1
|
Roy A, Kumari Agnivesh P, Sau S, Kumar S, Pal Kalia N. Tweaking host immune responses for novel therapeutic approaches against Mycobacterium tuberculosis. Drug Discov Today 2023; 28:103693. [PMID: 37390961 DOI: 10.1016/j.drudis.2023.103693] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
In TB, combat between the human host and Mycobacterium tuberculosis involves intricate interactions with immune cells. M. tuberculosis has evolved a complex evasion system to circumvent immune cells, leading to persistence and limiting its clearance by the host. Host-directed therapies are emerging approaches to modulate host responses, including inflammatory responses, cytokine responses, and autophagy, by using small molecules to curb mycobacterial infections. Targeting host immune pathways reduces the chances of antibiotic resistance to M. tuberculosis because, unlike antibiotics, this approach acts directly on the cells of the host. In this review, we discuss the role of immune cells during M. tuberculosis proliferation, provide a updated understanding of immunopathogenesis, and explore the range of host-modulating options for the clearance of this pathogen.
Collapse
Affiliation(s)
- Arnab Roy
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India
| | - Puja Kumari Agnivesh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India
| | - Shashikanta Sau
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India
| | - Sunil Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India
| | - Nitin Pal Kalia
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India.
| |
Collapse
|
2
|
Sontyana B, Shrivastava R, Battu S, Ghosh S, Mukhopadhyay S. Phagosome maturation and modulation of macrophage effector function by intracellular pathogens: target for therapeutics. Future Microbiol 2021; 17:59-76. [PMID: 34877879 DOI: 10.2217/fmb-2021-0101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Macrophages are important cells that regulate various innate functions. Macrophages after engulfment of pathogens proceed for phagosome maturation and finally fuse with lysosomes to kill pathogens. Although pathogen degradation is one of the important functions of phagosomes, various immune-effector functions of macrophages are also dependent on the phagosome maturation process. This review discusses signaling processes regulating phagosome maturation as well as various effector functions of macrophages such as apoptosis, antigen presentation, autophagy and inflammasome that are dependent on the phagosome maturation process. It also discusses strategies adopted by various intracellular pathogens to counteract these functions to evade intracellular destruction mechanisms. These studies may give direction for the development of new therapeutics to control various intracellular infections.
Collapse
Affiliation(s)
- Brahmaji Sontyana
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500039, Telangana, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Rohini Shrivastava
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500039, Telangana, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Srikanth Battu
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500039, Telangana, India
| | - Sudip Ghosh
- Molecular Biology Unit, ICMR-National Institute of Nutrition, Jamai Osmania PO, Hyderabad, 500007, Telangana, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500039, Telangana, India
| |
Collapse
|
3
|
Kalra R, Tiwari D, Dkhar HK, Bhagyaraj E, Kumar R, Bhardwaj A, Gupta P. Host factors subverted by Mycobacterium tuberculosis: Potential targets for host directed therapy. Int Rev Immunol 2021; 42:43-70. [PMID: 34678117 DOI: 10.1080/08830185.2021.1990277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Despite new approaches in the diagnosis and treatment of tuberculosis (TB), it continues to be a major health burden. Several immunotherapies that potentiate the immune response have come up as adjuncts to drug therapies against drug resistant TB strains; however, there needs to be an urgent appraisal of host specific drug targets for improving their clinical management and to curtail disease progression. Presently, various host directed therapies (HDTs) exist (repurposed drugs, nutraceuticals, monoclonal antibodies and immunomodulatory agents), but these mostly address molecules that combat disease progression. AREAS COVERED The current review discusses major Mycobacterium tuberculosis (M. tuberculosis) survival paradigms inside the host and presents a plethora of host targets subverted by M. tuberculosis which can be further explored for future HDTs. The host factors unique to M. tuberculosis infection (in humans) have also been identified through an in-silico interaction mapping. EXPERT OPINION HDTs could become the next-generation adjunct therapies in order to counter antimicrobial resistance and virulence, as well as to reduce the duration of existing TB treatments. However, current scientific efforts are largely directed toward combatants rather than host molecules co-opted by M. tuberculosis for its survival. This might drive the immune system to a hyper-inflammatory condition; therefore, we emphasize that host factors subverted by M. tuberculosis, and their subsequent neutralization, must be considered for development of better HDTs.
Collapse
Affiliation(s)
- Rashi Kalra
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Drishti Tiwari
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Hedwin Kitdorlang Dkhar
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Ella Bhagyaraj
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Rakesh Kumar
- Bioinformatics Center, CSIR-Institute of Microbial Technology, Chandigarh-160036, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Anshu Bhardwaj
- Bioinformatics Center, CSIR-Institute of Microbial Technology, Chandigarh-160036, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Pawan Gupta
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
4
|
Smyth R, Sun J. Protein Kinase R in Bacterial Infections: Friend or Foe? Front Immunol 2021; 12:702142. [PMID: 34305942 PMCID: PMC8297547 DOI: 10.3389/fimmu.2021.702142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 12/28/2022] Open
Abstract
The global antimicrobial resistance crisis poses a significant threat to humankind in the coming decades. Challenges associated with the development of novel antibiotics underscore the urgent need to develop alternative treatment strategies to combat bacterial infections. Host-directed therapy is a promising new therapeutic strategy that aims to boost the host immune response to bacteria rather than target the pathogen itself, thereby circumventing the development of antibiotic resistance. However, host-directed therapy depends on the identification of druggable host targets or proteins with key functions in antibacterial defense. Protein Kinase R (PKR) is a well-characterized human kinase with established roles in cancer, metabolic disorders, neurodegeneration, and antiviral defense. However, its role in antibacterial defense has been surprisingly underappreciated. Although the canonical role of PKR is to inhibit protein translation during viral infection, this kinase senses and responds to multiple types of cellular stress by regulating cell-signaling pathways involved in inflammation, cell death, and autophagy - mechanisms that are all critical for a protective host response against bacterial pathogens. Indeed, there is accumulating evidence to demonstrate that PKR contributes significantly to the immune response to a variety of bacterial pathogens. Importantly, there are existing pharmacological modulators of PKR that are well-tolerated in animals, indicating that PKR is a feasible target for host-directed therapy. In this review, we provide an overview of immune cell functions regulated by PKR and summarize the current knowledge on the role and functions of PKR in bacterial infections. We also review the non-canonical activators of PKR and speculate on the potential mechanisms that trigger activation of PKR during bacterial infection. Finally, we provide an overview of existing pharmacological modulators of PKR that could be explored as novel treatment strategies for bacterial infections.
Collapse
Affiliation(s)
- Robin Smyth
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jim Sun
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
5
|
Kilinç G, Saris A, Ottenhoff THM, Haks MC. Host-directed therapy to combat mycobacterial infections. Immunol Rev 2021; 301:62-83. [PMID: 33565103 PMCID: PMC8248113 DOI: 10.1111/imr.12951] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/27/2020] [Indexed: 12/27/2022]
Abstract
Upon infection, mycobacteria, such as Mycobacterium tuberculosis (Mtb) and nontuberculous mycobacteria (NTM), are recognized by host innate immune cells, triggering a series of intracellular processes that promote mycobacterial killing. Mycobacteria, however, have developed multiple counter‐strategies to persist and survive inside host cells. By manipulating host effector mechanisms, including phagosome maturation, vacuolar escape, autophagy, antigen presentation, and metabolic pathways, pathogenic mycobacteria are able to establish long‐lasting infection. Counteracting these mycobacteria‐induced host modifying mechanisms can be accomplished by host‐directed therapeutic (HDT) strategies. HDTs offer several major advantages compared to conventional antibiotics: (a) HDTs can be effective against both drug‐resistant and drug‐susceptible bacteria, as well as potentially dormant mycobacteria; (b) HDTs are less likely to induce bacterial drug resistance; and (c) HDTs could synergize with, or shorten antibiotic treatment by targeting different pathways. In this review, we will explore host‐pathogen interactions that have been identified for Mtb for which potential HDTs impacting both innate and adaptive immunity are available, and outline those worthy of future research. We will also discuss possibilities to target NTM infection by HDT, although current knowledge regarding host‐pathogen interactions for NTM is limited compared to Mtb. Finally, we speculate that combinatorial HDT strategies can potentially synergize to achieve optimal mycobacterial host immune control.
Collapse
Affiliation(s)
- Gül Kilinç
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Anno Saris
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëlle C Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Smyth R, Berton S, Rajabalee N, Chan T, Sun J. Protein Kinase R Restricts the Intracellular Survival of Mycobacterium tuberculosis by Promoting Selective Autophagy. Front Microbiol 2021; 11:613963. [PMID: 33552025 PMCID: PMC7862720 DOI: 10.3389/fmicb.2020.613963] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (TB) is a deadly infectious lung disease caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb). The identification of macrophage signaling proteins exploited by Mtb during infection will enable the development of alternative host-directed therapies (HDT) for TB. HDT strategies will boost host immunity to restrict the intracellular replication of Mtb and therefore hold promise to overcome antimicrobial resistance, a growing crisis in TB therapy. Protein Kinase R (PKR) is a key host sensor that functions in the cellular antiviral response. However, its role in defense against intracellular bacterial pathogens is not clearly defined. Herein, we demonstrate that expression and activation of PKR is upregulated in macrophages infected with Mtb. Immunological profiling of human THP-1 macrophages that overexpress PKR (THP-PKR) showed increased production of IP-10 and reduced production of IL-6, two cytokines that are reported to activate and inhibit IFNγ-dependent autophagy, respectively. Indeed, sustained expression and activation of PKR reduced the intracellular survival of Mtb, an effect that could be enhanced by IFNγ treatment. We further demonstrate that the enhanced anti-mycobacterial activity of THP-PKR macrophages is mediated by a mechanism dependent on selective autophagy, as indicated by increased levels of LC3B-II that colocalize with intracellular Mtb. Consistent with this mechanism, inhibition of autophagolysosome maturation with bafilomycin A1 abrogated the ability of THP-PKR macrophages to limit replication of Mtb, whereas pharmacological activation of autophagy enhanced the anti-mycobacterial effect of PKR overexpression. As such, PKR represents a novel and attractive host target for development of HDT for TB, and our data suggest value in the design of more specific and potent activators of PKR.
Collapse
Affiliation(s)
- Robin Smyth
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Stefania Berton
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Nusrah Rajabalee
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Therese Chan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jim Sun
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
7
|
Chai Q, Wang L, Liu CH, Ge B. New insights into the evasion of host innate immunity by Mycobacterium tuberculosis. Cell Mol Immunol 2020; 17:901-913. [PMID: 32728204 PMCID: PMC7608469 DOI: 10.1038/s41423-020-0502-z] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/22/2020] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an extremely successful intracellular pathogen that causes tuberculosis (TB), which remains the leading infectious cause of human death. The early interactions between Mtb and the host innate immune system largely determine the establishment of TB infection and disease development. Upon infection, host cells detect Mtb through a set of innate immune receptors and launch a range of cellular innate immune events. However, these innate defense mechanisms are extensively modulated by Mtb to avoid host immune clearance. In this review, we describe the emerging role of cytosolic nucleic acid-sensing pathways at the host-Mtb interface and summarize recently revealed mechanisms by which Mtb circumvents host cellular innate immune strategies such as membrane trafficking and integrity, cell death and autophagy. In addition, we discuss the newly elucidated strategies by which Mtb manipulates the host molecular regulatory machinery of innate immunity, including the intranuclear regulatory machinery, the ubiquitin system, and cellular intrinsic immune components. A better understanding of innate immune evasion mechanisms adopted by Mtb will provide new insights into TB pathogenesis and contribute to the development of more effective TB vaccines and therapies.
Collapse
Affiliation(s)
- Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 100101, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Lin Wang
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 100101, Beijing, China. .,Savaid Medical School, University of Chinese Academy of Sciences, 101408, Beijing, China.
| | - Baoxue Ge
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China.
| |
Collapse
|
8
|
Zhou X, Zhang L, Lie L, Zhang Z, Zhu B, Yang J, Gao Y, Li P, Huang Y, Xu H, Li Y, Du X, Zhou C, Hu S, Wen Q, Zhong XP, Ma L. MxA suppresses TAK1-IKKα/β-NF-κB mediated inflammatory cytokine production to facilitate Mycobacterium tuberculosis infection. J Infect 2020; 81:231-241. [PMID: 32445727 DOI: 10.1016/j.jinf.2020.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/31/2020] [Accepted: 05/04/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Interferons (IFNs) play multifunctional roles in host defense against infectious diseases by inducing IFN-stimulated genes (ISGs). However, little is known about how ISGs regulate host immune response to Mycobacterium tuberculosis (Mtb) infection, the major cause of tuberculosis (TB). METHODS We thus profiled the potential effects and mechanisms of eight Mtb-induced ISGs on Mtb infection by RNA interference in human macrophages (Mφs) derived from peripheral blood monocytes (hMDMs) and THP-1 cell line derived Mφs (THP-1-Mφs). RESULTS MxA silencing significantly decreased intracellular Mtb infection in Mφs. Mechanistically, MxA silencing promoted inflammatory cytokines IL-1β, IL-6 and TNF-α production, and induced NF-κB p65 activation. Pharmacological inhibition of NF-κB p65 activation or gene silencing of NF-κB p65 blocked the increased production of IL-1β, IL-6 and TNF-α and restored Mtb infection by MxA silencing. Furthermore, pharmacological inhibition of TAK1 and IKKα/β blocked NF-κB p65 activation and subsequent production of pro-inflammatory cytokines by MxA silencing. Isoniazid (INH) treatment and MxA silencing could promote TAK1-IKKα/β-NF-κB signaling pathway activation and combat Mtb infection independently. CONCLUSIONS Our results reveal a novel role of MxA in regulating TAK1-IKKα/β-NF-κB signaling activation and production of antimicrobial inflammatory cytokines upon Mtb infection, providing a potential target for clinical treatment of TB.
Collapse
Affiliation(s)
- Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Lijie Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Linmiao Lie
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Zelin Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Bo Zhu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Jiahui Yang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yuchi Gao
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Pengfei Li
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yingqi Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Hui Xu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yanfen Li
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xialin Du
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Shengfeng Hu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Ping Zhong
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
9
|
Ranjbar S, Haridas V, Nambu A, Jasenosky LD, Sadhukhan S, Ebert TS, Hornung V, Cassell GH, Falvo JV, Goldfeld AE. Cytoplasmic RNA Sensor Pathways and Nitazoxanide Broadly Inhibit Intracellular Mycobacterium tuberculosis Growth. iScience 2019; 22:299-313. [PMID: 31805434 PMCID: PMC6909047 DOI: 10.1016/j.isci.2019.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/02/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
To establish stable infection, Mycobacterium tuberculosis (MTb) must overcome host innate immune mechanisms, including those that sense pathogen-derived nucleic acids. Here, we show that the host cytosolic RNA sensing molecules RIG-I-like receptor (RLR) signaling proteins RIG-I and MDA5, their common adaptor protein MAVS, and the RNA-dependent kinase PKR each independently inhibit MTb growth in human cells. Furthermore, we show that MTb broadly stimulates RIG-I, MDA5, MAVS, and PKR gene expression and their biological activities. We also show that the oral FDA-approved drug nitazoxanide (NTZ) significantly inhibits intracellular MTb growth and amplifies MTb-stimulated RNA sensor gene expression and activity. This study establishes prototypic cytoplasmic RNA sensors as innate restriction factors for MTb growth in human cells and it shows that targeting this pathway is a potential host-directed approach to treat tuberculosis disease. MTb infection induces RNA sensor (RIG-I, MDA5, PKR) mRNA levels and activities RIG-I, MDA5, MAVS, and PKR restrict intracellular MTb growth in human cells NTZ enhances MTb-driven RNA sensor mRNA levels and RLR activities NTZ and NTZ derivatives inhibit intracellular MTb growth in primary human cells
Collapse
Affiliation(s)
- Shahin Ranjbar
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Viraga Haridas
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Aya Nambu
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Luke D Jasenosky
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Supriya Sadhukhan
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas S Ebert
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gail H Cassell
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - James V Falvo
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Anne E Goldfeld
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Wu K, Koo J, Jiang X, Chen R, Cohen SN, Nathan C. Correction: Improved Control of Tuberculosis and Activation of Macrophages in Mice Lacking Protein Kinase R. PLoS One 2018; 13:e0205424. [PMID: 30289942 PMCID: PMC6173454 DOI: 10.1371/journal.pone.0205424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0030512.].
Collapse
|
11
|
Abstract
INTRODUCTION Parasitic diseases that pose a threat to human life include leishmaniasis - caused by protozoan parasite Leishmania species. Existing drugs have limitations due to deleterious side effects like teratogenicity, high cost and drug resistance. This calls for the need to have an insight into therapeutic aspects of disease. Areas covered: We have identified different drug targets via. molecular, imuunological, metabolic as well as by system biology approaches. We bring these promising drug targets into light so that they can be explored to their maximum. In an effort to bridge the gaps between existing knowledge and prospects of drug discovery, we have compiled interesting studies on drug targets, thereby paving the way for establishment of better therapeutic aspects. Expert opinion: Advancements in technology shed light on many unexplored pathways. Further probing of well established pathways led to the discovery of new drug targets. This review is a comprehensive report on current and emerging drug targets, with emphasis on several metabolic targets, organellar biochemistry, salvage pathways, epigenetics, kinome and more. Identification of new targets can contribute significantly towards strengthening the pipeline for disease elimination.
Collapse
Affiliation(s)
- Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221 005, UP, India
| | - Bhawana Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221 005, UP, India
| |
Collapse
|
12
|
Mundhra S, Bryk R, Hawryluk N, Zhang T, Jiang X, Nathan CF. Evidence for dispensability of protein kinase R in host control of tuberculosis. Eur J Immunol 2018; 48:612-620. [PMID: 29436711 DOI: 10.1002/eji.201747180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 06/13/2017] [Accepted: 02/06/2018] [Indexed: 11/09/2022]
Abstract
Genetic deficiency of protein kinase R (PKR) in mice was reported to enhance macrophage activation in vitro in response to interferon-γ (IFNγ) and to reduce the burden of Mycobacterium tuberculosis (Mtb) in vivo (Wu et al. PloS One. 2012 7:e30512). Consistent with this, treatment of wild-type (WT) macrophages in vitro with a novel PKR inhibitor (Bryk et al., Bioorg. Med. Chem. Lett. 2011 21:4108-4114) also enhanced IFN-γ-dependent macrophage activation (Wu et al. PloS One. 2012 7:e30512). Here we show that co-treatment with IFN-γ and a new PKR inhibitor identified herein to be highly but not completely selective likewise induced macrophages to produce more reactive nitrogen intermediates (RNI) and tumor necrosis factor alpha (TNF-α) and less interleukin 10 (IL-10) than seen with IFN-γ alone. Unexpectedly, however, this new PKR inhibitor had a comparable effect on PKR-deficient macrophages. Retrospective investigation revealed that the PKR-deficient mice in (Wu et al. PloS One. 2012 7:e30512) had not been backcrossed. On comparing genetically matched PKR-deficient and WT mice, we saw no impact of PKR deficiency on macrophage activation in vitro or during the course of Mtb infection in vivo. In addition, although 129S1/SvImJ macrophage responses to IFN-γ were greater than those of C57BL/6J macrophages, PKR was not required to mediate the IFN-γ-dependent production of IL-10, RNI or TNF-α in either strain. Together the data cast doubt on PKR as a potential therapeutic target for tuberculosis.
Collapse
Affiliation(s)
- Shashirekha Mundhra
- Immunology and Microbial Pathogenesis Program, Weill Graduate School of Medical Sciences of Cornell University, New York City, NY, USA
| | - Ruslana Bryk
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York City, NY, USA
| | | | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York City, NY, USA
| | - Xiuju Jiang
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York City, NY, USA
| | - Carl F Nathan
- Immunology and Microbial Pathogenesis Program, Weill Graduate School of Medical Sciences of Cornell University, New York City, NY, USA.,Department of Microbiology & Immunology, Weill Cornell Medicine, New York City, NY, USA
| |
Collapse
|
13
|
Trofimov V, Costa-Gouveia J, Hoffmann E, Brodin P. Host-pathogen systems for early drug discovery against tuberculosis. Curr Opin Microbiol 2017; 39:143-151. [PMID: 29179041 DOI: 10.1016/j.mib.2017.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/17/2017] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) is a global disease causing 1.8 million deaths each year. The appearance of drug-resistant strains raised the demand for new anti-mycobacterial drugs and therapies, because previously discovered antibiotics are shown to be inefficient. Moreover, the number of newly discovered drugs is not increasing in proportion to the emergence of drug resistance, which suggests that more optimized methodology and screening procedures are required including the incorporation of in vivo properties of TB infection. A way to improve efficacy of screening approaches is by introducing the use of different host-pathogen systems into primary screenings. These include whole cell-based screenings, zebrafish larvae-based screenings and the impact of artificial granuloma research on the drug discovery process. This review highlights current screening attempts and the identified molecular targets and summarizes findings of alternative, not fully explored host-pathogen systems for the characterization of anti-mycobacterial compounds.
Collapse
Affiliation(s)
- Valentin Trofimov
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, University Lille, Lille, France
| | - Joana Costa-Gouveia
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, University Lille, Lille, France
| | - Eik Hoffmann
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, University Lille, Lille, France
| | - Priscille Brodin
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, University Lille, Lille, France.
| |
Collapse
|
14
|
Host-directed therapies offer novel opportunities for the fight against tuberculosis. Drug Discov Today 2017; 22:1250-1257. [PMID: 28533187 DOI: 10.1016/j.drudis.2017.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/20/2017] [Accepted: 05/12/2017] [Indexed: 12/24/2022]
Abstract
Tuberculosis (TB) remains a leading global health problem that is exacerbated by the emergence of multidrug and extensively drug-resistant Mycobacterium tuberculosis strains. Control of the disease requires novel therapeutic strategies. Modulating host homeostasis appears to be a promising approach, and recent studies have identified novel potential host targets and compounds that could be investigated for host-directed therapies (HDTs). Moreover, the recent development of intracellular high-throughput phenotypic assays makes it possible to screen large libraries of compounds to identify more rapidly new effectors for mycobacterial elimination. Technological advances combined with the novel HDT concept opens an interesting and promising research area that could ultimately deliver personalized TB treatment.
Collapse
|
15
|
Bao Z, Chen R, Zhang P, Lu S, Chen X, Yao Y, Jin X, Sun Y, Zhou J. A potential target gene for the host-directed therapy of mycobacterial infection in murine macrophages. Int J Mol Med 2016; 38:823-33. [PMID: 27432120 PMCID: PMC4990325 DOI: 10.3892/ijmm.2016.2675] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/06/2016] [Indexed: 11/29/2022] Open
Abstract
Mycobacterium tuberculosis (MTB), one of the major bacterial pathogens for lethal infectious diseases, is capable of surviving within the phagosomes of host alveolar macrophages; therefore, host genetic variations may alter the susceptibility to MTB. In this study, to identify host genes exploited by MTB during infection, genes were non-selectively inactivated using lentivirus-based antisense RNA methods in RAW264.7 macrophages, and the cells that survived virulent MTB infection were then screened. Following DNA sequencing of the surviving cell clones, 26 host genes affecting susceptibility to MTB were identified and their pathways were analyzed by bioinformatics analysis. In total, 9 of these genes were confirmed as positive regulators of collagen α-5(IV) chain (Col4a5) expression, a gene encoding a type IV collagen subunit present on the cell surface. The knockdown of Col4a5 consistently suppressed intracellular mycobacterial viability, promoting the survival of RAW264.7 macrophages following mycobacterial infection. Furthermore, Col4a5 deficiency lowered the pH levels of intracellular vesicles, including endosomes, lysosomes and phagosomes in the RAW264.7 cells. Finally, the knockdown of Col4a5 post-translationally increased microsomal vacuolar-type H+-ATPase activity in macrophages, leading to the acidification of intracellular vesicles. Our findings reveal a novel role for Col4a5 in the regulation of macrophage responses to mycobacterial infection and identify Col4a5 as a potential target for the host-directed anti-mycobacterial therapy.
Collapse
Affiliation(s)
- Zhang Bao
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Ran Chen
- Zhejiang JFK Biological Technology Co., Ltd., Hangzhou, Zhejiang 310052, P.R. China
| | - Pei Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shan Lu
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xing Chen
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yake Yao
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaozheng Jin
- Zhejiang JFK Biological Technology Co., Ltd., Hangzhou, Zhejiang 310052, P.R. China
| | - Yilan Sun
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jianying Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
16
|
Shaw OM, Hurst RD, Harper JL. Boysenberry ingestion supports fibrolytic macrophages with the capacity to ameliorate chronic lung remodeling. Am J Physiol Lung Cell Mol Physiol 2016; 311:L628-38. [PMID: 27371734 DOI: 10.1152/ajplung.00309.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 07/01/2016] [Indexed: 12/21/2022] Open
Abstract
Lung fibrosis negatively impacts on lung function in chronic asthma and is linked to the development of profibrotic macrophage phenotypes. Epidemiological studies have found that lung function benefits from increased consumption of fruit high in polyphenols. We investigated the effect of boysenberry consumption, in both therapeutic and prophylactic treatment strategies in a mouse model of chronic antigen-induced airway inflammation. Boysenberry consumption reduced collagen deposition and ameliorated tissue remodeling alongside an increase in the presence of CD68+CD206+arginase+ alternatively activated macrophages in the lung tissue. The decrease in tissue remodeling was associated with increased expression of profibrolytic matrix metalloproteinase-9 protein in total lung tissue. We identified alternatively activated macrophages in the mice that consumed boysenberry as a source of the matrix metalloproteinase-9. Oral boysenberry treatment may moderate chronic tissue remodeling by supporting the development of profibrolytic alternatively activated macrophages expressing matrix metalloproteinase-9. Regular boysenberry consumption therefore has the potential to moderate chronic lung remodeling and fibrosis in asthma and other chronic pulmonary diseases.
Collapse
Affiliation(s)
- Odette M Shaw
- Inflammation and Arthritis Group, Malaghan Institute of Medical Research, Wellington, New Zealand; Food & Wellness Group, The New Zealand Institute for Plant & Food Research Limited, Palmerston North, New Zealand; and
| | - Roger D Hurst
- Food & Wellness Group, The New Zealand Institute for Plant & Food Research Limited, Palmerston North, New Zealand; and
| | - Jacquie L Harper
- Inflammation and Arthritis Group, Malaghan Institute of Medical Research, Wellington, New Zealand; WelTec, Lower Hutt, New Zealand
| |
Collapse
|
17
|
Bhagyaraj E, Nanduri R, Saini A, Dkhar HK, Ahuja N, Chandra V, Mahajan S, Kalra R, Tiwari D, Sharma C, Janmeja AK, Gupta P. Human Xenobiotic Nuclear Receptor PXR Augments Mycobacterium tuberculosis Survival. THE JOURNAL OF IMMUNOLOGY 2016; 197:244-55. [PMID: 27233963 DOI: 10.4049/jimmunol.1600203] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/03/2016] [Indexed: 01/16/2023]
Abstract
Mycobacterium tuberculosis can evade host defense processes, thereby ensuring its survival and pathogenesis. In this study, we investigated the role of nuclear receptor, pregnane X receptor (PXR), in M. tuberculosis infection in human monocyte-derived macrophages. In this study, we demonstrate that PXR augments M. tuberculosis survival inside the host macrophages by promoting the foamy macrophage formation and abrogating phagolysosomal fusion, inflammation, and apoptosis. Additionally, M. tuberculosis cell wall lipids, particularly mycolic acids, crosstalk with human PXR (hPXR) by interacting with its promiscuous ligand binding domain. To confirm our in vitro findings and to avoid the reported species barrier in PXR function, we adopted an in vivo mouse model expressing hPXR, wherein expression of hPXR in mice promotes M. tuberculosis survival. Therefore, pharmacological intervention and designing antagonists to hPXR may prove to be a promising adjunct therapy for tuberculosis.
Collapse
Affiliation(s)
- Ella Bhagyaraj
- Council for Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Ravikanth Nanduri
- Council for Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Ankita Saini
- Council for Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Hedwin Kitdorlang Dkhar
- Council for Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Nancy Ahuja
- Council for Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Vemika Chandra
- Council for Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Sahil Mahajan
- Council for Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Rashi Kalra
- Council for Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Drishti Tiwari
- Council for Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Charu Sharma
- Council for Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India; and
| | | | - Pawan Gupta
- Council for Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India; and
| |
Collapse
|
18
|
Zhang N, Kima PE. Leishmania Infection Engages Non-Receptor Protein Kinases Differentially to Persist in Infected Hosts. Front Immunol 2016; 7:146. [PMID: 27148265 PMCID: PMC4834468 DOI: 10.3389/fimmu.2016.00146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/04/2016] [Indexed: 01/17/2023] Open
Abstract
Protein kinases play important roles in the regulation of cellular activities. In cells infected by pathogens, there is an increasing appreciation that dysregulated expression of protein kinases promotes the success of intracellular infections. In Leishmania-infected cells, expression and activation of protein kinases, such as the mitogen-activated protein kinases, kinases in the PI3-kinase signaling pathway, and kinases in the NF-κB-signaling pathway, are modulated in some manner. Several recent reviews have discussed our current understanding of the roles of these kinases in Leishmania infections. Apart from the kinases in the pathways enumerated above, there are other host cell protein kinases that are activated during the Leishmania infection of mammalian cells whose roles also appear to be significant. This review discusses recent observations on the Abl family of protein kinases and the protein kinase regulated by RNA in Leishmania infections.
Collapse
Affiliation(s)
- Naixin Zhang
- Department of Microbiology and Cell Science, University of Florida , Gainesville, FL , USA
| | - Peter E Kima
- Department of Microbiology and Cell Science, University of Florida , Gainesville, FL , USA
| |
Collapse
|
19
|
Baer CE, Rubin EJ, Sassetti CM. New insights into TB physiology suggest untapped therapeutic opportunities. Immunol Rev 2015; 264:327-43. [PMID: 25703570 DOI: 10.1111/imr.12267] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The current regimens used to treat tuberculosis are largely comprised of serendipitously discovered drugs that are combined based on clinical experience. Despite curing millions, these drug regimens are limited by the long course of therapy, the emergence of resistance, and the persistent tissue damage that remains after treatment. The last two decades have produced only a single new drug but have represented a renaissance in our understanding of the physiology of tuberculosis infection. The advent of mycobacterial genetics, sophisticated immunological methods, and imaging technologies have transformed our understanding of bacterial physiology as well as the contribution of the host response to disease outcome. Specific alterations in bacterial metabolism, heterogeneity in bacterial state, and drug penetration all limit the effectiveness of antimicrobial therapy. This review summarizes these new biological insights and discusses strategies to exploit them for the rational development of more effective therapeutics. Three general strategies are discussed. First, our emerging insight into bacterial physiology suggests new pathways that might be targeted to accelerate therapy. Second, we explore whether the concept of genetic synergy can be used to design effective combination therapies. Finally, we outline possible approaches to modulate the host response to accentuate antibiotic efficacy. These biology-driven strategies promise to produce more effective therapies.
Collapse
Affiliation(s)
- Christina E Baer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | | |
Collapse
|
20
|
Abstract
Host-directed therapies are a relatively new and promising approach to treatment of tuberculosis. Modulation of specific host immune pathways, including those that impact inflammation and immunopathology, can limit mycobacterial infection and pathology, both in cell culture and in animal models. This review explores a range of host pathways and drugs, some already approved for clinical use that have the potential to provide new adjunctive therapies for tuberculosis. Drugs targeting host processes may largely avoid the development of bacterial antibiotic resistance, a major public health concern for tuberculosis. However, these drugs may also have generally increased risk for side effects on the host. Understanding the specific mechanisms by which these drugs act and the relationship of these mechanisms to Mycobacterium tuberculosis pathogenesis will be critical in selecting appropriate host-directed therapy. Overall, these host-directed compounds provide a novel strategy for antituberculosis therapy.
Collapse
Affiliation(s)
- David M Tobin
- Department of Molecular Genetics and Microbiology, Center for Microbial Pathogenesis, Center for AIDS Research, Duke University School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
21
|
Abstract
Improved treatments are needed for nearly all forms of Mycobacterium tuberculosis infection. Adjunctive host-directed therapies have the potential to shorten tuberculosis treatment duration, prevent resistance and reduce lung injury by promoting autophagy, antimicrobial peptide production and other macrophage effector mechanisms, as well as by modifying specific mechanisms that cause lung inflammation and matrix destruction. The range of candidates is broad, including several agents approved for other clinical indications that are ready for evaluation in Phase II clinical trials. The promise of new and existing host-directed therapies that could accelerate response and improve tuberculosis treatment outcomes is discussed in this Opinion article.
Collapse
|
22
|
Fu YR, Gao KS, Ji R, Yi ZJ. Differential transcriptional response in macrophages infected with cell wall deficient versus normal Mycobacterium Tuberculosis. Int J Biol Sci 2015; 11:22-30. [PMID: 25552926 PMCID: PMC4278251 DOI: 10.7150/ijbs.10217] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/13/2014] [Indexed: 02/06/2023] Open
Abstract
Host-pathogen interactions determine the outcome following infection by mycobacterium tuberculosis (Mtb). Under adverse circumstances, normal Mtb can form cell-wall deficient (CWD) variants within macrophages, which have been considered an adaptive strategy for facilitating bacterial survival inside macrophages. However, the molecular mechanism by which infection of macrophages with different phenotypic Mtb elicits distinct responses of macrophages is not fully understood. To explore the molecular events triggered upon Mtb infection of macrophages, differential transcriptional responses of RAW264.7 cells infected with two forms of Mtb, CWD-Mtb and normal Mtb, were studied by microarray analysis. Some of the differentially regulated genes were confirmed by RT-qPCR in both RAW264.7 cells and primary macrophages. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway was used to analyze functions of differentially expressed genes. Distinct gene expression patterns were observed between CWD-Mtb and normal Mtb group. Mapt was up-regulated, while NOS2 and IL-11 were down-regulated in CWD-Mtb infected RAW264.7 cells and primary macrophages compared with normal Mtb infected ones. Many deregulated genes were found to be related to macrophages activation, immune response, phagosome maturation, autophagy and lipid metabolism. KEGG analysis showed that the differentially expressed genes were mainly involved in MAPK signaling pathway, nitrogen metabolism, cytokine-cytokine receptor interaction and focal adhesion. Taken together, the present study showed that differential macrophage responses were induced by intracellular CWD-Mtb an normal Mtb infection, which suggested that interactions between macrophages and different phenotypic Mtb are very complex. The results provide evidence for further understanding of pathogenesis of CWD-Mtb and may help in improving strategies to eliminate intracellular CWD-Mtb.
Collapse
Affiliation(s)
- Yu-Rong Fu
- 1. Department of Laboratory Medicine of Affiliated Hospital of Weifang Medical University, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong and Medical Priority Speciality of Clinical Laboratory in Shandong Province, Weifang Medical University, Weifang 261031, China; ; 2. Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China
| | - Kun-Shan Gao
- 1. Department of Laboratory Medicine of Affiliated Hospital of Weifang Medical University, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong and Medical Priority Speciality of Clinical Laboratory in Shandong Province, Weifang Medical University, Weifang 261031, China
| | - Rui Ji
- 2. Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China
| | - Zheng-Jun Yi
- 1. Department of Laboratory Medicine of Affiliated Hospital of Weifang Medical University, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong and Medical Priority Speciality of Clinical Laboratory in Shandong Province, Weifang Medical University, Weifang 261031, China
| |
Collapse
|
23
|
Macrophage polarization drives granuloma outcome during Mycobacterium tuberculosis infection. Infect Immun 2014; 83:324-38. [PMID: 25368116 DOI: 10.1128/iai.02494-14] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), induces formation of granulomas, structures in which immune cells and bacteria colocalize. Macrophages are among the most abundant cell types in granulomas and have been shown to serve as both critical bactericidal cells and targets for M. tuberculosis infection and proliferation throughout the course of infection. Very little is known about how these processes are regulated, what controls macrophage microenvironment-specific polarization and plasticity, or why some granulomas control bacteria and others permit bacterial dissemination. We take a computational-biology approach to investigate mechanisms that drive macrophage polarization, function, and bacterial control in granulomas. We define a "macrophage polarization ratio" as a metric to understand how cytokine signaling translates into polarization of single macrophages in a granuloma, which in turn modulates cellular functions, including antimicrobial activity and cytokine production. Ultimately, we extend this macrophage ratio to the tissue scale and define a "granuloma polarization ratio" describing mean polarization measures for entire granulomas. Here we coupled experimental data from nonhuman primate TB granulomas to our computational model, and we predict two novel and testable hypotheses regarding macrophage profiles in TB outcomes. First, the temporal dynamics of granuloma polarization ratios are predictive of granuloma outcome. Second, stable necrotic granulomas with low CFU counts and limited inflammation are characterized by short NF-κB signal activation intervals. These results suggest that the dynamics of NF-κB signaling is a viable therapeutic target to promote M1 polarization early during infection and to improve outcome.
Collapse
|
24
|
Moraco AH, Kornfeld H. Cell death and autophagy in tuberculosis. Semin Immunol 2014; 26:497-511. [PMID: 25453227 DOI: 10.1016/j.smim.2014.10.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 12/13/2022]
Abstract
Mycobacterium tuberculosis has succeeded in infecting one-third of the human race though inhibition or evasion of innate and adaptive immunity. The pathogen is a facultative intracellular parasite that uses the niche provided by mononuclear phagocytes for its advantage. Complex interactions determine whether the bacillus will or will not be delivered to acidified lysosomes, whether the host phagocyte will survive infection or die, and whether the timing and mode of cell death works to the advantage of the host or the pathogen. Here we discuss cell death and autophagy in TB. These fundamental processes of cell biology feature in all aspects of TB pathogenesis and may be exploited to the treatment or prevention of TB disease.
Collapse
Affiliation(s)
- Andrew H Moraco
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
25
|
The immune response and antibacterial therapy. Med Microbiol Immunol 2014; 204:151-9. [PMID: 25189424 DOI: 10.1007/s00430-014-0355-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 08/25/2014] [Indexed: 10/24/2022]
Abstract
The host's immune defence mechanisms are indispensable factors in surviving bacterial infections. However, in many circumstances, the immune system alone is inadequate. Since the 1940s, the use of antibacterial therapy has saved millions of lives, improving the span and quality of life of individuals. Unfortunately, we are now facing an era where antibacterial agents are threatened by resistance. In addition to targeting bacteria, some antibacterial agents affect various aspects of the immune response to infection. Since many antibacterial drugs are failing in efficacy due to resistance, it has been strongly suggested that any synergy between these drugs and the immune response be exploited in the treatment of bacterial infections. This review explores the influence of antibacterial therapy on the immune response and new approaches that could exploit this interaction for the treatment of bacterial infections.
Collapse
|
26
|
Srinivasan L, Ahlbrand S, Briken V. Interaction of Mycobacterium tuberculosis with host cell death pathways. Cold Spring Harb Perspect Med 2014; 4:cshperspect.a022459. [PMID: 24968864 DOI: 10.1101/cshperspect.a022459] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mycobacterium tuberculosis (Mtb) has coevolved with humans for tens of thousands of years. It is thus highly adapted to its human host and has evolved multiple mechanisms to manipulate host immune responses to its advantage. One central host pathogen interaction modality is host cell death pathways. Host cell apoptosis is associated with a protective response to Mtb infection, whereas a necrotic response favors the pathogen. Consistently, Mtb inhibits host cell apoptosis signaling but promotes induction of programmed necrosis. The molecular mechanisms involved in Mtb-mediated host cell death manipulation, the consequences for host immunity, and the potential for therapeutic and preventive approaches will be discussed.
Collapse
Affiliation(s)
- Lalitha Srinivasan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Sarah Ahlbrand
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
27
|
Dkhar HK, Nanduri R, Mahajan S, Dave S, Saini A, Somavarapu AK, Arora A, Parkesh R, Thakur KG, Mayilraj S, Gupta P. Mycobacterium tuberculosis keto-mycolic acid and macrophage nuclear receptor TR4 modulate foamy biogenesis in granulomas: a case of a heterologous and noncanonical ligand-receptor pair. THE JOURNAL OF IMMUNOLOGY 2014; 193:295-305. [PMID: 24907344 DOI: 10.4049/jimmunol.1400092] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The cell wall of Mycobacterium tuberculosis is configured of bioactive lipid classes that are essential for virulence and potentially involved in the formation of foamy macrophages (FMs) and granulomas. Our recent work established crosstalk between M. tuberculosis cell wall lipids and the host lipid-sensing nuclear receptor TR4. In this study, we have characterized, identified, and adopted a heterologous ligand keto-mycolic acid from among M. tuberculosis lipid repertoire for the host orphan NR TR4. Crosstalk between cell wall lipids and TR4 was analyzed by transactivation and promoter reporter assays. Mycolic acid (MA) was found to transactivate TR4 significantly compared with other cell wall lipids. Among the MA, the oxygenated form, keto-MA, was responsible for transactivation, and the identity was validated by TR4 binding assays followed by TLC and nuclear magnetic resonance. Isothermal titration calorimetry revealed that keto-MA binding to TR4 is energetically favorable. This keto-MA-TR4 axis seems to be essential to this oxygenated MA induction of FMs and granuloma formation as evaluated by in vitro and in vivo model of granuloma formation. TR4 binding with keto-MA features a unique association of host nuclear receptor with a bacterial lipid and adds to the presently known ligand repertoire beyond dietary lipids. Pharmacologic modulation of this heterologous axis may hold promise as an adjunct therapy to frontline tuberculosis drugs.
Collapse
Affiliation(s)
- Hedwin Kitdorlang Dkhar
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Ravikanth Nanduri
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Sahil Mahajan
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Sandeep Dave
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Ankita Saini
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Arun Kumar Somavarapu
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Ashish Arora
- Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow 226031, India
| | - Raman Parkesh
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Krishan Gopal Thakur
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Shanmugam Mayilraj
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Pawan Gupta
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh 160036, India; and
| |
Collapse
|
28
|
Abstract
Treatment of tuberculosis (TB) remains challenging, with lengthy treatment durations and complex drug regimens that are toxic and difficult to administer. Similar to the vast majority of antibiotics, drugs for Mycobacterium tuberculosis are directed against microbial targets. Although more effective drugs that target the bacterium may lead to faster cure of patients, it is possible that a biological limit will be reached that can be overcome only by adopting a fundamentally new treatment approach. TB regimens might be improved by including agents that target host pathways. Recent work on host-pathogen interactions, host immunity, and host-directed interventions suggests that supplementing anti-TB therapy with host modulators may lead to shorter treatment times, a reduction in lung damage caused by the disease, and a lower risk of relapse or reinfection. We undertook this review to identify molecular pathways of the host that may be amenable to modulation by small molecules for the treatment of TB. Although several approaches to augmenting standard TB treatment have been proposed, only a few have been explored in detail or advanced to preclinical and clinical studies. Our review focuses on molecular targets and inhibitory small molecules that function within the macrophage or other myeloid cells, on host inflammatory pathways, or at the level of TB-induced lung pathology.
Collapse
|
29
|
Abstract
Reactive oxygen species (ROS) are deadly weapons used by phagocytes and other cell types, such as lung epithelial cells, against pathogens. ROS can kill pathogens directly by causing oxidative damage to biocompounds or indirectly by stimulating pathogen elimination by various nonoxidative mechanisms, including pattern recognition receptors signaling, autophagy, neutrophil extracellular trap formation, and T-lymphocyte responses. Thus, one should expect that the inhibition of ROS production promote infection. Increasing evidences support that in certain particular infections, antioxidants decrease and prooxidants increase pathogen burden. In this study, we review the classic infections that are controlled by ROS and the cases in which ROS appear as promoters of infection, challenging the paradigm. We discuss the possible mechanisms by which ROS could promote particular infections. These mechanisms are still not completely clear but include the metabolic effects of ROS on pathogen physiology, ROS-induced damage to the immune system, and ROS-induced activation of immune defense mechanisms that are subsequently hijacked by particular pathogens to act against more effective microbicidal mechanisms of the immune system. The effective use of antioxidants as therapeutic agents against certain infections is a realistic possibility that is beginning to be applied against viruses.
Collapse
Affiliation(s)
- Claudia N Paiva
- Departamento de Imunologia, Instituto de Microbiologia , CCS Bloco D, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | |
Collapse
|
30
|
Podell BK, Ackart DF, Obregon-Henao A, Eck SP, Henao-Tamayo M, Richardson M, Orme IM, Ordway DJ, Basaraba RJ. Increased severity of tuberculosis in Guinea pigs with type 2 diabetes: a model of diabetes-tuberculosis comorbidity. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1104-1118. [PMID: 24492198 DOI: 10.1016/j.ajpath.2013.12.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/27/2013] [Accepted: 12/05/2013] [Indexed: 01/14/2023]
Abstract
Impaired glucose tolerance and type 2 diabetes were induced in guinea pigs to model the emerging comorbidity of Mycobacterium tuberculosis infection in diabetic patients. Type 2 diabetes mellitus was induced by low-dose streptozotocin in guinea pigs rendered glucose intolerant by first feeding a high-fat, high-carbohydrate diet before M. tuberculosis exposure. M. tuberculosis infection of diabetic guinea pigs resulted in severe and rapidly progressive tuberculosis (TB) with a shortened survival interval, more severe pulmonary and extrapulmonary pathology, and a higher bacterial burden compared with glucose-intolerant and nondiabetic controls. Compared with nondiabetics, diabetic guinea pigs with TB had an exacerbated proinflammatory response with more severe granulocytic inflammation and higher gene expression for the cytokines/chemokines interferon-γ, IL-17A, IL-8, and IL-10 in the lung and for interferon-γ, tumor necrosis factor-α, IL-8, and monocyte chemoattractant protein-1 in the spleen. TB disease progression in guinea pigs with impaired glucose tolerance was similar to that of nondiabetic controls in the early stages of infection but was more severe by day 90. The guinea pig model of type 2 diabetes-TB comorbidity mimics important features of the naturally occurring disease in humans. This model will be beneficial in understanding the complex pathogenesis of TB in diabetic patients and to test new strategies to improve TB and diabetes control when the two diseases occur together.
Collapse
Affiliation(s)
- Brendan K Podell
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - David F Ackart
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Andres Obregon-Henao
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Sarah P Eck
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Michael Richardson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Ian M Orme
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Diane J Ordway
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Randall J Basaraba
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado.
| |
Collapse
|
31
|
Genetic regulation of vesiculogenesis and immunomodulation in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2013; 110:E4790-7. [PMID: 24248369 DOI: 10.1073/pnas.1320118110] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) restrains immune responses well enough to escape eradication but elicits enough immunopathology to ensure its transmission. Here we provide evidence that this host-pathogen relationship is regulated in part by a cytosolic, membrane-associated protein with a unique structural fold, encoded by the Mtb gene rv0431. The protein acts by regulating the quantity of Mtb-derived membrane vesicles bearing Toll-like receptor 2 ligands, including the lipoproteins LpqH and SodC. We propose that rv0431 be named "vesiculogenesis and immune response regulator."
Collapse
|
32
|
Abstract
Real innovations in medicine and science are historic and singular; the stories behind each occurrence are precious. At Molecular Medicine we have established the Anthony Cerami Award in Translational Medicine to document and preserve these histories. The monographs recount the seminal events as told in the voice of the original investigators who provided the crucial early insight. These essays capture the essence of discovery, chronicling the birth of ideas that created new fields of research; and launched trajectories that persisted and ultimately influenced how disease is prevented, diagnosed, and treated. In this volume, the first Cerami Award Monograph, by Carl Nathan, MD, chairman of the Department of Microbiology and Immunology at Weill Cornell Medical College, reflects towering genius and soaring inspiration.
Collapse
Affiliation(s)
- Carl Nathan
- Weill Cornell Medical College, New York, New York, United States of America
| |
Collapse
|
33
|
The protein kinase double-stranded RNA-dependent (PKR) enhances protection against disease cause by a non-viral pathogen. PLoS Pathog 2013; 9:e1003557. [PMID: 23990781 PMCID: PMC3749959 DOI: 10.1371/journal.ppat.1003557] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 07/01/2013] [Indexed: 01/08/2023] Open
Abstract
PKR is well characterized for its function in antiviral immunity. Using Toxoplasma gondii, we examined if PKR promotes resistance to disease caused by a non-viral pathogen. PKR(-/-) mice infected with T. gondii exhibited higher parasite load and worsened histopathology in the eye and brain compared to wild-type controls. Susceptibility to toxoplasmosis was not due to defective expression of IFN-γ, TNF-α, NOS2 or IL-6 in the retina and brain, differences in IL-10 expression in these organs or to impaired induction of T. gondii-reactive T cells. While macrophages/microglia with defective PKR signaling exhibited unimpaired anti-T. gondii activity in response to IFN-γ/TNF-α, these cells were unable to kill the parasite in response to CD40 stimulation. The TRAF6 binding site of CD40, but not the TRAF2,3 binding sites, was required for PKR phosphorylation in response to CD40 ligation in macrophages. TRAF6 co-immunoprecipitated with PKR upon CD40 ligation. TRAF6-PKR interaction appeared to be indirect, since TRAF6 co-immunoprecipitated with TRAF2 and TRAF2 co-immunoprecipitated with PKR, and deficiency of TRAF2 inhibited TRAF6-PKR co-immunoprecipitation as well as PKR phosphorylation induced by CD40 ligation. PKR was required for stimulation of autophagy, accumulation the autophagy molecule LC3 around the parasite, vacuole-lysosomal fusion and killing of T. gondii in CD40-activated macrophages and microglia. Thus, our findings identified PKR as a mediator of anti-microbial activity and promoter of protection against disease caused by a non-viral pathogen, revealed that PKR is activated by CD40 via TRAF6 and TRAF2, and positioned PKR as a link between CD40-TRAF signaling and stimulation of the autophagy pathway.
Collapse
|
34
|
Cilfone NA, Perry CR, Kirschner DE, Linderman JJ. Multi-scale modeling predicts a balance of tumor necrosis factor-α and interleukin-10 controls the granuloma environment during Mycobacterium tuberculosis infection. PLoS One 2013; 8:e68680. [PMID: 23869227 PMCID: PMC3711807 DOI: 10.1371/journal.pone.0068680] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/03/2013] [Indexed: 01/11/2023] Open
Abstract
Interleukin-10 (IL-10) and tumor necrosis factor-α (TNF-α) are key anti- and pro-inflammatory mediators elicited during the host immune response to Mycobacterium tuberculosis (Mtb). Understanding the opposing effects of these mediators is difficult due to the complexity of processes acting across different spatial (molecular, cellular, and tissue) and temporal (seconds to years) scales. We take an in silico approach and use multi-scale agent based modeling of the immune response to Mtb, including molecular scale details for both TNF-α and IL-10. Our model predicts that IL-10 is necessary to modulate macrophage activation levels and to prevent host-induced tissue damage in a granuloma, an aggregate of cells that forms in response to Mtb. We show that TNF-α and IL-10 parameters related to synthesis, signaling, and spatial distribution processes control concentrations of TNF-α and IL-10 in a granuloma and determine infection outcome in the long-term. We devise an overall measure of granuloma function based on three metrics - total bacterial load, macrophage activation levels, and apoptosis of resting macrophages - and use this metric to demonstrate a balance of TNF-α and IL-10 concentrations is essential to Mtb infection control, within a single granuloma, with minimal host-induced tissue damage. Our findings suggest that a balance of TNF-α and IL-10 defines a granuloma environment that may be beneficial for both host and pathogen, but perturbing the balance could be used as a novel therapeutic strategy to modulate infection outcomes.
Collapse
Affiliation(s)
- Nicholas A. Cilfone
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cory R. Perry
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Denise E. Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (DEK); (JJL)
| | - Jennifer J. Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (DEK); (JJL)
| |
Collapse
|
35
|
Abstract
If discovery of new antibiotics continues to falter while resistance to drugs in clinical use continues to spread, society's medicine chest will soon lack effective treatments for many infections. Heritable antibiotic resistance emerges in bacteria from nonheritable resistance, also called phenotypic tolerance. This widespread phenomenon is closely linked to nonproliferative states in ways that scientists are just beginning to understand. A deeper understanding of the mechanisms of phenotypic tolerance may reveal new drug targets in the infecting organisms. At the same time, researchers must investigate ways to target the host in order to influence host-pathogen relationships. Government must reform the regulatory process for approval of new antibiotics. The private sector, government, and academia must undertake multiple, organized, multidisciplinary, parallel efforts to improve the ways in which antibiotics are discovered, tested, approved, and conserved, or it will be difficult to sustain the modern practice of medicine.
Collapse
Affiliation(s)
- Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|