1
|
Singh Y, Ahmad R, Raza A, Warsi MS, Mustafa M, Khan H, Hassan MI, Khan R, Moinuddin, Habib S. Exploring the effects of 4-chloro-o-phenylenediamine on human fibrinogen: A comprehensive investigation via biochemical, biophysical and computational approaches. Int J Biol Macromol 2024; 280:135825. [PMID: 39313050 DOI: 10.1016/j.ijbiomac.2024.135825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Fibrinogen (Fg), an essential plasma glycoprotein involved in the coagulation cascade, undergoes structural alterations upon exposure to various chemicals, impacting its functionality and contributing to pathological conditions. This research article explored the effects of 4-Chloro-o-phenylenediamine (4-Cl-o-PD), a common hair dye component (IUPAC = 1-Chloro-3,4-diaminobenzene), on human fibrinogen through comprehensive computational, biophysical, and biochemical approaches. The formation of a stable ligand-protein complex is confirmed through molecular docking and molecular dynamics simulations, revealing possible interaction having a favorable -4.8 kcal/mol binding energy. Biophysical results, including UV-vis and fluorescence spectroscopies, corroborated with the computational findings, whereas Fourier transform infrared spectroscopy (FT-IR) and circular dichroism spectroscopy (CD) provide insights into the alterations of secondary structures upon interaction with 4-Cl-o-PD. Anilinonaphthalene-sulfonic acid (ANS) fluorescence showed a partially unfolded protein, with enhanced α to β-sheet transition as evidenced by thioflavin T (ThT) spectroscopy and microscopy. Moreover, biochemical assays confirmed the formation of carbonyl compounds that may be responsible for the oxidation of methionine residues in fibrinogen. Electrophoresis and electron microscopy confirmed the formation of aggregates. Our findings elucidate the interaction pattern of 4-Cl-o-PD with Fg, leading to structural perturbation, which may have potential implications for fibrinogen misfolding or its aggregation. Protein aggregation or its misfolded products affect peripheral tissues and the central nervous system. Many chronic progressive diseases, like type II diabetes mellitus, Alzheimer's disease, Parkison's disease, and Creutzfeldt-Jakob disease are associated with intrinsically aberrant disordered proteins. Understanding these interactions may offer new perspectives on the safety and biocompatibility of dye compounds, which may contribute to developing improved strategies for acquired amyloidogenesis.
Collapse
Affiliation(s)
- Yogendra Singh
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Rizwan Ahmad
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Ali Raza
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohd Sharib Warsi
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohd Mustafa
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Hamda Khan
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ruhi Khan
- Department of Medicine, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Moinuddin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Safia Habib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
2
|
Batsalova T, Dzhambazov B. Significance of Type II Collagen Posttranslational Modifications: From Autoantigenesis to Improved Diagnosis and Treatment of Rheumatoid Arthritis. Int J Mol Sci 2023; 24:9884. [PMID: 37373030 PMCID: PMC10298457 DOI: 10.3390/ijms24129884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Collagen type II (COL2), the main structural protein of hyaline cartilage, is considerably affected by autoimmune responses associated with the pathogenesis of rheumatoid arthritis (RA). Posttranslational modifications (PTMs) play a significant role in the formation of the COL2 molecule and supramolecular fibril organization, and thus, support COL2 function, which is crucial for normal cartilage structure and physiology. Conversely, the specific PTMs of the protein (carbamylation, glycosylation, citrullination, oxidative modifications and others) have been implicated in RA autoimmunity. The discovery of the anti-citrullinated protein response in RA, which includes anti-citrullinated COL2 reactivity, has led to the development of improved diagnostic assays and classification criteria for the disease. The induction of immunological tolerance using modified COL2 peptides has been highlighted as a potentially effective strategy for RA therapy. Therefore, the aim of this review is to summarize the recent knowledge on COL2 posttranslational modifications with relevance to RA pathophysiology, diagnosis and treatment. The significance of COL2 PTMs as a source of neo-antigens that activate immunity leading to or sustaining RA autoimmunity is discussed.
Collapse
Affiliation(s)
| | - Balik Dzhambazov
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria;
| |
Collapse
|
3
|
Zhou J, Xiong S, Liu M, Yang H, Wei P, Yi F, Ouyang M, Xi H, Long Z, Liu Y, Li J, Ding L, Xiong L. Study on the influence of scaffold morphology and structure on osteogenic performance. Front Bioeng Biotechnol 2023; 11:1127162. [PMID: 37051275 PMCID: PMC10083331 DOI: 10.3389/fbioe.2023.1127162] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/17/2023] [Indexed: 03/28/2023] Open
Abstract
The number of patients with bone defects caused by various bone diseases is increasing yearly in the aging population, and people are paying increasing attention to bone tissue engineering research. Currently, the application of bone tissue engineering mainly focuses on promoting fracture healing by carrying cytokines. However, cytokines implanted into the body easily cause an immune response, and the cost is high; therefore, the clinical treatment effect is not outstanding. In recent years, some scholars have proposed the concept of tissue-induced biomaterials that can induce bone regeneration through a scaffold structure without adding cytokines. By optimizing the scaffold structure, the performance of tissue-engineered bone scaffolds is improved and the osteogenesis effect is promoted, which provides ideas for the design and improvement of tissue-engineered bones in the future. In this study, the current understanding of the bone tissue structure is summarized through the discussion of current bone tissue engineering, and the current research on micro-nano bionic structure scaffolds and their osteogenesis mechanism is analyzed and discussed.
Collapse
Affiliation(s)
- Jingyu Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Clinical Medicine, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Shilang Xiong
- Institute of Clinical Medicine, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Min Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Hao Yang
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Wei
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Clinical Medicine, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Feng Yi
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Min Ouyang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Hanrui Xi
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Zhisheng Long
- Department of Orthopedics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Yayun Liu
- Department of Traumatology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Jingtang Li
- Department of Traumatology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Linghua Ding
- Department of Orthopedics, Jinhua People’s Hospital, Jinhua, Zhejiang, China
| | - Long Xiong
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- *Correspondence: Long Xiong,
| |
Collapse
|
4
|
Shahab U, Habib S, Alsulimani A, Alshammari QT, Alatar AA, Haque S, Uddin M, Ahmad S. N-OH-AABP Modifications in Human DNA May Lead to Auto-Antibodies in Bladder Cancer Subjects. Diagnostics (Basel) 2022; 12:337. [PMID: 35204428 PMCID: PMC8871375 DOI: 10.3390/diagnostics12020337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
4-Aminobiphenyl (4-ABP) and other related arylamines have emerged to be responsible for human urinary bladder tumors and cancers. Hemoglobin-ABP adducts have been recognized in the blood of smokers, and it builds up in the circulatory system over the period of years that might lead to a bladder tumor. N-hydroxy-Acetyl 4-Aminobiphenyl (N-OH-AABP) is one of the reactive forms of 4-ABP which has a potential to initiate tumor growth and causes cancer rapidly. In the present study, commercially available human DNA was modified by N-OH-AABP, and its modifications were analyzed biophysically from fluorescence spectroscopy and thermal denaturation studies. Further, Sera and IgG from bladder cancer patients' blood were assessed for affinity to native and N-OH-AABP modified human DNA using ELISA. The study showed N-OH-AABP caused damage in the structure of the DNA macromolecule and the perturbations resulting from damage leads to change in the Tm of the DNA molecule. Bladder cancer auto-antibodies, particularly in smoker group, showed preferential binding to N-OH-AABP modified human DNA. This study shows that N-OH-AABP modified DNA could be an antigenic stimulus for the generation of autoantibodies in the sera of bladder cancer patients.
Collapse
Affiliation(s)
- Uzma Shahab
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh 202002, India; (U.S.); (S.H.)
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh 202002, India; (U.S.); (S.H.)
| | - Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia;
| | - Qurain Turki Alshammari
- Diagnostic Radiology Department, College of Applied medical Sciences, University of Hail, Hail 2440, Saudi Arabia;
| | - Abdulrahman A. Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Bursa Uludağ University Faculty of Medicine, Görükle Campus, Nilüfer, Bursa 16059, Turkey
| | - Moin Uddin
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh 202002, India; (U.S.); (S.H.)
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied medical Sciences, University of Hail, Hail 2440, Saudi Arabia
| |
Collapse
|
5
|
Borodin SV, Ostapchenko DI, Korotkyi OН, Dvorshchenko KO. INDICATORS OF THE OXIDANT-ANTIOXIDANT SYSTEM IN THE SYNOVIAL FLUID OF PATIENTS WITH OSTEOARTHRITIS AFTER SARS-CoV2 INFECTION. BULLETIN OF PROBLEMS BIOLOGY AND MEDICINE 2022. [DOI: 10.29254/2077-4214-2022-4-167-125-130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
On the irrationality of rational design of an HIV vaccine in light of protein intrinsic disorder. Arch Virol 2021; 166:1283-1296. [PMID: 33606110 PMCID: PMC7892713 DOI: 10.1007/s00705-021-04984-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/19/2020] [Indexed: 12/18/2022]
Abstract
The lack of progress in finding an efficient vaccine for a human immunodeficiency virus (HIV) is daunting. In fact, this search has spanned nearly four decades without much success. There are several objective reasons for such a failure, which include the highly glycosylated nature of HIV-1, the presence of neotopes, and high mutation rates. This article argues that the presence of highly flexible and intrinsically disordered regions in both human anti-HIV-1 antibodies and the major HIV-1immunogen, its surface glycoprotein gp120, represent one of the major causes for the lack of success in utilization of structure-based reverse vaccinology.
Collapse
|
7
|
Zakas PM, Healey JF, Smith IW, Lillicrap D, Lollar P. Sedimentation Velocity Analytical Ultracentrifugation of Oxidized Recombinant Full-Length Factor VIII. Front Immunol 2020; 11:150. [PMID: 32117290 PMCID: PMC7020254 DOI: 10.3389/fimmu.2020.00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/20/2020] [Indexed: 11/17/2022] Open
Abstract
Anti-drug antibodies to coagulation factor VIII (fVIII), often termed inhibitors, present the greatest economical and treatment related obstacle in the management of hemophilia A. Although several genetic and environmental risk factors associated with inhibitor development have been identified, the precise mechanisms responsible for the immune response to exogenous fVIII therapies remain undefined. Clinical trials suggest there is an increased immunogenic potential of recombinant fVIII compared to plasma-derived products. Additional biochemical and immunological studies have demonstrated that changes in recombinant fVIII production and formulation can alter fVIII structure and immunogenicity. Recently, one study demonstrated increased immunogenicity of the recombinant fVIII product Helixate in hemophilia A mice following oxidation with hypochlorite (ClO−). It is widely reported that protein aggregates within drug products can induce adverse immune reactions in patients. Several studies have therefore investigated the prevalence of molecular aggregates in commercial recombinant products with and without use-relevant stress and agitation. To investigate the potential link between oxidation-induced immunogenicity and molecular aggregation, we analyzed the recombinant fVIII product, Helixate, via sedimentation velocity analytical ultracentrifugation following oxidation with ClO−. At 80 μM ClO−, a concentration that reduced the specific-activity by 67%, no detectable increase in large molecular aggregates (s > 12 S) was observed when compared to non-oxidized fVIII. This lack of aggregates was demonstrated both in commercial excipient as well as a HEPES buffered saline formulation. These data suggest that oxidation induced immunogenicity is independent of aggregate-mediated immune response. Therefore, our data support multiple, independent mechanisms underlying fVIII immunogenicity.
Collapse
Affiliation(s)
- Philip M Zakas
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - John F Healey
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - Ian W Smith
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Pete Lollar
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| |
Collapse
|
8
|
Siddiqui Z, Faisal M, Alatar AR, Ahmad S. Prevalence of auto-antibodies against D-ribose-glycated-hemoglobin in diabetes mellitus. Glycobiology 2019; 29:409-418. [PMID: 30834437 DOI: 10.1093/glycob/cwz012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 01/01/2023] Open
Abstract
Glycation of biological macromolecules, due to hyperglycemia, promotes the formation of advanced glycation end products (AGEs). It is accelerated in diabetic patients and is responsible for the pathophysiology and progression of diabetes. Previous reports have shown that amount of AGEs formation and glycation-induced structural damage is higher in hemoglobin (Hb) than other proteins present in blood. In our previous study, we have shown structural changes in Hb by D-ribose which may result into the generation of immunogenic neo-epitopes. Thus, we hypothesized that D-ribose induced structural perturbations in Hb, could result in the formation of neo-epitopes which may provoke an auto-immune response and may also be involved in the immuno-pathogenesis of diabetes type-2 associated complications. Therefore, in the current study, we analyzed the prevalence of autoantibodies in diabetic patient's sera against D-ribose glycated-Hb by direct binding and competitive ELISA. Direct binding ELISA confirmed that autoantibodies in diabetic patients exhibit significantly high binding with D-ribose glycated-Hb as compared to its native form. The antigen binding specificity of these antibodies was also screened by competitive inhibition ELISA. We also used D-glucose glycated-Hb as a positive control to detect the presence of auto-antibodies by direct binding and inhibiton ELISA. We found that D-glucose glycated-Hb binds with T2DM samples but the affinity to binding is lower than D-ribose glycated-Hb. The overall findings of this study suggest the prevalence of circulating autoantibodies against D-ribose glycated-Hb in diabetic patients and thus, the level of these autoantibodies may be used as biomarker for progression of diabetes.
Collapse
Affiliation(s)
- Zeba Siddiqui
- Department of Biosciences, Integral University, Lucknow, India.,IIRC-1 Laboratory of Glycation Biology and Metabolic Disorders, Integral University, Lucknow, India
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Rahman Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saheem Ahmad
- Department of Biosciences, Integral University, Lucknow, India.,IIRC-1 Laboratory of Glycation Biology and Metabolic Disorders, Integral University, Lucknow, India
| |
Collapse
|
9
|
Iram S, Zahera M, Wahid I, Baker A, Raish M, Khan A, Ali N, Ahmad S, Khan MS. Cisplatin bioconjugated enzymatic GNPs amplify the effect of cisplatin with acquiescence. Sci Rep 2019; 9:13826. [PMID: 31554850 PMCID: PMC6761153 DOI: 10.1038/s41598-019-50215-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/29/2019] [Indexed: 12/11/2022] Open
Abstract
Enzymatic gold nanoparticles (B-GNPs) have been synthesized using a natural anticancer agent bromelain (a cysteine protease) and these nanoparticles were used to bioconjugate Cisplatin (highly effective against osteosarcoma and lung cancer). Cisplatin bioconjugated bromelain encapsulated gold nanoparticles (B-C-GNPs) were found profoundly potent against same cancers at much lower concentration with minimum side effects due to the synergistic effect of bromelain. The B-C-GNPs have been observed to inhibit the proliferation of osteosarcoma cell lines Saos-2 and MG-63 with IC50 estimation of 4.51 µg/ml and 3.21 µg/ml, respectively, and against small lung cancer cell line A-549 with IC50 2.5 µg/ml which is lower than IC50 of cisplatin against same cell lines. The B-GNPs/B-C-GNPs were characterized by TEM, UV-Visible spectroscopy, Zeta potential and DLS to confirm the production, purity, crystalline nature, stability of nanoemulsion, size and shape distribution. The change in 2D and 3D conformation of bromelain after encapsulation was studied by Circular Dichroism and Fluorometry, respectively. It was found that after encapsulation, a 19.4% loss in secondary structure was observed, but tertiary structure was not altered significantly and this loss improved the anticancer activity. The confirmation of bioconjugation of cisplatin with B-GNPs was done by UV-Visible spectroscopy, TEM, FTIR, 2D 1H NMR DOSY and ICP-MS. Further, it was found that almost ~4 cisplatin molecules bound with each B-GNPs nanoparticle.
Collapse
Affiliation(s)
- Sana Iram
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Manaal Zahera
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Iram Wahid
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Abu Baker
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Mohammad Raish
- Department Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Altaf Khan
- Department Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Naushad Ali
- Quality Assurance Unit, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saheem Ahmad
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Mohd Sajid Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India.
| |
Collapse
|
10
|
The non-enzymatic glycation of LDL proteins results in biochemical alterations - A correlation study of Apo B100-AGE with obesity and rheumatoid arthritis. Int J Biol Macromol 2019; 122:195-200. [DOI: 10.1016/j.ijbiomac.2018.09.107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/17/2022]
|
11
|
Finch AJ, Benson JM, Donnelly PE, Torzilli PA. Light Absorptive Properties of Articular Cartilage, ECM Molecules, Synovial Fluid, and Photoinitiators as Potential Barriers to Light-Initiated Polymer Scaffolding Procedures. Cartilage 2019. [PMID: 28627226 PMCID: PMC6376558 DOI: 10.1177/1947603517713815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE Many in vivo procedures to repair chondral defects use ultraviolet (UV)-photoinitiated in situ polymerization within the cartilage matrix. Chemical species that absorb UV light might reduce the effectiveness of these procedures by acting as light absorption barriers. This study evaluated whether any of the individual native biochemical components in cartilage and synovial fluid interfered with the absorption of light by common scaffolding photosensitizers. MATERIALS UV-visible spectroscopy was performed on each major component of cartilage in solution, on bovine synovial fluid, and on four photosensitizers, riboflavin, Irgacure 2959, quinine, and riboflavin-5'-phosphate. Molar extinction and absorption coefficients were calculated at wavelengths of maximum absorbance and 365 nm. Intact articular cartilage was also examined. RESULTS The individual major biochemical components of cartilage, Irgacure 2959, and quinine did not exhibit a significant absorption at 365 nm. Riboflavin and riboflavin-5'-phosphate were more effectual light absorbers at 365 nm, compared with the individual native species. Intact cartilage absorbed a significantly greater amount of UV light in comparison with the native species. CONCLUSION Our results indicate that none of the individual native species in cartilage will interfere with the absorption of UV light at 365 nm by these commonly used photoinitiators. Intact cartilage slices exhibited significant light absorption at 365 nm, while also having distinct absorbance peaks at wavelengths less than 300 nm. Determining the UV absorptive properties of the biomolecules native to articular cartilage and synovial fluid will aid in optimizing scaffolding procedures to ensure sufficient scaffold polymerization at a minimum UV intensity.
Collapse
Affiliation(s)
- Anthony J Finch
- 1 Soft Tissue Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Jamie M Benson
- 1 Soft Tissue Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Patrick E Donnelly
- 1 Soft Tissue Laboratory, Hospital for Special Surgery, New York, NY, USA.,2 Department of Biomechanics, Hospital for Special Surgery, New York, NY, USA
| | - Peter A Torzilli
- 1 Soft Tissue Laboratory, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
12
|
Siddiqui Z, Faisal M, Alatar AA, Ahmad S. Glycation of hemoglobin leads to the immunogenicity as a result of neo-epitope generation. Int J Biol Macromol 2018; 123:427-435. [PMID: 30445080 DOI: 10.1016/j.ijbiomac.2018.11.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/11/2018] [Accepted: 11/11/2018] [Indexed: 02/08/2023]
Abstract
Non-enzymatic glycation occurs rapidly which ultimately leads to the formation of advanced glycation endproducts (AGEs). These AGEs have shown to associated with the development of many diseases such as diabetes-mellitus. This study is focused on immunological characterization of glycated-Hb induced by d-ribose. Here, we analysed the immunogenicity of glycated-Hb by direct binding and competitive inhibition ELISA. Direct binding ELISA confirmed that glycated-Hb was highly immunogenic and induced high titre antibodies as compared to native-Hb. The antigen binding specificity and cross reactivity of these antibodies were also screened by competitive inhibition ELISA. The IgG from rabbit sera showed enhanced binding of glycated-Hb than native-Hb. Thus, it is possible that alterations in Hb induced by d-ribose could have generated highly immunogenic neoepitopes. Moreover, induced antibodies were also found to cross-react with other modified/native proteins. On the basis of the results of this study, we presume that this type of structural perturbations in Hb in vivo by d-ribose might take place in untreated diabetic condition that could induce such type of immunogenic auto-antibodies. Furthermore, increased level of these auto-antibodies could serve as a biomarker in diabetes and its progression.
Collapse
Affiliation(s)
- Zeba Siddiqui
- Department of Biosciences, Integral University, Lucknow 226026, India; IIRC-1 Laboratory of Glycation Biology and Metabolic Disorders, Integral University, Lucknow 26026, India
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman A Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saheem Ahmad
- Department of Biosciences, Integral University, Lucknow 226026, India; IIRC-1 Laboratory of Glycation Biology and Metabolic Disorders, Integral University, Lucknow 26026, India.
| |
Collapse
|
13
|
Immunochemical studies on native and glycated LDL – An approach to uncover the structural perturbations. Int J Biol Macromol 2018; 115:287-299. [DOI: 10.1016/j.ijbiomac.2018.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/20/2018] [Accepted: 04/04/2018] [Indexed: 01/27/2023]
|
14
|
Yang SC, Chen PJ, Chang SH, Weng YT, Chang FR, Chang KY, Chen CY, Kao TI, Hwang TL. Luteolin attenuates neutrophilic oxidative stress and inflammatory arthritis by inhibiting Raf1 activity. Biochem Pharmacol 2018; 154:384-396. [PMID: 29883707 DOI: 10.1016/j.bcp.2018.06.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/04/2018] [Indexed: 11/30/2022]
Abstract
Neutrophils play a significant role in inflammatory tissue injury. Activated neutrophils produce reactive oxygen species (ROS), release proteases, and form neutrophil extracellular traps (NETs), significantly affecting the pathogenesis of inflammatory arthritis. We examined the therapeutic effects of luteolin, a flavone found in many plants, in neutrophilic inflammation and on acute inflammatory arthritis. Luteolin significantly inhibited superoxide anion generation, ROS production, and NET formation in human neutrophils. The increase in elastase release, CD11b expression, and chemotaxis was also inhibited by luteolin. Luteolin significantly suppressed phosphorylation of extracellular signal-regulated kinase (Erk) and mitogen-activated protein kinase kinase-1 (MEK-1), but not c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Analysis of the molecular mechanism further revealed that luteolin acts as a Raf-1 inhibitor. In mice with complete Freund's adjuvant-induced arthritis, luteolin ameliorated neutrophil infiltration as well as the thickness of paw edema and ROS production. In conclusion, in addition to its known ROS scavenging effect, this study is the first to provide evidence that luteolin diminishes human neutrophil inflammatory responses by inhibiting Raf1-MEK-1-Erk. Our results focused on the importance of neutrophil activation in inflammatory tissue injury and offer opportunities for the development of luteolin's therapeutic potential to attenuate neutrophilic inflammatory diseases.
Collapse
Affiliation(s)
- Shun-Chin Yang
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 112, Taiwan; Graduate Institute of Natural Products and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Po-Jen Chen
- Graduate Institute of Natural Products and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Cosmetic Science, Providence University, Taichung 433, Taiwan
| | - Shih-Hsin Chang
- Graduate Institute of Natural Products and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Yu-Ting Weng
- Graduate Institute of Natural Products and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Kuang-Yi Chang
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 112, Taiwan
| | - Chun-Yu Chen
- Graduate Institute of Natural Products and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Ting-I Kao
- Graduate Institute of Natural Products and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Division of Chinese Internal Medicine, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan.
| |
Collapse
|
15
|
Peyron I, Dimitrov JD, Delignat S, Gangadharan B, Srivastava A, Kaveri SV, Lacroix-Desmazes S. Oxidation of factor VIII increases its immunogenicity in mice with severe hemophilia A. Cell Immunol 2018; 325:64-68. [PMID: 29395036 DOI: 10.1016/j.cellimm.2018.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/30/2017] [Accepted: 01/13/2018] [Indexed: 02/04/2023]
Abstract
The development of antibodies against therapeutic factor VIII (FVIII) represents the major complication of replacement therapy in patients with severe hemophilia A. Amongst the environmental risk factors that influence the anti-FVIII immune response, the presence of active bleeding or hemarthrosis has been evoked. Endothelium damage is typically associated with the release of oxidative compounds. Here, we addressed whether oxidation contributes to FVIII immunogenicity. The control with N-acetyl cysteine of the oxidative status in FVIII-deficient mice, a model of severe hemophilia A, reduced the immune response to exogenous FVIII. Ex vivo exposure of therapeutic FVIII to HOCl induced a mild oxidation of the molecule as evidenced by the loss of free amines and resulted in increased FVIII immunogenicity in vivo when compared to native FVIII. The increased immunogenicity of oxidized FVIII was not reverted by treatment of mice with N-acetyl cysteine, and did not implicate an increased maturation of professional antigen-presenting cells. Our data document that oxidation influences the immunogenicity of therapeutic FVIII.
Collapse
Affiliation(s)
- Ivan Peyron
- INSERM, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris6, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Paris Descartes, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France
| | - Jordan D Dimitrov
- INSERM, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris6, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Paris Descartes, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France
| | - Sandrine Delignat
- INSERM, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris6, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Paris Descartes, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France
| | - Bagirath Gangadharan
- INSERM, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris6, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Paris Descartes, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France
| | - Alok Srivastava
- Department of Haematology, Christian Medical College, Vellore, India
| | - Srinivas V Kaveri
- INSERM, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris6, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Paris Descartes, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France
| | - Sébastien Lacroix-Desmazes
- INSERM, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris6, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Paris Descartes, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France.
| |
Collapse
|
16
|
Toxicity of Protein and DNA-AGEs in Neurodegenerative Diseases (NDDs) with Decisive Approaches to Stop the Deadly Consequences. PERSPECTIVES IN ENVIRONMENTAL TOXICOLOGY 2017. [DOI: 10.1007/978-3-319-46248-6_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Qi Q, Yao L, Liang Z, Yan D, Li Z, Huang Y, Sun J. Production of human type II collagen using an efficient baculovirus-silkworm multigene expression system. Mol Genet Genomics 2016; 291:2189-2198. [DOI: 10.1007/s00438-016-1251-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 09/19/2016] [Indexed: 11/28/2022]
|
18
|
Akhter F, Khan MS, Alatar AA, Faisal M, Ahmad S. Antigenic role of the adaptive immune response to d -ribose glycated LDL in diabetes, atherosclerosis and diabetes atherosclerotic patients. Life Sci 2016; 151:139-146. [DOI: 10.1016/j.lfs.2016.02.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/28/2015] [Accepted: 02/05/2016] [Indexed: 12/15/2022]
|
19
|
Mir AR, Moinuddin, Islam S. Circulating autoantibodies in cancer patients have high specificity for glycoxidation modified histone H2A. Clin Chim Acta 2016; 453:48-55. [DOI: 10.1016/j.cca.2015.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/27/2015] [Accepted: 12/03/2015] [Indexed: 11/15/2022]
|
20
|
Lei P, Sun R, Wang L, Zhou J, Wan L, Zhou T, Hu Y. A New Method for Xenogeneic Bone Graft Deproteinization: Comparative Study of Radius Defects in a Rabbit Model. PLoS One 2015; 10:e0146005. [PMID: 26719896 PMCID: PMC4699924 DOI: 10.1371/journal.pone.0146005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 12/12/2015] [Indexed: 11/30/2022] Open
Abstract
Background and Objectives Deproteinization is an indispensable process for the elimination of antigenicity in xenograft bones. However, the hydrogen peroxide (H2O2) deproteinized xenograft, which is commonly used to repair bone defect, exhibits limited osteoinduction activity. The present study was designed to develop a new method for deproteinization and compare the osteogenic capacities of new pepsin deproteinized xenograft bones with those of conventional H2O2 deproteinized ones. Methods Bones were deproteinized in H2O2 or pepsin for 8 hours. The morphologies were compared by HE staining. The content of protein and collagen I were measured by the Kjeldahl method and HPLC-MS, respectively. The physical properties were evaluated by SEM and mechanical tests. For in vivo study, X-ray, micro-CT and HE staining were employed to monitor the healing processes of radius defects in rabbit models transplanted with different graft materials. Results Compared with H2O2 deproteinized bones, no distinct morphological and physical changes were observed. However, pepsin deproteinized bones showed a lower protein content, and a higher collagen content were preserved. In vivo studies showed that pepsin deproteinized bones exhibited better osteogenic performance than H2O2 deproteinized bones, moreover, the quantity and quality of the newly formed bones were improved as indicated by micro-CT analysis. From the results of histological examination, the newly formed bones in the pepsin group were mature bones. Conclusions Pepsin deproteinized xenograft bones show advantages over conventional H2O2 deproteinized bones with respect to osteogenic capacity; this new method may hold potential clinical value in the development of new biomaterials for bone grafting.
Collapse
Affiliation(s)
- Pengfei Lei
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Rongxin Sun
- Department of Orthopedics, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Jialin Zhou
- Department of Orthopedics, Thoracic hospital of Hunan province, Changsha, China
| | - Lifei Wan
- Department of Orthopedics, Ningxiang People's Hospital, Ningxiang, China
| | - Tianjian Zhou
- Department of Orthopedics, The First People's Hospital of Shenzhen, Shenzhen, China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
DNA Glycation from 3-Deoxyglucosone Leads to the Formation of AGEs: Potential Role in Cancer Auto-antibodies. Cell Biochem Biophys 2015; 74:67-77. [DOI: 10.1007/s12013-015-0713-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Mir AR, Moinuddin. Glycoxidation of histone proteins in autoimmune disorders. Clin Chim Acta 2015; 450:25-30. [DOI: 10.1016/j.cca.2015.07.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/26/2015] [Accepted: 07/28/2015] [Indexed: 01/08/2023]
|
23
|
Moinuddin, Ansari NA, Shahab U, Habeeb S, Ahmad S. Immuno-chemistry of hydroxyl radical modified GAD-65: A possible role in experimental and human diabetes mellitus. IUBMB Life 2015; 67:746-56. [PMID: 26362234 DOI: 10.1002/iub.1431] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/28/2015] [Indexed: 11/10/2022]
Abstract
The repertoire of known auto-antigens is limited to a very small proportion of all human proteins, and the reason why only some proteins become auto-antigens is unclear. The 65 kDa isoform of the enzyme glutamic acid decarboxylase (GAD-65) is a major auto-antigen in type I diabetes, and in various neurological diseases. Most patients with type I diabetes (70-80%) have auto-antibodies against GAD-65, which often appear years before clinical onset of the autoimmune diabetes. Thus, the aim of the study is to focus on the immunogenicity of GAD65 and its reactive oxygen species (ROS) conformer in STZ-induced diabetic rats and on human diabetic patients. In the present study, GAD-65 was modified by hydroxyl radical following Fenton's reaction. The modifications in the structure of the GAD-65 are supported by UV-vis and fluorescence spectral studies. Immunogenicity of both native and hydroxyl radical modified GAD-65 (ROS-GAD-65) was studied in experimental rabbits and was confirmed by inducing type I diabetes in experimental male albino rats using streptozotocin (45 mg/kg). We found that ROS-GAD-65 was a better immunogen as compared to the native GAD-65. A considerable high binding to ROS-GAD-65 was observed as compared to native GAD-65 in both the serum antibodies from diabetes animal models and as well as in the serum samples of type I diabetes. Hydrogen peroxide under the exposure of UV light produces hydroxyl radical (·OH) which is most potent oxidant, and could cause protein damage (GAD-65) to the extent of generating neo-epitopes on the molecule, thus making it immunogenic.
Collapse
Affiliation(s)
- Moinuddin
- Department of Biochemistry, Faculty of Medicine, J.N. Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Nadeem A Ansari
- Department of Biochemistry, Faculty of Medicine, J.N. Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Uzma Shahab
- Department of Biochemistry, Faculty of Medicine, J.N. Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.,Department of Biochemistry, King George Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Safia Habeeb
- Department of Biochemistry, Faculty of Medicine, J.N. Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Saheem Ahmad
- Department of Biochemistry, Faculty of Medicine, J.N. Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.,Department of Bio-Sciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| |
Collapse
|
24
|
Tabrez S, Al-Shali KZ, Ahmad S. Lycopene powers the inhibition of glycation-induced diabetic nephropathy: a novel approach to halt the AGE-RAGE axis menace. Biofactors 2015; 41:372-81. [PMID: 26453295 DOI: 10.1002/biof.1238] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/08/2015] [Indexed: 11/10/2022]
Abstract
There are accumulating evidences suggesting that interaction between advanced glycation end products (AGEs) and their receptors (RAGEs) induces oxidative stress and subsequently encourages inflammatory reactions, thereby resulting in progressive alteration in renal architecture and function. Interventions that reduce the tissue burden of AGEs have yielded significant positive results in inhibiting the progression of diabetic complications such as diabetic nephropathy. Lycopene, a carotenoid, plays an important role in protection against oxidative stress and hence might prove an efficient antiglycating agent. Current study investigates the effect of lycopene in downregulating the menace caused by ribose-induced glycation both in vitro and in vivo. We observed that treatment with lycopene decelerated the ribose induced AGE formation in HK-2 cells and in rat kidneys thereby downregulating the expression RAGE. HK-2 cells with decreased levels of RAGE showed a decline in nuclear factor κB (NFκB) and matrix metalloproteinase 2 (MMP 2) expressions. Administration of ribose not only induced hyperglycemia in Wistar rats but also developed diabetic nephropathy (DN). However, lycopene was found effective in relieving the biochemical symptoms of DN. Thus lycopene provides protection against development of diabetic nephropathy and ameliorates renal function by halting AGE-RAGE axis.
Collapse
Affiliation(s)
- Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid Zaki Al-Shali
- Department of Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Saheem Ahmad
- Department of Bio-Sciences, Integral University, Lucknow, U.P., India
| |
Collapse
|
25
|
Glycation of H1 Histone by 3-Deoxyglucosone: Effects on Protein Structure and Generation of Different Advanced Glycation End Products. PLoS One 2015; 10:e0130630. [PMID: 26121680 PMCID: PMC4487796 DOI: 10.1371/journal.pone.0130630] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/21/2015] [Indexed: 11/19/2022] Open
Abstract
Advanced glycation end products (AGEs) culminate from the non-enzymatic reaction between a free carbonyl group of a reducing sugar and free amino group of proteins. 3-deoxyglucosone (3-DG) is one of the dicarbonyl species that rapidly forms several protein-AGE complexes that are believed to be involved in the pathogenesis of several diseases, particularly diabetic complications. In this study, the generation of AGEs (Nε-carboxymethyl lysine and pentosidine) by 3-DG in H1 histone protein was characterized by evaluating extent of side chain modification (lysine and arginine) and formation of Amadori products as well as carbonyl contents using several physicochemical techniques. Results strongly suggested that 3-DG is a potent glycating agent that forms various intermediates and AGEs during glycation reactions and affects the secondary structure of the H1 protein. Structural changes and AGE formation may influence the function of H1 histone and compromise chromatin structures in cases of secondary diabetic complications.
Collapse
|
26
|
Quercetin as a finer substitute to aminoguanidine in the inhibition of glycation products. Int J Biol Macromol 2015; 77:188-92. [PMID: 25799884 DOI: 10.1016/j.ijbiomac.2015.03.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/10/2015] [Accepted: 03/14/2015] [Indexed: 11/20/2022]
Abstract
Non-enzymatic glycation is the addition of a free carbonyl group of a reducing sugar to the free amino groups of proteins, which results in the formation of early and advanced glycation end-products (AGEs). Glycation reaction is profoundly associated with diabetes and its secondary complications, such as nephropathy and neuropathy. Glyoxal is a carbonyl species that reacts rapidly with the free amino groups of proteins to form AGEs. While the formation of AGEs with various glycating agents has previously been demonstrated, no extensive studies have been conducted to assess the role of quercetin in all three stages of glycation (early, intermediate and late). In this study, we report the glycation of HSA (human serum albumin) and its characterization by several spectroscopic techniques. Furthermore, inhibition of products at all stages of glycation was studied by various assays. Spectroscopic analysis suggests structural perturbations in the HSA macromolecule as a result of modification, which might be due to the generation of free radicals and the formation of AGEs. Inhibition in the formation of glycation has established that quercetin is a better and a more potent antiglycating agent than aminoguanidine at all stages of glycation.
Collapse
|
27
|
Tsai CF, Wang KT, Chen LG, Lee CJ, Tseng SH, Wang CC. Anti-inflammatory effects of Vitis thunbergii var. taiwaniana on knee damage associated with arthritis. J Med Food 2015; 17:479-86. [PMID: 24720858 DOI: 10.1089/jmf.2013.2914] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vitis thunbergii Sieb. et Zucc. var. taiwaniana Lu (VT) is an indigenous plant in Taiwan that is traditionally used for promoting joint health. In this study, we used in vitro primary human chondrocytes (PHCs) and two in vivo animal models to evaluate the anti-inflammatory effects of VT on arthritis. Results showed that the water extract of the stems and roots from VT (VT-SR) was rich in flavones and phenols with 1.1 mg/g of resveratrol, 6.7 mg/g of hopeaphenol, and 5.1 mg/g of (+)-ɛ-viniferin. VT-SR significantly scavenged DPPH radicals and inhibited prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-induced PHCs without exhibiting significant cytotoxicity. In in vivo models, the VT-SR (500 mg/kg) significantly decreased serum PGE2 and knee 2-(18)F-fluoro-2-deoxy-D-glucose ((18)F-FDG) levels in LPS-induced acute inflammatory arthritis in rabbits. In addition, dietary supplementation with VT-SR for 28 days significantly alleviated type II collagenase-induced rat osteoarthritis with improvements in weight bearing and range of motion tests. In conclusion, our results suggest that the VT-SR is a good candidate for developing dietary supplements to prevent joint deterioration and inhibit inflammation.
Collapse
Affiliation(s)
- Ching-Fent Tsai
- 1 Department of Orthopedics, New Taipei City Hospital , New Taipei City, Taiwan
| | | | | | | | | | | |
Collapse
|
28
|
Huang L, Yang X, Peng A, Wang H, Lei X, Zheng L, Huang K. Inhibitory effect of leonurine on the formation of advanced glycation end products. Food Funct 2015; 6:584-9. [DOI: 10.1039/c4fo00960f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Leonurine inhibits AGE formation through scavenging of the carbonyl species
Collapse
Affiliation(s)
- Lianqi Huang
- Tongji School of Pharmacy
- Huazhong University of Science & Technology
- Wuhan
- China
| | - Xin Yang
- Tongji School of Pharmacy
- Huazhong University of Science & Technology
- Wuhan
- China
| | - Anlin Peng
- Department of Pharmacy
- The Third Hospital of Wuhan
- Wuhan
- China 430060
| | - Hui Wang
- Tongji School of Pharmacy
- Huazhong University of Science & Technology
- Wuhan
- China
| | - Xiang Lei
- Synergy Innovation Center of Biological Peptide Antidiabetics of Hubei Province
- School of Life Science
- Wuchang University of Technology
- Wuhan
- China 430223
| | - Ling Zheng
- College of Life Sciences
- Wuhan University
- Wuhan
- China
| | - Kun Huang
- Tongji School of Pharmacy
- Huazhong University of Science & Technology
- Wuhan
- China
- Centre for Biomedicine Research
| |
Collapse
|
29
|
Ashraf JM, Haque QS, Tabrez S, Choi I, Ahmad S. Biochemical and immunological parameters as indicators of osteoarthritis subjects: role of OH-collagen in auto-antibodies generation. EXCLI JOURNAL 2015; 14:1057-66. [PMID: 26933405 PMCID: PMC4763472 DOI: 10.17179/excli2014-423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 09/05/2015] [Indexed: 11/16/2022]
Abstract
Osteoarthritis (OA) is characterized by inflammation of the knee joint, which is caused by accumulation of cytokines and C-reactive protein (CRP) in the extracellular matrix as an early immune response to infection. The articular cartilage destruction is discernible by elevated tumour necrosis factor-α (TNF-α). In this study, blood samples of knee osteoarthritis patients were analyzed for biochemical and physiological parameters based on the lipid profile, uric acid, total leukocyte count (TLC), hemoglobin percentage (Hb%) and absolute lymphocyte count (ALC). Furthermore, immunological parameters including TNF-α , interleukin-6 (IL-6) and CRP were analyzed. The presence of antibodies against hydroxyl radical modified collagen-II (•OH-collagen-II) was also investigated in arthritis patients using direct binding ELISA. The uric acid and lipid profiles changed extensively. Specifically, increased uric acid levels were associated with OA in both genders, as were enhanced immunological parameters. The TNF-α level also increased in both genders suffering from OA. Finally, auto-antibodies against OH-collagen II antigen were found in the sera of arthritis patients. These results indicated that immunological parameters are better predictors or indexes for diagnosis of OA than biochemical parameters.
Collapse
Affiliation(s)
| | - Quazi S Haque
- Department of Biochemistry, Hind Institute of Medical Sciences, Barabanki, U.P., India
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Inho Choi
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Saheem Ahmad
- Department of BioSciences, Integral University, Lucknow, India
| |
Collapse
|
30
|
Akhter F, Khan MS, Singh S, Ahmad S. An immunohistochemical analysis to validate the rationale behind the enhanced immunogenicity of D-ribosylated low density lipo-protein. PLoS One 2014; 9:e113144. [PMID: 25393017 PMCID: PMC4231124 DOI: 10.1371/journal.pone.0113144] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/22/2014] [Indexed: 01/26/2023] Open
Abstract
Advanced glycation end products (AGEs) are thought to contribute to the abnormal lipoprotein profiles and increased risk of cardiovascular disease in patients with diabetes and renal failure. D-ribose is one of the naturally occurring pentose monosaccharide present in all living cells and is a key component of numerous biomolecules involved in many important metabolic pathways. Formation of D-ribose derived glycated low density lipoprotein (LDL) has been previously demonstrated but no studies have been performed to assess the immune complex deposition in the kidney of rabbits immunized with glycated LDL. In this study, LDL was glycated with D-ribose, and it was further used as an immunogen for immunizing NZW female rabbits. The results showed that female rabbits immunized with D-ribose modified LDL induced antibodies as detected by direct binding and competitive ELISA. The modified LDL was found to be highly immunogenic eliciting high titer immunogen-specific antibodies, while the native forms were moderately immunogenic. The induced antibodies from modified LDL exhibited wide range of heterogeneity in recognizing various proteins and amino acids conformers. Furthermore, our histopathological results illustrated the deposits of immune complex in glomerular basement membrane in rabbits immunized with D-ribose-LDL.
Collapse
Affiliation(s)
- Firoz Akhter
- Department of Bio-Engineering, Integral University, Lucknow, India
- Department of Bio-Sciences, Integral University, Lucknow, India
| | - M. Salman Khan
- Department of Bio-Sciences, Integral University, Lucknow, India
- * E-mail: (SA); (MSK)
| | - Sarika Singh
- Department Toxicology, Central Drug Research Institute (CDRI), Lucknow, India
| | - Saheem Ahmad
- Department of Bio-Sciences, Integral University, Lucknow, India
- * E-mail: (SA); (MSK)
| |
Collapse
|
31
|
Akhter F, Khan MS, Ahmad S. Acquired immunogenicity of calf thymus DNA and LDL modified by D-ribose: a comparative study. Int J Biol Macromol 2014; 72:1222-7. [PMID: 25450543 DOI: 10.1016/j.ijbiomac.2014.10.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 12/13/2022]
Abstract
Glycation of biologically important macromolecules leads to the establishment of advanced glycation end products (AGEs) having significant role in the pathophysiology of various diseases. d-Ribose, is a highly reactive pentose sugar resulting in the rapid formation of AGEs. Formation of d-ribose derived glycated DNA and LDL has been previously demonstrated; however no comparative, extensive studies have been performed to assess the immunogenicity of d-ribose glycated calf thymus DNA (CT-DNA) and LDL. In the present study, the results showed that animals immunized with d-ribose modified CT-DNA and LDL induced antibodies as detected by direct binding and competition ELISA. The modified CT-DNA and LDL were found to be highly immunogenic, eliciting high titer immunogen-specific antibodies, while the native forms of DNA was almost non-immunogenic. The induced antibodies from modified CT-DNA and LDL exhibited wide range of heterogeneity in recognizing various nucleic acid conformers, DNA bases and amino acids. Furthermore, Serum antibodies from diabetes and diabetes atherosclerosis patients were screened for their binding to native CT-DNA, LDL and glycated CT-DNA, LDL. Glycated CT-DNA showed almost equivalent binding to both diabetes and diabetic atherosclerosis group while high recognition was observed when glycated LDL was used as an antigen.
Collapse
Affiliation(s)
- Firoz Akhter
- Department of Bio-Sciences, Integral University, Lucknow, 226026, India; Department of Bio-Engineering, Integral University, Lucknow, 226026, India
| | - M Salman Khan
- Department of Bio-Sciences, Integral University, Lucknow, 226026, India
| | - Saheem Ahmad
- Department of Bio-Sciences, Integral University, Lucknow, 226026, India.
| |
Collapse
|
32
|
Ahmad S, Uddin M, Habib S, Shahab U, Alam K, Ali A. Autoimmune response to AGE modified human DNA: Implications in type 1 diabetes mellitus. JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY 2014; 1:66-72. [PMID: 29159085 PMCID: PMC5685016 DOI: 10.1016/j.jcte.2014.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/25/2014] [Accepted: 05/22/2014] [Indexed: 10/26/2022]
Abstract
Aims Non-enzymatic glycation of DNA both in vivo and in vitro results in generation of free radicals, known as glycoxidation. Glycoxidation leads to structural perturbation of DNA resulting in generation of neo-antigenic epitopes having implication in autoimmune disorders like diabetes mellitus. In this study human placental DNA was glycated with methylglyoxal (MG) and lysine (Lys) in the presence of Cu2+ and its auto-antibody binding was probed in Type 1 diabetes patients. Methods Glycation was carried out by incubating DNA with MG, Lys and Cu2+ for 24 h at 37 °C. Carboxyethyl deoxyguanosine (CEdG) formed in glycation reaction was studied by LC-MS and the pathway for Amadori formation was studied by ESI-MS techniques. Furthermore, binding characteristics of auto-antibodies in diabetes patients were assessed by direct binding, competitive ELISA and band shift assay. Results DNA glycation with MG, Lys and Cu2+ results in the formation of CEdG (marker of DNA glycation) which was confirmed by LC-MS. The intermediate stages of glycation were confirmed by ESI-MS technique. Serum from diabetes patients exhibited enhanced binding and specificity for glycated DNA as compared to native form. Conclusions Glycation of DNA has resulted in structural perturbation causing generation of neo-antigenic epitopes thus recognizing auto-antibodies in diabetes.
Collapse
Affiliation(s)
- Saheem Ahmad
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India.,Department of Biosciences/Biochemistry, Integral University, Lucknow, UP, India
| | - Moin Uddin
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Biochemistry Section, Women's College, Aligarh Muslim University, Aligarh, India
| | - Uzma Shahab
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India.,Department of Biochemistry, Central Drug Research Institute, Lucknow, UP, India
| | - Khursheed Alam
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Asif Ali
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
33
|
Shahab U, Tabrez S, Khan MS, Akhter F, Khan MS, Saeed M, Ahmad K, Srivastava AK, Ahmad S. Immunogenicity of DNA-advanced glycation end product fashioned through glyoxal and arginine in the presence of Fe³⁺: its potential role in prompt recognition of diabetes mellitus auto-antibodies. Chem Biol Interact 2014; 219:229-40. [PMID: 24968179 DOI: 10.1016/j.cbi.2014.06.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/24/2014] [Accepted: 06/13/2014] [Indexed: 12/11/2022]
Abstract
Glyoxal, methylglyoxal and 3-deoxyglucosones are reactive dicarbonyl compounds, which transform free amino groups of proteins and lipoproteins macromolecule into advanced glycation end-products (AGEs). AGEs play a significant role in the pathophysiology of aging and diabetic complications because of their genotoxic effect. Glyoxal also reacts with free amino group of nucleic acids resulting in the formation of DNA-AGEs. The present study reports the genotoxicity and immunogenicity of AGEs formed by Glyoxal-Arginine-Fe(3+) (G-Arg-Fe(3+)) system as a glycating agent. Immunogenicity of native and G-Arg-Fe(3+)-DNA was probed in female rabbits. Immunofluorescence suggests the presence of immune complex deposition in the kidney section of immunized rabbits. Spectroscopic analysis and melting temperature indicates the structural modification in the human DNA. The modified human DNA is found to be highly immunogenic, whereas unmodified form was simply non-immunogenic. This study shows the presence of auto-antibodies against G-Arg-Fe(3+) modified human DNA in the sera of diabetes type 1 and in few cases type 2 patients due to secondary complications of nephropathy. The glyco-oxidative lesions have also been detected in the lymphocyte DNA isolated from patients having type 1 and type 2 diabetes. The results show structural perturbations generating new epitopes in G-Arg-Fe(3+)-DNA rendering it pretty immunogenic.
Collapse
Affiliation(s)
- Uzma Shahab
- Department of Biochemistry, Central Drug Research Institute, Lucknow, U.P., India; Department of Biochemistry, King George Medical University, Lucknow, U.P., India
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M Salman Khan
- Department of Biosciences, Integral University, Lucknow, U.P., India
| | - Firoz Akhter
- Department of Biosciences, Integral University, Lucknow, U.P., India
| | - Mohd Sajid Khan
- Department of Biosciences, Integral University, Lucknow, U.P., India
| | - Mohd Saeed
- Department of Biosciences, Integral University, Lucknow, U.P., India
| | - Khurshid Ahmad
- Department of Biosciences, Integral University, Lucknow, U.P., India
| | - A K Srivastava
- Department of Biosciences, Integral University, Lucknow, U.P., India
| | - Saheem Ahmad
- Department of Biosciences, Integral University, Lucknow, U.P., India.
| |
Collapse
|
34
|
Scharf B, Clement CC, Yodmuang S, Urbanska AM, Suadicani SO, Aphkhazava D, Thi MM, Perino G, Hardin JA, Cobelli N, Vunjak-Novakovic G, Santambrogio L. Age-related carbonylation of fibrocartilage structural proteins drives tissue degenerative modification. ACTA ACUST UNITED AC 2014; 20:922-34. [PMID: 23890010 DOI: 10.1016/j.chembiol.2013.06.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/24/2013] [Accepted: 06/09/2013] [Indexed: 01/07/2023]
Abstract
Aging-related oxidative stress has been linked to degenerative modifications in different organs and tissues. Using redox proteomic analysis and illustrative tandem mass spectrometry mapping, we demonstrate oxidative posttranslational modifications in structural proteins of intervertebral discs (IVDs) isolated from aging mice. Increased protein carbonylation was associated with protein fragmentation and aggregation. Complementing these findings, a significant loss of elasticity and increased stiffness was measured in fibrocartilage from aging mice. Studies using circular dichroism and intrinsic tryptophan fluorescence revealed a significant loss of secondary and tertiary structures of purified collagens following oxidation. Collagen unfolding and oxidation promoted both nonenzymatic and enzymatic degradation. Importantly, induction of oxidative modification in healthy fibrocartilage recapitulated the biochemical and biophysical modifications observed in the aging IVD. Together, these results suggest that protein carbonylation, glycation, and lipoxidation could be early events in promoting IVD degenerative changes.
Collapse
Affiliation(s)
- Brian Scharf
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ahmad S, Khan MS, Akhter F, Khan MS, Khan A, Ashraf JM, Pandey RP, Shahab U. Glycoxidation of biological macromolecules: A critical approach to halt the menace of glycation. Glycobiology 2014; 24:979-90. [DOI: 10.1093/glycob/cwu057] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
36
|
Autoantibodies to posttranslational modifications in rheumatoid arthritis. Mediators Inflamm 2014; 2014:492873. [PMID: 24782594 PMCID: PMC3981057 DOI: 10.1155/2014/492873] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/10/2014] [Indexed: 12/11/2022] Open
Abstract
Autoantibodies have been associated with human pathologies for a long time, particularly with autoimmune diseases (AIDs). Rheumatoid factor (RF) is known since the late 1930s to be associated with rheumatoid arthritis (RA). The discovery of anticitrullinated protein antibodies in the last century has changed this and other posttranslational modifications (PTM) relevant to RA have since been described. Such PTM introduce neoepitopes in proteins that can generate novel autoantibody specificities. The recent recognition of these novel specificities in RA provides a unique opportunity to understand human B-cell development in vivo. In this paper, we will review the three of the main classes of PTMs already associated with RA: citrullination, carbamylation, and oxidation. With the advancement of research methodologies it should be expected that other autoantibodies against PTM proteins could be discovered in patients with autoimmune diseases. Many of such autoantibodies may provide significant biomarker potential.
Collapse
|
37
|
Studies on glycation of human low density lipoprotein: A functional insight into physico-chemical analysis. Int J Biol Macromol 2013; 62:167-71. [DOI: 10.1016/j.ijbiomac.2013.08.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 11/22/2022]
|
38
|
Inhibitory effect of metformin and pyridoxamine in the formation of early, intermediate and advanced glycation end-products. PLoS One 2013; 8:e72128. [PMID: 24023728 PMCID: PMC3762829 DOI: 10.1371/journal.pone.0072128] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/05/2013] [Indexed: 11/19/2022] Open
Abstract
Background Non-enzymatic glycation is the addition of free carbonyl group of reducing sugar to the free amino groups of proteins, resulting in the formation of a Schiff base and an Amadori product. Dihydroxyacetone (DHA) is one of the carbonyl species which reacts rapidly with the free amino groups of proteins to form advanced glycation end products (AGEs). The highly reactive dihydroxyacetone phosphate is a derivative of dihydroxyacetone (DHA), and a product of glycolysis, having potential glycating effects to form AGEs. The formation of AGEs results in the generation of free radicals which play an important role in the pathophysiology of aging and diabetic complications. While the formation of DHA-AGEs has been demonstrated previously, no extensive studies have been performed to assess the inhibition of AGE inhibitors at all the three stages of glycation (early, intermediate and late) using metformin (MF) and pyridoxamine (PM) as a novel inhibitor. Methodology/Principal Findings In this study we report glycation of human serum albumin (HSA) & its characterization by various spectroscopic techniques. Furthermore, inhibition of glycation products at all the stages of glycation was also studied. Spectroscopic analysis suggests structural perturbations in the HSA as a result of modification which might be due to generation of free radicals and formation of AGEs. Conclusion The inhibition in the formation of glycation reaction reveals that Pyridoxamine is a better antiglycating agent than Metformin at all stages of the glycation (early, intermediate and late stages).
Collapse
|
39
|
Akhter F, Salman Khan M, Shahab U, Moinuddin, Ahmad S. Bio-physical characterization of ribose induced glycation: A mechanistic study on DNA perturbations. Int J Biol Macromol 2013; 58:206-10. [DOI: 10.1016/j.ijbiomac.2013.03.036] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/10/2013] [Accepted: 03/09/2013] [Indexed: 11/24/2022]
|
40
|
Shahab U, Ahmad S, Dixit K, Habib S, Alam K, Ali A. Genotoxic effect of N-hydroxy-4-acetylaminobiphenyl on human DNA: implications in bladder cancer. PLoS One 2013; 8:e53205. [PMID: 23382838 PMCID: PMC3561383 DOI: 10.1371/journal.pone.0053205] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/26/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The interaction of environmental chemicals and their metabolites with biological macromolecules can result in cytotoxic and genotoxic effects. 4-Aminobiphenyl (4-ABP) and several other related arylamines have been shown to be causally involved in the induction of human urinary bladder cancers. The genotoxic and the carcinogenic effects of 4-ABP are exhibited only when it is metabolically converted to a reactive electrophile, the aryl nitrenium ions, which subsequently binds to DNA and induce lesions. Although several studies have reported the formation of 4-ABP-DNA adducts, no extensive work has been done to investigate the immunogenicity of 4-ABP-modified DNA and its possible involvement in the generation of antibodies in bladder cancer patients. METHODOLOGY/PRINCIPAL FINDINGS Human DNA was modified by N-hydroxy-4-acetylaminobiphenyl (N-OH-AABP), a reactive metabolite of 4-ABP. Structural perturbations in the N-OH-AABP modified DNA were assessed by ultraviolet, fluorescence, and circular dichroic spectroscopy as well as by agarose gel electrophoresis. Genotoxicity of N-OH-AABP modified DNA was ascertained by comet assay. High performance liquid chromatography (HPLC) analysis of native and modified DNA samples confirmed the formation of N-(deoxyguanosine-8-yl)-4-aminobiphenyl (dG-C8-4ABP) in the N-OH-AABP damaged DNA. The experimentally induced antibodies against N-OH-AABP-modified DNA exhibited much better recognition of the DNA isolated from bladder cancer patients as compared to the DNA obtained from healthy individuals in competitive binding ELISA. CONCLUSIONS/SIGNIFICANCE This work shows epitope sharing between the DNA isolated from bladder cancer patients and the N-OH-AABP-modified DNA implicating the role of 4-ABP metabolites in the DNA damage and neo-antigenic epitope generation that could lead to the induction of antibodies in bladder cancer patients.
Collapse
Affiliation(s)
- Uzma Shahab
- Department of Biochemistry, J N Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | | | | | | | | | | |
Collapse
|