1
|
Deltas C, Papagregoriou G, Louka SF, Malatras A, Flinter F, Gale DP, Gear S, Gross O, Hoefele J, Lennon R, Miner JH, Renieri A, Savige J, Turner AN. Genetic Modifiers of Mendelian Monogenic Collagen IV Nephropathies in Humans and Mice. Genes (Basel) 2023; 14:1686. [PMID: 37761826 PMCID: PMC10530214 DOI: 10.3390/genes14091686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
Familial hematuria is a clinical sign of a genetically heterogeneous group of conditions, accompanied by broad inter- and intrafamilial variable expressivity. The most frequent condition is caused by pathogenic (or likely pathogenic) variants in the collagen-IV genes, COL4A3/A4/A5. Pathogenic variants in COL4A5 are responsible for the severe X-linked glomerulopathy, Alport syndrome (AS), while homozygous or compound heterozygous variants in the COL4A3 or the COL4A4 gene cause autosomal recessive AS. AS usually leads to progressive kidney failure before the age of 40-years when left untreated. People who inherit heterozygous COL4A3/A4 variants are at-risk of a slowly progressive form of the disease, starting with microscopic hematuria in early childhood, developing Alport spectrum nephropathy. Sometimes, they are diagnosed with benign familial hematuria, and sometimes with autosomal dominant AS. At diagnosis, they often show thin basement membrane nephropathy, reflecting the uniform thin glomerular basement membrane lesion, inherited as an autosomal dominant condition. On a long follow-up, most patients will retain normal or mildly affected kidney function, while a substantial proportion will develop chronic kidney disease (CKD), even kidney failure at an average age of 55-years. A question that remains unanswered is how to distinguish those patients with AS or with heterozygous COL4A3/A4 variants who will manifest a more aggressive kidney function decline, requiring prompt medical intervention. The hypothesis that a subgroup of patients coinherit additional genetic modifiers that exacerbate their clinical course has been investigated by several researchers. Here, we review all publications that describe the potential role of candidate genetic modifiers in patients and include a summary of studies in AS mouse models.
Collapse
Affiliation(s)
- Constantinos Deltas
- School of Medicine, University of Cyprus, Nicosia 2109, Cyprus
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Gregory Papagregoriou
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Stavroula F. Louka
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Apostolos Malatras
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Frances Flinter
- Clinical Genetics Department, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 9RT, UK
| | - Daniel P. Gale
- Department of Renal Medicine, University College London, London NW3 2PF, UK
| | | | - Oliver Gross
- Clinic for Nephrology and Rheumatology, University Medicine Goettingen, 37075 Goettingen, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum Rechts der Isar, School of Medicine & Health, Technical University Munich, 81675 Munich, Germany
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9WU, UK
| | - Jeffrey H. Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alessandra Renieri
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Parkville, VIC 3052, Australia
| | - A. Neil Turner
- Renal Medicine, Royal Infirmary, University of Edinburgh, Edinburgh EH16 4UX, UK
| |
Collapse
|
2
|
Sun Z, Wang Y, Wei T, Liu L. Identification of key genes and miRNAs related to polycystic ovary syndrome by comprehensive analysis of microarray. BMC Med Genomics 2022; 15:267. [PMID: 36544152 PMCID: PMC9769000 DOI: 10.1186/s12920-022-01384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/25/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND We aimed to explore mechanisms of development and progression of polycystic ovary syndrome (PCOS). METHODS The microRNA expression microarray GSE37914 and gene expression profiles GSE43264 and GSE98421 were downloaded from the Gene Expression Omnibus database. The differentially expressed miRNAs (DEmiRNAs) and genes (DEGs) were screened using Limma package. Then, the DEGs and DEmiRNAs were combined to use for the subsequent analysis, including the functional enrichment analysis, protein-protein interaction (PPI) network and module analysis, drug-gene interaction network analysis, and DEmiRNAs-DEGs interactive network construction. RESULTS A total of 26 DEmiRNAs and 80 DEGs were screened. The PPI network contained 68 nodes and 259 interactions. A significant clustering module with 8 nodes and 25 interactions was obtained. Three PCOS-related overlapping pathways were obtained based on PPI-degree top10 and module genes, including prion diseases, Staphylococcus aureus infection, and Chagas disease (American trypanosomiasis). A total of 44 drug-gene interaction pairs were obtained, which included 2 up-regulated genes (LDLR and VCAM1), 4 down-regulated genes (C1QA, C1QB, IL6 and ACAN) and 26 small molecules drugs. A total of 52 nodes and 57 interactions were obtained in the DEmiRNA-DEGs regulatory network, LDLR was regulated by miR-152-3p, miR-1207-5p, miR-378a-5p and miR-150-5p. CONCLUSIONS Our research has identified several key genes and pathways related to PCOS. These results can improve our understanding of PCOS and provide new basis for drug target research.
Collapse
Affiliation(s)
- Ziqian Sun
- grid.415954.80000 0004 1771 3349Department of Gynecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, 130033 Jilin Province China
| | - Yang Wang
- Department of Dermatology, Bayi Hospital of Changchun, Changchun, 130021 Jilin Province China
| | - Tianshu Wei
- Department of Gynecology and Obstetrics, Jilin City Center Hospital, Jilin City, 132011 Jilin Province China
| | - Li Liu
- grid.415954.80000 0004 1771 3349Department of Gynecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, 130033 Jilin Province China ,grid.415954.80000 0004 1771 3349Reproductive Medical Center, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Road, Changchun, 130031 China
| |
Collapse
|
3
|
Gill PS, Dweep H, Rose S, Wickramasinghe PJ, Vyas KK, McCullough S, Porter-Gill PA, Frye RE. Integrated microRNA–mRNA Expression Profiling Identifies Novel Targets and Networks Associated with Autism. J Pers Med 2022; 12:jpm12060920. [PMID: 35743705 PMCID: PMC9225282 DOI: 10.3390/jpm12060920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 01/27/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder, with mutations in hundreds of genes contributing to its risk. Herein, we studied lymphoblastoid cell lines (LCLs) from children diagnosed with autistic disorder (n = 10) and controls (n = 7) using RNA and miRNA sequencing profiles. The sequencing analysis identified 1700 genes and 102 miRNAs differentially expressed between the ASD and control LCLs (p ≤ 0.05). The top upregulated genes were GABRA4, AUTS2, and IL27, and the top upregulated miRNAs were hsa-miR-6813-3p, hsa-miR-221-5p, and hsa-miR-21-5p. The RT-qPCR analysis confirmed the sequencing results for randomly selected candidates: AUTS2, FMR1, PTEN, hsa-miR-15a-5p, hsa-miR-92a-3p, and hsa-miR-125b-5p. The functional enrichment analysis showed pathways involved in ASD control proliferation of neuronal cells, cell death of immune cells, epilepsy or neurodevelopmental disorders, WNT and PTEN signaling, apoptosis, and cancer. The integration of mRNA and miRNA sequencing profiles by miRWalk2.0 identified correlated changes in miRNAs and their targets’ expression. The integration analysis found significantly dysregulated miRNA–gene pairs in ASD. Overall, these findings suggest that mRNA and miRNA expression profiles in ASD are greatly altered in LCLs and reveal numerous miRNA–gene interactions that regulate critical pathways involved in the proliferation of neuronal cells, cell death of immune cells, and neuronal development.
Collapse
Affiliation(s)
- Pritmohinder S. Gill
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA;
- Arkansas Children′s Research Institute, Little Rock, AR 72202, USA; (K.K.V.); (S.M.); (P.A.P.-G.)
- Correspondence: ; Tel.: +1-501-364-2743
| | - Harsh Dweep
- The Wistar Institute, 3601 Spruce St., Philadelphia, PA 19104, USA; (H.D.); (P.J.W.)
| | - Shannon Rose
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA;
- Arkansas Children′s Research Institute, Little Rock, AR 72202, USA; (K.K.V.); (S.M.); (P.A.P.-G.)
| | | | - Kanan K. Vyas
- Arkansas Children′s Research Institute, Little Rock, AR 72202, USA; (K.K.V.); (S.M.); (P.A.P.-G.)
| | - Sandra McCullough
- Arkansas Children′s Research Institute, Little Rock, AR 72202, USA; (K.K.V.); (S.M.); (P.A.P.-G.)
| | - Patricia A. Porter-Gill
- Arkansas Children′s Research Institute, Little Rock, AR 72202, USA; (K.K.V.); (S.M.); (P.A.P.-G.)
| | - Richard E. Frye
- Barrow Neurological Institute at Phoenix Children′s Hospital, Phoenix, AZ 85016, USA;
- Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| |
Collapse
|
4
|
Dweep H, Showe LC, Kossenkov AV. Functional Annotation of MicroRNAs Using Existing Resources. Methods Mol Biol 2022; 2257:57-77. [PMID: 34432273 DOI: 10.1007/978-1-0716-1170-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are endogenous small noncoding RNAs that are involved in most biological signaling pathways, including the cell cycle, apoptosis, proliferation, immune response, metabolism as well as in biological processes including organ development and in human diseases like cancers. During the past two decades, high-throughput transcriptomic profiling using next generation sequencing and microarrays have been extensively utilized to identify differentially expressed miRNAs across different conditions and diseases. A natural extension of miRNA identification is to the process of functionally annotating known or predicted gene targets of those miRNAs and, by inference, revealing their potential influences on diverse biological pathways and functions. In this chapter, we provide a stepwise guideline on how to perform functional enrichment analyses on miRNAs of interest using publicly available resources such as miRWalk2.0.
Collapse
Affiliation(s)
- Harsh Dweep
- The Wistar Institute, Philadelphia, PA, USA.
| | | | | |
Collapse
|
5
|
He D, Wu D, Muller S, Wang L, Saha P, Ahanger SH, Liu SJ, Cui M, Hong SJ, Jain M, Olson HE, Akeson M, Costello JF, Diaz A, Lim DA. miRNA-independent function of long noncoding pri-miRNA loci. Proc Natl Acad Sci U S A 2021; 118:e2017562118. [PMID: 33758101 PMCID: PMC8020771 DOI: 10.1073/pnas.2017562118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Among the large, diverse set of mammalian long noncoding RNAs (lncRNAs), long noncoding primary microRNAs (lnc-pri-miRNAs) are those that host miRNAs. Whether lnc-pri-miRNA loci have important biological function independent of their cognate miRNAs is poorly understood. From a genome-scale lncRNA screen, lnc-pri-miRNA loci were enriched for function in cell proliferation, and in glioblastoma (i.e., GBM) cells with DGCR8 or DROSHA knockdown, lnc-pri-miRNA screen hits still regulated cell growth. To molecularly dissect the function of a lnc-pri-miRNA locus, we studied LOC646329 (also known as MIR29HG), which hosts the miR-29a/b1 cluster. In GBM cells, LOC646329 knockdown reduced miR-29a/b1 levels, and these cells exhibited decreased growth. However, genetic deletion of the miR-29a/b1 cluster (LOC646329-miR29Δ) did not decrease cell growth, while knockdown of LOC646329-miR29Δ transcripts reduced cell proliferation. The miR-29a/b1-independent activity of LOC646329 corresponded to enhancer-like activation of a neighboring oncogene (MKLN1), regulating cell propagation. The LOC646329 locus interacts with the MKLN1 promoter, and antisense oligonucleotide knockdown of the lncRNA disrupts these interactions and reduces the enhancer-like activity. More broadly, analysis of genome-wide data from multiple human cell types showed that lnc-pri-miRNA loci are significantly enriched for DNA looping interactions with gene promoters as well as genomic and epigenetic characteristics of transcriptional enhancers. Functional studies of additional lnc-pri-miRNA loci demonstrated cognate miRNA-independent enhancer-like activity. Together, these data demonstrate that lnc-pri-miRNA loci can regulate cell biology via both miRNA-dependent and miRNA-independent mechanisms.
Collapse
Affiliation(s)
- Daniel He
- Department of Neurological Surgery, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Developmental and Stem Cell Biology Graduate Program, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
| | - David Wu
- Department of Neurological Surgery, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Medical Scientist Training Program, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
| | - Soren Muller
- Department of Neurological Surgery, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
| | - Lin Wang
- Department of Neurological Surgery, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
| | - Parna Saha
- Department of Neurological Surgery, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Department of Surgery, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121
| | - Sajad Hamid Ahanger
- Department of Neurological Surgery, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Department of Surgery, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121
| | - Siyuan John Liu
- Department of Neurological Surgery, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Medical Scientist Training Program, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
| | - Miao Cui
- Department of Neurological Surgery, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
| | - Sung Jun Hong
- Department of Neurological Surgery, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Developmental and Stem Cell Biology Graduate Program, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
| | - Miten Jain
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064
- UCSC Genomics Institute, University of California, Santa Cruz, CA 95064
| | - Hugh E Olson
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064
- UCSC Genomics Institute, University of California, Santa Cruz, CA 95064
| | - Mark Akeson
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064
- UCSC Genomics Institute, University of California, Santa Cruz, CA 95064
| | - Joseph F Costello
- Department of Neurological Surgery, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
| | - Aaron Diaz
- Department of Neurological Surgery, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
| | - Daniel A Lim
- Department of Neurological Surgery, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143;
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143
- Department of Surgery, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121
| |
Collapse
|
6
|
Wei L, Cai G, Jiang L, Gao L, Yang Z, Zhang W. Identification of key pathways and RNAs associated with skeletal muscle atrophy after spinal cord injury. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2021; 21:550-559. [PMID: 34854395 PMCID: PMC8672411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This study was performed to investigate the potential key molecules involved in the progression of skeletal muscle atrophy after SCI. METHODS Based on GSE21497 dataset, the DEmRNAs and DElncRNAs were screened after differentially expressed analysis. Then the enrichment analyses were performed on DEmRNAs. Then the PPI network and ceRNA network were constructed. Finally, the DGIdb was utilized to predict drug-gene interactions. RESULTS A total of 412 DEmRNAs and 21 DElncRNAs were obtained. The DEmRNAs were significantly enriched in MAPK signaling pathway and FoxO signaling pathway. In addition, UBE2D1, JUN, and FBXO32 had higher node degrees in PPI network, and the top 20 genes with high degree were significantly enriched in FoxO signaling pathway and Endometrial cancer. Moreover, FOXO3 was regulated by hsa-miR-1207-5p and hsa-miR-1207-5p was regulated by lncRNA RP11-253E3.3 in ceRNA network. Finally, 37 drug-gene interactions were obtained based on the 26 genes in ceRNA network. CONCLUSION UBE2D1, JUN, and FBXO32 are likely to be related to the progression of skeletal muscle atrophy after SCI, and activating of MAPK signaling pathway, Endometrial cancer and FoxO signaling pathway may induce skeletal muscle inflammation, apoptosis, autophagy and atrophy after SCI. Moreover, RP11-253E3.3-hsa-miR-1207-5p-FOXO3 axis may be a promising therapeutic target for skeletal muscle atrophy after SCI.
Collapse
Affiliation(s)
- Li Wei
- Department of Rehabilitation Medicine, Minhang District Integrated Hospitals of Traditional Chinese and Western Medicine, Shanghai, China
| | - Guoying Cai
- Preventive Treatment Department, Minhang District Integrated Hospitals of Traditional Chinese and Western Medicine, Shanghai, China
| | - Lian Jiang
- Department of Rehabilitation Medicine, Minhang District Integrated Hospitals of Traditional Chinese and Western Medicine, Shanghai, China
| | - Linhui Gao
- Department of Rehabilitation Medicine, Minhang District Integrated Hospitals of Traditional Chinese and Western Medicine, Shanghai, China
| | - Zehui Yang
- Department of Rehabilitation Medicine, Minhang District Integrated Hospitals of Traditional Chinese and Western Medicine, Shanghai, China
| | - Wei Zhang
- Department of Rehabilitation Medicine, Minhang District Integrated Hospitals of Traditional Chinese and Western Medicine, Shanghai, China,Corresponding author: Wei Zhang, Department of Rehabilitation Medicine, Minhang District Integrated Hospitals of Traditional Chinese and Western Medicine, No.155 Jianchuan Road, Minhang District, Shanghai, 200241, China E-mail:
| |
Collapse
|
7
|
Matthaiou A, Poulli T, Deltas C. Prevalence of clinical, pathological and molecular features of glomerular basement membrane nephropathy caused by COL4A3 or COL4A4 mutations: a systematic review. Clin Kidney J 2020; 13:1025-1036. [PMID: 33391746 PMCID: PMC7769542 DOI: 10.1093/ckj/sfz176] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Patients heterozygous for COL4A3 or COL4A4 mutations show a wide spectrum of disease, extending from familial isolated microscopic haematuria, as a result of thin basement membranes (TBMs), to autosomal dominant Alport syndrome (ADAS) and end-stage renal disease (ESRD). Many patients are mentioned in the literature under the descriptive diagnosis of TBM nephropathy (TBMN), in which case it actually describes a histological finding that represents the carriers of autosomal recessive Alport syndrome (ARAS), a severe glomerulopathy, as most patients reach ESRD at a mean age of 25 years. METHODS We performed a systematic literature review for patients with heterozygous COL4A3/A4 mutations with the aim of recording the spectrum and frequency of pathological features. We searched three databases (PubMed, Embase and Scopus) using the keywords 'Autosomal Dominant Alport Syndrome' OR 'Thin Basement Membrane Disease' OR 'Thin Basement Membrane Nephropathy'. We identified 48 publications reporting on 777 patients from 258 families. RESULTS In total, 29% of the patients developed chronic kidney disease (CKD) and 15.1% reached ESRD at a mean age of 52.8 years. Extrarenal features and typical Alport syndrome (AS) findings had a low prevalence in patients as follows: hearing loss, 16%; ocular lesions, 3%; basement membrane thickening, 18.4%; and podocyte foot process effacement, 6.9%. Data for 76 patients from 54 families emphasize extensive inter- and intrafamilial heterogeneity, with age at onset of ESRD ranging between 21 and 84 years (mean 52.8). CONCLUSIONS The analysis enabled a comparison of the clinical course of patients with typical ARAS or X-linked AS with those with heterozygous COL4A mutations diagnosed with TBMN or ADAS. Despite the consequence of a potential ascertainment bias, an important outcome is that TBM poses a global high risk of developing severe CKD, over a long follow-up, with a variable spectrum of other findings. The results are useful to practicing nephrologists for better evaluation of patients.
Collapse
Affiliation(s)
| | | | - Constantinos Deltas
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
8
|
Hojati Z, Omidi F, Dehbashi M, Mohammad Soltani B. The Highlighted Roles of Metabolic and Cellular Response to Stress Pathways Engaged in Circulating hsa-miR-494-3p and hsa-miR-661 in Alzheimer's Disease. IRANIAN BIOMEDICAL JOURNAL 2020; 25:62-7. [PMID: 33129241 PMCID: PMC7748118 DOI: 10.29252/ibj.25.1.62] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: Among different roles of miRNAs in AD pathogenesis, hsa-miR-494-3p and hsa-miR-661 functions are poorly understood. Methods: To obtain the gene targets, gene networks, gene ontology, and enrichment analysis of the two miRNAs, some web servers were utilized. Furthermore, the expressions of these miRNAs were analyzed by qRT-PCR in 36 blood sera, including 18 Alzheimer’s patients and 18 healthy individuals. Results: The in silico analysis demonstrated the highlighted roles of metabolic and cellular response to stress pathways engaged in circulating hsa-miR-494-3p and hsa-miR-661 in AD. The qRT-PCR analysis showed that the downregulated expression level of hsa-miR-661 was statistically significant (p < 0.05). Also, the ROC curve of hsa-miR-661 displayed the significant AUC (p = 0.01). Conclusion: Based on our findings, the metabolic and cellular responses to stress pathways are closely connected to these two miRNAs functions. Besides, the qRT-PCR and Roc curve determined hsa-miR-661 could be as a biomarker for diagnosis or prognosis of AD patients.
Collapse
Affiliation(s)
- Zohreh Hojati
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran
| | - Farzaneh Omidi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Moein Dehbashi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran
| | - Bahram Mohammad Soltani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
9
|
Abdi A, Zafarpiran M, Farsani ZS. The Computational Analysis Conducted on miRNA Target Sites in Association with SNPs at 3'UTR of ADHD-implicated Genes. Cent Nerv Syst Agents Med Chem 2019; 20:58-75. [PMID: 31660846 PMCID: PMC7497587 DOI: 10.2174/1871524919666191014104843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 12/25/2022]
Abstract
Background: Attention-deficit/hyperactivity disorder (ADHD) is a frequent chronic neuropsychiatric disorder in which different factors including environmental, genetic, and epigenetic factors play an important role in its pathogenesis. One of the effective epigenetic factors is recognized as MicroRNAs (miRNAs). On the other hand, it has been indicated that the single nucleotide polymorphism (SNPs) present within 3'UTR (3' untranslated region) of mRNAs can influence the regulation of miRNA-mediated gene and susceptibility to a diversity of human diseases. Methods: The purpose of this study was to analyze the SNPs within the 3'UTR of miRNA target genes associated with ADHD . 3'UTR genetic variants were identified in all genes associated with ADHD using DisGeNET, dbGaP, Ovid, DAVID, Web of knowledge, and SNPs databases. miRNA's target prediction databases were applied in order to predict the miRNA binding sites. 124 SNPs with MAF>0.05 were identified located in the binding site of the miRNA of 35 genes amongst 51 genes associated with ADHD. Results: Bioinformatics analysis predicted 81 MRE (miRNA recognition elements)-creating SNPs, 101 MRE-breaking SNPs, 61 MRE-enhancing SNPs, and finally predicted 41 MRE-decreasing SNPs in the 3'UTR of ADHD-implicated genes. These candidate SNPs within these genes miRNA binding sites can alter the miRNAs binding, and consequently, lead to mRNA gene regulation. Conclusion: Therefore, these miRNA and MRE-SNPs may play important roles in ADHD, and because of that, they would be valuable for further investigation in the field of functional verification.
Collapse
Affiliation(s)
- Adel Abdi
- Department of Genetics, Animal Biology Group, Faculty of Natural Science, Tabriz University, Tabriz, Iran
| | - Mina Zafarpiran
- Department of Genetics, Animal Biology Group, Faculty of Natural Science, Tabriz University, Tabriz, Iran
| | - Zeinab S Farsani
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, Iran
| |
Collapse
|
10
|
Ng MSY, McClymont K, McCallum N, Dua R, Holman K, Bennetts B, Ho G, Patel C, Mallett AJ. CFHR5 Nephropathy in a Greek-Cypriot Australian Family: Ancestry-Informed Precision Medicine. Kidney Int Rep 2018; 3:1222-1228. [PMID: 30197990 PMCID: PMC6127413 DOI: 10.1016/j.ekir.2018.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Monica S Y Ng
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Kelly McClymont
- Department of Histopathology, Sullivan Nicolaides Pathology, Brisbane, Australia
| | - Naomi McCallum
- Electron Microscopy Unit, Pathology Queensland, Royal Brisbane & Women's Hospital, Brisbane, Australia
| | - Rahul Dua
- Mater Private Hospital, Townsville, Australia
| | - Katherine Holman
- Department of Molecular Genetics, The Children's Hospital at Westmead, Sydney, Australia
| | - Bruce Bennetts
- Department of Molecular Genetics, The Children's Hospital at Westmead, Sydney, Australia.,Disciplines of Genetic Medicine and Paediatrics and Child Health, The University of Sydney, Sydney, Australia
| | - Gladys Ho
- Department of Molecular Genetics, The Children's Hospital at Westmead, Sydney, Australia
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Andrew J Mallett
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
11
|
Voskarides K, Papagregoriou G, Hadjipanagi D, Petrou I, Savva I, Elia A, Athanasiou Y, Pastelli A, Kkolou M, Hadjigavriel M, Stavrou C, Pierides A, Deltas C. COL4A5 and LAMA5 variants co-inherited in familial hematuria: digenic inheritance or genetic modifier effect? BMC Nephrol 2018; 19:114. [PMID: 29764427 PMCID: PMC5954460 DOI: 10.1186/s12882-018-0906-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/25/2017] [Accepted: 01/21/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND About 40-50% of patients with familial microscopic hematuria (FMH) caused by thin basement membrane nephropathy (TBMN) inherit heterozygous mutations in collagen IV genes (COL4A3, COL4A4). On long follow-up, the full phenotypic spectrum of these patients varies a lot, ranging from isolated MH or MH plus low-grade proteinuria to chronic renal failure of variable degree, including end-stage renal disease (ESRD). METHODS Here, we performed Whole Exome Sequencing (WES) in patients of six families, presenting with autosomal dominant FMH, with or without progression to proteinuria and loss of renal function, all previously found negative for severe collagen IV mutations. Hierarchical filtering of the WES data was performed, followed by mutation prediction analysis, Sanger sequencing and genetic segregation analysis. RESULTS In one family with four patients, we found evidence for the contribution of two co-inherited variants in two crucial genes expressed in the glomerular basement membrane (GBM); LAMA5-p.Pro1243Leu and COL4A5-p.Asp654Tyr. Mutations in COL4A5 cause classical X-linked Alport Syndrome, while rare mutations in the LAMA5 have been reported in patients with focal segmental glomerulosclerosis. The phenotypic spectrum of the patients includes hematuria, proteinuria, focal segmental glomerulosclerosis, loss of kidney function and renal cortical cysts. CONCLUSIONS A modifier role of LAMA5 on the background of a hypomorphic Alport syndrome causing mutation is a possible explanation of our findings. Digenic inheritance is another scenario, following the concept that mutations at both loci more accurately explain the spectrum of symptoms, but further investigation is needed under this concept. This is the third report linking a LAMA5 variant with human renal disease and expanding the spectrum of genes involved in glomerular pathologies accompanied by familial hematurias. The cystic phenotype overlaps with that of a mouse model, which carried a Lama5 hypomorphic mutation that caused severely reduced Lama5 protein levels and produced kidney cysts.
Collapse
Affiliation(s)
- Konstantinos Voskarides
- Molecular Medicine Research Center, Department of Biological Sciences, University of Cyprus, 1, University Avenue, 2109, Nicosia, Cyprus. .,Medical School, University of Cyprus, Nicosia, Cyprus.
| | - Gregory Papagregoriou
- Molecular Medicine Research Center, Department of Biological Sciences, University of Cyprus, 1, University Avenue, 2109, Nicosia, Cyprus
| | - Despina Hadjipanagi
- Molecular Medicine Research Center, Department of Biological Sciences, University of Cyprus, 1, University Avenue, 2109, Nicosia, Cyprus
| | - Ioanelli Petrou
- Molecular Medicine Research Center, Department of Biological Sciences, University of Cyprus, 1, University Avenue, 2109, Nicosia, Cyprus
| | - Isavella Savva
- Molecular Medicine Research Center, Department of Biological Sciences, University of Cyprus, 1, University Avenue, 2109, Nicosia, Cyprus
| | - Avraam Elia
- Department of Pediatric Nephrology, Archbishop Makarios III Hospital, Nicosia, Cyprus
| | | | | | - Maria Kkolou
- Department of Nephrology, Larnaca General Hospital, Larnaca, Cyprus
| | | | | | - Alkis Pierides
- Molecular Medicine Research Center, Department of Biological Sciences, University of Cyprus, 1, University Avenue, 2109, Nicosia, Cyprus.,Hippocrateon Hospital, Nicosia, Cyprus
| | - Constantinos Deltas
- Molecular Medicine Research Center, Department of Biological Sciences, University of Cyprus, 1, University Avenue, 2109, Nicosia, Cyprus. .,College of Medicine, Qatar University, Doha, Qatar.
| |
Collapse
|
12
|
Parveen A, Gretz N, Dweep H. Obtaining miRNA‐Target Interaction Information from miRWalk2.0. ACTA ACUST UNITED AC 2018; 55:12.15.1-12.15.27. [DOI: 10.1002/cpbi.14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Alisha Parveen
- Medical Research Center, Medical Faculty of Mannheim, University of Heidelberg Mannheim Germany
| | - Norbert Gretz
- Medical Research Center, Medical Faculty of Mannheim, University of Heidelberg Mannheim Germany
| | - Harsh Dweep
- Medical Research Center, Medical Faculty of Mannheim, University of Heidelberg Mannheim Germany
| |
Collapse
|
13
|
Deltas C. Digenic inheritance and genetic modifiers. Clin Genet 2018; 93:429-438. [PMID: 28977688 DOI: 10.1111/cge.13150] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 12/28/2022]
Abstract
Digenic inheritance (DI) concerns pathologies with the simplest form of multigenic etiology, implicating more than 1 gene (and perhaps the environment). True DI is when biallelic or even triallelic mutations in 2 distinct genes, in cis or in trans, are necessary and sufficient to cause pathology with a defined diagnosis. In true DI, a heterozygous mutation in each of 2 genes alone is not associated with a recognizable phenotype. Well-documented diseases with true DI are so far rare and follow non-Mendelian inheritance. DI is also encountered when by serendipity, pathogenic mutations responsible for 2 distinct disease entities are co-inherited, leading to a mixed phenotype. Also, we can consider many true monogenic Mendelian conditions, which show impressively broad spectrum of phenotypes due to pseudo-DI, as a result of co-inheriting genetic modifiers (GMs). I am herewith reviewing examples of GM and embark on presenting some recent notable examples of true DI, with wider discussion of the literature. Undeniably, the advent of high throughput sequencing is bound to unravel more patients suffering with true DI conditions and elucidate many important GM, thus impacting precision medicine.
Collapse
Affiliation(s)
- C Deltas
- College of Medicine, Qatar University, Doha, Qatar.,Department of Biological Sciences, Molecular Medicine Research Center, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
14
|
Ghesquières H, Larrabee BR, Casasnovas O, Maurer MJ, McKay JD, Ansell SM, Montgomery D, Asmann YW, Farrell K, Verney A, Slager SL, Allmer C, Perrot A, Delarue R, Habermann TM, Dupuis J, Link BK, Canioni D, Dogan A, Cozen W, Jarrett RF, Cerhan JR, Salles G. A susceptibility locus for classical Hodgkin lymphoma at 8q24 near MYC/PVT1 predicts patient outcome in two independent cohorts. Br J Haematol 2018; 180:286-290. [PMID: 27716907 PMCID: PMC5344766 DOI: 10.1111/bjh.14306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hervé Ghesquières
- Department of Haematology, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
- Centre de Recherche en Cancérologie de Lyon - INSERM U 1052/CNRS UMR 5286/Centre Léon Bérard, Lyon, France
- Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - James D. McKay
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Stephen M. Ansell
- Division of Haematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Yan W. Asmann
- Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Katrina Farrell
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Aurélie Verney
- Centre de Recherche en Cancérologie de Lyon - INSERM U 1052/CNRS UMR 5286/Centre Léon Bérard, Lyon, France
| | | | | | - Aurore Perrot
- Department of Haematology, CHU Nancy-Brabois, Vandoeuvre, France
| | - Richard Delarue
- Department of Haematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker, Paris, France
| | - Thomas M. Habermann
- Division of Haematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jehan Dupuis
- Lymphoid Malignancies Unit, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP) and University Paris Est, Créteil, France
| | - Brian K. Link
- University of Iowa, Holden Comprehensive Cancer Center, Iowa City, IA, USA
| | - Danielle Canioni
- Department of Pathology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker, Paris, France
| | - Ahmet Dogan
- Department of Laboratory Medicine and Pathology, Memorial Sloan-Kettering Cancer Center, NY, USA
| | - Wendy Cozen
- USC Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Ruth F. Jarrett
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Gilles Salles
- Department of Haematology, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
- Centre de Recherche en Cancérologie de Lyon - INSERM U 1052/CNRS UMR 5286/Centre Léon Bérard, Lyon, France
| |
Collapse
|
15
|
Kesselheim A, Ashton E, Bockenhauer D. Potential and pitfalls in the genetic diagnosis of kidney diseases. Clin Kidney J 2017; 10:581-585. [PMID: 28980668 PMCID: PMC5622903 DOI: 10.1093/ckj/sfx075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/13/2017] [Indexed: 12/14/2022] Open
Abstract
Next-generation sequencing has dramatically decreased the cost of gene sequencing, facilitating the simultaneous analysis of multiple genes at the same time; obtaining a genetic result for an individual patient has become much easier. The article by Ars and Torra in this issue of the Clinical Kidney Journal provides examples of the ever-increasing ability to understand a given patient's disease on the molecular level, so that in some cases not only the causative variants in a disease gene are identified, but also potential modifiers in other genes. Yet, with increased sequencing, a large number of variants are discovered that are difficult to interpret. These so-called 'variants of uncertain significance' raise important questions: when and how can pathogenicity be clearly attributed? This is of critical importance, as there are potentially serious consequences attached: decisions about various forms of treatment and even about life and death, such as termination of pregnancy, may hinge on the answer to these questions. Geneticists, thus, need to use the utmost care in the interpretation of identified variants and clinicians must be aware of this problem. We here discuss the potential of genetics to facilitate personalized treatment, but also the pitfalls and how to deal with them.
Collapse
Affiliation(s)
- Anne Kesselheim
- Centre for Nephrology, University College London, London, UK
| | - Emma Ashton
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- North East Thames Regional Genetics Service, Molecular Genetics, London, UK
| | - Detlef Bockenhauer
- Centre for Nephrology, University College London, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
16
|
Naidoo P, Naidoo RN, Ramkaran P, Asharam K, Chuturgoon AA. The Tyr113His T/C rs1051740 and 'very slow' phenotype of the EPHX1 gene alters miR-26b-5p and miR-1207-5p expression in pregnancy. Gene 2017; 633:71-81. [PMID: 28789952 DOI: 10.1016/j.gene.2017.07.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/29/2017] [Accepted: 07/31/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Environmental insults and microsomal epoxide hydrolase 1 (EPHX1) single nucleotide polymorphisms (SNPs), Tyr113His T/C rs1051740 and His139Arg A/G rs2234922, aberrantly alters microRNA (miR) expression and are linked to low birthweights (LBW). OBJECTIVES To investigate the interplay between pollution, EPHX1 SNPs and miRs during pregnancy and associated LBW outcomes. METHODS South African pregnant women (n=241) were recruited in the MACE birth cohort study in Durban, a city with high levels of industry and traffic related pollutants. EPHX1 SNPs were genotyped using PCR-RFLP and grouped into their respective phenotypes, i.e. normal (N), slow (S), very slow (VS) and fast (F). EPHX1, miR-26b-5p, miR-193b-3p and miR-1207-5p expression were determined using quantitative PCR. RESULTS Mothers with the Tyr113His SNP had low iron levels [TT vs. TC+CC: mean difference (MD)=0.67g/dl; p=0.0167], LBW [TT vs. TC+CC: MD=189.30g; p=0.0067], and low EPHX1 expression; p<0.0001. miR-26b-5p and miR-1207-5p expression were significantly higher in the CC genotypes compared to TT+TC groups; p<0.0001. The opposite trend occurred for miR-193b-3p; p=0.0045. Mothers with the VS phenotype had low iron levels [N vs. VS and VS vs. F: MD=2.03 and -1.96g/dl; p=0.0021, respectively], decreased gestational age [VS vs. F: MD=-2.14weeks; p=0.0051, respectively], and LBW [N vs. VS, VS vs. F and S vs. VS: MD=1000, -940.30 and 968.80g; p<0.0001, respectively]; F phenotype had the highest EPHX1 expression [N vs. F, VS vs. F and S vs. F: MD=-1.067, -1.854 and -1.379; p=0.0002, respectively]; and N phenotype had low miR-26b-5p [N vs. VS: MD=-0.6100; p=0.0159] and miR-1207-5p [N vs. VS and VS vs. F: MD=-0.834 and 1.103; p=0.0007, respectively] expression. miR-193b-3p expression between phenotypes remained unchanged. CONCLUSION The Tyr113His T/C variant of rs1051740 and VS phenotype alters EPHX1, miR-26b-5p and miR-1207-5p expression, and contributes towards low blood iron levels and LBW.
Collapse
Affiliation(s)
- Pragalathan Naidoo
- Discipline of Medical Biochemistry and Chemical Pathology, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Rajen N Naidoo
- Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, Durban, South Africa
| | - Prithiksha Ramkaran
- Discipline of Medical Biochemistry and Chemical Pathology, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Kareshma Asharam
- Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, Durban, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry and Chemical Pathology, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
17
|
Sharma D, Bhattacharya P, Kalia K, Tiwari V. Diabetic nephropathy: New insights into established therapeutic paradigms and novel molecular targets. Diabetes Res Clin Pract 2017; 128:91-108. [PMID: 28453961 DOI: 10.1016/j.diabres.2017.04.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 04/07/2017] [Indexed: 02/06/2023]
Abstract
Diabetic nephropathy is one of the most prevalent microvascular complication in patients suffering from diabetes and is reported to be the major cause of renal failure when compared to any other kidney disease. Currently, available therapies provide only symptomatic relief and unable to treat the underlying pathophysiology of diabetic nephropathy. This review will explore new insights into the established therapeutic paradigms targeting oxidative stress, inflammation and endoplasmic reticulum stress with the focus on recent clinical developments. Apart from this, the involvement of novel cellular and molecular mechanisms including the role of endothelin-receptor antagonists, Wnt signaling pathway, epigenetics and micro RNA is also discussed so that key molecular switches involved in the pathogenesis of diabetic nephropathy can be identified. Elucidating new molecular pathways will help in the development of novel therapeutics for the prevention and treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Dilip Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar 382355, Gujarat, India.
| | - Vinod Tiwari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
18
|
Reddy PH, Tonk S, Kumar S, Vijayan M, Kandimalla R, Kuruva CS, Reddy AP. A critical evaluation of neuroprotective and neurodegenerative MicroRNAs in Alzheimer's disease. Biochem Biophys Res Commun 2017; 483:1156-1165. [PMID: 27524239 PMCID: PMC5343756 DOI: 10.1016/j.bbrc.2016.08.067] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/10/2016] [Indexed: 12/31/2022]
Abstract
Currently, 5.4 million Americans suffer from AD, and these numbers are expected to increase up to 16 million by 2050. Despite tremendous research efforts, we still do not have drugs or agents that can delay, or prevent AD and its progression, and we still do not have early detectable biomarkers for AD. Multiple cellular changes have been implicated in AD, including synaptic damage, mitochondrial damage, production and accumulation of Aβ and phosphorylated tau, inflammatory response, deficits in neurotransmitters, deregulation of the cell cycle, and hormonal imbalance. Research into AD has revealed that miRNAs are involved in each of these cellular changes and interfere with gene regulation and translation. Recent discoveries in molecular biology have also revealed that microRNAs play a major role in post-translational regulation of gene expression. The purpose of this article is to review research that has assessed neuroprotective and neurodegenerative characteristics of microRNAs in brain samples from AD transgenic mouse models and patients with AD.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Garrison Institute on Aging Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Neuroscience & Pharmacology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Neurology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Speech, Language and Hearing Sciences Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Suite E, MS 7495, Lubbock, TX 79413, United States.
| | - Sahil Tonk
- Garrison Institute on Aging Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Subodh Kumar
- Garrison Institute on Aging Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Murali Vijayan
- Garrison Institute on Aging Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Ramesh Kandimalla
- Garrison Institute on Aging Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Chandra Sekhar Kuruva
- Garrison Institute on Aging Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Arubala P Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 Fourth Street, MS 9424, Lubbock, TX 79430, United States.
| |
Collapse
|
19
|
Reddy P, Williams J, Smith F, Bhatti J, Kumar S, Vijayan M, Kandimalla R, Kuruva C, Wang R, Manczak M, Yin X, Reddy A. MicroRNAs, Aging, Cellular Senescence, and Alzheimer's Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 146:127-171. [PMID: 28253983 DOI: 10.1016/bs.pmbts.2016.12.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Liu F, Jiao Y, Jiao Y, Garcia-Godoy F, Gu W, Liu Q. Sex difference in EGFR pathways in mouse kidney-potential impact on the immune system. BMC Genet 2016; 17:146. [PMID: 27881077 PMCID: PMC5122204 DOI: 10.1186/s12863-016-0449-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 10/15/2016] [Indexed: 12/23/2022] Open
Abstract
Background Epidermal growth factor receptor (Egfr) has been the target of several drugs for cancers. The potential gender differences in genes in the Egfr axis have been suggested in humans and in animal models. Female and male mice from the same recombinant inbred (RI) strain have the same genomic components except the sex difference. A population of different RI mouse strains allows to conduct precise analysis of molecular pathways and regulation of Egfr between female and male mice. Methods The whole genome expression profiles of 70 genetically diverse RI strains of mice were used to compare three major molecular aspects of Egfr gene: the relative expression levels, gene network and expression quantitative trait loci (eQTL) that regulate the expression of Egfr between female and male mice. Results Our data showed that there is a significant sex difference in the expression levels in kidney. A considerable number of genes in the gene network of Egfr are sex differentially expressed. The expression levels of Egfr in mice are statistical significant different between C57BL/6 J (B6) and DBA/2 J (D2) genotypes in male while no difference in female mice. The eQTLs that regulate the expression levels of Egfr between female and male mice are also different. Furthermore, the differential expression levels of Egfr showed significantly different correlations with two known biological traits between male and female mice. Conclusion Overall there is a substantial sex difference in the Egfr pathways in mice. These data may have significant impact on drug target design, development, formulation, and dosage determinant for women and men in clinical trials. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0449-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fengxia Liu
- The Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei, 050011, China.,Department of Orthopaedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yan Jiao
- Department of Orthopaedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yun Jiao
- Department of Neuroscience, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Franklin Garcia-Godoy
- Bioscience Research Center, College of Dentistry, University of Tennessee Health Science Center, 875 Union Avenue, Memphis, TN, USA
| | - Weikuan Gu
- Department of Orthopaedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN, USA. .,Research Service, Veterans Affairs Medical Center, 1030 Jefferson Avenue, Memphis, TN, USA. .,, 956 Court Ave, Memphis, TN, 38163, USA.
| | - Qingyi Liu
- The Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei, 050011, China.
| |
Collapse
|
21
|
Herrera-Pérez Z, Gretz N, Dweep H. A Comprehensive Review on the Genetic Regulation of Cisplatin-induced Nephrotoxicity. Curr Genomics 2016; 17:279-93. [PMID: 27252593 PMCID: PMC4869013 DOI: 10.2174/1389202917666160202220555] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/10/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022] Open
Abstract
Cisplatin (CDDP) is a well-known antineoplastic drug which has been extensively utilized over the last decades in the treatment of numerous kinds of tumors. However, CDDP induces a wide range of toxicities in a dose-dependent manner, among which nephrotoxicity is of particular importance. Still, the mechanism of CDDP-induced renal damage is not completely understood; moreover, the knowledge about the role of microRNAs (miRNAs) in the nephrotoxic response is still unknown. miRNAs are known to interact with the representative members of a diverse range of regulatory pathways (including postnatal development, proliferation, inflammation and fibrosis) and pathological conditions, including kidney diseases: polycystic kidney diseases (PKDs), diabetic nephropathy (DN), kidney cancer, and drug-induced kidney injury. In this review, we shed light on the following important aspects: (i) information on genes/proteins and their interactions with previously known pathways engaged with CDDP-induced nephrotoxicity, (ii) information on newly discovered biomarkers, especially, miRNAs for detecting CDDP-induced nephrotoxicity and (iii) information to improve our understanding on CDDP. This information will not only help the researchers belonging to nephrotoxicity field, but also supply an indisputable help for oncologists to better understand and manage the side effects induced by CDDP during cancer treatment. Moreover, we provide up-to-date information about different in vivo and in vitro models that have been utilized over the last decades to study CDDP-induced renal injury. Taken together, this review offers a comprehensive network on genes, miRNAs, pathways and animal models which will serve as a useful resource to understand the molecular mechanism of CDDP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Zeneida Herrera-Pérez
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Harsh Dweep
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
22
|
Delay C, Grenier-Boley B, Amouyel P, Dumont J, Lambert JC. miRNA-dependent target regulation: functional characterization of single-nucleotide polymorphisms identified in genome-wide association studies of Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2016; 8:20. [PMID: 27215977 PMCID: PMC4878064 DOI: 10.1186/s13195-016-0186-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/19/2016] [Indexed: 01/06/2023]
Abstract
Background A growing body of evidence suggests that microRNAs (miRNAs) are involved in Alzheimer’s disease (AD) and that some disease-associated genetic variants are located within miRNA binding sites. In the present study, we sought to characterize functional polymorphisms in miRNA target sites within the loci defined in earlier genome-wide association studies (GWAS). The main objectives of this study were to (1) facilitate the identification of the gene or genes responsible for the GWAS signal within a locus of interest and (2) determine how functional polymorphisms might be involved in the AD process (e.g., by affecting miRNA-mediated variations in gene expression). Methods Stringent in silico analyses were developed to select potential polymorphisms susceptible to impairment of miRNA-mediated repression, and subsequent functional assays were performed in HeLa and HEK293 cells. Results Two polymorphisms were identified and further analyzed in vitro. The AD-associated rs7143400-T allele (located in 3′ untranslated region [3′-UTR] of FERMT2) cotransfected with miR-4504 resulted in lower protein levels relative to the rs7143400-G allele cotransfected with the same miRNA. The AD-associated rs9909-C allele in the 3′-UTR of NUP160 abolished the miR-1185-1-3p-regulated expression observed for the rs9909-G allele. Conclusions When considered in conjunction with the findings of previous association studies, our results suggest that decreased expression of FERMT2 might be a risk factor in the etiopathology of AD, whereas increased expression of NUP160 might protect against the disease. Our data therefore provide new insights into AD by highlighting two new proteins putatively involved in the disease process. Electronic supplementary material The online version of this article (doi:10.1186/s13195-016-0186-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charlotte Delay
- NSERM U1167, Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement (RID-AGE) Research Group, Lille, France.,Institut Pasteur de Lille, Lille, France.,University of Lille, Lille, France
| | - Benjamin Grenier-Boley
- NSERM U1167, Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement (RID-AGE) Research Group, Lille, France.,Institut Pasteur de Lille, Lille, France.,University of Lille, Lille, France
| | - Philippe Amouyel
- NSERM U1167, Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement (RID-AGE) Research Group, Lille, France.,Institut Pasteur de Lille, Lille, France.,University of Lille, Lille, France
| | - Julie Dumont
- NSERM U1167, Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement (RID-AGE) Research Group, Lille, France.,Institut Pasteur de Lille, Lille, France.,University of Lille, Lille, France
| | - Jean-Charles Lambert
- NSERM U1167, Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement (RID-AGE) Research Group, Lille, France. .,Institut Pasteur de Lille, Lille, France. .,University of Lille, Lille, France.
| |
Collapse
|
23
|
Zhang Y, Li Y, Hao Z, Li X, Bo P, Gong W. Association of the Serotonin Receptor 3E Gene as a Functional Variant in the MicroRNA-510 Target Site with Diarrhea Predominant Irritable Bowel Syndrome in Chinese Women. J Neurogastroenterol Motil 2016; 22:272-81. [PMID: 26787495 PMCID: PMC4819866 DOI: 10.5056/jnm15138] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/22/2015] [Accepted: 12/31/2015] [Indexed: 12/12/2022] Open
Abstract
Background/Aims The functional variant (rs56109847) in the 3′-untranslated regions (3′-UTR) of the serotonin receptor 3E (HTR3E) gene is associated with female diarrhea predominant irritable bowel syndrome (IBS-D) in British populations. However, the relationship of the polymorphism both to HTR3E expression in the intestine and to the occurrence of Chinese functional gastrointestinal disorders has yet to be examined. Methods Polymerase chain reaction amplification and restriction fragment length polymorphism analyses were employed to detect polymorphisms among Chinese Han women, particularly 107 patients with IBS-D, 99 patients with functional dyspepsia (FD), 115 patients with mixed IBS and 69 patients with IBS-D + FD. We also assessed microRNA-510 (miR-510) and HTR3E expression in human colonic mucosal tissues with immunohistochemistry and other methods. Dual-luciferase reporter assays were conducted to examine the binding ability of miR-510 and HTR3E 3′-UTR. Results Genotyping data showed the variant rs56109847 was significantly associated with IBS-D, but not with FD, mixed-IBS, or FD + IBS-D. HTR3E was abundantly expressed around the colonic mucosal glands but less expressed in the stroma. miR-510 expression decreased, whereas HTR3E expression increased in the colonic mucosal tissue of patients with IBS-D compared with those in controls. HTR3E expression was significantly higher in patients with the GA genotype than that in patients with the GG genotype. The single-nucleotide polymorphisms disrupted the binding site of miR-510 and significantly upregulated luciferase expression in HEK293 and HT-29 cells. Conclusions The single-nucleotide polymorphisms rs56109847 led to reduced microRNA binding and overexpression of the target gene in intestinal cells, thereby increasing IBS-D risk in the Chinese Han population. The decreased expression of miR-510 might contribute to IBS-D.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Chinese and Western Integrative Medicine, Medical College of Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
| | - Yaoyao Li
- Department of Chinese and Western Integrative Medicine, Medical College of Yangzhou University, Yangzhou, China.,Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zhenfeng Hao
- Department of Chinese and Western Integrative Medicine, Medical College of Yangzhou University, Yangzhou, China
| | - Xiangming Li
- Department of Chinese and Western Integrative Medicine, Medical College of Yangzhou University, Yangzhou, China
| | - Ping Bo
- Department of Chinese and Western Integrative Medicine, Medical College of Yangzhou University, Yangzhou, China
| | - Weijuan Gong
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China.,Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
24
|
Zhai YL, Meng SJ, Zhu L, Shi SF, Wang SX, Liu LJ, Lv JC, Yu F, Zhao MH, Zhang H. Rare Variants in the Complement Factor H-Related Protein 5 Gene Contribute to Genetic Susceptibility to IgA Nephropathy. J Am Soc Nephrol 2016; 27:2894-905. [PMID: 26825529 DOI: 10.1681/asn.2015010012] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 12/20/2015] [Indexed: 11/03/2022] Open
Abstract
A recent genome-wide association study of IgA nephropathy (IgAN) identified 1q32, which contains multiple complement regulatory genes, including the complement factor H (CFH) gene and the complement factor H-related (CFHRs) genes, as an IgAN susceptibility locus. Abnormal complement activation caused by a mutation in CFHR5 was shown to cause CFHR5 nephropathy, which shares many characteristics with IgAN. To explore the genetic effect of variants in CFHR5 on IgAN susceptibility, we recruited 500 patients with IgAN and 576 healthy controls for genetic analysis. We sequenced all exons and their intronic flanking regions as well as the untranslated regions of CFHR5 and compared the frequencies of identified variants using the sequence kernel association test. We identified 32 variants in CFHR5, including 28 rare and four common variants. The distribution of rare variants in CFHR5 in patients with IgAN differed significantly from that in controls (P=0.002). Among the rare variants, in silico programs predicted nine as potential functional variants, which we then assessed in functional assays. Compared with wild-type CFHR5, three recombinant CFHR5 proteins, CFHR5-M (c.508G>A/p.Val170Met), CFHR5-S (c.533A>G/p.Asn178Ser), and CFHR5-D (c.822A>T/p.Glu274Asp), showed significantly higher C3b binding capacity (CFHR5-M: 109.67%±3.54%; P=0.02; CFHR5-S: 174.27%±9.78%; P<0.001; CFHR5-D: 127.25%±1.75%; P<0.001), whereas another recombinant CFHR5 (c.776T>A/p.Leu259Termination) showed less C3b binding (56.89%±0.57%; P<0.001). Our study found that rare variants in CFHR5 may contribute to the genetic susceptibility to IgAN, which suggests that CFHR5 is an IgAN susceptibility gene.
Collapse
Affiliation(s)
- Ya-Ling Zhai
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; and Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Si-Jun Meng
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; and Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Li Zhu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; and Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Su-Fang Shi
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; and Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Su-Xia Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; and Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Li-Jun Liu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; and Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Ji-Cheng Lv
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; and Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Feng Yu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; and Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; and Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Hong Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; and Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
25
|
Gaynullina D, Dweep H, Gloe T, Tarasova OS, Sticht C, Gretz N, Schubert R. Alteration of mRNA and microRNA expression profiles in rat muscular type vasculature in early postnatal development. Sci Rep 2015; 5:11106. [PMID: 26073182 PMCID: PMC4466593 DOI: 10.1038/srep11106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 05/15/2015] [Indexed: 12/23/2022] Open
Abstract
The vascular system is characterized by a high degree of plasticity. In particular, functional and structural remodeling of the arterial system takes place during early postnatal development. However, the mechanisms providing such alterations in the rapidly growing organisms are poorly understood, especially for the peripheral vasculature. To explore this, we performed mRNA- and miRNA microarray analysis on muscular type saphenous arteries of young (10-12 days) and adult (2-3 months) rats. Thirty-eight significant pathways (such as oxidative phosphorylation, MAPK signaling, metabolism, cell cycle, DNA replication and focal adhesion) were obtained on differentially regulated genes during postnatal development. Many differentially regulated genes were determined as target- and miRNA-hubs. We also found 92 miRNAs differentially expressed in arteries of young and adult rats. Several significantly regulated pathways were found on these regulated miRNAs. Interestingly, these biological cascades also contain those significantly enriched pathways that were previously identified based on the differently expressed genes. Our data indicate that the expression of many genes involved in the regulation of pathways that are relevant for different functions in arteries may be under the control of miRNAs and these miRNAs regulate the functional, and structural remodeling occurring in the vascular system during early postnatal development.
Collapse
Affiliation(s)
- Dina Gaynullina
- 1] Cardiovascular Physiology, Centre for Biomedicine and Medical Technology Mannheim, Ruprecht-Karls-University Heidelberg, 68167 Mannheim, Germany [2] Faculty of Biology, M.V. Lomonosov Moscow State University, 119234, Moscow, Russia [3] Department of Physiology, Russian National Research Medical University, Ostrovityanova str. 1, 117997 Moscow, Russia
| | - Harsh Dweep
- Medical Research Center, University of Heidelberg, D-68167 Mannheim, Germany
| | - Torsten Gloe
- Cardiovascular Physiology, Centre for Biomedicine and Medical Technology Mannheim, Ruprecht-Karls-University Heidelberg, 68167 Mannheim, Germany
| | - Olga S Tarasova
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Carsten Sticht
- Medical Research Center, University of Heidelberg, D-68167 Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, University of Heidelberg, D-68167 Mannheim, Germany
| | - Rudolf Schubert
- Cardiovascular Physiology, Centre for Biomedicine and Medical Technology Mannheim, Ruprecht-Karls-University Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
26
|
Yang X, Zang W, Xuan X, Wang Z, Liu Z, Wang J, Cui J, Zhao G. miRNA-1207-5p is associated with cancer progression by targeting stomatin-like protein 2 in esophageal carcinoma. Int J Oncol 2015; 46:2163-71. [PMID: 25695396 DOI: 10.3892/ijo.2015.2900] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/02/2015] [Indexed: 12/24/2022] Open
Abstract
Newly discovered intrinsic regulators, the miRNAs regulate gene expression by binding to the 3'-untranslated regions of the genome. Accumulating studies have indicated that miRNAs are aberrantly expressed in various human cancers. We found that miRNA-1207-5p (miR‑1207-5p) was markedly downregulated in esophageal carcinoma (EC) tissues, and was correlated with EC differentiation, pathological stage and lymph node metastasis. Rates of apoptosis were increased and cell invasion ability was decreased in EC9706 and EC-1 cells transfected with a miR‑1207-5p mimic. Stomatin-like protein 2 (STOML-2) was predicted to be a potential target of miR‑1207-5p by bioinformatics analysis and this was confirmed by luciferase assay and western blotting. Our study showed that STOML-2 was negatively regulated by miR‑1207-5p. Furthermore, overexpression of STOML-2 abolished the miR‑1207-5p anti-invasion function. Based on these results, we proposed that miR‑1207-5p might act as a potential therapeutic target in the treatment of EC.
Collapse
Affiliation(s)
- Xuan Yang
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Wenqiao Zang
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Xiaoyan Xuan
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Zhongquan Wang
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Zhicai Liu
- Tumor Hospital of Linzhou City, Linzhou, Henan 456500, P.R. China
| | - Jinwu Wang
- Tumor Hospital of Linzhou City, Linzhou, Henan 456500, P.R. China
| | - Jing Cui
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Guoqiang Zhao
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China
| |
Collapse
|
27
|
Maiti GP, Ghosh A, Mondal P, Baral A, Datta S, Samadder S, Nayak SP, Chakrabarti J, Biswas J, Sikdar N, Chowdhury S, Roy B, Roychowdhury S, Panda CK. SNP rs1049430 in the 3'-UTR of SH3GL2 regulates its expression: Clinical and prognostic implications in head and neck squamous cell carcinoma. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1852:1059-1067. [PMID: 25728707 DOI: 10.1016/j.bbadis.2015.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 02/20/2015] [Indexed: 11/21/2022]
Abstract
Single nucleotide polymorphisms (SNPs) in the 3'-UTR region are emerging cis-regulatory factors associated with the occurrences of several human diseases. SH3GL2, which is located at chromosome 9p21-22, is associated with hyperplastic/mildly dysplastic lesions of the head and neck and has a long 3'-UTR with multiple SNPs. The aim of the present study was to determine the susceptible allele(s) in the 3'-UTR SNPs of SH3GL2 in head and neck squamous cell carcinoma (HNSCC). First, we screened the genotypes of all SNPs located in the 3'-UTR of SH3GL2 in 110 controls and 147 cases in Indian populations by sequencing. A SNP (rs1049430:>G/T) that showed only heterozygosity was further confirmed by genotyping with an Illumina GoldenGate platform in 530 controls and 764 cases. Genotype-specific survival analysis of the HNSCC patients was performed. In addition, genotype-specific mRNA stability, isoform expression and protein expression were analyzed. SNP rs1049430 was not associated with disease occurrence, but it was associated with poor patient outcome. The G allele was associated with decreased SH3GL2 mRNA stability, differential splicing and low protein expression. Thus, our data demonstrate that the presence of the susceptible G allele in SNP rs1049430 is associated with the inactivation of SH3GL2 and could be used as a prognostic marker of HNSCC.
Collapse
Affiliation(s)
- Guru Prasad Maiti
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India; Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani, Nadia, WB, India
| | - Amlan Ghosh
- Department of Biological Science, Presidency University, Kolkata, India
| | - Pinaki Mondal
- National Brain Research Centre, NH-8, Manesar, Gurgaon, Haryana 122051, India
| | - Aradhita Baral
- Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sayantan Datta
- Human Genetics Unit, Indian Statistical Institute, Kolkata, West Bengal, India; Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sudip Samadder
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Sandeep P Nayak
- Department of Surgical Oncology, Kidwai Memorial Institute of Oncology, Marigowda Road, Bangalore 560029, India
| | - Jayanta Chakrabarti
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Jaydeep Biswas
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Nilabja Sikdar
- Human Genetics Unit, Indian Statistical Institute, Kolkata, West Bengal, India
| | - Shantanu Chowdhury
- Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Bidyut Roy
- Human Genetics Unit, Indian Statistical Institute, Kolkata, West Bengal, India
| | - Susanta Roychowdhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India.
| |
Collapse
|
28
|
Papagregoriou G. MicroRNAs in Disease. GENOMIC ELEMENTS IN HEALTH, DISEASE AND EVOLUTION 2015:17-46. [DOI: 10.1007/978-1-4939-3070-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
29
|
Dai Q, Zhao J, Qi X, Xu W, He X, Guo M, Dweep H, Cheng WH, Luo Y, Xia K, Gretz N, Huang K. MicroRNA profiling of rats with ochratoxin A nephrotoxicity. BMC Genomics 2014; 15:333. [PMID: 24885635 PMCID: PMC4035064 DOI: 10.1186/1471-2164-15-333] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/30/2014] [Indexed: 12/31/2022] Open
Abstract
Background Nephrotoxicity is the most prominent one among the various toxicities of ochratoxin A (OTA). MicroRNAs (miRNAs) are small non-coding RNAs that have an impact on a wide range of biological processes by regulating gene expression at post-transcriptional level or protein systhesis level. The objective of this study is to analyze miRNA profiling in the kidneys of rats gavaged with OTA. Results To profile miRNAs in the kidneys of rats with OTA nephrotoxicity, high-throughput sequencing and bioinformatics approaches were applied to analyze the miRNAs in the kidney of rats following OTA treatment. A total of 409 known miRNAs and 8 novel miRNAs were identified in the kidney and the levels of the novel miRNAs were varied in response to different doses of OTA. Expression of miR-129, miR-130a, miR-130b, miR-141, miR-218b and miR-3588 were uniquely suppressed in mid dose but then elevated in high dose, with opposite expression to their target genes. The expression pattern was closely related with the “MAPK signaling pathway”. Dicer1 and Drosha were significantly suppressed, indicating an impairment of miRNA biogenesis in response to OTA. Conclusions The abrogation of miRNA maturation process suggests a new target of OTA toxicity. Moreover, the identification of the differentially expressed miRNAs provides us a molecular insight into the nephrtoxicity of OTA. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-333) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Wentao Xu
- Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, 302 box, No,17, Qinghua East Rd, Beijing, Haidian District 100083, P R China.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chen L, Lü MH, Zhang D, Hao NB, Fan YH, Wu YY, Wang SM, Xie R, Fang DC, Zhang H, Hu CJ, Yang SM. miR-1207-5p and miR-1266 suppress gastric cancer growth and invasion by targeting telomerase reverse transcriptase. Cell Death Dis 2014; 5:e1034. [PMID: 24481448 PMCID: PMC4040688 DOI: 10.1038/cddis.2013.553] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/25/2013] [Accepted: 12/12/2013] [Indexed: 12/31/2022]
Abstract
hTERT is the catalytic subunit of the telomerase complex. Elevated expression of hTERT is associated with the expansion and metastasis of gastric tumor. In this study, we aimed to identify novel tumor suppressor miRNAs that restrain hTERT expression. We began our screen for hTERT-targeting miRNAs with a miRNA microarray. miRNA candidates were further filtered by bioinformatic analysis, general expression pattern in different cell lines, gain-of-function effects on hTERT protein and the potential of these effects to suppress hTERT 3′ untranslated region (3′UTR) luciferase activity. The clinical relevance of two miRNAs (miR-1207-5p and miR-1266) was evaluated by real-time RT-PCR. The effects of these miRNAs on cell growth, cell cycle and invasion of gastric cancer cells were measured with CCK-8, flow cytometry and transwell assays. Finally, the ability of these miRNAs to suppress the transplanted tumors was also investigated. Fourteen miRNAs were identified using a combination of bioinformatics and miRNA microarray analysis. Of these fourteen miRNAs, nine were expressed at significantly lower levels in hTERT-positive cell lines compared with hTERT-negative cell lines and five could downregulate hTERT protein expression. Only miR-1207-5p and miR-1266 interacted with the 3′ UTR of hTERT and the expression levels of these two miRNAs were significantly decreased in gastric cancer tissues. These two miRNAs also inhibited gastric tumor growth in vitro and in vivo. Altogether, miR-1207-5p and miR-1266 were determined to be hTERT suppressors in gastric cancer, and the delivery of these two miRNAs represents a novel therapeutic strategy for gastric cancer treatment.
Collapse
Affiliation(s)
- L Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - M-H Lü
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - D Zhang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - N-B Hao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Y-H Fan
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Y-Y Wu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - S-M Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - R Xie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - D-C Fang
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400037, China
| | - H Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400037, China
| | - C-J Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - S-M Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
31
|
Abstract
miRWalk (http://mirwalk.uni-hd.de/) is a publicly available comprehensive resource, hosting the predicted as well as the experimentally validated microRNA (miRNA)-target interaction pairs. This database allows obtaining the possible miRNA-binding site predictions within the complete sequence of all known genes of three genomes (human, mouse, and rat). Moreover, it also integrates many novel features such as a comparative platform of miRNA-binding sites resulting from ten different prediction datasets, a holistic view of genetic networks of miRNA-gene pathway, and miRNA-gene-Online Mendelian Inheritance in Man disorder interactions, and unique experimentally validated information (e.g., cell lines, diseases, miRNA processing proteins). In this chapter, we describe a schematic workflow on how one can access the stored information from miRWalk and subsequently summarize its applications.
Collapse
Affiliation(s)
- Harsh Dweep
- Medical Faculty Mannheim, Medical Research Center, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167, Mannheim, Germany,
| | | | | |
Collapse
|
32
|
Dweep H, Gretz N, Felekkis K. A schematic workflow for collecting information about the interaction between copy number variants and microRNAs using existing resources. Methods Mol Biol 2014; 1182:307-320. [PMID: 25055921 DOI: 10.1007/978-1-4939-1062-5_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
MicroRNAs (miRNAs) and copy number variations (CNVs) are two extensively studied genomic components in the field of modern biology-as they have been found to be associated with many disorders such as cancer, Alzheimer, pancreatitis, HIV susceptibility, beta-thalassemia, and glomerulonephritis. Several studies suggested that an alteration in CNV-miRNA interaction could result in some human diseases such as cancer. Therefore, the possible miRNA-binding site information within the CNV genes opens new avenues in understanding such disorders. In this chapter, we present a schematic approach for collecting the information on CNV-miRNA interactions using miRWalk and TargetScan databases.
Collapse
Affiliation(s)
- Harsh Dweep
- Medical Faculty Mannheim, Medical Research Center, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim, D-68167, Germany,
| | | | | |
Collapse
|
33
|
CNVs-microRNAs interactions demonstrate unique characteristics in the human genome. An interspecies in silico analysis. PLoS One 2013; 8:e81204. [PMID: 24312536 PMCID: PMC3846834 DOI: 10.1371/journal.pone.0081204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/21/2013] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) and copy number variations (CNVs) represent two classes of newly discovered genomic elements that were shown to contribute to genome plasticity and evolution. Recent studies demonstrated that miRNAs and CNVs must have co-evolved and interacted in an attempt to maintain the balance of the dosage sensitive genes and at the same time increase the diversity of dosage non-sensitive genes, contributing to species evolution. It has been previously demonstrated that both the number of miRNAs that target genes found in CNV regions as well as the number of miRNA binding sites are significantly higher than those of genes found in non-CNV regions. These findings raise the possibility that miRNAs may have been created under evolutionary pressure, as a mechanism for increasing the tolerance to genome plasticity. In the current study, we aimed in exploring the differences of miRNAs-CNV functional interactions between human and seven others species. By performing in silico whole genome analysis in eight different species (human, chimpanzee, macaque, mouse, rat, chicken, dog and cow), we demonstrate that miRNAs targeting genes located within CNV regions in humans have special functional characteristics that provide an insight into the differences between humans and other species.
Collapse
|
34
|
Alvarez ML, Khosroheidari M, Eddy E, Kiefer J. Role of microRNA 1207-5P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: implications for diabetic nephropathy. PLoS One 2013; 8:e77468. [PMID: 24204837 PMCID: PMC3808414 DOI: 10.1371/journal.pone.0077468] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/02/2013] [Indexed: 01/13/2023] Open
Abstract
Diabetic nephropathy is the most common cause of chronic kidney failure and end-stage renal disease in the Western World. One of the major characteristics of this disease is the excessive accumulation of extracellular matrix (ECM) in the kidney glomeruli. While both environmental and genetic determinants are recognized for their role in the development of diabetic nephropathy, epigenetic factors, such as DNA methylation, long non-coding RNAs, and microRNAs, have also recently been found to underlie some of the biological mechanisms, including ECM accumulation, leading to the disease. We previously found that a long non-coding RNA, the plasmacytoma variant translocation 1 (PVT1), increases plasminogen activator inhibitor 1 (PAI-1) and transforming growth factor beta 1 (TGF-β1) in mesangial cells, the two main contributors to ECM accumulation in the glomeruli under hyperglycemic conditions, as well as fibronectin 1 (FN1), a major ECM component. Here, we report that miR-1207-5p, a PVT1-derived microRNA, is abundantly expressed in kidney cells, and is upregulated by glucose and TGF-β1. We also found that like PVT1, miR-1207-5p increases expression of TGF-β1, PAI-1, and FN1 but in a manner that is independent of its host gene. In addition, regulation of miR-1207-5p expression by glucose and TGFβ1 is independent of PVT1. These results provide evidence supporting important roles for miR-1207-5p and its host gene in the complex pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- M. Lucrecia Alvarez
- Diabetes, Cardiovascular, and Metabolic Diseases Center, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
- * E-mail:
| | - Mahdieh Khosroheidari
- Diabetes, Cardiovascular, and Metabolic Diseases Center, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Elena Eddy
- Diabetes, Cardiovascular, and Metabolic Diseases Center, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Jeff Kiefer
- Diabetes, Cardiovascular, and Metabolic Diseases Center, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| |
Collapse
|
35
|
Dweep H, Sticht C, Gretz N. In-Silico Algorithms for the Screening of Possible microRNA Binding Sites and Their Interactions. Curr Genomics 2013; 14:127-36. [PMID: 24082822 PMCID: PMC3637677 DOI: 10.2174/1389202911314020005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) comprise a recently discovered class of small, non-coding RNA molecules of 21-25 nucleotides in length that regulate the gene expression by base-pairing with the transcripts of their targets i.e. protein-coding genes, leading to down-regulation or repression of the target genes. However, target gene activation has also been described. miRNAs are involved in diverse regulatory pathways, including control of developmental timing, apoptosis, cell proliferation, cell differentiation, modulation of immune response to macrophages, and organ development and are associated with many diseases, such as cancer. Computational prediction of miRNA targets is much more challenging in animals than in plants, because animal miRNAs often perform imperfect base-pairing with their target sites, unlike plant miRNAs which almost always bind their targets with near perfect complementarity. In the past years, a large number of target prediction programs and databases on experimentally validated information have been developed for animal miRNAs to fulfil the need of experimental scientists conducting miRNA research. In this review we first succinctly describe the prediction criteria (rules or principles) adapted by prediction algorithms to generate possible miRNA binding site interactions and introduce most relevant algorithms, and databases. We then summarize their applications with the help of some previously published studies. We further provide experimentally validated functional binding sites outside 3’-UTR region of target mRNAs and the resources which offer such predictions. Finally, the issue of experimental validation of miRNA binding sites will be briefly discussed.
Collapse
Affiliation(s)
- Harsh Dweep
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | | | | |
Collapse
|
36
|
Deltas C, Pierides A, Voskarides K. Molecular genetics of familial hematuric diseases. Nephrol Dial Transplant 2013; 28:2946-60. [PMID: 24046192 DOI: 10.1093/ndt/gft253] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The familial hematuric diseases are a genetically heterogeneous group of monogenic conditions, caused by mutations in one of several genes. The major genes involved are the following: (i) the collagen IV genes COL4A3/A4/A5 that are expressed in the glomerular basement membranes (GBM) and are responsible for the most frequent forms of microscopic hematuria, namely Alport syndrome (X-linked or autosomal recessive) and thin basement membrane nephropathy (TBMN). (ii) The FN1 gene, expressed in the glomerulus and responsible for a rare form of glomerulopathy with fibronectin deposits (GFND). (iii) CFHR5 gene, a recently recognized regulator of the complement alternative pathway and mutated in a recently revisited form of inherited C3 glomerulonephritis (C3GN), characterized by isolated C3 deposits in the absence of immune complexes. A hallmark feature of all conditions is the age-dependent penetrance and a broad phenotypic heterogeneity in the sense that subsets of patients progress to added proteinuria or proteinuria and chronic renal failure that may or may not lead to end-stage kidney disease (ESKD) anywhere between the second and seventh decade of life. In addition to other excellent laboratory tools that assist the clinician in reaching the correct diagnosis, the molecular analysis emerges as the gold standard in establishing the diagnosis in many cases of doubt due to equivocal findings that complicate the differential diagnosis. Recent work led to the description of candidate genetic modifiers which confer a variable risk for progressing to chronic renal failure when co-inherited on the background of a primary glomerulopathy. Finally, more families are still waiting to be studied and more genes to be mapped and cloned that are responsible for other forms of heritable hematuric diseases. The study of such genes and their protein products will likely shed more light on the structure and function of the glomerular filtration barrier and other important glomerular components.
Collapse
Affiliation(s)
- Constantinos Deltas
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | | |
Collapse
|
37
|
DiStefano JK, Taila M, Alvarez ML. Emerging roles for miRNAs in the development, diagnosis, and treatment of diabetic nephropathy. Curr Diab Rep 2013; 13:582-91. [PMID: 23666892 DOI: 10.1007/s11892-013-0386-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although the causes of diabetic nephropathy are not yet fully known, emerging evidence suggests a role for epigenetic factors in the development of the disease. In particular, microRNAs (miRNAs) are becoming recognized as important mediators of biological processes relevant to diabetic nephropathy. Until recently, investigations of miRNAs in the development of diabetic nephropathy have remained relatively limited; however, the number of reports identifying potential new candidates and mechanisms of impact is presently expanding at a rapid pace. This review seeks to summarize these recent findings, focusing on new candidates and/or novel mechanisms, including the intersection between genetic variation and miRNA function in modulating disease expression, emerging in the field. We also review the latest advances in the diagnostic and therapeutic potential of miRNAs in the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Johanna K DiStefano
- Diabetes, Cardiovascular and Metabolic Diseases Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA.
| | | | | |
Collapse
|
38
|
Voskarides K, Demosthenous P, Papazachariou L, Arsali M, Athanasiou Y, Zavros M, Stylianou K, Xydakis D, Daphnis E, Gale DP, Maxwell PH, Elia A, Pattaro C, Pierides A, Deltas C. Epistatic role of the MYH9/APOL1 region on familial hematuria genes. PLoS One 2013; 8:e57925. [PMID: 23516419 PMCID: PMC3597641 DOI: 10.1371/journal.pone.0057925] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/27/2013] [Indexed: 11/18/2022] Open
Abstract
Familial hematuria (FH) is explained by at least four different genes (see below). About 50% of patients develop late proteinuria and chronic kidney disease (CKD). We hypothesized that MYH9/APOL1, two closely linked genes associated with CKD, may be associated with adverse progression in FH. Our study included 102 thin basement membrane nephropathy (TBMN) patients with three known COL4A3/COL4A4 mutations (cohort A), 83 CFHR5/C3 glomerulopathy patients (cohort B) with a single CFHR5 mutation and 15 Alport syndrome patients (cohort C) with two known COL4A5 mild mutations, who were categorized as “Mild” (controls) or “Severe” (cases), based on renal manifestations. E1 and S1 MYH9 haplotypes and variant rs11089788 were analyzed for association with disease phenotype. Evidence for association with “Severe” progression in CFHR5 nephropathy was found with MYH9 variant rs11089788 and was confirmed in an independent FH cohort, D (cumulative p value = 0.001, odds ratio = 3.06, recessive model). No association was found with APOL1 gene. Quantitative Real time PCR did not reveal any functional significance for the rs11089788 risk allele. Our results derive additional evidence supporting previous reports according to which MYH9 is an important gene per se, predisposing to CKD, suggesting its usefulness as a prognostic marker for young hematuric patients.
Collapse
Affiliation(s)
- Konstantinos Voskarides
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Panayiota Demosthenous
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Louiza Papazachariou
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Maria Arsali
- Department of Nephrology, Nicosia General Hospital, Nicosia, Cyprus
| | | | - Michalis Zavros
- Department of Nephrology, Nicosia General Hospital, Nicosia, Cyprus
| | - Kostas Stylianou
- Department of Nephrology, University of Crete, Heraklion, Greece
| | - Dimitris Xydakis
- Department of Nephrology, University of Crete, Heraklion, Greece
| | - Eugenios Daphnis
- Department of Nephrology, University of Crete, Heraklion, Greece
| | - Daniel P. Gale
- Centre for Nephrology, University College London, London, United Kingdom
| | | | - Avraam Elia
- Department of Pediatrics, Archbishop Makarios III Hospital, Nicosia, Cyprus
| | - Cristian Pattaro
- Institute of Genetic Medicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy – Affiliated Institute of the University of Lubeck, Lubeck, Germany
| | - Alkis Pierides
- Department of Nephrology, Hippocrateon Hospital, Nicosia, Cyprus
| | - Constantinos Deltas
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
- * E-mail:
| |
Collapse
|
39
|
Parallel analysis of mRNA and microRNA microarray profiles to explore functional regulatory patterns in polycystic kidney disease: using PKD/Mhm rat model. PLoS One 2013; 8:e53780. [PMID: 23326503 PMCID: PMC3542345 DOI: 10.1371/journal.pone.0053780] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/03/2012] [Indexed: 01/08/2023] Open
Abstract
Autosomal polycystic kidney disease (ADPKD) is a frequent monogenic renal disease, characterised by fluid-filled cysts that are thought to result from multiple deregulated pathways such as cell proliferation and apoptosis. MicroRNAs (miRNAs) are small non-coding RNAs that regulate the expression of many genes associated with such biological processes and human pathologies. To explore the possible regulatory role of miRNAs in PKD, the PKD/Mhm (cy/+) rat, served as a model to study human ADPKD. A parallel microarray-based approach was conducted to profile the expression changes of mRNAs and miRNAs in PKD/Mhm rats. 1,573 up- and 1,760 down-regulated genes were differentially expressed in PKD/Mhm. These genes are associated with 17 pathways (such as focal adhesion, cell cycle, ECM-receptor interaction, DNA replication and metabolic pathways) and 47 (e.g., cell proliferation, Wnt and Tgfβ signaling) Gene Ontologies. Furthermore, we found the similar expression patterns of deregulated genes between PKD/Mhm (cy/+) rat and human ADPKD, PKD1L3/L3, PKD1−/−, Hnf1α-deficient, and Glis2lacZ/lacZ models. Additionally, several differentially regulated genes were noted to be target hubs for miRNAs. We also obtained 8 significantly up-regulated miRNAs (rno-miR-199a-5p, −214, −146b, −21, −34a, −132, −31 and −503) in diseased kidneys of PKD/Mhm rats. Additionally, the binding site overrepresentation and pathway enrichment analyses were accomplished on the putative targets of these 8 miRNAs. 7 out of these 8 miRNAs and their possible interactions have not been previously described in ADPKD. We have shown a strong overlap of functional patterns (pathways) between deregulated miRNAs and mRNAs in the PKD/Mhm (cy/+) rat model. Our findings suggest that several miRNAs may be associated in regulating pathways in ADPKD. We further describe novel miRNAs and their possible targets in ADPKD, which will open new avenues to understand the pathogenesis of human ADPKD. Furthermore they could serve as a useful resource for anti-fibrotic therapeutics.
Collapse
|
40
|
C3 Glomerulonephritis/CFHR5 Nephropathy Is an Endemic Disease in Cyprus: Clinical and Molecular Findings in 21 Families. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 735:189-96. [DOI: 10.1007/978-1-4614-4118-2_12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Forma E, Brzeziańska E, Krześlak A, Chwatko G, Jóźwiak P, Szymczyk A, Smolarz B, Romanowicz-Makowska H, Różański W, Bryś M. Association between the c.*229C>T polymorphism of the topoisomerase IIβ binding protein 1 (TopBP1) gene and breast cancer. Mol Biol Rep 2013; 40:3493-502. [PMID: 23277395 PMCID: PMC3611025 DOI: 10.1007/s11033-012-2424-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 12/18/2012] [Indexed: 02/06/2023]
Abstract
Topoisomerase IIβ binding protein 1 (TopBP1) is involved in cell survival, DNA replication, DNA damage repair and cell cycle checkpoint control. The biological function of TopBP1 and its close relation with BRCA1 prompted us to investigate whether alterations in the TopBP1 gene can influence the risk of breast cancer. The aim of this study was to examine the association between five polymorphisms (rs185903567, rs116645643, rs115160714, rs116195487, and rs112843513) located in the 3′UTR region of the TopBP1 gene and breast cancer risk as well as allele-specific gene expression. Five hundred thirty-four breast cancer patients and 556 population controls were genotyped for these SNPs. Allele-specific TopBP1 mRNA and protein expressions were determined by using real time PCR and western blotting methods, respectively. Only one SNP (rs115160714) showed an association with breast cancer. Compared to homozygous common allele carriers, heterozygous and homozygous for the T variant had significantly increased risk of breast cancer (adjusted odds ratio = 3.81, 95 % confidence interval: 1.63–8.34, p = 0.001). Mean TopBP1 mRNA and protein expression were higher in the individuals with the CT or TT genotype. There was a significant association between the rs115160714 and tumor grade and stage. Most carriers of minor allele had a high grade (G3) tumors classified as T2-T4N1M0. Our study raises a possibility that a genetic variation of TopBP1 may be implicated in the etiology of breast cancer.
Collapse
Affiliation(s)
- Ewa Forma
- Department of Cytobiochemistry, University of Łódź, Pomorska 141/143, 90-236 Lodz, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
de Mena L, Samaranch LL, Coto E, Cardo LF, Ribacoba R, Lorenzo-Betancor O, Pastor P, Wang L, Irigoyen J, Mata IF, Díaz M, Moris G, Menéndez M, Corao AI, Lorenzo E, Alvarez V. Mutational Screening of PARKIN Identified a 3′ UTR Variant (rs62637702) Associated with Parkinson’s Disease. J Mol Neurosci 2012; 50:264-9. [DOI: 10.1007/s12031-012-9942-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
|
43
|
Gale DP, Maxwell PH. C3 glomerulonephritis and CFHR5 nephropathy. Nephrol Dial Transplant 2012; 28:282-8. [DOI: 10.1093/ndt/gfs441] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|