1
|
Zhou Q, Tu M, Fu X, Chen Y, Wang M, Fang Y, Yan Y, Cheng G, Zhang Y, Zhu Z, Yin K, Xiao Y, Zou L, Chen G. Antagonistic transcriptome profile reveals potential mechanisms of action on Xanthomonas oryzae pv. oryzicola by the cell-free supernatants of Bacillus velezensis 504, a versatile plant probiotic bacterium. Front Cell Infect Microbiol 2023; 13:1175446. [PMID: 37325518 PMCID: PMC10265122 DOI: 10.3389/fcimb.2023.1175446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/27/2023] [Indexed: 06/17/2023] Open
Abstract
Bacterial leaf streak (BLS) of rice is a severe disease caused by the bacterial pathogen Xanthomonas oryzae pv. oryzicola (Xoc) that has gradually become the fourth major disease on rice in some rice-growing regions in southern China. Previously, we isolated a Bacillus velezensis strain 504 that exhibited apparent antagonistic activity against the Xoc wild-type strain RS105, and found that B. velezensis 504 was a potential biocontrol agent for BLS. However, the underlying mechanisms of antagonism and biocontrol are not completely understood. Here we mine the genomic data of B. velezensis 504, and the comparative transcriptomic data of Xoc RS105 treated by the cell-free supernatants (CFSs) of B. velezensis 504 to define differentially expressed genes (DEGs). We show that B. velezensis 504 shares over 89% conserved genes with FZB42 and SQR9, two representative model strains of B. velezensis, but 504 is more closely related to FZB42 than SQR9, as well as B. velezensis 504 possesses the secondary metabolite gene clusters encoding the essential anti-Xoc agents difficidin and bacilysin. We conclude that approximately 77% of Xoc RS105 coding sequences are differentially expressed by the CFSs of B. velezensis 504, which significantly downregulates genes involved in signal transduction, oxidative phosphorylation, transmembrane transport, cell motility, cell division, DNA translation, and five physiological metabolisms, as well as depresses an additional set of virulence-associated genes encoding the type III secretion, type II secretion system, type VI secretion system, type IV pilus, lipopolysaccharides and exopolysaccharides. We also show that B. velezensis 504 is a potential biocontrol agent for bacterial blight of rice exhibiting relative control efficiencies over 70% on two susceptible cultivars, and can efficiently antagonize against some important plant pathogenic fungi including Colletotrichum siamense and C. australisinense that are thought to be the two dominant pathogenic species causing leaf anthracnose of rubber tree in Hainan province of China. B. velezensis 504 also harbors some characteristics of plant growth-promoting rhizobacterium such as secreting protease and siderophore, and stimulating plant growth. This study reveals the potential biocontrol mechanisms of B. velezensis against BLS, and also suggests that B. velezensis 504 is a versatile plant probiotic bacterium.
Collapse
Affiliation(s)
- Qi Zhou
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Min Tu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xue Fu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Ying Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muyuan Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Fang
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yichao Yan
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Guanyun Cheng
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yikun Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongfeng Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Yin
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Youlun Xiao
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Lifang Zou
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gongyou Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Tian K, Yu Y, Qiu Q, Sun X, Meng F, Bi Y, Gu J, Wang Y, Zhang F, Huo H. Mechanisms of BPA Degradation and Toxicity Resistance in Rhodococcus equi. Microorganisms 2022; 11:microorganisms11010067. [PMID: 36677360 PMCID: PMC9862853 DOI: 10.3390/microorganisms11010067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Bisphenol A (BPA) pollution poses an increasingly serious problem. BPA has been detected in a variety of environmental media and human tissues. Microbial degradation is an effective method of environmental BPA remediation. However, BPA is also biotoxic to microorganisms. In this study, Rhodococcus equi DSSKP-R-001 (R-001) was used to degrade BPA, and the effects of BPA on the growth metabolism, gene expression patterns, and toxicity-resistance mechanisms of Rhodococcus equi were analyzed. The results showed that R-001 degraded 51.2% of 5 mg/L BPA and that 40 mg/L BPA was the maximum BPA concentration tolerated by strain R-001. Cytochrome P450 monooxygenase and multicopper oxidases played key roles in BPA degradation. However, BPA was toxic to strain R-001, exhibiting nonlinear inhibitory effects on the growth and metabolism of this bacterium. R-001 bacterial biomass, total protein content, and ATP content exhibited V-shaped trends as BPA concentration increased. The toxic effects of BPA included the downregulation of R-001 genes related to glycolysis/gluconeogenesis, pentose phosphate metabolism, and glyoxylate and dicarboxylate metabolism. Genes involved in aspects of the BPA-resistance response, such as base excision repair, osmoprotectant transport, iron-complex transport, and some energy metabolisms, were upregulated to mitigate the loss of energy associated with BPA exposure. This study helped to clarify the bacterial mechanisms involved in BPA biodegradation and toxicity resistance, and our results provide a theoretical basis for the application of strain R-001 in BPA pollution treatments.
Collapse
Affiliation(s)
- Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun 130117, China
| | - Yue Yu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun 130117, China
| | - Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun 130117, China
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun 130117, China
| | - Fanxing Meng
- Jilin Province Water Resources and Hydropower Consultative Company of P.R. China, Changchun 130021, China
| | - Yuanping Bi
- School of Life Sciences, Northeast Normal University, No. 5268, Renmin Main Street, Changchun 130024, China
| | - Jinming Gu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun 130117, China
| | - Yibing Wang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun 130117, China
| | - Fenglin Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun 130117, China
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun 130117, China
- Jilin Province Laboratory of Water Pollution Treatment and Resource Engineering, Changchun 130117, China
- Northeast China Low Carbon Water Pollution Treatment and Green Development Engineering Research Center, Changchun 130117, China
- Correspondence:
| |
Collapse
|
3
|
Cai L, Ma W, Zou L, Xu X, Xu Z, Deng C, Qian W, Chen X, Chen G. Xanthomonas oryzae Pv. oryzicola Response Regulator VemR Is Co-opted by the Sensor Kinase CheA for Phosphorylation of Multiple Pathogenicity-Related Targets. Front Microbiol 2022; 13:928551. [PMID: 35756024 PMCID: PMC9218911 DOI: 10.3389/fmicb.2022.928551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Two-component systems (TCSs) (cognate sensor histidine kinase/response regulator pair, HK/RR) play a crucial role in bacterial adaptation, survival, and productive colonization. An atypical orphan single-domain RR VemR was characterized by the non-vascular pathogen Xanthomonas oryzae pv. oryzicola (Xoc) is known to cause bacterial leaf streak (BLS) disease in rice. Xoc growth and pathogenicity in rice, motility, biosynthesis of extracellular polysaccharide (EPS), and the ability to trigger HR in non-host tobacco were severely compromised in the deletion mutant strain RΔvemR as compared to the wild-type strain RS105. Site-directed mutagenesis and phosphotransfer experiments revealed that the conserved aspartate (D56) residue within the stand-alone phosphoacceptor receiver (REC) domain is essential for phosphorelay and the regulatory activity of Xoc VemR. Yeast two-hybrid (Y2H) and co-immunoprecipitation (co-IP) data identified CheA as the HK co-opting the RR VemR for phosphorylation. Affinity proteomics identified several downstream VemR-interacting proteins, such as 2-oxoglutarate dehydrogenase (OGDH), DNA-binding RR SirA, flagellar basal body P-ring formation protein FlgA, Type 4a pilus retraction ATPase PilT, stress-inducible sensor HK BaeS, septum site-determining protein MinD, cytoskeletal protein CcmA, and Type III and VI secretion system proteins HrpG and Hcp, respectively. Y2H and deletion mutant analyses corroborated that VemR interacted with OGDH, SirA, FlgA, and HrpG; thus, implicating multi-layered control of diverse cellular processes including carbon metabolism, motility, and pathogenicity in the rice. Physical interaction between VemR and HrpG suggested cross-talk interaction between CheA/VemR- and HpaS/HrpG-mediated signal transduction events orchestrating the hrp gene expression.
Collapse
Affiliation(s)
- Lulu Cai
- State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxiu Ma
- State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lifang Zou
- State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiameng Xu
- State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengyin Xu
- State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chaoying Deng
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaobin Chen
- State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Gongyou Chen
- State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
He B, Bai J, Wu Z. Glucosamine enhances proliferation, barrier, and anti-oxidative functions in porcine trophectoderm cells. Food Funct 2022; 13:4551-4561. [PMID: 35352734 DOI: 10.1039/d1fo04086c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trophectoderm (TE) is the first epithelium that appears during mammalian embryogenesis, and is a polarized transporting single cell layer that comprises the wall of the blastocyst. Previous studies have revealed the functional roles of glucose (Gluc), fructose (Fruc), and glutamine (Gln), which play a positive role in porcine trophectoderm (pTr) cell proliferation and migration, suggesting the importance of nutrients for normal development of the conceptus and implantation. This work was conducted to test the hypothesis that glucosamine (GlcN), which is synthesized from Gln and Fruc-6-phosphate through the hexosamine biosynthesis pathway (HBP), can stimulate proliferation and sustain the barrier and anti-oxidative functions of pTr cells. Cells were treated with 0, 0.25, or 0.5 mmol L-1 GlcN in the presence or absence of adiquat (DQ) for the indicated time points. The results showed that 0.25 or 0.5 mmol L-1 GlcN stimulated pTr cell viability and DNA replication compared to the control group. The addition of 0.25 mmol L-1 GlcN enhanced the phosphorylation of mTOR signaling proteins, which can be inhibited by the inhibitor of phosphatidylinositol 3-kinase (PI3K), LY294002. Transepithelial electrical resistance (TEER) was increased, and paracellular permeability was correspondingly reduced in GlcN treatment. GlcN attenuated DQ-induced cell death and reduced the level of reactive oxygen species (ROS). The decreased TEER values and increased paracellular permeability caused by DQ treatment were also inhibited by GlcN treatment. The addition of 0.5 mmol L-1 GlcN increased the protein expression of zonula occludens-3 (ZO-3), claudin-3, and claudin-4 in pTr cells, while inhibited the downregulation protein of claudin-1 and claudin-3 brought about by oxidative stress. Collectively, GlcN plays an important role in promoting proliferation and stimulating the mTOR cell signaling pathway, as well as ameliorating oxidative stress and augmenting barrier functions in pTr cells.
Collapse
Affiliation(s)
- Beibei He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China 100193.
| | - Jun Bai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China 100193.
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China 100193.
| |
Collapse
|
5
|
Fan J, Ma L, Zhao C, Yan J, Che S, Zhou Z, Wang H, Yang L, Hu B. Transcriptome of Pectobacterium carotovorum subsp. carotovorum PccS1 infected in calla plants in vivo highlights a spatiotemporal expression pattern of genes related to virulence, adaptation, and host response. MOLECULAR PLANT PATHOLOGY 2020; 21:871-891. [PMID: 32267092 PMCID: PMC7214478 DOI: 10.1111/mpp.12936] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 02/14/2020] [Accepted: 02/29/2020] [Indexed: 06/11/2023]
Abstract
Bacterial pathogens from the genus Pectobacterium cause soft rot in various plants, and result in important economic losses worldwide. We understand much about how these pathogens digest their hosts and protect themselves against plant defences, as well as some regulatory networks in these processes. However, the spatiotemporal expression of genome-wide infection of Pectobacterium remains unclear, although researchers analysed this in some phytopathogens. In the present work, comparing the transcriptome profiles from cellular infection with growth in minimal and rich media, RNA-Seq analyses revealed that the differentially expressed genes (log2 -fold ratio ≥ 1.0) in the cells of Pectobacterium carotovorum subsp. carotovorum PccS1 recovered at a series of time points after inoculation in the host in vivo covered approximately 50% of genes in the genome. Based on the dynamic expression changes in infection, the significantly differentially expressed genes (log2 -fold ratio ≥ 2.0) were classified into five types, and the main expression pattern of the genes for carbohydrate metabolism underlying the processes of infection was identified. The results are helpful to our understanding of the inducement of host plant and environmental adaption of Pectobacterium. In addition, our results demonstrate that maceration caused by PccS1 is due to the depression of callose deposition in the plant for resistance by the pathogenesis-related genes and the superlytic ability of pectinolytic enzymes produced in PccS1, rather than the promotion of plant cell death elicited by the T3SS of bacteria as described in previous work.
Collapse
Affiliation(s)
- Jiaqin Fan
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Lin Ma
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Chendi Zhao
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Jingyuan Yan
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Shu Che
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Zhaowei Zhou
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Huan Wang
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Liuke Yang
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Baishi Hu
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
6
|
The Entner-Doudoroff and Nonoxidative Pentose Phosphate Pathways Bypass Glycolysis and the Oxidative Pentose Phosphate Pathway in Ralstonia solanacearum. mSystems 2020; 5:5/2/e00091-20. [PMID: 32156794 PMCID: PMC7065512 DOI: 10.1128/msystems.00091-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Understanding the metabolic versatility of Ralstonia solanacearum is important, as it regulates the trade-off between virulence and metabolism (1, 2) in a wide range of plant hosts. Due to a lack of clear evidence until this work, several published research papers reported on the potential roles of glycolysis and the oxidative pentose phosphate pathway (OxPPP) in R. solanacearum (3, 4). This work provided evidence from 13C stable isotope feeding and genome annotation-based comparative metabolic network analysis that the Entner-Doudoroff pathway and non-OxPPP bypass glycolysis and OxPPP during the oxidation of glucose, a component of the host xylem pool that serves as a potential carbon source (5). The outcomes help better define the central carbon metabolic network of R. solanacearum that can be integrated with 13C metabolic flux analysis as well as flux balance analysis studies for defining the metabolic phenotypes. The study highlights the need to critically examine phytopathogens whose metabolism is poorly understood. In Ralstonia solanacearum, a devastating phytopathogen whose metabolism is poorly understood, we observed that the Entner-Doudoroff (ED) pathway and nonoxidative pentose phosphate pathway (non-OxPPP) bypass glycolysis and OxPPP under glucose oxidation. Evidence derived from 13C stable isotope feeding and genome annotation-based comparative metabolic network analysis supported the observations. Comparative metabolic network analysis derived from the currently available 53 annotated R. solanacearum strains, including a recently reported strain (F1C1), representing the four phylotypes, confirmed the lack of key genes coding for phosphofructokinase (pfk-1) and phosphogluconate dehydrogenase (gnd) enzymes that are relevant for glycolysis and OxPPP, respectively. R. solanacearum F1C1 cells fed with [13C]glucose (99% [1-13C]glucose or 99% [1,2-13C]glucose or 40% [13C6]glucose) followed by gas chromatography-mass spectrometry (GC-MS)-based labeling analysis of fragments from amino acids, glycerol, and ribose provided clear evidence that rather than glycolysis and the OxPPP, the ED pathway and non-OxPPP are the main routes sustaining metabolism in R. solanacearum. The 13C incorporation in the mass ions of alanine (m/z 260 and m/z 232), valine (m/z 288 and m/z 260), glycine (m/z 218), serine (m/z 390 and m/z 362), histidine (m/z 440 and m/z 412), tyrosine (m/z 466 and m/z 438), phenylalanine (m/z 336 and m/z 308), glycerol (m/z 377), and ribose (m/z 160) mapped the pathways supporting the observations. The outcomes help better define the central carbon metabolic network of R. solanacearum that can be integrated with 13C metabolic flux analysis as well as flux balance analysis studies for defining the metabolic phenotypes. IMPORTANCE Understanding the metabolic versatility of Ralstonia solanacearum is important, as it regulates the trade-off between virulence and metabolism (1, 2) in a wide range of plant hosts. Due to a lack of clear evidence until this work, several published research papers reported on the potential roles of glycolysis and the oxidative pentose phosphate pathway (OxPPP) in R. solanacearum (3, 4). This work provided evidence from 13C stable isotope feeding and genome annotation-based comparative metabolic network analysis that the Entner-Doudoroff pathway and non-OxPPP bypass glycolysis and OxPPP during the oxidation of glucose, a component of the host xylem pool that serves as a potential carbon source (5). The outcomes help better define the central carbon metabolic network of R. solanacearum that can be integrated with 13C metabolic flux analysis as well as flux balance analysis studies for defining the metabolic phenotypes. The study highlights the need to critically examine phytopathogens whose metabolism is poorly understood.
Collapse
|
7
|
Park H, Do E, Kim M, Park HJ, Lee J, Han SW. A LysR-Type Transcriptional Regulator LcrX Is Involved in Virulence, Biofilm Formation, Swimming Motility, Siderophore Secretion, and Growth in Sugar Sources in Xanthomonas axonopodis Pv. glycines. FRONTIERS IN PLANT SCIENCE 2020; 10:1657. [PMID: 31998344 PMCID: PMC6965072 DOI: 10.3389/fpls.2019.01657] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/25/2019] [Indexed: 05/30/2023]
Abstract
Xanthomonas axonopodis pv. glycines (Xag) is a Gram-negative bacterium that causes bacterial pustule disease in soybean. To acclimate to new environments, the expression of genes in bacteria is controlled directly or indirectly by diverse transcriptional factors. Among them, LysR type transcriptional regulators are well-characterized and abundant in bacteria. In a previous study, comparative proteomic analysis revealed that LysR type carbohydrate-related transcriptional regulator in Xag (LcrX) was more abundant in XVM2, which is a minimal medium, compared with a rich medium. However, the functions of LcrX in Xag have not been characterized. In this study, we generated an LcrX-overexpressing strain, Xag(LcrX), and the knockout mutant strain, XagΔlcrX(EV), to elucidate the functions of LcrX. Bacterial multiplication of Xag(LcrX) in soybean was significantly impaired, indicating that LcrX is related to virulence. Comparative proteomic analysis revealed that LcrX is mainly involved in carbohydrate metabolism/transport and inorganic ion transport/metabolism. Based on the results of proteomics analysis, diverse phenotypic assays were carried out. A gel electrophoresis mobility shift assay demonstrated that LcrX specifically bound to the putative promoter regions of genes encoding putative fructose 1,6-bisphosphatase and protease. Through a 96-well plate assay under various conditions, we confirmed that the growth of Xag(LcrX) was dramatically affected in the presence of various carbon sources, while the growth of XagΔlcrX(EV) was only slightly changed. Biofilm formation activity was reduced in Xag(LcrX) but enhanced in XagΔlcrX(EV). The production of siderophores was also decreased in Xag(LcrX) but not altered in XagΔlcrX(EV). In contrast, LcrX was not associated with exopolysaccharide production, protease activity, or bacterial motility. These findings provide new insights into the functions of a carbohydrate-related transcriptional regulator in Xag.
Collapse
Affiliation(s)
- Hanbi Park
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Eunsoo Do
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Minyoung Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Hye-Jee Park
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Jongchan Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Sang-Wook Han
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| |
Collapse
|
8
|
Semmouri I, De Schamphelaere KAC, Mees J, Janssen CR, Asselman J. Evaluating the potential of direct RNA nanopore sequencing: Metatranscriptomics highlights possible seasonal differences in a marine pelagic crustacean zooplankton community. MARINE ENVIRONMENTAL RESEARCH 2020; 153:104836. [PMID: 31727392 DOI: 10.1016/j.marenvres.2019.104836] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/29/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
The implementation of cost-effective monitoring programs for zooplankton remains challenging due to the requirements of taxonomical expertise and the high costs of sampling and species identification. To reduce costs, molecular methods have been proposed as alternatives to morphology-based monitoring. Metatranscriptomics can contribute to promote both cost-effectiveness and accuracy of biological assessments of aquatic ecosystems. Here, we describe and evaluate the construction of a metatranscriptome dataset from a pelagic crustacean zooplankton community. We sampled zooplankton in one marine station, named LW02, in the North Sea, in both winter and summer, and generated transcripts using Oxford Nanopore Technology (ONT), a third-generation nanopore-based sequencing technology. ONT is, uniquely, capable of sequencing RNA directly, rather than depending on reverse transcription and PCR, and applicable to be used directly in the field. We found that metatranscriptomics is capable of species detection, including screening for the presence of endoparasites, hence competing with morphological identification. Taxonomic analysis based on ribosomal 18S transcripts identified calanoid copepods, particularly Temora longicornis and Acartia clausi, as the most abundant community members. Moreover, up to 40.4% and 50.5% of all sequences could be assigned to predicted genes in the winter and summer sample, respectively. The most abundant mRNA transcripts with known function coded for essential metabolic processes. GO term annotation revealed that genes involved in glycolytic and translation-related processes were most expressed in the community. Although small in scale, our study provides the basis for future efforts to characterize the metatranscriptome of marine zooplankton communities and its application in biomonitoring programs.
Collapse
Affiliation(s)
- Ilias Semmouri
- Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, 9000, Ghent, Belgium.
| | - Karel A C De Schamphelaere
- Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, 9000, Ghent, Belgium
| | - Jan Mees
- Ghent University, Marine Biology Research Group, Faculty of Sciences, 9000, Ghent, Belgium; Flanders Marine Institute VLIZ, InnovOcean Site, Wandelaarkaai 7, 8400, Ostend, Belgium
| | - Colin R Janssen
- Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, 9000, Ghent, Belgium
| | - Jana Asselman
- Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, 9000, Ghent, Belgium; Ghent University, Greenbridge, Wetenschapspark 1, 8400, Ostend, Belgium
| |
Collapse
|
9
|
Guo W, Gao J, Chen Q, Ma B, Fang Y, Liu X, Chen G, Liu JZ. Crp-Like Protein Plays Both Positive and Negative Roles in Regulating the Pathogenicity of Bacterial Pustule Pathogen Xanthomonas axonopodis pv. glycines. PHYTOPATHOLOGY 2019; 109:1171-1183. [PMID: 30730787 DOI: 10.1094/phyto-07-18-0225-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The global regulator Crp-like protein (Clp) is positively involved in the production of virulence factors in some of the Xanthomonas spp. However, the functional importance of Clp in X. axonopodis pv. glycines has not been investigated previously. Here, we showed that deletion of clp led to significant reduction in the virulence of X. axonopodis pv. glycines in soybean, which was highly correlated with the drastic reductions in carbohydrates utilization, extracellular polysaccharide (EPS) production, biofilm formation, cell motility, and synthesis of cell wall degrading enzymes (CWDEs). These significantly impaired properties in the clp mutant were completely rescued by a single-copy integration of the wild-type clp into the mutant chromosome via homologous recombination. Interestingly, overexpression of clp in the wild-type strain resulted in significant increases in cell motility and synthesis of the CWDEs. To our surprise, significant reductions in carbohydrates utilization, EPS production, biofilm formation, and the protease activity were observed in the wild-type strain overexpressing clp, suggesting that Clp also plays a negative role in these properties. Furthermore, quantitative reverse transcription polymerase chain reaction analysis suggested that clp was positively regulated by the diffusible signal factor-mediated quorum-sensing system and the HrpG/HrpX cascade. Taken together, our results reveal that Clp functions as both activator and repressor in multiple biological processes in X. axonopodis pv. glycines that are essential for its full virulence.
Collapse
Affiliation(s)
- Wei Guo
- 1 Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jie Gao
- 1 Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Qingshan Chen
- 2 College of Agriculture, Northeast Agricultural University, Harbin 150030, China; and
| | - Bojun Ma
- 1 Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuan Fang
- 1 Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xia Liu
- 1 Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Gongyou Chen
- 3 College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian-Zhong Liu
- 1 Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
10
|
Ikawa Y, Ohnishi S, Shoji A, Furutani A, Tsuge S. Concomitant Regulation by a LacI-Type Transcriptional Repressor XylR on Genes Involved in Xylan and Xylose Metabolism and the Type III Secretion System in Rice Pathogen Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:605-613. [PMID: 29360015 DOI: 10.1094/mpmi-11-17-0277-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The hypersensitive response and pathogenicity (hrp) genes of Xanthomonas oryzae pv. oryzae, the causal agent of bacterial leaf blight of rice, encode components of the type III secretion system and are essential for virulence. Expression of hrp genes is regulated by two key hrp regulators, HrpG and HrpX; HrpG regulates hrpX and hrpA, and HrpX regulates the other hrp genes on hrpB-hrpF operons. We previously reported the sugar-dependent quantitative regulation of HrpX; the regulator highly accumulates in the presence of xylose, followed by high hrp gene expression. Here, we found that, in a mutant lacking the LacI-type transcriptional regulator XylR, HrpX accumulation and hrp gene expression were high even in the medium without xylose, reaching the similar levels present in the wild type incubated in the xylose-containing medium. XylR also negatively regulated one of two xylose isomerase genes (xylA2 but not xylA1) by binding to the motif sequence in the upstream region of the gene. Xylose isomerase is an essential enzyme in xylose metabolism and interconverts between xylose and xylulose. Our results suggest that, in the presence of xylose, inactivation of XylR leads to greater xylan and xylose utilization and, simultaneously, to higher accumulation of HrpX, followed by higher hrp gene expression in the bacterium.
Collapse
Affiliation(s)
- Yumi Ikawa
- 1 Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto Prefectural University, Kyoto 606-8522, Japan; and
| | - Sayaka Ohnishi
- 1 Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto Prefectural University, Kyoto 606-8522, Japan; and
| | - Akiko Shoji
- 1 Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto Prefectural University, Kyoto 606-8522, Japan; and
| | - Ayako Furutani
- 2 Gene Research Center, Ibaraki University, Inashiki 300-0393, Japan
| | - Seiji Tsuge
- 1 Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto Prefectural University, Kyoto 606-8522, Japan; and
| |
Collapse
|
11
|
Functional characterization and transcriptional analysis of icd2 gene encoding an isocitrate dehydrogenase of Xanthomonas campestris pv. campestris. Arch Microbiol 2017; 199:917-929. [DOI: 10.1007/s00203-017-1370-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/02/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
|
12
|
Dissection of brassinosteroid-regulated proteins in rice embryos during germination by quantitative proteomics. Sci Rep 2016; 6:34583. [PMID: 27703189 PMCID: PMC5050409 DOI: 10.1038/srep34583] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/15/2016] [Indexed: 12/11/2022] Open
Abstract
Brassinosteroids (BRs), essential plant-specific steroidal hormones, function in a wide spectrum of plant growth and development events, including seed germination. Rice is not only a monocotyledonous model plant but also one of the most important staple food crops of human beings. Rice seed germination is a decisive event for the next-generation of plant growth and successful seed germination is critical for rice yield. However, little is known about the molecular mechanisms on how BR modulates seed germination in rice. In the present study, we used isobaric tags for relative and absolute quantification (iTRAQ) based proteomic approach to study BR-regulated proteome during the early stage of seed germination. The results showed that more than 800 BR-responsive proteins were identified, including 88 reliable target proteins responsive to stimuli of both BR-deficiency and BR-insensitivity. Moreover, 90% of the 88 target proteins shared a similar expression change pattern. Gene ontology and string analysis indicated that ribosomal structural proteins, as well as proteins involved in protein biosynthesis and carbohydrate metabolisms were highly clustered. These findings not only enrich BR-regulated protein database in rice seeds, but also allow us to gain novel insights into the molecular mechanism of BR regulated seed germination.
Collapse
|
13
|
GamR, the LysR-Type Galactose Metabolism Regulator, Regulates hrp Gene Expression via Transcriptional Activation of Two Key hrp Regulators, HrpG and HrpX, in Xanthomonas oryzae pv. oryzae. Appl Environ Microbiol 2016; 82:3947-3958. [PMID: 27107122 DOI: 10.1128/aem.00513-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/18/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Xanthomonas oryzae pv. oryzae is the causal agent of bacterial leaf blight of rice. For the virulence of the bacterium, the hrp genes, encoding components of the type III secretion system, are indispensable. The expression of hrp genes is regulated by two key hrp regulators, HrpG and HrpX: HrpG regulates hrpX, and HrpX regulates other hrp genes. Several other regulators have been shown to be involved in the regulation of hrp genes. Here, we found that a LysR-type transcriptional regulator that we named GamR, encoded by XOO_2767 of X. oryzae pv. oryzae strain MAFF311018, positively regulated the transcription of both hrpG and hrpX, which are adjacent to each other but have opposite orientations, with an intergenic upstream region in common. In a gel electrophoresis mobility shift assay, GamR bound directly to the middle of the upstream region common to hrpG and hrpX The loss of either GamR or its binding sites decreased hrpG and hrpX expression. Also, GamR bound to the upstream region of either a galactose metabolism-related gene (XOO_2768) or a galactose metabolism-related operon (XOO_2768 to XOO_2771) located next to gamR itself and positively regulated the genes. The deletion of the regulator gene resulted in less bacterial growth in a synthetic medium with galactose as a sole sugar source. Interestingly, induction of the galactose metabolism-related gene was dependent on galactose, while that of the hrp regulator genes was galactose independent. Our results indicate that the LysR-type transcriptional regulator that regulates the galactose metabolism-related gene(s) also acts in positive regulation of two key hrp regulators and the following hrp genes in X. oryzae pv. oryzae. IMPORTANCE The expression of hrp genes encoding components of the type III secretion system is essential for the virulence of many plant-pathogenic bacteria, including Xanthomonas oryzae pv. oryzae. It is specifically induced during infection. Research has revealed that in this bacterium, hrp gene expression is controlled by two key hrp regulators, HrpG and HrpX, along with several other regulators in the complex regulatory network, but the details remain unclear. Here, we found that a novel LysR-type transcriptional activator, named GamR, functions as an hrp regulator by directly activating the transcription of both hrpG and hrpX Interestingly, GamR also regulates a galactose metabolism-related gene (or operon) in a galactose-dependent manner, while the regulation of hrpG and hrpX is independent of the sugar. Our finding of a novel hrp regulator that directly and simultaneously regulates two key hrp regulators provides new insights into an important and complex regulation system of X. oryzae pv. oryzae hrp genes.
Collapse
|
14
|
Guo W, Zou LF, Cai LL, Chen GY. Glucose-6-phosphate dehydrogenase is required for extracellular polysaccharide production, cell motility and the full virulence of Xanthomonas oryzae pv. oryzicola. Microb Pathog 2014; 78:87-94. [PMID: 25450881 DOI: 10.1016/j.micpath.2014.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 10/11/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
Glucose-6-phosphate dehydrogenase (Zwf) catalyzes conversion of glucose 6-phosphate into gluconate 6-phosphate for Entner-Doudoroff (ED) and pentose phosphate pathways in living organisms. However, it is unclear whether the Zwf-coding gene is involved in pathogenesis of phytopathogenic bacterium. In this report, we found that deletion mutation in zwf of Xanthomonas oryzae pv. oryzicola (Xoc), led the pathogen unable to effectively utilize glucose, sucrose, fructose, mannose and galactose for growth. The transcript level of zwf was strongly induced by glucose, sucrose, fructose, mannose and galactose than that by the NY medium (non sugar). The deletion mutagenesis in zwf also altered the transcript level of key genes, such as rpfF, rpfG and clp, in diffusible signal factor (DSF)-signaling network. In addition, the deletion mutation in zwf impaired bacterial virulence and growth capability in rice leaves, reduced bacterial cell motility and extracellular polysaccharide (EPS) production. The lost properties mentioned above in the zwf deletion mutant were completely restored to the wild-type level by the presence of zwf in trans. All these results suggest that zwf is required for the full virulence of Xoc in rice leaves by involving carbohydrate metabolisms that impact bacterial DSF-signaling network.
Collapse
Affiliation(s)
- Wei Guo
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; College of Chemistry & Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Li-Fang Zou
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lu-Lu Cai
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gong-You Chen
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
15
|
HrcT is a key component of the type III secretion system in Xanthomonas spp. and also regulates the expression of the key hrp transcriptional activator HrpX. Appl Environ Microbiol 2014; 80:3908-19. [PMID: 24747909 DOI: 10.1128/aem.00308-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type III secretion system (T3SS), encoded by hrp (hypersensitive response and pathogenicity) genes in Gram-negative phytopathogenic bacteria, delivers repertoires of T3SS effectors (T3SEs) into plant cells to trigger the hypersensitive response (HR) in nonhost or resistant-host plants and promote pathogenicity in susceptible plants. The expression of hrp genes in Xanthomonas is regulated by two key regulatory proteins, HrpG and HrpX. However, the interactions between hrp gene products in directing T3SE secretion are largely unknown. Here we demonstrated that HrcT of X. oryzae pv. oryzicola functions as a T3SS component and positively regulates the expression of hrpX. Transcription of hrcT occurs via two distinct promoters; one (T1) is with the hrpB operon and the second (T3) within hrpB7 Via either promoter T1 or T3, the defect in Hrp phenotype by hrcT deletion was corrected in the presence of hrcT only from Xanthomonas species but not from other phytopathogenic bacteria. An N-terminally truncated HrcT was able to bind the hrpX promoter and activate the expression of hrpX, supporting that HrcT is a positive regulator of hrpX. A revised model showing the regulatory interactions between HrcT, HrpX, and HrpG is proposed.
Collapse
|
16
|
Characterization of the pyrophosphate-dependent 6-phosphofructokinase from Xanthomonas campestris pv. campestris. Arch Biochem Biophys 2014; 546:53-63. [DOI: 10.1016/j.abb.2014.01.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 01/23/2014] [Accepted: 01/26/2014] [Indexed: 01/01/2023]
|
17
|
Pridgeon J, Yildirim-Aksoy M, Klesius P, Kojima K, Mobley J, Srivastava K, Reddy P. Identification of gyrB and rpoB gene mutations and differentially expressed proteins between a novobiocin-resistant Aeromonas hydrophila catfish vaccine strain and its virulent parent strain. Vet Microbiol 2013; 166:624-30. [DOI: 10.1016/j.vetmic.2013.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/12/2013] [Accepted: 07/20/2013] [Indexed: 10/26/2022]
|
18
|
Wu J, Yu H, Dai H, Mei W, Huang X, Zhu S, Peng M. Metabolite profiles of rice cultivars containing bacterial blight-resistant genes are distinctive from susceptible rice. Acta Biochim Biophys Sin (Shanghai) 2012; 44:650-9. [PMID: 22687573 DOI: 10.1093/abbs/gms043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The metabolic changes of bacterial blight-resistant line C418/Xa23 generated by molecular marker-assisted selection (n= 12), transgenic variety C418-Xa21 generated by using the Agrobacterium-mediated system (n= 12), and progenitor cultivar C418 (n= 12) were monitored using gas chromatography/mass spectrometry. The validation, discrimination, and establishment of correlative relationships between metabolite signals were performed by cluster analysis, principal component analysis, and partial least squares-discriminant analysis. Significant and unintended changes were observed in 154 components in C418/Xa23 and 48 components in C418-Xa21 compared with C418 (P< 0.05, Fold change > 2.0). The most significant decreases detected (P< 0.001) in both C418/Xa23 and C418-Xa21 were in three amino acids: glycine, tyrosine, and alanine, and four identified metabolites: malic acid, ferulic acid, succinic acid, and glycerol. Linoleic acid was increased specifically in C418/Xa23 which was derived from traditional breeding. This line, possessing a distinctive metabolite profile as a positive control, shows more differences vs. the parental than the transgenic line. Only succinic acid that falls outside the boundaries of natural variability between the two non-transgenic varieties C418 and C418/Xa23 should be further investigated with respect to safety or nutritional impact.
Collapse
Affiliation(s)
- Jiao Wu
- Institute of Tropic Bioscience and Biotechnology, Chinese Academy of Tropic Agricultural Sciences, Haikou 571101, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Ketoglutarate transport protein KgtP is secreted through the type III secretion system and contributes to virulence in Xanthomonas oryzae pv. oryzae. Appl Environ Microbiol 2012; 78:5672-81. [PMID: 22685129 DOI: 10.1128/aem.07997-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The phytopathogenic prokaryote Xanthomonas oryzae pv. oryzae is the causal agent of bacterial leaf blight (BB) of rice and utilizes a type III secretion system (T3SS) to deliver T3SS effectors into rice cells. In this report, we show that the ketoglutarate transport protein (KgtP) is secreted in an HpaB-independent manner through the T3SS of X. oryzae pv. oryzae PXO99(A) and localizes to the host cell membrane for α-ketoglutaric acid export. kgtP contained an imperfect PIP box (plant-inducible promoter) in the promoter region and was positively regulated by HrpX and HrpG. A kgtP deletion mutant was impaired in bacterial virulence and growth in planta; furthermore, the mutant showed reduced growth in minimal media containing α-ketoglutaric acid or sodium succinate as the sole carbon source. The reduced virulence and the deficiency in α-ketoglutaric acid utilization by the kgtP mutant were restored to wild-type levels by the presence of kgtP in trans. The expression of OsIDH, which is responsible for the synthesis of α-ketoglutaric acid in rice, was enhanced when KgtP was present in the pathogen. To our knowledge, this is the first report demonstrating that KgtP, which is regulated by HrpG and HrpX and secreted by the T3SS in Xanthomonas oryzae pv. oryzae, transports α-ketoglutaric acid when the pathogen infects rice.
Collapse
|