1
|
Larose A, Miller CCJ, Mórotz GM. The lemur tail kinase family in neuronal function and disfunction in neurodegenerative diseases. Cell Mol Life Sci 2024; 81:447. [PMID: 39520508 PMCID: PMC11550312 DOI: 10.1007/s00018-024-05480-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/12/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
The complex neuronal architecture and the long distance of synapses from the cell body require precisely orchestrated axonal and dendritic transport processes to support key neuronal functions including synaptic signalling, learning and memory formation. Protein phosphorylation is a major regulator of both intracellular transport and synaptic functions. Some kinases and phosphatases such as cyclin dependent kinase-5 (cdk5)/p35, glycogen synthase kinase-3β (GSK3β) and protein phosphatase-1 (PP1) are strongly involved in these processes. A primary pathological hallmark of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis/frontotemporal dementia, is synaptic degeneration together with disrupted intracellular transport. One attractive possibility is that alterations to key kinases and phosphatases may underlie both synaptic and axonal transport damages. The brain enriched lemur tail kinases (LMTKs, formerly known as lemur tyrosine kinases) are involved in intracellular transport and synaptic functions, and are also centrally placed in cdk5/p35, GSK3β and PP1 signalling pathways. Loss of LMTKs is documented in major neurodegenerative diseases and thus can contribute to pathological defects in these disorders. However, whilst function of their signalling partners became clearer in modulating both synaptic signalling and axonal transport progress has only recently been made around LMTKs. In this review, we describe this progress with a special focus on intracellular transport, synaptic functions and neurodegenerative diseases.
Collapse
Affiliation(s)
- Angelique Larose
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Christopher C J Miller
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane Camberwell, London, SE5 9RX, UK.
| | - Gábor M Mórotz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary.
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
2
|
Khan SU, Saeed S, Sheikh AN, Arbi FM, Shahzad A, Faryal U, Lu K. Crafting a Blueprint for MicroRNA in Cardiovascular Diseases (CVDs). Curr Probl Cardiol 2023; 48:102010. [PMID: 37544621 DOI: 10.1016/j.cpcardiol.2023.102010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Cardiovascular diseases (CVDs) encompass a range of disorders, from congenital heart malformation, cardiac valve, peripheral artery, coronary artery, cardiac muscle diseases, and arrhythmias, ultimately leading to heart failure. Despite therapeutic advancements, CVDs remain the primary cause of global mortality, highlighting the need for a thorough knowledge of CVDs at the level of molecular structure. Gene and microRNA (miRNA) expression variations significantly influence cellular pathways, impacting an organism's physiology. MiRNAs, in particular, serve as regulators of gene expression, playing critical roles in essential cellular pathways and influencing the development of various diseases, including CVD. A wealth of evidence supports the involvement of miRNAs in CVD progression. These findings highlight the potential of miRNAs as valuable diagnostic biomarkers and open new avenues for their therapeutic application in CVDs. This study focuses on the latest advancements in identifying and characterizing microRNAs, exploring their manipulation and clinical application, and discussing future perspectives.
Collapse
Affiliation(s)
- Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China; Women Medical and Dental College, Khyber Medical University, Peshawar, KPK, 22020, Pakistan
| | - Sumbul Saeed
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Ayesha Nazir Sheikh
- Institute of Biotechnology and Genetic Engineering, University of Sindh, Jamshoro, 76080, Pakistan
| | - Fawad Mueen Arbi
- Quaid-e-Azam Medical College, Bahawalpur, Punjab, 63100, Pakistan
| | - Ali Shahzad
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Uzma Faryal
- Women Medical and Dental College, Khyber Medical University, Peshawar, KPK, 22020, Pakistan
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China.
| |
Collapse
|
3
|
Thomas KT, Vermare A, Egleston SO, Wang YD, Mishra A, Lin T, Peng J, Zakharenko SS. MicroRNA 3' ends shorten during adolescent brain maturation. Front Mol Neurosci 2023; 16:1168695. [PMID: 37122627 PMCID: PMC10140418 DOI: 10.3389/fnmol.2023.1168695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
MicroRNA (miRNA) dysregulation is well-documented in psychiatric disease, but miRNA dynamics remain poorly understood during adolescent and early adult brain maturation, when symptoms often first appear. Here, we use RNA sequencing to examine miRNAs and their mRNA targets in cortex and hippocampus from early-, mid-, and late-adolescent and adult mice. Furthermore, we use quantitative proteomics by tandem mass tag mass spectrometry (TMT-MS) to examine protein dynamics in cortex from the same subjects. We found that ~25% of miRNAs' 3' ends shorten with age due to increased 3' trimming and decreased U tailing. Particularly, shorter but functionally competent isoforms (isomiRs) of miR-338-3p increase up to 10-fold during adolescence and only in brain. MiRNAs that undergo 3' shortening exhibit stronger negative correlations with targets that decrease with age and stronger positive correlations with targets that increase with age, than miRNAs with stable 3' ends. Increased 3' shortening with age was also observed in available mouse and human miRNA-seq data sets, and stronger correlations between miRNAs that undergo shortening and their mRNA targets were observed in two of the three available data sets. We conclude that age-associated miRNA 3' shortening is a well-conserved feature of postnatal brain maturation.
Collapse
Affiliation(s)
- Kristen T. Thomas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Anaïs Vermare
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Suzannah O. Egleston
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ashutosh Mishra
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Tong Lin
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Stanislav S. Zakharenko
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
- *Correspondence: Stanislav S. Zakharenko,
| |
Collapse
|
4
|
Wang J, Li G, Lin M, Lin S, Wu L. microRNA-338-3p suppresses lipopolysaccharide-induced inflammatory response in HK-2 cells. BMC Mol Cell Biol 2022; 23:60. [PMID: 36564725 PMCID: PMC9789656 DOI: 10.1186/s12860-022-00455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Inflammation is the most common cause of kidney damage, and inflammatory responses in a number of diseases are mediated by microRNA-338-3p (miR-338-3p). However, there are only a few reports which described the regulation of miR-338-3p in human proximal tubular cells. The goal of this study was to see how miR-338-3p affected lipopolysaccharide (LPS)-caused inflammatory response in HK-2 cells. METHODS LPS was used to construct an inflammatory model in HK-2 cells. miR-338-3p mimic was used to increase the levels of miR-338-3p in HK-2 cells. MTT, JC-1 staining, and apoptosis assays were used to detect cell viability, mitochondrial membrane potential (MMP), and apoptosis, respectively. The production of inflammatory factors and the levels of p38, p65, phospho-p65, phospho-p38, Bax, Bcl-2, cleaved caspase-9, and cleaved caspase-3 were investigated using real-time polymerase chain reaction, western blotting, or enzyme-linked immunosorbent assay. RESULTS The levels of miR-338-3p were significantly lower in serum from patients with sepsis-induced kidney injury compared to the serum from healthy volunteers (P < 0.05). LPS reduced the level of miR-338-3p in HK-2 cells (P < 0.05). HK-2 cell viability, mitochondrial membrane potential, and Bcl-2 mRNA and protein levels were decreased by LPS (all P < 0.05). Apoptosis, the mRNA and protein levels of inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α) and Bax, and the levels of cleaved caspase-9 and caspase-3 were increased by LPS (all P < 0.05). Raising the level of miR-338-3p mitigated these effects of LPS (all P < 0.05). CONCLUSION LPS-induced inflammation in HK-2 cells is reduced by miR-338-3p.
Collapse
Affiliation(s)
- Jing Wang
- Department of nosocomial infection management, Fujian Maternity and Child Health Hospital, Fujian Fuzhou, 350001 China
| | - Guokai Li
- Department of nosocomial infection management, Fujian Maternity and Child Health Hospital, Fujian Fuzhou, 350001 China
| | - Min Lin
- Pediatric intensive care unit, Fujian Maternity and Child Health Hospital, Fujian Fuzhou, 350001 China
| | - Sheng Lin
- Department of pediatrics, Fujian Maternity and Child Health Hospital, No. 18 Daoshan Road, Gulou District, Fujian Fuzhou, 350001 China
| | - Ling Wu
- Department of pediatrics, Fujian Maternity and Child Health Hospital, No. 18 Daoshan Road, Gulou District, Fujian Fuzhou, 350001 China
| |
Collapse
|
5
|
MiR-338-3p inhibits cell migration and invasion in human hypopharyngeal cancer via downregulation of ADAM17. Anticancer Drugs 2021; 31:925-931. [PMID: 32889897 DOI: 10.1097/cad.0000000000000919] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Studies have confirmed that microRNAs play important roles in the development and progression of cancer. Therefore, to identify the differentially expressed microRNAs between the cancer and the normal tissues, microRNAs will provide new clues for exploring the molecular mechanisms of cancer development and potential targeted therapies. In the present study, we found that miR-338-3p was downregulated in hypopharyngeal carcinoma and inversely correlated with the pathological grade. When the miR-338-3p was further downregulated, the migration and invasion ability of the FaDu hypopharyngeal carcinoma cells were enhanced, and these functions were inhibited when the miR-338-3p was upregulated. In addition, we demonstrated that ADAM17 was a target of miR-338-3p, and that ADAM17 directly activated the wnt/β-catenin signaling pathway and promoted the expression of its target gene MMP2, Nanog and SOX2, which affected the growth, migration and invasion of hypopharyngeal carcinoma cells. In conclusion, our results demonstrate for the first time that miR-338-3p targets ADAM17 and blocks the development of hypopharyngeal carcinoma involving the wnt/β-catenin signaling pathway, which may be a new target for clinical intervention in human cancer.
Collapse
|
6
|
Yi Q, Cui H, Liao Y, Xiong J, Ye X, Sun W. A minor review of microRNA-338 exploring the insights of its function in tumorigenesis. Biomed Pharmacother 2021; 139:111720. [PMID: 34243620 DOI: 10.1016/j.biopha.2021.111720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs(miRNAs) are small non-coding RNAs which have a critical role in various biological processes via direct binding and post-transcriptionally regulating targeted genes expression. More than one-half of human genes were regulated by miRNAs and their aberrant expression was detected in various human diseases, including cancers. miRNA-338 is a new identified miRNA and increasing evidence show that miRNA-338 participates in the progression of lots of cancers, such as lung cancer, hepatocellular cancer, breast cancer, glioma, and so on. Although a range of targets and signaling pathways such as MACC1 and Wnt/β-catenin signaling pathway were illustrated to be regulated by miRNA-338, which functions in tumor progression are still ambiguous and the underlying molecular mechanisms are also unclear. Herein, we reviewed the latest studies in miRNA-338 and summarized its roles in different type of human tumors, which might provide us new idea for further investigations and potential targeted therapy.
Collapse
Affiliation(s)
- Qian Yi
- Shenzhen Key Laboratory of Tissue Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China; Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Hanwei Cui
- The Central Laboratory and Medical Genetics & Molecular Diagnostic Center, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China
| | - Yi Liao
- The Central Laboratory and Medical Genetics & Molecular Diagnostic Center, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China
| | - Jianyi Xiong
- Shenzhen Key Laboratory of Tissue Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China.
| | - Xiufeng Ye
- The Central Laboratory and Medical Genetics & Molecular Diagnostic Center, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China.
| | - Weichao Sun
- Shenzhen Key Laboratory of Tissue Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China.
| |
Collapse
|
7
|
Rial MJ, Cañas JA, Rodrigo-Muñoz JM, Valverde-Monge M, Sastre B, Sastre J, del Pozo V. Changes in Serum MicroRNAs after Anti-IL-5 Biological Treatment of Severe Asthma. Int J Mol Sci 2021; 22:ijms22073558. [PMID: 33808110 PMCID: PMC8038078 DOI: 10.3390/ijms22073558] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 12/13/2022] Open
Abstract
There is currently enough evidence to think that miRNAs play a role in several key points in asthma, including diagnosis, severity of the disease, and response to treatment. Cells release different types of lipid double-membrane vesicles into the extracellular microenvironment, including exosomes, which function as very important elements in intercellular communication. They are capable of distributing genetic material, mRNA, mitochondrial DNA, and microRNAs (miRNAs). Serum miRNA screening was performed in order to analyze possible changes in serum miRNAs in 10 patients treated with reslizumab and 6 patients with mepolizumab after 8 weeks of treatment. The expression of miR-338-3p was altered after treatment (p < 0.05), although no significant differences between reslizumab and mepolizumab were found. Bioinformatic analysis showed that miR-338-3p regulates important pathways in asthma, such as the MAPK and TGF-β signaling pathways and the biosynthesis/degradation of glucans (p < 0.05). However, it did not correlate with an improvement in lung function. MiRNA-338-3p could be used as a biomarker of early response to reslizumab and mepolizumab in severe eosinophilic asthmatic patients. In fact, this miRNA could be involved in airway remodeling, targeting genes related to MAPK and TGF-β signaling pathways.
Collapse
Affiliation(s)
- Manuel J. Rial
- Allergy Unit, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (M.J.R.); (M.V.-M.); (J.S.)
- Department of Immunology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain; (J.A.C.); (J.M.R.-M.); (B.S.)
| | - José A. Cañas
- Department of Immunology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain; (J.A.C.); (J.M.R.-M.); (B.S.)
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José M. Rodrigo-Muñoz
- Department of Immunology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain; (J.A.C.); (J.M.R.-M.); (B.S.)
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marcela Valverde-Monge
- Allergy Unit, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (M.J.R.); (M.V.-M.); (J.S.)
| | - Beatriz Sastre
- Department of Immunology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain; (J.A.C.); (J.M.R.-M.); (B.S.)
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Joaquín Sastre
- Allergy Unit, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (M.J.R.); (M.V.-M.); (J.S.)
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Victoria del Pozo
- Department of Immunology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain; (J.A.C.); (J.M.R.-M.); (B.S.)
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-9155-048-91
| |
Collapse
|
8
|
Chang J, Liu S, Li B, Huo Z, Wang X, Zhang H. MiR-338-3p improved lung adenocarcinoma by AKAP12 suppression. Arch Med Sci 2021; 17:462-473. [PMID: 33747281 PMCID: PMC7959095 DOI: 10.5114/aoms.2019.90913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/01/2017] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION This study aimed to explore the biological functions of AKAP12 in lung adenocarcinoma and investigate the interaction between AKAP12 and miR-338-3p. MATERIAL AND METHODS Sixty-one differentially expressed genes in lung adenocarcinoma and adjacent normal tissues were first analyzed by TCGA. Immunohistochemistry and quantitative reverse transcription PCR (qRT-PCR) were further utilized to confirm aberrant AKAP12 expression in tumor tissues. The influences of AKAP12 on proliferation, invasion and migration, and apoptosis of lung adenocarcinoma were investigated by clone formation assay and MTT assay, transwell assay, and flow cytometry analysis respectively. TargetScan and miRanda databases predicted the binding sites of miRNAs on AKAP12 3'-UTR and structure changes were validated by RNA folding form. The target relationship between miR-338-3p and AKAP12 was confirmed by the dual-luciferase reporter system. Disease-free survival (DFS) and overall survival (OS) curves were generated with Kaplan-Meier plotter according to the TCGA data and the correlation among AKAP12 expression, miR-338-3p expression and prognosis was also analyzed. RESULTS AKAP12 was upregulated in lung adenocarcinoma tissues and cells (all p < 0.01), and negatively correlated with prognosis outcomes of patients (both p < 0.05). High expression of AKAP12 promoted proliferation, invasion and migration of cancer cells, and inhibited cell apoptosis (all p < 0.05). MiR-338-3p could directly bind to the 3'-UTR of AKAP12 and showed most significant suppression on AKAP12 expression among four predicted miRNAs (all p < 0.01). Additionally, miR-338-3p could suppress AKAP12 in lung adenocarcinoma, improving prognosis (all p < 0.05). CONCLUSIONS AKAP12 acts as a tumor promoter in lung adenocarcinoma development. Upregulation of MiR-338-3p could suppress AKAP12 expression in lung cancer cells and contribute to a better prognosis.
Collapse
Affiliation(s)
- Jin Chang
- Department of Aesthetic Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Shuo Liu
- Department of Stomatology, Handan First Hospital, Handan, Hebei, China
| | - Baowei Li
- Department of Radiology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Zhongchao Huo
- Department of Radiotherapy, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Xiaomin Wang
- Department of Radiology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Hui Zhang
- Department of Radiology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| |
Collapse
|
9
|
Kwok ZH, Zhang B, Chew XH, Chan JJ, Teh V, Yang H, Kappei D, Tay Y. Systematic Analysis of Intronic miRNAs Reveals Cooperativity within the Multicomponent FTX Locus to Promote Colon Cancer Development. Cancer Res 2020; 81:1308-1320. [PMID: 33172934 DOI: 10.1158/0008-5472.can-20-1406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/05/2020] [Accepted: 11/06/2020] [Indexed: 11/16/2022]
Abstract
Approximately half of all miRNA reside within intronic regions and are often cotranscribed with their host genes. However, most studies of intronic miRNA focus on individual miRNA, while conversely most studies of protein-coding and noncoding genes frequently ignore any intron-derived miRNA. We hypothesize that the individual components of such multigenic loci may play cooperative or competing roles in driving disease progression and that examining the combinatorial effect of these components would uncover deeper insights into their functional importance. To address this, we performed systematic analyses of intronic miRNA:host loci in colon cancer. The FTX locus, comprising of a long noncoding RNA FTX and multiple intronic miRNA, was highly upregulated in cancer, and cooperativity within this multicomponent locus promoted cancer growth. FTX interacted with DHX9 and DICER and regulated A-to-I RNA editing and miRNA expression. These results show for the first time that a long noncoding RNA can regulate A-to-I RNA editing, further expanding the functional repertoire of long noncoding RNA. Intronic miR-374b and miR-545 inhibited tumor suppressors PTEN and RIG-I to enhance proto-oncogenic PI3K-AKT signaling. Furthermore, intronic miR-421 may exert an autoregulatory effect on miR-374b and miR-545. Taken together, our data unveil the intricate interplay between intronic miRNA and their host transcripts in the modulation of key signaling pathways and disease progression, adding new perspectives to the functional landscape of multigenic loci. SIGNIFICANCE: This study illustrates the functional relationships between individual components of multigenic loci in regulating cancer progression.See related commentary by Calin, p. 1212.
Collapse
Affiliation(s)
- Zhi Hao Kwok
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Bin Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Xiao Hong Chew
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jia Jia Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Velda Teh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore. .,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
10
|
Li J, Li D, Zhou H, Wu G, He Z, Liao W, Li Y, Zhi Y. MicroRNA-338-5p alleviates neuronal apoptosis via directly targeting BCL2L11 in APP/PS1 mice. Aging (Albany NY) 2020; 12:20728-20742. [PMID: 33087587 PMCID: PMC7655176 DOI: 10.18632/aging.104005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/01/2020] [Indexed: 12/30/2022]
Abstract
MicroRNAs have become pivotal modulators in the pathogenesis of Alzheimer’s disease. MiR-338-5p is associated with neuronal differentiation and neurogenesis, and expressed aberrantly in patients with cognitive dysfunction. However, its role and potential mechanism involved in Alzheimer’s disease remain to be elucidated. Herein, we showed that the expression of miR-338-5p decreased in APP/PS1 mice, accompanied by the elevation in the expression level of amyloid β, which indicated a reverse relationship between Alzheimer’s disease progression and miR-338-5p. In addition, lentiviral overexpression of miR-338-5p through intrahippocampal injection mitigated the amyloid plaque deposition and cognitive dysfunction in APP/PS1 mice, suggesting a protecting role of miR-338-5p against the development of Alzheimer’s disease. Moreover, miR-338-5p decelerated apoptotic loss of neurons in APP/PS1 mice. MiR-338-5p decreased neuronal apoptosis in vitro induced by amyloid β accumulation, which was attributed to the negative regulation of BCL2L11 by miR-338-5p, since the restoration of BCL2L11 eliminated the protective role of miR-338-5p against neuronal apoptosis. Taken together, all of these results may indicate miR-338-5p as an innovative modulator in the pathogenesis of Alzheimer’s disease, and also suggest that the protective effect of miR-338-5p on neuronal apoptosis may underlie its beneficial effect on APP/PS1 mice.
Collapse
Affiliation(s)
- Junhua Li
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Laboratory of RNA and Major Diseases of Brain and Hearts, Sun Yat-sen University, Guangzhou 510120, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Danhua Li
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Laboratory of RNA and Major Diseases of Brain and Hearts, Sun Yat-sen University, Guangzhou 510120, China
| | - Huatao Zhou
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Laboratory of RNA and Major Diseases of Brain and Hearts, Sun Yat-sen University, Guangzhou 510120, China
| | - Guiyun Wu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Laboratory of RNA and Major Diseases of Brain and Hearts, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhijie He
- Department of Intensive Care Unit, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Wenhua Liao
- Department of Intensive Care Unit, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yujuan Li
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Laboratory of RNA and Major Diseases of Brain and Hearts, Sun Yat-sen University, Guangzhou 510120, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yaowei Zhi
- Department of Intensive Care Unit, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| |
Collapse
|
11
|
Rezaei S, Mahjoubin-Tehran M, Aghaee-Bakhtiari SH, Jalili A, Movahedpour A, Khan H, Moghoofei M, Shojaei Z, R Hamblin M, Mirzaei H. Autophagy-related MicroRNAs in chronic lung diseases and lung cancer. Crit Rev Oncol Hematol 2020; 153:103063. [DOI: 10.1016/j.critrevonc.2020.103063] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/11/2020] [Accepted: 07/12/2020] [Indexed: 12/24/2022] Open
|
12
|
Hisanaga SI, Wei R, Huo A, Tomomura M. LMTK1, a Novel Modulator of Endosomal Trafficking in Neurons. Front Mol Neurosci 2020; 13:112. [PMID: 32714146 PMCID: PMC7344150 DOI: 10.3389/fnmol.2020.00112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022] Open
Abstract
Neurons extend long processes known as axons and dendrites, through which they communicate with each other. The neuronal circuits formed by the axons and dendrites are the structural basis of higher brain functions. The formation and maintenance of these processes are essential for physiological brain activities. Membrane components, both lipids, and proteins, that are required for process formation are supplied by vesicle transport. Intracellular membrane trafficking is regulated by a family of Rab small GTPases. A group of Rabs regulating endosomal trafficking has been studied mainly in nonpolarized culture cell lines, and little is known about their regulation in polarized neurons with long processes. As shown in our recent study, lemur tail (former tyrosine) kinase 1 (LMTK1), an as yet uncharacterized Ser/Thr kinase associated with Rab11-positive recycling endosomes, modulates the formation of axons, dendrites, and spines in cultured primary neurons. LMTK1 knockdown or knockout (KO) or the expression of a kinase-negative mutant stimulates the transport of endosomal vesicles in neurons, leading to the overgrowth of axons, dendrites, and spines. More recently, we found that LMTK1 regulates TBC1D9B Rab11 GAP and proposed the Cdk5/p35-LMTK1-TBC1D9B-Rab11 pathway as a signaling cascade that regulates endosomal trafficking. Here, we summarize the biochemical, cell biological, and physiological properties of LMTK1.
Collapse
Affiliation(s)
- Shin-Ichi Hisanaga
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa Campus, Hachioji, Japan
| | - Ran Wei
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa Campus, Hachioji, Japan
| | - Anni Huo
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa Campus, Hachioji, Japan
| | - Mineko Tomomura
- Department of Oral Health Sciences, Meikai University School of Health Sciences, Urayasu, Japan
| |
Collapse
|
13
|
Ferro E, Enrico Bena C, Grigolon S, Bosia C. From Endogenous to Synthetic microRNA-Mediated Regulatory Circuits: An Overview. Cells 2019; 8:E1540. [PMID: 31795372 PMCID: PMC6952906 DOI: 10.3390/cells8121540] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are short non-coding RNAs that are evolutionarily conserved and are pivotal post-transcriptional mediators of gene regulation. Together with transcription factors and epigenetic regulators, they form a highly interconnected network whose building blocks can be classified depending on the number of molecular species involved and the type of interactions amongst them. Depending on their topology, these molecular circuits may carry out specific functions that years of studies have related to the processing of gene expression noise. In this review, we first present the different over-represented network motifs involving microRNAs and their specific role in implementing relevant biological functions, reviewing both theoretical and experimental studies. We then illustrate the recent advances in synthetic biology, such as the construction of artificially synthesised circuits, which provide a controlled tool to test experimentally the possible microRNA regulatory tasks and constitute a starting point for clinical applications.
Collapse
Affiliation(s)
- Elsi Ferro
- IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, 10060 Candiolo (Torino), Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (Torino), Italy
| | - Chiara Enrico Bena
- IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, 10060 Candiolo (Torino), Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (Torino), Italy
| | - Silvia Grigolon
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Carla Bosia
- IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, 10060 Candiolo (Torino), Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
14
|
Pan P, Weisenberger DJ, Zheng S, Wolf M, Hwang DG, Rose-Nussbaumer JR, Jurkunas UV, Chan MF. Aberrant DNA methylation of miRNAs in Fuchs endothelial corneal dystrophy. Sci Rep 2019; 9:16385. [PMID: 31705138 PMCID: PMC6841734 DOI: 10.1038/s41598-019-52727-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
Homeostatic maintenance of corneal endothelial cells is essential for maintenance of corneal deturgescence and transparency. In Fuchs endothelial corneal dystrophy (FECD), an accelerated loss and dysfunction of endothelial cells leads to progressively severe visual impairment. An abnormal accumulation of extracellular matrix (ECM) is a distinctive hallmark of the disease, however the molecular pathogenic mechanisms underlying this phenomenon are not fully understood. Here, we investigate genome-wide and sequence-specific DNA methylation changes of miRNA genes in corneal endothelial samples from FECD patients. We discover that miRNA gene promoters are frequent targets of aberrant DNA methylation in FECD. More specifically, miR-199B is extensively hypermethylated and its mature transcript miR-199b-5p was previously found to be almost completely silenced in FECD. Furthermore, we find that miR-199b-5p directly and negatively regulates Snai1 and ZEB1, two zinc finger transcription factors that lead to increased ECM deposition in FECD. Taken together, these findings suggest a novel epigenetic regulatory mechanism of matrix protein production by corneal endothelial cells in which miR-199B hypermethylation leads to miR-199b-5p downregulation and thereby the increased expression of its target genes, including Snai1 and ZEB1. Our results support miR-199b-5p as a potential therapeutic target to prevent or slow down the progression of FECD disease.
Collapse
Affiliation(s)
- Peipei Pan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Siyu Zheng
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Marie Wolf
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - David G Hwang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA.,Francis I. Proctor Foundation, University of California, San Francisco, CA, USA
| | - Jennifer R Rose-Nussbaumer
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA.,Francis I. Proctor Foundation, University of California, San Francisco, CA, USA
| | - Ula V Jurkunas
- Department of Ophthalmology, Harvard Medical School, and Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA, USA
| | - Matilda F Chan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA. .,Francis I. Proctor Foundation, University of California, San Francisco, CA, USA.
| |
Collapse
|
15
|
Sun Q, Zhang B, Zhu W, Wei W, Ma J, Tay FR. A potential therapeutic target for regulating osteoporosis via suppression of osteoclast differentiation. J Dent 2019; 82:91-97. [PMID: 30716449 DOI: 10.1016/j.jdent.2019.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/20/2019] [Accepted: 01/23/2019] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Osteoclast differentiation is regulated by transcriptional, post-transcriptional and post-translational mechanisms. Micro-ribonucleic acids (miRNAs) are 20-24 nucleotides long non-coding RNAs involved in post-translational regulation of gene expressions during osteoclast differentiation. The objective of the present study was to investigate the role played by the miRNA, miR-338-3p, in osteoclastogenesis. METHODS Osteoclastogenesis was induced in murine RAW264.7 cells using M-CSF and RANKL. The differentiated cells were harvested at designated times for TRAP staining and detection of designated gene expressions. A synthetic miR-338-3p mimic or its inhibitor was transfected into RAW264.7 cells prior to the induction of osteoclastogenesis. The effects of mimic or inhibitor on osteoclastogenesis were examined by qRT-PCR and TRAP staining. Bioinformatic analysis and luciferase activity were performed to identify the relationship between miR-338-3p and the transcription factor MafB. The miR-338-3p mimic and MafB siRNA were co-transfected into RAW264.7 cells to evaluate the cross-talk between miR-338-3p and MafB. RESULTS miR-338-3p was increased significantly during osteoclast differentiation. Overexpression of miR-338-3p promoted osteoclastogenesis while its inhibition had the opposite effect. Bioinformatic analysis and dual luciferase assays indicated that miR-338-3p targeted MafB to repress its gene expression. MafB knockdown by RNA silencing blocked the promotional effect of miR-338-3p on osteoclast differentiation. CONCLUSION Because miR-338-3p is crucial for osteoclastic differentiation via targeting of the transcription factor MafB, inhibition of this miRNA represents a potential strategy for modulating osteoporosis in an aging population. CLINICAL SIGNIfiCANCE: Understanding the role played by miR-338-3p in osteoclast differentiation bridges the gap between the pathogenesis of osteoporosis and the quest for novel therapeutics to reduce the risk of bone fracture associated with this global disease.
Collapse
Affiliation(s)
- Qin Sun
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Boran Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wei
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingzhi Ma
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Franklin R Tay
- College of Graduate Studies, Augusta University, Augusta, GA, USA.
| |
Collapse
|
16
|
Bhatia V, Yadav A, Tiwari R, Nigam S, Goel S, Carskadon S, Gupta N, Goel A, Palanisamy N, Ateeq B. Epigenetic Silencing of miRNA-338-5p and miRNA-421 Drives SPINK1-Positive Prostate Cancer. Clin Cancer Res 2018; 25:2755-2768. [PMID: 30587549 DOI: 10.1158/1078-0432.ccr-18-3230] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/09/2018] [Accepted: 12/19/2018] [Indexed: 01/03/2023]
Abstract
PURPOSE Serine peptidase inhibitor, Kazal type-1 (SPINK1) overexpression defines the second most recurrent and aggressive prostate cancer subtype. However, the underlying molecular mechanism and pathobiology of SPINK1 in prostate cancer remains largely unknown. EXPERIMENTAL DESIGN miRNA prediction tools were employed to examine the SPINK1-3'UTR for miRNA binding. Luciferase reporter assays were performed to confirm the SPINK1-3'UTR binding of shortlisted miR-338-5p/miR-421. Furthermore, miR-338-5p/-421-overexpressing cancer cells (SPINK1-positive) were evaluated for oncogenic properties using cell-based functional assays and a mouse xenograft model. Global gene expression profiling was performed to unravel the biological pathways altered by miR-338-5p/-421. IHC and RNA in situ hybridization were carried out on prostate cancer patients' tissue microarray for SPINK1 and EZH2 expression, respectively. Chromatin immunoprecipitation assay was performed to examine EZH2 occupancy on the miR-338-5p/-421-regulatory regions. Bisulfite sequencing and methylated DNA immunoprecipitation were performed on prostate cancer cell lines and patients' specimens. RESULTS We established a critical role of miRNA-338-5p/-421 in posttranscriptional regulation of SPINK1. Ectopic expression of miRNA-338-5p/-421 in SPINK1-positive cells abrogates oncogenic properties including cell-cycle progression, stemness, and drug resistance, and shows reduced tumor burden and distant metastases in a mouse model. Importantly, we show that patients with SPINK1-positive prostate cancer exhibit increased EZH2 expression, suggesting its role in epigenetic silencing of miRNA-338-5p/-421. Furthermore, presence of CpG dinucleotide DNA methylation marks on the regulatory regions of miR-338-5p/-421 in SPINK1-positive prostate cancer cells and patients' specimens confirms epigenetic silencing. CONCLUSIONS Our findings revealed that miRNA-338-5p/-421 are epigenetically silenced in SPINK1-positive prostate cancer, although restoring the expression of these miRNAs using epigenetic drugs or synthetic mimics could abrogate SPINK1-mediated oncogenesis.See related commentary by Bjartell, p. 2679.
Collapse
Affiliation(s)
- Vipul Bhatia
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Anjali Yadav
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Ritika Tiwari
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Shivansh Nigam
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Sakshi Goel
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Shannon Carskadon
- Vattikuti Urology Institute, Department of Urology, Henry Ford Health System, Detroit, Michigan
| | - Nilesh Gupta
- Department of Pathology, Henry Ford Health System, Detroit, Michigan
| | - Apul Goel
- Department of Urology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Nallasivam Palanisamy
- Vattikuti Urology Institute, Department of Urology, Henry Ford Health System, Detroit, Michigan
| | - Bushra Ateeq
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
17
|
MicroRNAs as Biomarkers in Amyotrophic Lateral Sclerosis. Cells 2018; 7:cells7110219. [PMID: 30463376 PMCID: PMC6262636 DOI: 10.3390/cells7110219] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 12/30/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable and fatal disorder characterized by the progressive loss of motor neurons in the cerebral cortex, brain stem, and spinal cord. Sporadic ALS form accounts for the majority of patients, but in 1–13.5% of cases the disease is inherited. The diagnosis of ALS is mainly based on clinical assessment and electrophysiological examinations with a history of symptom progression and is then made with a significant delay from symptom onset. Thus, the identification of biomarkers specific for ALS could be of a fundamental importance in the clinical practice. An ideal biomarker should display high specificity and sensitivity for discriminating ALS from control subjects and from ALS-mimics and other neurological diseases, and should then monitor disease progression within individual patients. microRNAs (miRNAs) are considered promising biomarkers for neurodegenerative diseases, since they are remarkably stable in human body fluids and can reflect physiological and pathological processes relevant for ALS. Here, we review the state of the art of miRNA biomarker identification for ALS in cerebrospinal fluid (CSF), blood and muscle tissue; we discuss advantages and disadvantages of different approaches, and underline the limits but also the great potential of this research for future practical applications.
Collapse
|
18
|
Aganzo M, Montojo MT, López de Las Hazas MC, Martínez-Descals A, Ricote-Vila M, Sanz R, González-Peralta I, Martín-Hernández R, de Dios O, Garcés C, Galdón A, Lorenzo Ó, Tomás-Zapico C, Dávalos A, Vázquez C, González N. Customized Dietary Intervention Avoids Unintentional Weight Loss and Modulates Circulating miRNAs Footprint in Huntington's Disease. Mol Nutr Food Res 2018; 62:e1800619. [PMID: 30359470 DOI: 10.1002/mnfr.201800619] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/02/2018] [Indexed: 12/25/2022]
Abstract
SCOPE Huntington's disease (HD) is a rare progressive neurodegenerative disorder of genetic origin, with no definitive treatment. Unintentional weight loss (UWL) is a clinical feature of symptomatic HD subjects. To prevent UWL, a customized HD diet is designed and its impact on plasma miRNA HD footprint and neurological parameters is examined. METHODS AND RESULTS Eleven participants are included, BMI ≤ 18 kg m-2 or UWL of 5% in 6 months or 10% in a year. Diet design is based on nutritional surveys and interviews of participants and caregivers and on published literature review. Twelve-month dietary intervention, with follow-up every 3 months, induces high diet adherence, which manages to curb UWL in all participants (73% gained weight). Noticeable increases in fat mass and leptin levels are obtained. The results also show significant decrease in the expression of 19 miRNAs, which are previously reported to be upregulated in HD-patients versus healthy controls: revealing hsa-miR-338-3p, hsa-miR-128-3p, hsa-miR-23a-3p, and hsa-miR-24-3p as potential HD-biomarkers. The diminished expression of hsa-miR-100-5p reflects the general maintenance of the functional status. Cognitive status is improved in six of 11 participants, while only three present better motor-score values. CONCLUSION A customized HD-diet prevents UWL and modified miRNAs HD-footprint. The normalization of miRNA values suggests its potentially use as HD-biomarkers.
Collapse
Affiliation(s)
- Miguel Aganzo
- Division of Endocrinology, Fundación Jiménez Díaz, 28040, Madrid, Spain
| | - María-Teresa Montojo
- Department of Neurology, Movement Disorders Unit, Fundación Jiménez Díaz, 28040, Madrid, Spain
| | - María-Carmen López de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, Spain
| | | | - Marta Ricote-Vila
- Renal, Vascular and Diabetes Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), UAM, Madrid, Spain
| | - Raúl Sanz
- Centros de Estudios Genéticcos ATG Medical, Madrid, Spain
| | - Irene González-Peralta
- Centros de Estudios Genéticcos ATG Medical, Madrid, Spain.,Escuela Superior de Ciencias Experimentales y Tecnología. URJC, Madrid, Spain
| | - Roberto Martín-Hernández
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, Spain
| | | | | | - Alba Galdón
- Division of Endocrinology, Fundación Jiménez Díaz, 28040, Madrid, Spain
| | - Óscar Lorenzo
- Renal, Vascular and Diabetes Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), UAM, Madrid, Spain
| | - Cristina Tomás-Zapico
- Department of Functional Biology, Physiology Area, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, Spain
| | - Clotilde Vázquez
- Division of Endocrinology, Fundación Jiménez Díaz, 28040, Madrid, Spain
| | - Nieves González
- Renal, Vascular and Diabetes Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), UAM, Madrid, Spain.,Centros de Estudios Genéticcos ATG Medical, Madrid, Spain.,Spanish Biomedical Research Network in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| |
Collapse
|
19
|
Yang X, Zi XH. LncRNA SNHG1 alleviates OGD induced injury in BMEC via miR-338/HIF-1α axis. Brain Res 2018; 1714:174-181. [PMID: 30414401 DOI: 10.1016/j.brainres.2018.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Brain microvascular endothelial cell (BMEC) is an important therapeutic target for the inhibition of brain vascular dysfunction in ischemic stroke. Expression of long non-coding RNA SNHG1 is reportedly upregulated in BMEC after OGD. The present study aims to investigate the potential roles of SNHG1 in OGD-induced injury in BMEC. METHODS Mice primary brain microvascular endothelial cells (BMEC) were cultured under "normal" or "oxygen/glucose-deprived" (OGD) conditions. The expression of SNHG1 and miR-338 after OGD were examined by qPCR. shRNA against SNHG1 was used to knockdown SNHG1 in BMEC. MiR-338-3p mimic and inhibitor were used to change the expression of miR-338 in BMEC. The relationship between SNHG1 and miR-338, and the relationship between miR-338 and HIF-1α were clarified using RNA pull-down and luciferase reporter gene assays, respectively. RESULTS SNHG1 and miR-338 were upregulated in OGD induced BMEC. SNHG1 silence aggravated OGD-induced cell apoptosis by down-regulating Bcl-2, HIF-1α and VEGF-A, and upregulating caspase 3 activity and Bax. MiR-338 was upregulated in SNHG1-silenced BMEC. RNA pull-down assays showed that SNHG1 could be directly bound by miR-338. In addition, miR-338 overexpression reduced cell viability in OGD while miR-338 inhibition protected BMEC against OGD-induced injury. Furthermore, luciferase reporter assay showed that HIF-1α was a direct target of miR-338. CONCLUSIONS SNHG1 exerted protective effects against OGD induced injury via sponging miR-338, thus upregulating HIF-1α/VEGF-A in BMEC.
Collapse
Affiliation(s)
- Xia Yang
- Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Xiao-Hong Zi
- Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha 410013, PR China.
| |
Collapse
|
20
|
Steiman-Shimony A, Shtrikman O, Margalit H. Assessing the functional association of intronic miRNAs with their host genes. RNA (NEW YORK, N.Y.) 2018; 24:991-1004. [PMID: 29752351 PMCID: PMC6049507 DOI: 10.1261/rna.064386.117] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 04/26/2018] [Indexed: 05/07/2023]
Abstract
In human, nearly half of the known microRNAs (miRNAs) are encoded within the introns of protein-coding genes. The embedment of these miRNA genes within the sequences of protein-coding genes alludes to a possible functional relationship between intronic miRNAs and their hosting genes. Several studies, using predicted targets, suggested that intronic miRNAs influence their hosts' function either antagonistically or synergistically. New experimental data of miRNA expression patterns and targets enable exploring this putative association by relying on actual data rather than on predictions. Here, our analysis based on currently available experimental data implies that the potential functional association between intronic miRNAs and their hosting genes is limited. For host-miRNA examples where functional associations were detected, it was manifested by either autoregulation, common targets of the miRNA and hosting gene, or through the targeting of transcripts participating in pathways in which the host gene is involved. This low prevalence of functional association is consistent with our observation that many intronic miRNAs have independent transcription start sites and are not coexpressed with the hosting gene. Yet, the intronic miRNAs that do show functional association with their hosts were found to be more evolutionarily conserved compared to other intronic miRNAs. This might suggest a selective pressure to maintain this architecture when it has a functional consequence.
Collapse
Affiliation(s)
- Avital Steiman-Shimony
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Orr Shtrikman
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
21
|
Liu B, Shyr Y, Cai J, Liu Q. Interplay between miRNAs and host genes and their role in cancer. Brief Funct Genomics 2018; 18:255-266. [PMID: 30785618 PMCID: PMC6609535 DOI: 10.1093/bfgp/elz002] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/21/2018] [Accepted: 01/23/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small endogenous non-coding functional RNAs that post-transcriptionally regulate gene expression. They play essential roles in nearly all biological processes including cell development and differentiation, DNA damage repair, cell death as well as intercellular communication. They are highly involved in cancer, acting as tumor suppressors and/or promoters to modulate cell proliferation, epithelial-mesenchymal transition and tumor invasion and metastasis. Recent studies have shown that more than half of miRNAs are located within protein-coding or non-coding genes. Intragenic miRNAs and their host genes either share the promoter or have independent transcription. Meanwhile, miRNAs work as partners or antagonists of their host genes by fine-tuning their target genes functionally associated with host genes. This review outlined the complicated relationship between intragenic miRNAs and host genes. Focusing on miRNAs known as oncogenes or tumor suppressors in specific cancer types, it studied co-expression relationships between these miRNAs and host genes in the cancer types using TCGA data sets, which validated previous findings and revealed common, tumor-specific and even subtype-specific patterns. These observations will help understand the function of intragenic miRNAs and further develop miRNA therapeutics in cancer.
Collapse
Affiliation(s)
- Baohong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
22
|
Yi Z, Gao K, Li R, Fu Y. Changed immune and miRNA response in RAW264.7 cells infected with cell wall deficient mycobacterium tuberculosis. Int J Mol Med 2018; 41:2885-2892. [PMID: 29436601 DOI: 10.3892/ijmm.2018.3471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/31/2018] [Indexed: 11/06/2022] Open
Abstract
Cell wall deficient (CWD) forms of Mycobacterium tuberculosis (Mtb) confers a marked resistance to immune system of the host. However, there is limit data on the effect of intracellular CWD-Mtb infection on macrophages. In the study, effects of CWD-Mtb on cell viability, cytokine response and miRNA expression of macrophages were analyzed. Cell viability was reduced, levels of interleukin-1α (IL-1α), IL-1β, IL-6, IL-10 and interferon-γ (IFN-γ) were also significantly changed after infection of RAW264.7 cells with CWD-Mtb. A total of 105 miRNAs were deregulated between CWD-Mtb and wild Mtb group, and among them, miR-29b was upregulated in CWD-Mtb group. Downregulation of miR-29b resulted in significant elevation level of IFN-γ mRNA. Involved signaling pathways of potential target genes of differentially expressed miRNAs mainly focused on T cell receptor signaling pathway, MAPK signaling pathway, neurotrophin signaling pathway, and regulation of actin cytoskeleton. Taken together, the results showed that cytokine production of CWD-Mtb infected macrophages was altered and many miRNAs were involved in regulation of macrophage response to CWD-Mtb infection, which probably determined the differential outcome following different phenotype Mtb infection. These findings open up a new and interesting avenue for an improved understanding of pathogenesis of CWD-Mtb.
Collapse
Affiliation(s)
- Zhengjun Yi
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong and Medical Priority Speciality of Clinical Laboratory in Shandong Province, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Kunshan Gao
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong and Medical Priority Speciality of Clinical Laboratory in Shandong Province, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Ruifang Li
- Department of Medical Microbiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yurong Fu
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong and Medical Priority Speciality of Clinical Laboratory in Shandong Province, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
23
|
Galatenko VV, Galatenko AV, Samatov TR, Turchinovich AA, Shkurnikov MY, Makarova JA, Tonevitsky AG. Comprehensive network of miRNA-induced intergenic interactions and a biological role of its core in cancer. Sci Rep 2018; 8:2418. [PMID: 29402894 PMCID: PMC5799291 DOI: 10.1038/s41598-018-20215-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/16/2018] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are a family of short noncoding RNAs that posttranscriptionally regulate gene expression and play an important role in multiple cellular processes. A significant percentage of miRNAs are intragenic, which is often functionally related to their host genes playing either antagonistic or synergistic roles. In this study, we constructed and analyzed the entire network of intergenic interactions induced by intragenic miRNAs. We further focused on the core of this network, which was defined as a union of nontrivial strongly connected components, i.e., sets of nodes (genes) mutually connected via directed paths. Both the entire network and its core possessed statistically significant non-random properties. Specifically, genes forming the core had high expression levels and low expression variance. Furthermore, the network core did not split into separate components corresponding to individual signalling or metabolic pathways, but integrated genes involved in key cellular processes, including DNA replication, transcription, protein homeostasis and cell metabolism. We suggest that the network core, consisting of genes mutually regulated by their intragenic miRNAs, could coordinate adjacent pathways or homeostatic control circuits, serving as a horizontal inter-circuit link. Notably, expression patterns of these genes had an efficient prognostic potential for breast and colorectal cancer patients.
Collapse
Affiliation(s)
- Vladimir V Galatenko
- Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia. .,SRC Bioclinicum, Ugreshskaya str. 2/85, 115088, Moscow, Russia. .,Tauber Bioinformatics Research Center, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, 3498838, Haifa, Israel.
| | - Alexey V Galatenko
- Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia
| | - Timur R Samatov
- SRC Bioclinicum, Ugreshskaya str. 2/85, 115088, Moscow, Russia.,Evotec International GmbH, Marie-Curie Str. 7, 37079, Göttingen, Germany
| | | | - Maxim Yu Shkurnikov
- P. Hertsen Moscow Oncology Research Institute, National Center of Medical Radiological Research, Second Botkinsky lane 3, 125284, Moscow, Russia
| | - Julia A Makarova
- P. Hertsen Moscow Oncology Research Institute, National Center of Medical Radiological Research, Second Botkinsky lane 3, 125284, Moscow, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova str. 32, 119991, Moscow, Russia
| | - Alexander G Tonevitsky
- SRC Bioclinicum, Ugreshskaya str. 2/85, 115088, Moscow, Russia. .,P. Hertsen Moscow Oncology Research Institute, National Center of Medical Radiological Research, Second Botkinsky lane 3, 125284, Moscow, Russia.
| |
Collapse
|
24
|
Hinske LC, Dos Santos FRC, Ohara DT, Ohno-Machado L, Kreth S, Galante PAF. MiRIAD update: using alternative polyadenylation, protein interaction network analysis and additional species to enhance exploration of the role of intragenic miRNAs and their host genes. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2017:4060447. [PMID: 29220447 PMCID: PMC5569676 DOI: 10.1093/database/bax053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/20/2017] [Indexed: 01/23/2023]
Abstract
MicroRNAs have established their role as potent regulators of the epigenome. Interestingly, most miRNAs are located within protein-coding genes with functional consequences that have yet to be fully investigated. MiRIAD is a database with an interactive and user-friendly online interface that has been facilitating research on intragenic miRNAs. In this article, we present a major update. First, data for five additional species (chimpanzee, rat, dog, cow and frog) were added to support the exploration of evolutionary aspects of the relationship between host genes and intragenic miRNAs. Moreover, we integrated data from two different sources to generate a comprehensive alternative polyadenylation dataset. The miRIAD interface was therefore redesigned and provides a completely new gene model representation, including an interactive visualization of the 3′ untranslated region (UTR) with alternative polyadenylation sites, corresponding signals and potential miRNA binding sites. Furthermore, we expanded on functional host gene network analysis. Although the previous version solely reported protein interactions, the update features a separate network analysis view that can either be accessed through the submission of a list of genes of interest or directly from a gene’s list of protein interactions. In addition to statistical properties of the submitted gene set, the interaction network graph is presented and miRNAs with seed site over- and underrepresentation are identified. In summary, the update of miRIAD provides novel datasets and bioinformatics resources with a significant increase in functionality to facilitate intragenic miRNA research in a user-friendly and interactive way. Database URL:http://www.miriad-database.org
Collapse
Affiliation(s)
- Ludwig C Hinske
- Department of Anaesthesiology, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Felipe R C Dos Santos
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo SP 01308-060, Brazil.,Inter Unidades em Bioinformática, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Daniel T Ohara
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo SP 01308-060, Brazil
| | - Lucila Ohno-Machado
- Health System Department of Biomedical Informatics, University of California San Diego, La Jolla, CA 93093, USA
| | - Simone Kreth
- Department of Anaesthesiology, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo SP 01308-060, Brazil
| |
Collapse
|
25
|
Yin G, Yang X, Li Q, Guo Z. GATA1 activated lncRNA (Galont) promotes anoxia/reoxygenation-induced autophagy and cell death in cardiomyocytes by sponging miR-338. J Cell Biochem 2018; 119:4161-4169. [PMID: 29247537 DOI: 10.1002/jcb.26623] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022]
Abstract
The hypernomic autophagy is associated with various cardiovascular diseases. Long noncoding RNAs (lncRNAs) are emerging as important regulators in gene expression, which have been involved in multiple physiological and pathological processes. However, the function of lncRNAs and how they functioned in the autophagy in cardiomyocytes were rarely reported. In this study, we report that a lncRNA, named GATA1 activated lncRNA (Galont), can directly interact with miR-338 and promote ATG5-mediated autophagic cell death in murine cardiomyocytes. First, we found that Galont was upregulated by anoxia/reoxygenation (A/R) stimulus, and it was able to promote autophagy and cell death in cardiomyocytes exposure to A/R. Then, miR-338 was identified as a novel suppressor in autophagy and autophagic cell death. Our results from bioinformatic analysis and luciferase reporter gene assay indicated that ATG5 is a target gene of miR-338. Furthermore, RNA pull-down assays demonstrated that Galont directly interacted with miR-338, and thus promoted ATG5 expression and autophagic cell death. Our findings reveal a novel regulatory circuit in the autophagy in cardiomyocytes, which consists of Galont, miR-338 and ATG5.
Collapse
Affiliation(s)
- Guotian Yin
- Department of Cardiology, Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Xiuli Yang
- Department of Cardiology, Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Qiong Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
26
|
Xiao G, Wang Q, Li B, Wu X, Liao H, Ren Y, Ai N. MicroRNA-338-3p Suppresses Proliferation of Human Liver Cancer Cells by Targeting SphK2. Oncol Res 2018; 26:1183-1189. [PMID: 29321083 PMCID: PMC7844730 DOI: 10.3727/096504018x15151495109394] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent studies have revealed abnormal expression of miRNAs in various tumors. Although microRNA-338-3p (miR-338-3p) plays an important role in many types of tumors, its influence on liver cancer (LC) is unknown. In this study, we found that expression of miR-338-3p was decreased in LC cells and tissues. Colony formation and cell proliferation were suppressed by enhanced expression of miR-338-3p in LC cells. Moreover, miR-338-3p targeted sphingosine kinase 2 (SphK2). Silencing of SphK2 had an identical influence as overexpression of miR-338-3p in LC cells. Overexpression of SphK2 without the 3′-untranslated region remarkably enhanced the growth suppression triggered by miR-338-3p in LC cells. These findings indicate that miR-338-3p influences the development of LC by targeting SphK2, suggesting that miR-338-3p can be targeted as an innovative therapeutic strategy for LC.
Collapse
Affiliation(s)
- Geqiong Xiao
- Department of Oncology, ShaoXing Municipal Hospital, Shaoxing, Zhejiang, P.R. China
| | - Qiong Wang
- Department of Oncology, ShaoXing Municipal Hospital, Shaoxing, Zhejiang, P.R. China
| | - Bo Li
- Department of Interventional Radiology, The 4th Hospital of Hebei Medical University, Shi Jiazhuang, Hebei, P.R. China
| | - Xiaohui Wu
- Department of Hepatobiliary Surgery, The 4th Hospital of Hebei Medical University, Shi Jiazhuang, Hebei, P.R. China
| | - Hui Liao
- Department of Oncology, ShaoXing Municipal Hospital, Shaoxing, Zhejiang, P.R. China
| | - Yili Ren
- Department of Oncology, ShaoXing Municipal Hospital, Shaoxing, Zhejiang, P.R. China
| | - Ning Ai
- Department of Interventional Radiology, The 4th Hospital of Hebei Medical University, Shi Jiazhuang, Hebei, P.R. China
| |
Collapse
|
27
|
Liu S, Suo J, Wang C, Sun X, Wang D, He L, Zhang Y, Li W. Downregulation of tissue miR-338-3p predicts unfavorable prognosis of gastric cancer. Cancer Biomark 2017; 21:117-122. [PMID: 29060930 DOI: 10.3233/cbm-170339] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Suoning Liu
- Department of the Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jian Suo
- Department of the Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Chunxi Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xuan Sun
- Department of the Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Daguang Wang
- Department of the Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Liang He
- Department of the Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yang Zhang
- Department of the Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Wei Li
- Department of the Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
28
|
Boivin V, Deschamps-Francoeur G, Scott MS. Protein coding genes as hosts for noncoding RNA expression. Semin Cell Dev Biol 2017; 75:3-12. [PMID: 28811264 DOI: 10.1016/j.semcdb.2017.08.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 12/17/2022]
Abstract
With the emergence of high-throughput sequence characterization methods and the subsequent improvements in gene annotations, it is becoming increasingly clear that a large proportion of eukaryotic protein-coding genes (as many as 50% in human) serve as host genes for non-coding RNA genes. Amongst the most extensively characterized embedded non-coding RNA genes, small nucleolar RNAs and microRNAs represent abundant families. Encoded individually or clustered, in sense or antisense orientation with respect to their host and independently expressed or dependent on host expression, the genomic characteristics of embedded genes determine their biogenesis and the extent of their relationship with their host gene. Not only can host genes and the embedded genes they harbour be co-regulated and mutually modulate each other, many are functionally coupled playing a role in the same cellular pathways. And while host-non-coding RNA relationships can be highly conserved, mechanisms have been identified, and in particular an association with transposable elements, allowing the appearance of copies of non-coding genes nested in host genes, or the migration of embedded genes from one host gene to another. The study of embedded non-coding genes and their relationship with their host genes increases the complexity of cellular networks and provides important new regulatory links that are essential to properly understand cell function.
Collapse
Affiliation(s)
- Vincent Boivin
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Gabrielle Deschamps-Francoeur
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Michelle S Scott
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.
| |
Collapse
|
29
|
Rivera-Barahona A, Fulgencio-Covián A, Pérez-Cerdá C, Ramos R, Barry MA, Ugarte M, Pérez B, Richard E, Desviat LR. Dysregulated miRNAs and their pathogenic implications for the neurometabolic disease propionic acidemia. Sci Rep 2017; 7:5727. [PMID: 28720782 PMCID: PMC5516006 DOI: 10.1038/s41598-017-06420-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/13/2017] [Indexed: 12/19/2022] Open
Abstract
miRNome expression profiling was performed in a mouse model of propionic acidemia (PA) and in patients’ plasma samples to investigate the role of miRNAs in the pathophysiology of the disease and to identify novel biomarkers and therapeutic targets. PA is a potentially lethal neurometabolic disease with patients developing neurological deficits and cardiomyopathy in the long-term, among other complications. In the PA mouse liver we identified 14 significantly dysregulated miRNAs. Three selected miRNAs, miR-34a-5p, miR-338-3p and miR-350, were found upregulated in brain and heart tissues. Predicted targets involved in apoptosis, stress-signaling and mitochondrial function, were inversely found down-regulated. Functional analysis with miRNA mimics in cellular models confirmed these findings. miRNA profiling in plasma samples from neonatal PA patients and age-matched control individuals identified a set of differentially expressed miRNAs, several were coincident with those identified in the PA mouse, among them miR-34a-5p and miR-338-3p. These two miRNAs were also found dysregulated in childhood and adult PA patients’ cohorts. Taken together, the results reveal miRNA signatures in PA useful to identify potential biomarkers, to refine the understanding of the molecular mechanisms of this rare disease and, eventually, to improve the management of patients.
Collapse
Affiliation(s)
- Ana Rivera-Barahona
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma, Madrid, Spain.,Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, Madrid, Spain
| | - Alejandro Fulgencio-Covián
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma, Madrid, Spain.,Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, Madrid, Spain
| | - Celia Pérez-Cerdá
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, Madrid, Spain
| | - Ricardo Ramos
- Genomic Facility, Parque Científico de Madrid, Madrid, Spain
| | | | - Magdalena Ugarte
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, Madrid, Spain
| | - Belén Pérez
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma, Madrid, Spain.,Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, Madrid, Spain
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma, Madrid, Spain.,Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, Madrid, Spain
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma, Madrid, Spain. .,Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain. .,Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, Madrid, Spain.
| |
Collapse
|
30
|
Kos A, Klein-Gunnewiek T, Meinhardt J, Loohuis NFMO, van Bokhoven H, Kaplan BB, Martens GJ, Kolk SM, Aschrafi A. MicroRNA-338 Attenuates Cortical Neuronal Outgrowth by Modulating the Expression of Axon Guidance Genes. Mol Neurobiol 2017; 54:3439-3452. [PMID: 27180071 PMCID: PMC5658782 DOI: 10.1007/s12035-016-9925-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRs) are small non-coding RNAs that confer robustness to gene networks through post-transcriptional gene regulation. Previously, we identified miR-338 as a modulator of axonal outgrowth in sympathetic neurons. In the current study, we examined the role of miR-338 in the development of cortical neurons and uncovered its downstream mRNA targets. Long-term inhibition of miR-338 during neuronal differentiation resulted in reduced dendritic complexity and altered dendritic spine morphology. Furthermore, monitoring axon outgrowth in cortical cells revealed that miR-338 overexpression decreased, whereas inhibition of miR-338 increased axonal length. To identify gene targets mediating the observed phenotype, we inhibited miR-338 in cortical neurons and performed whole-transcriptome analysis. Pathway analysis revealed that miR-338 modulates a subset of transcripts involved in the axonal guidance machinery by means of direct and indirect gene targeting. Collectively, our results implicate miR-338 as a novel regulator of cortical neuronal maturation by fine-tuning the expression of gene networks governing cortical outgrowth.
Collapse
Affiliation(s)
- Aron Kos
- Department of Cognitive Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
| | - Teun Klein-Gunnewiek
- Department of Cognitive Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
| | - Julia Meinhardt
- Department of Cognitive Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
| | - Nikkie F M Olde Loohuis
- Department of Cognitive Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Department of Cognitive Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
| | - Barry B Kaplan
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Gerard J Martens
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
- Department of Molecular Animal Physiology, Radboud University, Nijmegen, The Netherlands
| | - Sharon M Kolk
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
- Department of Molecular Animal Physiology, Radboud University, Nijmegen, The Netherlands
| | - Armaz Aschrafi
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands.
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
31
|
Lacedonia D, Palladino GP, Foschino-Barbaro MP, Scioscia G, Carpagnano GE. Expression profiling of miRNA-145 and miRNA-338 in serum and sputum of patients with COPD, asthma, and asthma-COPD overlap syndrome phenotype. Int J Chron Obstruct Pulmon Dis 2017; 12:1811-1817. [PMID: 28694694 PMCID: PMC5491577 DOI: 10.2147/copd.s130616] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background and objectives A new phenotype with overlapping characteristics between asthma and chronic obstructive pulmonary disease (COPD) called asthma–COPD overlap syndrome (ACOS) is emerging among inflammation diseases. To date, there is no agreement on specific criteria to define this syndrome, and the current guidelines are insufficient to classify the analogy and differences between overlap and COPD or asthma phenotypes. It would be necessary to identify new biomarkers able to identify these diseases clearly. Thus, the aim of this study was to identify a serum and supernatant of sputum microRNA (miRNA) expression profile of miRNA-145 and miRNA-338 in patients with asthma (n=13), COPD (n=31), and ACOS (n=8) and controls (n=7). Methods The expression was evaluated using quantitative real-time polymerase chain reaction (qRT-PCR). For statistical analysis, the ANOVA test, Kruskal–Wallis test, Mann–Whitney U-test, and Spearman’s rank correlation were used. Results The main finding of this work is that the expression of miRNA-338 is higher in the supernatant of different obstructive diseases than in peripheral blood, while miRNA-145 is higher only in the supernatant of asthma patients. The expression of both selected miRNAs is higher in the supernatant of asthma and COPD patients than in controls. Conclusion Differences in sputum miRNA expression profile were observed between patients with ACOS and asthma or COPD, which underline the potential role of miRNA as a biomarker that is able to discriminate patients with ACOS, asthma, and COPD.
Collapse
Affiliation(s)
- Donato Lacedonia
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, University of Foggia, Foggia, Italy
| | - Grazia Pia Palladino
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, University of Foggia, Foggia, Italy
| | - Maria Pia Foschino-Barbaro
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, University of Foggia, Foggia, Italy
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, University of Foggia, Foggia, Italy
| | - Giovanna Elisiana Carpagnano
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, University of Foggia, Foggia, Italy
| |
Collapse
|
32
|
Megiorni F, Colaiacovo M, Cialfi S, McDowell HP, Guffanti A, Camero S, Felsani A, Losty PD, Pizer B, Shukla R, Cappelli C, Ferrara E, Pizzuti A, Moles A, Dominici C. A sketch of known and novel MYCN-associated miRNA networks in neuroblastoma. Oncol Rep 2017; 38:3-20. [PMID: 28586032 PMCID: PMC5492854 DOI: 10.3892/or.2017.5701] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 04/27/2017] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma (NB) originates from neural crest-derived precursors and represents the most common childhood extracranial solid tumour. MicroRNAs (miRNAs), a class of small non-coding RNAs that participate in a wide variety of biological processes by regulating gene expression, appear to play an essential role within the NB context. High-throughput next generation sequencing (NGS) was applied to study the miRNA transcriptome in a cohort of NB tumours with and without MYCN-amplification (MNA and MNnA, respectively) and in dorsal root ganglia (DRG), as a control. Out of the 128 miRNAs differentially expressed in the NB vs. DRG comparison, 47 were expressed at higher levels, while 81 were expressed at lower levels in the NB tumours. We also found that 23 miRNAs were differentially expressed in NB with or without MYCN-amplification, with 17 miRNAs being upregulated and 6 being downregulated in the MNA subtypes. Functional annotation analysis of the target genes of these differentially expressed miRNAs demonstrated that many mRNAs were involved in cancer-related pathways, such as DNA-repair and apoptosis as well as FGFR and EGFR signalling. In particular, we found that miR-628-3p negatively affects MYCN gene expression. Furthermore, we identified a novel miRNA candidate with variable expression in MNA vs. MNnA tumours, whose putative target genes are implicated in the mTOR pathway. The present study provides further insight into the molecular mechanisms that correlate miRNA dysregulation to NB development and progression.
Collapse
Affiliation(s)
- Francesca Megiorni
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, I-00161 Rome, Italy
| | | | - Samantha Cialfi
- Department of Molecular Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Heather P McDowell
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, I-00161 Rome, Italy
| | | | - Simona Camero
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, I-00161 Rome, Italy
| | | | - Paul D Losty
- Department of Paediatric Surgery, Alder Hey Children's NHS Foundation Trust, L12 2AP Liverpool, UK
| | - Barry Pizer
- Department of Oncology, Alder Hey Children's NHS Foundation Trust, L12 2AP Liverpool, UK
| | - Rajeev Shukla
- Department of Perinatal and Paediatric Pathology, Alder Hey Children's NHS Foundation Trust, L12 2AP Liverpool, UK
| | - Carlo Cappelli
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, I-00161 Rome, Italy
| | - Eva Ferrara
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, I-00161 Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Anna Moles
- Genomnia s.r.l., I-20091 Bresso, MI, Italy
| | - Carlo Dominici
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, I-00161 Rome, Italy
| |
Collapse
|
33
|
Kos A, de Mooij-Malsen AJ, van Bokhoven H, Kaplan BB, Martens GJ, Kolk SM, Aschrafi A. MicroRNA-338 modulates cortical neuronal placement and polarity. RNA Biol 2017; 14:905-913. [PMID: 28494198 DOI: 10.1080/15476286.2017.1325067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The precise spatial and temporal regulation of gene expression orchestrates the many intricate processes during brain development. In the present study we examined the role of the brain-enriched microRNA-338 (miR-338) during mouse cortical development. Reduction of miR-338 levels in the developing mouse cortex, using a sequence-specific miR-sponge, resulted in a loss of neuronal polarity in the cortical plate and significantly reduced the number of neurons within this cortical layer. Conversely, miR-338 overexpression in developing mouse cortex increased the number of neurons, which exhibited a multipolar morphology. All together, our results raise the possibility for a direct role for this non-coding RNA, which was recently associated with schizophrenia, in the regulation of cortical neuronal polarity and layer placement.
Collapse
Affiliation(s)
- Aron Kos
- a Department of Cognitive Neuroscience , Radboud University Medical Center , Nijmegen , The Netherlands.,d Donders Institute for Brain, Cognition, and Behaviour , Centre for Neuroscience , Nijmegen , The Netherlands
| | - Annetrude J de Mooij-Malsen
- b Department of Molecular Animal Physiology , Radboud University , Nijmegen , The Netherlands.,d Donders Institute for Brain, Cognition, and Behaviour , Centre for Neuroscience , Nijmegen , The Netherlands.,f Institute of Physiology, CAU Kiel University , Germany
| | - Hans van Bokhoven
- a Department of Cognitive Neuroscience , Radboud University Medical Center , Nijmegen , The Netherlands.,c Department of Human Genetics , Radboud University Medical Center , Nijmegen , The Netherlands.,d Donders Institute for Brain, Cognition, and Behaviour , Centre for Neuroscience , Nijmegen , The Netherlands
| | - Barry B Kaplan
- e Laboratory of Molecular Biology, National Institute of Mental Health , National Institutes of Health , Bethesda , MD , USA
| | - Gerard J Martens
- b Department of Molecular Animal Physiology , Radboud University , Nijmegen , The Netherlands.,d Donders Institute for Brain, Cognition, and Behaviour , Centre for Neuroscience , Nijmegen , The Netherlands
| | - Sharon M Kolk
- b Department of Molecular Animal Physiology , Radboud University , Nijmegen , The Netherlands.,d Donders Institute for Brain, Cognition, and Behaviour , Centre for Neuroscience , Nijmegen , The Netherlands
| | - Armaz Aschrafi
- e Laboratory of Molecular Biology, National Institute of Mental Health , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
34
|
Li JG, Ding Y, Huang YM, Chen WL, Pan LL, Li Y, Chen XL, Chen Y, Wang SY, Wu XN. FAMLF is a target of miR-181b in Burkitt lymphoma. ACTA ACUST UNITED AC 2017; 50:e5661. [PMID: 28492808 PMCID: PMC5441277 DOI: 10.1590/1414-431x20175661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/02/2017] [Indexed: 12/12/2022]
Abstract
Burkitt lymphoma (BL) is a highly malignant non-Hodgkin's lymphoma that is closely
related to the abnormal expression of genes. Familial acute myelogenous leukemia
related factor (FAMLF; GenBank accession No. EF413001.1) is a novel
gene that was cloned by our research group, and miR-181b is located in the intron of
the FAMLF gene. To verify the role of miR-181b and
FAMLF in BL, RNAhybrid software was used to predict target site
of miR-181b on FAMLF and real-time quantitative PCR (RQ-PCR) was
used to detect expression of miR-181b and FAMLF in BL patients, Raji
cells and unaffected individuals. miR-181b was then transfected into Raji and CA46
cell lines and FAMLF expression was examined by RQ-PCR and western
blotting. Further, Raji cells viability and proliferation were detected by MTT and
clone formation, and Raji cell cycle and apoptosis were detected by flow cytometry.
The results showed that miR-181b can bind to bases 21–42 of the
FAMLF 5′ untranslated region (UTR), FAMLF was
highly expressed and miR-181b was lowly expressed in BL patients compared with
unaffected individuals. FAMLF expression was significantly and
inversely correlated to miR-181b expression, and miR-181b negatively regulated
FAMLF at posttranscriptional and translational levels. A
dual-luciferase reporter gene assay identified that the 5′ UTR of
FAMLF mRNA contained putative binding sites for miR-181b.
Down-regulation of FAMLF by miR-181b arrested cell cycle, inhibited
cell viability and proliferation in a BL cell line model. Our findings explain a new
mechanism of BL pathogenesis and may also have implications in the therapy of
FAMLF-overexpressing BL.
Collapse
Affiliation(s)
- J G Li
- Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Y Ding
- Union Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Y M Huang
- Union Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - W L Chen
- Union Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - L L Pan
- Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Y Li
- Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - X L Chen
- Union Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Y Chen
- Union Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - S Y Wang
- Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - X N Wu
- School of Public Health, Fujian Medical University, Fuzhou, China
| |
Collapse
|
35
|
Zhang G, Zheng H, Zhang G, Cheng R, Lu C, Guo Y, Zhao G. MicroRNA-338-3p suppresses cell proliferation and induces apoptosis of non-small-cell lung cancer by targeting sphingosine kinase 2. Cancer Cell Int 2017; 17:46. [PMID: 28428733 PMCID: PMC5392967 DOI: 10.1186/s12935-017-0415-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/03/2017] [Indexed: 02/06/2023] Open
Abstract
Background Lung cancer is the major cause of cancer-related death worldwide, and 80% patients of lung cancer are non-small-cell lung cancer (NSCLC) cases. MicroRNAs are important gene regulators with critical roles in diverse biological processes, including tumorigenesis. Studies indicate that sphingosine kinase 2 (SphK2) promotes tumor progression in NSCLC, but how this occurs is unclear. Thus, we explored the effect of miR-338-3p targeting SphK2 on proliferation and apoptosis of NSCLC cells. Methods Expression of miR-338-3p and SphK2 in NSCLC A549 and H1299 cell lines was measured using qRT-PCR and Western blot. CCK-8 and colony formation assays were used to assess the effect of miR-338-3p on NSCLC cell line proliferation. Flow cytometry was used to study the effect of miR-338-3p on NSCLC apoptosis. Luciferase reporter assay and Western blot were used to confirm targeting of SphK2 by miR-338-3p. Finally, in vivo tumorigenesis studies were used to demonstrate subcutaneous tumor growth. Results miR-338-3p expression in 34 NSCLC clinical samples was downregulated and this was correlated with TNM stage. miR-338-3p significantly suppressed proliferation and induced apoptosis of NSCLC A549 and H1299 cells in vitro. SphK2 was a direct target of miR-338-3p. Overexpression of miR-338-3p significantly inhibited SphK2 expression and reduced luciferase reporter activity containing the SphK2 3′-untranslated region (3′-UTR) through the first binding site. SphK2 lacking 3′-UTR restored the effects of miR-338-3p on cell proliferation inhibition. miR-338-3p significantly inhibited tumorigenicity of NSCLC A549 and H1299 cells in a nude mouse xenograft model. Conclusions Collectively, miR-338-3p inhibited cell proliferation and induced apoptosis of NSCLC cells by targeting and down-regulating SphK2, and miR-338-3p could inhibit NSCLC cells A549 and H1299 growth in vivo, suggesting a potential mechanism of NSCLC progression. Therapeutically, miR-338-3p may serve as a potential target in the treatment of human lung cancer.
Collapse
Affiliation(s)
- Guowei Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan People's Republic of China.,Department of Respiratory Medicine, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008 Henan People's Republic of China
| | - Hao Zheng
- School of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, Zhengzhou, 450001 Henan People's Republic of China
| | - Guojun Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan People's Republic of China
| | - Ruirui Cheng
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan People's Republic of China
| | - Chunya Lu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan People's Republic of China
| | - Yijie Guo
- Zhengzhou Foreign Language School, High School (16) Class, Fengyang Road, Zhengzhou, 450001 Henan People's Republic of China
| | - Guoqiang Zhao
- School of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, Zhengzhou, 450001 Henan People's Republic of China
| |
Collapse
|
36
|
Zhang P, Shao G, Lin X, Liu Y, Yang Z. MiR-338-3p inhibits the growth and invasion of non-small cell lung cancer cells by targeting IRS2. Am J Cancer Res 2017; 7:53-63. [PMID: 28123847 PMCID: PMC5250680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023] Open
Abstract
MicroRNA-338-3p (miR-338-3p) has recently been reported to have anti-cancer efficacy in several types of cancers. However, its biological function and underlying mechanism involved in modulation of human non-small cell lung cancer (NSCLC) remain largely unknown. The present study was designed to investigate the function and underlying mechanism of miR-338-3p in human NSCLC tissues and cell lines. We demonstrated that miR-338-3p was significantly decreased in NSCLC tissues and cell lines, and negatively correlated with advanced and tumor-node-metastasis (TNM) stage and lymph node metastasis (both P<0.01). Transient overexpression of miR-338-3p by transfecting with miR-338-3p mimic significantly suppressed NSCLC cell proliferation, migration, invasion and induced apoptosis and cell cycle at G1 phase. Additionally, insulin receptor substrate 2 (IRS2), a known oncogene, was identified as a potential target gene of miR-338-3p. Subsequent investigations found a negative correlation between the expression of miR-338-3p and IRS2 in NSCLC tissues. Furthermore, overexpression of IRS2 reversed the effects of miR-338-3p in NSCLC cells on cell proliferation, cycle, apoptosis, migration, invasion. These findings suggested that miR-338-3p might act as a tumor suppressor by directly targeting IRS2 in NSCLC.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University #71 Xinmin Street, Chaoyang District, Changchun 130021, Jilin, China
| | - Guoguang Shao
- Department of Thoracic Surgery, The First Hospital of Jilin University #71 Xinmin Street, Chaoyang District, Changchun 130021, Jilin, China
| | - Xingyu Lin
- Department of Thoracic Surgery, The First Hospital of Jilin University #71 Xinmin Street, Chaoyang District, Changchun 130021, Jilin, China
| | - Yunpeng Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University #71 Xinmin Street, Chaoyang District, Changchun 130021, Jilin, China
| | - Zhiguang Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University #71 Xinmin Street, Chaoyang District, Changchun 130021, Jilin, China
| |
Collapse
|
37
|
Emmerling VV, Fischer S, Kleemann M, Handrick R, Kochanek S, Otte K. miR-483 is a self-regulating microRNA and can activate its own expression via USF1 in HeLa cells. Int J Biochem Cell Biol 2016; 80:81-86. [DOI: 10.1016/j.biocel.2016.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 01/03/2023]
|
38
|
Potential role of microRNA-10b down-regulation in cardiomyocyte apoptosis in aortic stenosis patients. Clin Sci (Lond) 2016; 130:2139-2149. [DOI: 10.1042/cs20160462] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/12/2016] [Indexed: 11/17/2022]
Abstract
Myocardial miR-10b down-regulation may be involved in the increase in cardiomyocyte apoptosis in AS patients, probably through apoptosis protease-activating factor-1 (Apaf-1) regulation. In turn, increased cardiomyocyte apoptosis contributes to cardiomyocyte damage and heart failure (HF) development.
Collapse
|
39
|
Co-localized genomic regulation of miRNA and mRNA via DNA methylation affects survival in multiple tumor types. Cancer Genet 2016; 209:463-473. [DOI: 10.1016/j.cancergen.2016.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/23/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022]
|
40
|
Scarpato M, Angelini C, Cocca E, Pallotta MM, Morescalchi MA, Capriglione T. Short interspersed DNA elements and miRNAs: a novel hidden gene regulation layer in zebrafish? Chromosome Res 2016; 23:533-44. [PMID: 26363800 DOI: 10.1007/s10577-015-9484-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this study, we investigated by in silico analysis the possible correlation between microRNAs (miRNAs) and Anamnia V-SINEs (a superfamily of short interspersed nuclear elements), which belong to those retroposon families that have been preserved in vertebrate genomes for millions of years and are actively transcribed because they are embedded in the 3' untranslated region (UTR) of several genes. We report the results of the analysis of the genomic distribution of these mobile elements in zebrafish (Danio rerio) and discuss their involvement in generating miRNA gene loci. The computational study showed that the genes predicted to bear V-SINEs can be targeted by miRNAs with a very high hybridization E-value. Gene ontology analysis indicates that these genes are mainly involved in metabolic, membrane, and cytoplasmic signaling pathways. Nearly all the miRNAs that were predicted to target the V-SINEs of these genes, i.e., miR-338, miR-9, miR-181, miR-724, miR-735, and miR-204, have been validated in similar regulatory roles in mammals. The large number of genes bearing a V-SINE involved in metabolic and cellular processes suggests that V-SINEs may play a role in modulating cell responses to different stimuli and in preserving the metabolic balance during cell proliferation and differentiation. Although they need experimental validation, these preliminary results suggest that in the genome of D. rerio, as in other TE families in vertebrates, the preservation of V-SINE retroposons may also have been favored by their putative role in gene network modulation.
Collapse
Affiliation(s)
| | - Claudia Angelini
- Istituto per le Applicazioni del Calcolo "M. Picone", CNR, via P. Castellino, 80131, Napoli, Italy
| | - Ennio Cocca
- IBBR-CNR, via P. Castellino, 80131, Napoli, Italy
| | - Maria M Pallotta
- Dipartimento di Biologia, Università di Napoli Federico II, via Cinthia 21, 80126, Napoli, Italy
| | - Maria A Morescalchi
- Dipartimento di Biologia, Università di Napoli Federico II, via Cinthia 21, 80126, Napoli, Italy
| | - Teresa Capriglione
- Dipartimento di Biologia, Università di Napoli Federico II, via Cinthia 21, 80126, Napoli, Italy.
| |
Collapse
|
41
|
Understanding the Role of miR-33 in Brain Lipid Metabolism: Implications for Alzheimer's Disease. J Neurosci 2016; 36:2558-60. [PMID: 26936997 DOI: 10.1523/jneurosci.4571-15.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
42
|
Zhu RX, Song CH, Yang JS, Yi QT, Li BJ, Liu SH. Downregulation of AATK mediates microRNA-558-induced resistance of A549 cells to radiotherapy. Mol Med Rep 2016; 14:2846-52. [PMID: 27485693 DOI: 10.3892/mmr.2016.5579] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/04/2016] [Indexed: 11/06/2022] Open
Abstract
The deregulation of microRNAs (miRNAs) is often implicated in the control of sensitivity to radiotherapy. The objective of the present study was to identify the association between miR‑558 and apoptosis‑associated tyrosine kinase (AATK), and their importance in regulating the development of resistance to radiotherapy. The current study demonstrated that AATK, a radiosensitization-associated gene, is a target of miR‑558 in lung cancer cells, using in silico analysis and a luciferase reporter system. Furthermore, it was determined that transfection of 30 or 50 nM miR‑558 mimics and AATK specific siRNA markedly suppressed the mRNA and protein expression of AATK. To determine whether miR‑558 was required for lung cancer cell radioresistance, A549 cells were treated with different doses of ionizing radiation, from 0 to 10 Gy, following transfection with miR‑558 mimics or AATK specific siRNA. It was determined that the administration of miR‑558 mimics or AATK specific siRNA alone did not significantly alter the survival rate of the cells. By contrast, in the cells exposed to 4, 6 or 8 Gy, the administration of miR‑558 mimics or AATK specific siRNA significantly promoted cell survival rate and overexpression of AATK reversed this effect. In conclusion, these data demonstrate that the miR‑558/AATK cascade is important for the radiosensitization of lung cancer cells and may be a potential radiotherapy target.
Collapse
Affiliation(s)
- Rui-Xia Zhu
- Department of Oncology, Central Hospital of Zaozhuang Mineral Group, Zaozhuang, Shandong 277800, P.R. China
| | - Chun-Hui Song
- Department of Oncology, Central Hospital of Zaozhuang Mineral Group, Zaozhuang, Shandong 277800, P.R. China
| | - Jin-Shan Yang
- Department of Oncology, Central Hospital of Zaozhuang Mineral Group, Zaozhuang, Shandong 277800, P.R. China
| | - Qing-Ting Yi
- Department of Oncology, Central Hospital of Zaozhuang Mineral Group, Zaozhuang, Shandong 277800, P.R. China
| | - Bao-Jian Li
- Department of Oncology, Central Hospital of Zaozhuang Mineral Group, Zaozhuang, Shandong 277800, P.R. China
| | - Si-Hai Liu
- Department of Oncology, Central Hospital of Zaozhuang Mineral Group, Zaozhuang, Shandong 277800, P.R. China
| |
Collapse
|
43
|
Bakkar A, Alshalalfa M, Petersen LF, Abou-Ouf H, Al-Mami A, Hegazy SA, Feng F, Alhajj R, Bijian K, Alaoui-Jamali MA, Bismar TA. microRNA 338-3p exhibits tumor suppressor role and its down-regulation is associated with adverse clinical outcome in prostate cancer patients. Mol Biol Rep 2016; 43:229-40. [DOI: 10.1007/s11033-016-3948-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 02/08/2016] [Indexed: 02/07/2023]
|
44
|
Qian J, Tu R, Yuan L, Xie W. Intronic miR-932 targets the coding region of its host gene, Drosophila neuroligin2. Exp Cell Res 2016; 344:183-93. [PMID: 26844630 DOI: 10.1016/j.yexcr.2016.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/21/2016] [Accepted: 01/29/2016] [Indexed: 02/08/2023]
Abstract
Despite great progress for two decades in microRNAs (miRNAs), the direct regulation of host gene by intragenic (mostly intronic) miRNA is conceptually plausible but evidence-limited. Here, we report that intronic miR-932 could target its host gene via binding with coding sequence (CDS) region rather than regular 3'UTR. The conserved miR-932 is embedded in the fourth intron of Drosophila neuroligin2 (dnlg2), which encodes a synaptic cell adhesion molecule, DNlg2. In silico analysis predicted two putative miR-932 target sites locate in the CDS region of dnlg2 instead of regular 3'-UTR miRNA binding sites. Employing luciferase reporter assay, we further proved that the miR-932 regulates expression of its host gene dnlg2 via the binding CDS region of dnlg2. Consistently, we observed miR-932 downregulated expression of dnlg2 in S2 cell, and the repression of dnlg2 by miR-932 at both protein and RNA level. Furthermore, we found CDS-located site1 is dominant for regulating expression of host dnlg2 by miR-932. In addition to providing thorough examination of one intronic miRNA targeting the CDS region of its host gene, our genome-wide analysis indicated that nearly half of fruitfly and human intronic miRNAs may target their own host gene at coding region. This study would be valuable in elucidating the regulation of intronic miRNA on host gene, and provide new information about the biological context of their genomic arrangements and functions.
Collapse
Affiliation(s)
- Jinjun Qian
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Renjun Tu
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Liudi Yuan
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China; Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China.
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China.
| |
Collapse
|
45
|
Li Y, Chen P, Zu L, Liu B, Wang M, Zhou Q. MicroRNA-338-3p suppresses metastasis of lung cancer cells by targeting the EMT regulator Sox4. Am J Cancer Res 2016; 6:127-140. [PMID: 27186391 PMCID: PMC4859648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/08/2015] [Indexed: 06/05/2023] Open
Abstract
Metastasis remains the leading cause of the majority of cancer-related mortality. MicroRNAs (miRNAs) have frequently emerged as tumor metastatic regulator by acting on multiple signaling pathways. In the present study, we demonstrated that miR-338-3p was significantly downregulated in highly metastatic NSCLC cell lines and clinical metastatic tissues. Then, we found that introduction of miR-338-3p significantly suppressed the migration and invasion of lung cancer cells both in vitro and in vivo, suggesting that miR-338-3p may be a novel tumor suppressor. Further studies indicated that the EMT-related transcription factor Sox4 was one direct target gene of miR-338-3p, evidenced by the direct binding of miR-338-3p with the 3'untranslated region (3'UTR) of Sox4. Furthermore, miR-338-3p could decrease the expression of Sox4 both at mRNA and protein levels. Notably, the EMT marker E-cadherin or vimentin, a downstream regulator of Sox4, was also down-regulated or up-regulated upon miR-338-3p treatment. Additionally, over-expressing or silencing Sox4 could elevate or inhibit the migration and invasion of lung cancer cells, parallel to the effect of miR-338-3p on the lung cancer cells. Meanwhile, knockdown of Sox4 reversed the enhanced migration and invasion mediated by miR-338-3p. These results indicated that miR-338-3p suppressed the migration and invasion of NSCLC cells through targeting Sox4 involving in the EMT process. Thus, our finding provides new insight into the mechanism of NSCLC progression. Therapeutically, miR-338-3p may serve as a potential target in the treatment of human lung cancer.
Collapse
Affiliation(s)
- Yang Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin 300052, China
| | - Peirui Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin 300052, China
| | - Lingling Zu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin 300052, China
| | - Bin Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin 300052, China
| | - Min Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin 300052, China
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin 300052, China
| |
Collapse
|
46
|
Serum miR-338-5p, soluble B-cell-activating factor, allo-antibodies, and renal transplantation. Transplant Proc 2015; 47:337-42. [PMID: 25769569 DOI: 10.1016/j.transproceed.2014.11.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/23/2014] [Accepted: 11/19/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND The objective of the study was to explore the expression features of serum miR-338-5p and soluble B-cell-activating factor (sBAFF) in renal transplant recipients. METHODS Follow-up renal transplant recipients (n = 49) were enrolled in this study (male/female: 38/11). Healthy volunteers were controlled; 2 mL of peripheral blood from each subject was collected. Total RNA was extracted from serum by use of the miRNeasy Serum/Plasma Kit (QIAGEN), and miR-338-5p was amplified by means of quantitative real-time reverse transcriptase-polymerase chain reaction. sBAFF was detected by means of enzyme-linked immunoassay. LABScreen Mix (LSM12) (One Lambda) was used to test the level of anti-human leukocyte antigen (HLA) I antibody (Ab), anti-HLA II Ab, and anti-major histocompatibility complex class I chain-related A (MICA) Ab. All data are shown as mean ± SD and were analyzed by use of SPSS software 17.0. RESULTS Compared with healthy volunteers, serum miR-338-5p in recipients was statistically downregulated (2.79 ± 2.5 versus 0.09 ± 0.12, P < .001); sBAFF in recipients was significantly upregulated (1321 ± 950 pg/mL versus 534 ± 327 pg/mL, P < .01); serum anti-HLAII Ab, anti-MICA Ab, and anti-HLA+MICA Abs all statistically increased in recipients (P < .05). Spearman correlation analysis showed that miR-338-5p was significantly negatively correlated with sBAFF (r = -0.51, P < .001) and anti-HLA II antibody with mean fluorescence intensity value >1000 (r = -0.322, P < .05). Analysis results also suggested that sBAFF was significantly negatively correlated with anti-MICA Ab, with mean fluorescence intensity value >1000 (r = -0.579, P < .05). CONCLUSIONS miR-338-5p is closely correlated with the procedure of renal allograft antibody-mediated rejection.
Collapse
|
47
|
Chen JT, Yao KH, Hua L, Zhang LP, Wang CY, Zhang JJ. MiR-338-3p inhibits the proliferation and migration of gastric cancer cells by targeting ADAM17. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:10922-10928. [PMID: 26617808 PMCID: PMC4637623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 07/26/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND MicroRNAs (miRNA) have been documented playing a critical role in cancer progression. Although miR-338-3p has been implicated in several cancers, its role in gastric cancer is still unknown. The aim of our study was to investigate the role of miR-338-3p in gastric cancer progression. METHODS Expression levels of miR-338-3p in gastric cancer cell lines and tissues were determined by quantitative real-time PCR (qRT-PCR). The effect of miR-338-3p on proliferation was evaluated by MTT assay, cell migration and invasion were evaluated by transwell migration and invasion assays. Furthermore, luciferase reporter assay was conducted to confirm the target gene of miR-338-3p, and the results were validated in gastric cancer cells. RESULTS In the present study, we found that miR-338-3p was down-regulated in both gastric cancer cell lines and tissues. Enforced expression of miR-338-3p inhibited proliferation, migration and invasion of gastric cancer cells in vitro. Moreover, we identified A disintegrin and metalloproteinase 17 (ADAM17) gene as potential target of miR-338-3p. Importantly, ADAM17 rescued the miR-338-3p mediated inhibition of cell proliferation, migration and invasion. CONCLUSIONS Our study suggested that miR-338-3p is significantly decreased in gastric cancer, and inhibits cell proliferation, migration and invasion partially via the downregulation of ADAM17. Thus, miR-338-3p may represent a potential therapeutic target for gastric cancer intervention.
Collapse
Affiliation(s)
- Jiang-Tao Chen
- Department of General Surgery, Huaihe Hospital of HeNan University Kaifeng 475000, Henan Province, China
| | - Kun-Hou Yao
- Department of General Surgery, Huaihe Hospital of HeNan University Kaifeng 475000, Henan Province, China
| | - Long Hua
- Department of General Surgery, Huaihe Hospital of HeNan University Kaifeng 475000, Henan Province, China
| | - Li-Ping Zhang
- Operating Room, Huaihe Hospital of HeNan University Kaifeng 475000, Henan Province, China
| | - Chen-Yu Wang
- Department of General Surgery, Huaihe Hospital of HeNan University Kaifeng 475000, Henan Province, China
| | - Jun-Jie Zhang
- Department of General Surgery, Huaihe Hospital of HeNan University Kaifeng 475000, Henan Province, China
| |
Collapse
|
48
|
Li X, Li Z, Yang G, Pan Z. MicroRNA-338-3p suppresses tumor growth of esophageal squamous cell carcinoma in vitro and in vivo. Mol Med Rep 2015; 12:3951-3957. [PMID: 26004521 DOI: 10.3892/mmr.2015.3820] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 04/30/2015] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence has shown that microRNAs (miRNAs) are aberrantly expressed in human esophageal squamous cell carcinoma (ESCC) and are crucial in tumorigenesis, among which miR‑338‑3p has been examined to be downregulated in patients with ESCC. However, the role of miR‑338‑3p in ESCC remains to be elucidated. In the present study, the role of miR‑338‑3p on the growth and survival of an ESCC cell line was determined with several in vitro approaches and in nude mouse models. It was determined that miR‑338‑3p expression was frequently downregulated in ESCC tissue compared with corresponding adjacent non‑tumor tissue, and that its expression was significantly correlated with tumor stage and metastasis. Overexpression of miR‑338‑3p in ESCC cells suppressed cell proliferation, colony formation, migration and invasion, and induced cell arrest at the G0/G1 stage and cell apoptosis in vitro. In addition, it was demonstrated that overexpression of miR‑338‑3p significantly suppresses tumor growth of xenograft tumors in mice (P<0.05). These findings revealed that miR‑338‑3p may act as a tumor suppressor in ESCC, and its dysregulation may be involved in the initiation and development of human ESCC. In addition, it was suggested that miR‑338‑3p may be a potential therapeutic agent for treatment of ESCC.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Anesthesiology, The Second Hospital, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Zhihong Li
- Department of Thoracic Surgery, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guiyun Yang
- Department of Anesthesiology, The Second Hospital, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Zhenxiang Pan
- Department of Anesthesiology, The Second Hospital, Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
49
|
ErbB2-intronic microRNA-4728: a novel tumor suppressor and antagonist of oncogenic MAPK signaling. Cell Death Dis 2015; 6:e1742. [PMID: 25950472 PMCID: PMC4669696 DOI: 10.1038/cddis.2015.116] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/10/2015] [Accepted: 03/23/2015] [Indexed: 12/22/2022]
Abstract
Although the role of the ErbB2/HER2 oncogene in cancers has been extensively studied, how ErbB2 is regulated remains poorly understood. A novel microRNA, mir-4728, was recently found within an intron of the ErbB2 gene. However, the function and clinical relevance of this intronic miRNA are completely unknown. Here, we demonstrate that mir-4728 is a negative regulator of MAPK signaling through directly targeting the ERK upstream kinase MST4 and exerts numerous tumor-suppressive properties in vitro and in animal models. Importantly, our patient sample study shows that mir-4728 was under-expressed in breast tumors compared with normal tissue, and loss of mir-4728 correlated with worse overall patient survival. These results strongly suggest that mir-4728 is a tumor-suppressive miRNA that controls MAPK signaling through targeting MST4, revealing mir-4728's significance as a potential prognostic factor and target for therapeutic intervention in cancer. Moreover, this study represents a conceptual advance by providing strong evidence that a tumor-suppressive miRNA can antagonize the canonical signaling of its host oncogene.
Collapse
|
50
|
Yuva-Aydemir Y, Xu XL, Aydemir O, Gascon E, Sayin S, Zhou W, Hong Y, Gao FB. Downregulation of the Host Gene jigr1 by miR-92 Is Essential for Neuroblast Self-Renewal in Drosophila. PLoS Genet 2015; 11:e1005264. [PMID: 26000445 PMCID: PMC4441384 DOI: 10.1371/journal.pgen.1005264] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/05/2015] [Indexed: 11/18/2022] Open
Abstract
Intragenic microRNAs (miRNAs), located mostly in the introns of protein-coding genes, are often co-expressed with their host mRNAs. However, their functional interaction in development is largely unknown. Here we show that in Drosophila, miR-92a and miR-92b are embedded in the intron and 3'UTR of jigr1, respectively, and co-expressed with some jigr1 isoforms. miR-92a and miR-92b are highly expressed in neuroblasts of larval brain where Jigr1 expression is low. Genetic deletion of both miR-92a and miR-92b demonstrates an essential cell-autonomous role for these miRNAs in maintaining neuroblast self-renewal through inhibiting premature differentiation. We also show that miR-92a and miR-92b directly target jigr1 in vivo and that some phenotypes due to the absence of these miRNAs are partially rescued by reducing the level of jigr1. These results reveal a novel function of the miR-92 family in Drosophila neuroblasts and provide another example that local negative feedback regulation of host genes by intragenic miRNAs is essential for animal development.
Collapse
Affiliation(s)
- Yeliz Yuva-Aydemir
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Xia-Lian Xu
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Ozkan Aydemir
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Eduardo Gascon
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Serkan Sayin
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Wenke Zhou
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yang Hong
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|