. Debido a la coexistencia de diferentes focos premalignos y malignos en el CaP, el entendimiento sobre el proceso de carcinogénesis requiere de un mejor conocimiento. Actualmente, la heterogeneidad morfológica en CaP es evaluada con la puntuación de Gleason, la cual está fuertemente relacionada con el pronóstico de la enfermedad, sin embargo, esto es insuficiente por lo que se trabaja actualmente en identificación de alteraciones moleculares que permitan identificar subtipos que puedan establecer de manera más precisa el pronóstico del paciente. Este estudio preliminar buscó la estandarización del método de cuantificación en muestras prostáticas de FFPE de la expresión de los transcritos de posibles biomarcadores, como los oncogenes SPINK-1 y EZH2, el supresor tumoral NKX3.1, en conjunto con la determinación de la presencia/ausencia del gen de fusión TMPRSS2:ERG, ya que estos transcritos se encuentran involucrados en aparentes eventos excluyentes de la evolución natural del CaP, que apoyan la posibilidad de una clasificación molecular para esta enfermedad.
Collapse
|
48
|
Zhang Y, Lin C, Liao G, Liu S, Ding J, Tang F, Wang Z, Liang X, Li B, Wei Y, Huang Q, Li X, Tang B. MicroRNA-506 suppresses tumor proliferation and metastasis in colon cancer by directly targeting the oncogene EZH2. Oncotarget 2016; 6:32586-601. [PMID: 26452129 PMCID: PMC4741714 DOI: 10.18632/oncotarget.5309] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/21/2015] [Indexed: 01/19/2023] Open
Abstract
Increasing evidence reveals that aberrant expression of microRNA contributes to the development and progression of colon cancer, but the roles of microRNA-506 (miR-506) in colon cancer remain elusive. Here, we demonstrated that miR-506 was down-regulated in colon cancer tissue and cells and that miR-506 expression was inversely correlated with EZH2 expression, tumor size, lymph node invasion, TNM stage and metastasis. A high level of miR-506 identified patients with a favorable prognosis. In vitro and in vivo experiments confirmed that miR-506 inhibits the proliferation and metastasis of colon cancer, and a luciferase reporter assay confirmed that EZH2 is a direct and functional target of miR-506 via the 3′UTR of EZH2. The restoration of EZH2 expression partially reversed the proliferation and invasion of miR-506-overexpressing colon cancer cells. Moreover, we confirmed that the miR-506-EZH2 axis inhibits proliferation and metastasis by activating/suppressing specific downstream tumor-associated genes and the Wnt/β-catenin signaling pathway. Taking together, our study sheds light on the role of miR-506 as a suppressor for tumor growth and metastasis and raises the intriguing possibility that miR-506 may serve as a new potential marker for monitoring and treating colon cancer.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, 410008, PR China.,Department of Oncological Surgery, Affiliated Hospital of Xuzhou Medical College, 221000, PR China
| | - Changwei Lin
- Department of Gastrointestinal Surgery, Third Xiangya Hospital, Central South University, 410008, PR China
| | - Guoqing Liao
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, 410008, PR China
| | - Sheng Liu
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, 410008, PR China
| | - Jie Ding
- Department of Gastrointestinal Surgery, Guizhou Provincial People's Hospital, 550000, PR China
| | - Fang Tang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guilin Medical University, 541000, PR China
| | - Zhenran Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guilin Medical University, 541000, PR China
| | - Xingsi Liang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guilin Medical University, 541000, PR China
| | - Bo Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guilin Medical University, 541000, PR China
| | - Yangchao Wei
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guilin Medical University, 541000, PR China
| | - Qi Huang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guilin Medical University, 541000, PR China
| | - Xuan Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guilin Medical University, 541000, PR China
| | - Bo Tang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guilin Medical University, 541000, PR China
| |
Collapse
|
49
|
Hahm ER, Singh KB, Singh SV. c-Myc is a novel target of cell cycle arrest by honokiol in prostate cancer cells. Cell Cycle 2016; 15:2309-20. [PMID: 27341160 DOI: 10.1080/15384101.2016.1201253] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Honokiol (HNK), a highly promising phytochemical derived from Magnolia officinalis plant, exhibits in vitro and in vivo anticancer activity against prostate cancer but the underlying mechanism is not fully clear. This study was undertaken to delineate the role of c-Myc in anticancer effects of HNK. Exposure of prostate cancer cells to plasma achievable doses of HNK resulted in a marked decrease in levels of total and/or phosphorylated c-Myc protein as well as its mRNA expression. We also observed suppression of c-Myc protein in PC-3 xenografts upon oral HNK administration. Stable overexpression of c-Myc in PC-3 and 22Rv1 cells conferred significant protection against HNK-mediated growth inhibition and G0-G1 phase cell cycle arrest. HNK treatment decreased expression of c-Myc downstream targets including Cyclin D1 and Enhancer of Zeste Homolog 2 (EZH2), and these effects were partially restored upon c-Myc overexpression. In addition, PC-3 and DU145 cells with stable knockdown of EZH2 were relatively more sensitive to growth inhibition by HNK compared with control cells. Finally, androgen receptor overexpression abrogated HNK-mediated downregulation of c-Myc and its targets particularly EZH2. The present study indicates that c-Myc, which is often overexpressed in early and late stages of human prostate cancer, is a novel target of prostate cancer growth inhibition by HNK.
Collapse
Affiliation(s)
- Eun-Ryeong Hahm
- a Department of Pharmacology & Chemical Biology , University of Pittsburgh School of Medicine , Pittsburgh , Pennsylvania , USA.,b University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine , Pittsburgh , Pennsylvania , USA
| | - Krishna Beer Singh
- a Department of Pharmacology & Chemical Biology , University of Pittsburgh School of Medicine , Pittsburgh , Pennsylvania , USA.,b University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine , Pittsburgh , Pennsylvania , USA
| | - Shivendra V Singh
- a Department of Pharmacology & Chemical Biology , University of Pittsburgh School of Medicine , Pittsburgh , Pennsylvania , USA.,b University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine , Pittsburgh , Pennsylvania , USA
| |
Collapse
|
50
|
Abstract
The Polycomb group of proteins (PcGs) are transcriptional repressor complexes that regulate important biological processes and play critical roles in cancer. Mutating or deleting EZH2 can have both oncogenic and tumor suppressive functions by increasing or decreasing H3K27me3. In contrast, mutations of SUZ12 and EED are reported to have tumor suppressive functions. EZH2 is overexpressed in many cancers, including prostate cancer, which can lead to silencing of tumor suppressors, genes regulating epithelial to mesenchymal transition (EMT), and interferon signaling. In some cases, EZH2 overexpression also leads to its use of non-histone substrates. Lastly, PRC2 associated factors can influence the progression of cancer through progressive mutations or by specific binding to certain target genes. Here, we discuss which mutations and deletions of the PRC2 complex have been detected in different cancers, with a specific focus on the overexpression of EZH2 in prostate cancer.
Collapse
Affiliation(s)
- Payal Jain
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avancats, Barcelona, Spain
| |
Collapse
|