1
|
Barros L, Silva S, Cruz AC, da Silva E, Wanzeller AL, Carvalho V, Chiang J, Martins L. First Isolation and Molecular Characterization of Umatilla Virus (Sedoreoviridae, Orbivirus) in Brazil. Viruses 2024; 16:1050. [PMID: 39066213 PMCID: PMC11281679 DOI: 10.3390/v16071050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
In this study, we provide a genomic description of the first isolation of the Umattila virus (UMAV) in Brazil. The virus was obtained from the blood of a bird (Turdus fumigatus) and isolated in a C6/36 cell culture. The viral genome contains ten segments, and its organization is characteristic of viruses of the genus Orbivirus (family Sedoreoviridae). The coding region of each segment was sequenced, demonstrating the nucleotide identity with UMAV. The phylogenetic inference results were in line with these findings and demonstrated the formation of two distinct monophyletic clades containing strains isolated around the world, where our isolate, belonging to the same clade as the prototype strain, was allocated to a different subclade, highlighting the genetic divergence between them. This work reports the first isolation of UMAV in Brazil, and due to the scarcity of information on this viral agent in the scientific literature, it is essential to carry out further studies to better understand its epidemiology, dispersion, and, in particular, its interactions with vertebrate hosts, vectors, and the environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jannifer Chiang
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil; (L.B.); (S.S.); (A.C.C.); (E.d.S.); (A.L.W.); (V.C.); (L.M.)
| | | |
Collapse
|
2
|
Ren N, Jin Q, Wang F, Huang D, Yang C, Zaman W, Salazar FV, Liu Q, Yuan Z, Xia H. Evaluation of vector susceptibility in Aedes aegypti and Culex pipiens pallens to Tibet orbivirus. mSphere 2024; 9:e0006224. [PMID: 38530016 PMCID: PMC11036799 DOI: 10.1128/msphere.00062-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/01/2024] [Indexed: 03/27/2024] Open
Abstract
Mosquito-borne viruses cause various infectious diseases in humans and animals. Tibet orbivirus (TIBOV), a newly identified arbovirus, efficiently replicates in different types of vertebrate and mosquito cells, with its neutralizing antibodies detected in cattle and goats. However, despite being isolated from Culicoides midges, Anopheles, and Culex mosquitoes, there has been a notable absence of systematic studies on its vector competence. Thus, in this study, Aedes aegypti and Culex pipiens pallens were reared in the laboratory to measure vector susceptibility through blood-feeding infection. Furthermore, RNA sequencing was used to examine the overall alterations in the Ae. aegypti transcriptome following TIBOV infection. The results revealed that Ae. aegypti exhibited a high susceptibility to TIBOV compared to Cx. p. pallens. Effective replication of the virus in Ae. aegypti midguts occurred when the blood-feeding titer of TIBOV exceeded 105 plaque-forming units mL-1. Nevertheless, only a few TIBOV RNA-positive samples were detected in the saliva of Ae. aegypti and Cx. p. pallens, suggesting that these mosquito species may not be the primary vectors for TIBOV. Moreover, at 2 dpi of TIBOV, numerous antimicrobial peptides downstream of the Toll and Imd signaling pathways were significantly downregulated in Ae. aegypti, indicating that TIBOV suppressed mosquitos' defense to survive in the vector at an early stage. Subsequently, the stress-activated protein kinase JNK, a crucial component of the MAPK signaling pathway, exhibited significant upregulation. Certain genes were also enriched in the MAPK signaling pathway in TIBOV-infected Ae. aegypti at 7 dpi.IMPORTANCETibet orbivirus (TIBOV) is an understudied arbovirus of the genus Orbivirus. Our study is the first-ever attempt to assess the vector susceptibility of this virus in two important mosquito vectors, Aedes aegypti and Culex pipiens pallens. Additionally, we present transcriptome data detailing the interaction between TIBOV and the immune system of Ae. aegypti, which expands the knowledge about orbivirus infection and its interaction with mosquitoes.
Collapse
Affiliation(s)
- Nanjie Ren
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianqian Jin
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Doudou Huang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Cihan Yang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wahid Zaman
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhiming Yuan
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Han Xia
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
- Hubei Jiangxia Laboratory, Wuhan, China
| |
Collapse
|
3
|
Yang Z, He Y, Meng J, Li N, Wang J. Full-genome characterisation of a putative novel serotype of Yonaguni orbivirus isolated from cattle in Yunnan province, China. Virus Genes 2023; 59:223-233. [PMID: 36441333 DOI: 10.1007/s11262-022-01959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/20/2022] [Indexed: 11/29/2022]
Abstract
In July 2019, a novel viral strain (JH2019C603) was isolated from sentinel cattle in Jinghong City, in the subtropical region of Yunnan Province, China. The virus replicated and caused cytopathological effects in both Aedes albopictus (C6/36) and Baby Hamster Syrian Kidney (BHK-21) cells. Agarose gel electrophoresis analysis revealed a viral genome comprised of 10 segments of double-stranded RNA, with a 1-2-2-1-1-1-1-1 migration pattern. Complete genome sequences of the JH2019C603 virus were determined through full-length cDNA amplification. Phylogenetic analysis based on the amino acid (aa) sequences of RNA-dependent RNA Polymerase (Pol), Major subcore (T2) and Major core-surface (T13) showed that JH2019C603 clustered with Yonaguni orbivirus (YONOV) from Japan, with aa identities relative to YONOV of 97.7% (Pol), 99.0% (T2) and 98.5% (T13). However, phylogenetic analysis based on the aa sequences of the outer capsid protein one and two (OC1 and OC2) showed that JH2019C603 formed an independent branch in the phylogenetic tree, and its aa identity with YONOV was only 55.4% (OC1) and 80.8% (OC2), respectively. Compared with the prototype of YONOV, a notable sequence deletion was observed in the 3' non-coding region of NS1, with the NS1 of JH2019C603 encoded within segment 7 (Seg-7), in contrast to YONOV, which contains NS1 in Seg-6. These results indicate that JH2019C603 belongs to the YONOV lineage and might be a novel serotype or a highly variant strain of YONOV. These findings will facilitate the identification of new isolates and clarify their geographical distribution, epidemiology, genetic diversity and possible disease associations.
Collapse
Affiliation(s)
- Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Yuwen He
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Jinxin Meng
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Nan Li
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China.
| |
Collapse
|
4
|
Yang Z, Li N, He Y, Meng J, Wang J. Genetic Characterization of DH13M98, Umatilla Virus, Isolated from Culex tritaeniorhynchus Giles in Yunnan Province, China. Vector Borne Zoonotic Dis 2023; 23:35-43. [PMID: 36595376 DOI: 10.1089/vbz.2022.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background: In August 2013, a virus strain (DH13M98) was isolated from Culex tritaeniorhynchus Giles collected in Mangshi, the southwestern border area of Yunnan Province, China. The virus replicated and caused cytopathic effects (CPE) in Aedes albopictus (C6/36) cells, but not in baby hamster Syrian kidney (BHK-21) cells. Materials and Methods: Agarose gel electrophoresis (AGE) analysis revealed that the DH13M98 virus was a 10-segment double-stranded RNA (dsRNA) virus, with a "1-1-1-2-1-1-2-1" pattern. The full genome of the DH13M98 virus was sequenced by full-length amplification of complementary DNAs (FLAC). Results: Phylogenetic analysis of the viral RNA-dependent RNA polymerase (Pol), major subcore-shell (T2), and major core-surface (T13) protein showed that DH13M98 clustered with Umatilla virus (UMAV), and the amino acid (aa) sequences of DH13M98 shared more than 89.5% (Pol), 95% (T2), and 91.1% (T13) identity with UMAV. However, the aa identity of outer capsid protein one (OC1) of DH13M98 with other UMAV was 57.1-79.2%, suggesting that DH13M98 was UMAV, but distinct from other strains of UMAV from the United States, Japan, and Germany at OC1, and it may be a high variant strain of UMAV, even a new serotype. Conclusion: This is the first isolation of UMAV in China, which enriches the resources of virus species in China and provides new insights into the genetic diversity and geographical distribution of the virus.
Collapse
Affiliation(s)
- Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Nan Li
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Yuwen He
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Jinxin Meng
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| |
Collapse
|
5
|
Li Z, Li Z, Yang Z, Li L, Gao L, Xie J, Liao D, Gao X, Hu Z, Niu B, Yao P, Zeng W, Li H, Yang H. Isolation and characterization of two novel serotypes of Tibet orbivirus from Culicoides and sentinel cattle in Yunnan Province of China. Transbound Emerg Dis 2022; 69:3371-3387. [PMID: 36047657 DOI: 10.1111/tbed.14691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 02/04/2023]
Abstract
Tibet orbivirus (TIBOV), a new candidate of Orbivirus genus, was initially isolated from mosquitoes in Tibet in 2009 and subsequently from both Culicoides and mosquitoes in several provinces of China and Japan. Little is known about the origin, genetic diversity, dissemination and pathogenicity of TIBOV, although its potential threat to animal health has been acknowledged. In this study, two viruses, V290/YNSZ and V298/YNJH, were isolated from the Culicoides and sentinel cattle in Yunnan Province. Their genome sequences, cell tropism in mammalian and insect cell lines along with pathogenicity in suckling mice were determined. Genome phylogenetic analyses confirmed their classification as TIBOV species; however, OC1 proteins of the V290/YNSZ and V298/YNJH shared maximum sequence identities of 31.5% and 33.9% with other recognized TIBOV serotypes (TIBOV-1 to TIBOV-4) and formed two monophyletic branches in phylogenetic tree, indicating they represented two novel TIBOV serotypes which were tentatively designated as TIBOV-5 and TIBOV-6. The viruses replicated robustly in BHK, Vero and C6/36 cells and triggered overt clinical symptoms in suckling mice after intracerebral inoculation, causing mortality of 100% and 25%. Cross-sectional epidemiology analysis revealed silent circulation of TIBOV in Yunnan Province with overall prevalence of 16.4% (18/110) in cattle, 10.8% (13/120) in goats and 5.5% (6/110) in swine. The prevalence patterns of four investigated TIBOV serotypes (TIBOV-1, -2, -5 and 6) differed from each one another, with their positive rates ranging from 8.2% (9/110) for TIBOV-2 in cattle to 0.9% (1/110) for TIBOV-1 and TIBOV-5 in cattle and swine. Our findings provided new insights for diversity, pathogenicity and epidemiology of TIBOV and formed a basis for future studies addressing the geographical distribution and the zoonotic potential of TIBOV.
Collapse
Affiliation(s)
- Zhanhong Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Zhuoran Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Le Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Lin Gao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Jiarui Xie
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Defang Liao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Xiang Gao
- Animal Disease Control and Prevention Center of Jinghong County, Jinghong, China
| | - Zhongyan Hu
- Animal Disease Control and Prevention Center of Jinghong County, Jinghong, China
| | - Baosheng Niu
- Animal Disease Control and Prevention Center of Shizong County, Qujing, China
| | - Pingfen Yao
- Animal Disease Control and Prevention Center of Shizong County, Qujing, China
| | - Weikun Zeng
- School of Medicine, Kunming University, Kunming, China
| | - Huachun Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Heng Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China.,College of Agriculture and Life Sciences, Kunming University, Kunming, China
| |
Collapse
|
6
|
Agnihotri K, Oakey J, Smith C, Weir R, Pyke A, Melville L. Genome-scale molecular and phylogenetic characterization of Middle Point orbiviruses from Australia. J Gen Virol 2021; 102. [PMID: 34870577 DOI: 10.1099/jgv.0.001685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Middle Point orbivirus (MPOV) is an Australian arbovirus, belongs to the Yunnan orbivirus species found in China. First detected and reported from Beatrice Hill, Northern Territory (NT), MPOV has to date, only been exclusively reported from the NT, Australia. Whilst genetic characterization of MPOV has been previously described, only restricted to sequence information for segments 2 and 3 coding core protein VP2 and outer capsid protein VP3, respectively. This study presents for the first time nearly full-length genome sequences of MPOV, which represent 24 isolates collected over a span of more than 20 years from 1997 to 2018. Whilst the majority of isolates were sampled at Beatrice Hill, NT where MPOV is most frequently isolated, this report also describes the first two isolations of MPOV from Queensland (QLD), Australia. One of which is the first non-bovine isolate obtained from the mosquito vector Aedes vittiger. We further compared these MPOV sequences with known sequences of the Yunnan orbivirus and other known orbivirus sequences of mosquito origin found in Australia. The phylogenetic analyses indicate the Australian MPOV sequences are more closely related to each other than other known sequences of Yunnan orbivirus. Furthermore, MPOV sequences are closely related to sequences from the Indonesian isolate JKT-8650. The clustering of Australian sequences in the phylogenetic tree suggests the monophyletic lineage of MPOV circulating in Australia. Further, ongoing surveillance is required to assess the existence and prevalence of this or other yet undetected lineages of MPOV and other orbiviruses in Australia.
Collapse
Affiliation(s)
- Kalpana Agnihotri
- Biosecurity Sciences Laboratory, Biosecurity Queensland, Department of Agriculture and Fisheries, Queensland Government, Health and Food Sciences Precinct, 39 Coopers Plains, 4108, Queensland, Australia
| | - Jane Oakey
- Biosecurity Sciences Laboratory, Biosecurity Queensland, Department of Agriculture and Fisheries, Queensland Government, Health and Food Sciences Precinct, 39 Coopers Plains, 4108, Queensland, Australia
| | - Craig Smith
- Biosecurity Sciences Laboratory, Biosecurity Queensland, Department of Agriculture and Fisheries, Queensland Government, Health and Food Sciences Precinct, 39 Coopers Plains, 4108, Queensland, Australia
| | - Richard Weir
- Berrimah Veterinary Laboratory, Department of Industry, Tourism and Trade, Berrimah, 0801, Northern Territory, Australia
| | - Alyssa Pyke
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, 4108, Brisbane, Queensland, Australia
| | - Lorna Melville
- Berrimah Veterinary Laboratory, Department of Industry, Tourism and Trade, Berrimah, 0801, Northern Territory, Australia
| |
Collapse
|
7
|
Viral Vector Vaccines against Bluetongue Virus. Microorganisms 2020; 9:microorganisms9010042. [PMID: 33375723 PMCID: PMC7823852 DOI: 10.3390/microorganisms9010042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
Bluetongue virus (BTV), the prototype member of the genus Orbivirus (family Reoviridae), is the causative agent of an important livestock disease, bluetongue (BT), which is transmitted via biting midges of the genus Culicoides. To date, up to 29 serotypes of BTV have been described, which are classified as classical (BTV 1–24) or atypical (serotypes 25–27), and its distribution has been expanding since 1998, with important outbreaks in the Mediterranean Basin and devastating incursions in Northern and Western Europe. Classical vaccine approaches, such as live-attenuated and inactivated vaccines, have been used as prophylactic measures to control BT through the years. However, these vaccine approaches fail to address important matters like vaccine safety profile, effectiveness, induction of a cross-protective immune response among serotypes, and implementation of a DIVA (differentiation of infected from vaccinated animals) strategy. In this context, a wide range of recombinant vaccine prototypes against BTV, ranging from subunit vaccines to recombinant viral vector vaccines, have been investigated. This article offers a comprehensive outline of the live viral vectors used against BTV.
Collapse
|
8
|
Alonso C, Utrilla-Trigo S, Calvo-Pinilla E, Jiménez-Cabello L, Ortego J, Nogales A. Inhibition of Orbivirus Replication by Aurintricarboxylic Acid. Int J Mol Sci 2020; 21:ijms21197294. [PMID: 33023235 PMCID: PMC7582255 DOI: 10.3390/ijms21197294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Bluetongue virus (BTV) and African horse sickness virus (AHSV) are vector-borne viruses belonging to the Orbivirus genus, which are transmitted between hosts primarily by biting midges of the genus Culicoides. With recent BTV and AHSV outbreaks causing epidemics and important economy losses, there is a pressing need for efficacious drugs to treat and control the spread of these infections. The polyanionic aromatic compound aurintricarboxylic acid (ATA) has been shown to have a broad-spectrum antiviral activity. Here, we evaluated ATA as a potential antiviral compound against Orbivirus infections in both mammalian and insect cells. Notably, ATA was able to prevent the replication of BTV and AHSV in both cell types in a time- and concentration-dependent manner. In addition, we evaluated the effect of ATA in vivo using a mouse model of infection. ATA did not protect mice against a lethal challenge with BTV or AHSV, most probably due to the in vivo effect of ATA on immune system regulation. Overall, these results demonstrate that ATA has inhibitory activity against Orbivirus replication in vitro, but further in vivo analysis will be required before considering it as a potential therapy for future clinical evaluation.
Collapse
|
9
|
Tomazatos A, Marschang RE, Maranda I, Baum H, Bialonski A, Spînu M, Lühken R, Schmidt-Chanasit J, Cadar D. Letea Virus: Comparative Genomics and Phylogenetic Analysis of a Novel Reassortant Orbivirus Discovered in Grass Snakes ( Natrix natrix). Viruses 2020; 12:v12020243. [PMID: 32098186 PMCID: PMC7077223 DOI: 10.3390/v12020243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 01/22/2023] Open
Abstract
The discovery and characterization of novel arthropod-borne viruses provide valuable information on their genetic diversity, ecology, evolution and potential to threaten animal or public health. Arbovirus surveillance is not conducted regularly in Romania, being particularly very scarce in the remote and diverse areas like the Danube Delta. Here we describe the detection and genetic characterization of a novel orbivirus (Reoviridae: Orbivirus) designated as Letea virus, which was found in grass snakes (Natrix natrix) during a metagenomic and metatranscriptomic survey conducted between 2014 and 2017. This virus is the first orbivirus discovered in reptiles. Phylogenetic analyses placed Letea virus as a highly divergent species in the Culicoides-/sand fly-borne orbivirus clade. Gene reassortment and intragenic recombination were detected in the majority of the nine Letea virus strains obtained, implying that these mechanisms play important roles in the evolution and diversification of the virus. However, the screening of arthropods, including Culicoides biting midges collected within the same surveillance program, tested negative for Letea virus infection and could not confirm the arthropod vector of the virus. The study provided complete genome sequences for nine Letea virus strains and new information about orbivirus diversity, host range, ecology and evolution. The phylogenetic associations warrant further screening of arthropods, as well as sustained surveillance efforts for elucidation of Letea virus natural cycle and possible implications for animal and human health.
Collapse
Affiliation(s)
- Alexandru Tomazatos
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (I.M.); (H.B.); (A.B.); (R.L.); (J.S.-C.)
| | - Rachel E. Marschang
- Cell Culture Lab, Microbiology Department, Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany;
| | - Iulia Maranda
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (I.M.); (H.B.); (A.B.); (R.L.); (J.S.-C.)
| | - Heike Baum
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (I.M.); (H.B.); (A.B.); (R.L.); (J.S.-C.)
| | - Alexandra Bialonski
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (I.M.); (H.B.); (A.B.); (R.L.); (J.S.-C.)
| | - Marina Spînu
- Department of Clinical Sciences-Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (I.M.); (H.B.); (A.B.); (R.L.); (J.S.-C.)
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20148 Hamburg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (I.M.); (H.B.); (A.B.); (R.L.); (J.S.-C.)
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20148 Hamburg, Germany
| | - Daniel Cadar
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (I.M.); (H.B.); (A.B.); (R.L.); (J.S.-C.)
- Correspondence:
| |
Collapse
|
10
|
Safonova MV, Gmyl AP, Lukashev AN, Speranskaya AS, Neverov AD, Fedonin GG, Pimkina EV, Matsvay AD, Khafizov KF, Karganova GG, Kozlovskaya LI, Valdokhina AV, Bulanenko VP, Dedkov VG. Genetic diversity of Kemerovo virus and phylogenetic relationships within the Great Island virus genetic group. Ticks Tick Borne Dis 2019; 11:101333. [PMID: 31787560 DOI: 10.1016/j.ttbdis.2019.101333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/29/2019] [Accepted: 11/15/2019] [Indexed: 11/27/2022]
Abstract
Kemerovo virus (KEMV) is a member of the Great Island virus genetic group, belonging to the tick-borne arboviruses of the genus Orbivirus within the family Reoviridae. Nine strains of KEMV, which were isolated from various locations in Russia, were sequenced by high-throughput sequencing to study their intraspecific diversity and the interspecific relationships of viruses within the Great Island genetic group. For the first time, multiple reassortment within KEMV was reliably demonstrated. Different types of independently emerged alternative reading frames in segment 9 and heterogeneity of the viral population in one of the KEMV strains were found. The hypothesis of the role of an alternative open reading frame (ORF) in segment 9 in KEMV cellular tropism was not confirmed in this study.
Collapse
Affiliation(s)
- Marina V Safonova
- Plague Control Center, Federal Service on Consumers' Rights Protection and Human Well-Being Surveillance, Moscow, Russia.
| | - Anatoly P Gmyl
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia; Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander N Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anna S Speranskaya
- Central Research Institute for Epidemiology, Federal Service on Consumers' Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| | - Alexey D Neverov
- Central Research Institute for Epidemiology, Federal Service on Consumers' Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| | - Gennady G Fedonin
- Central Research Institute for Epidemiology, Federal Service on Consumers' Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| | - Ekaterina V Pimkina
- Central Research Institute for Epidemiology, Federal Service on Consumers' Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| | - Alina D Matsvay
- Central Research Institute for Epidemiology, Federal Service on Consumers' Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| | - Kamil F Khafizov
- Central Research Institute for Epidemiology, Federal Service on Consumers' Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| | - Galina G Karganova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia; Sechenov First Moscow State Medical University, Moscow, Russia
| | - Lubov I Kozlovskaya
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia; Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anna V Valdokhina
- Central Research Institute for Epidemiology, Federal Service on Consumers' Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| | - Victoria P Bulanenko
- Central Research Institute for Epidemiology, Federal Service on Consumers' Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| | - Vladimir G Dedkov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, Moscow, Russia; Saint-Petersburg Pasteur Institute, Federal Service on Consumers' Rights Protection and Human Well-Being Surveillance, Saint-Petersburg, Russia
| |
Collapse
|
11
|
A Systematic Review of the Natural Virome of Anopheles Mosquitoes. Viruses 2018; 10:v10050222. [PMID: 29695682 PMCID: PMC5977215 DOI: 10.3390/v10050222] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 12/15/2022] Open
Abstract
Anopheles mosquitoes are vectors of human malaria, but they also harbor viruses, collectively termed the virome. The Anopheles virome is relatively poorly studied, and the number and function of viruses are unknown. Only the o’nyong-nyong arbovirus (ONNV) is known to be consistently transmitted to vertebrates by Anopheles mosquitoes. A systematic literature review searched four databases: PubMed, Web of Science, Scopus, and Lissa. In addition, online and print resources were searched manually. The searches yielded 259 records. After screening for eligibility criteria, we found at least 51 viruses reported in Anopheles, including viruses with potential to cause febrile disease if transmitted to humans or other vertebrates. Studies to date have not provided evidence that Anopheles consistently transmit and maintain arboviruses other than ONNV. However, anthropophilic Anopheles vectors of malaria are constantly exposed to arboviruses in human bloodmeals. It is possible that in malaria-endemic zones, febrile symptoms may be commonly misdiagnosed. It is also possible that anophelines may be inherently less competent arbovirus vectors than culicines, but if true, the biological basis would warrant further study. This systematic review contributes a context to characterize the biology, knowledge gaps, and potential public health risk of Anopheles viruses.
Collapse
|
12
|
Wang J, Li H, He Y, Zhou Y, Xin A, Liao D, Meng J. Isolation of Tibet orbivirus from Culicoides and associated infections in livestock in Yunnan, China. Virol J 2017; 14:105. [PMID: 28595631 PMCID: PMC5488374 DOI: 10.1186/s12985-017-0774-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 06/01/2017] [Indexed: 11/29/2022] Open
Abstract
Background Culicoides-borne orbiviruses, such as bluetongue virus (BTV) and African horse sickness virus (AHSV), are important pathogens that cause animal epidemic diseases leading to significant loss of domestic animals. This study was conducted to identify Culicoides-borne arboviruses and to investigate the associated infections in local livestock in Yunnan, China. Methods Culicoides were collected overnight in Mangshi City using light traps during August 2013. A virus was isolated from the collected Culicoides and grown using baby hamster kidney (BHK-21), Vero, Madin-Darby bovine kidney (MDBK) and Aedes albopictus (C6/36) cells. Preliminary identification of the virus was performed by polyacrylamide gel (PAGE) analysis. A full-length cDNA copy of the genome was amplified and sequenced. Serological investigations were conducted in local cattle, buffalo and goat using plaque-reduction neutralization tests. Results We isolated a viral strain (DH13C120) that caused cytopathogenic effects in BHK-21, Vero, MDBK and C6/36 cells. Suckling mice inoculated intracerebrally with DH13C120 showed signs of fatal neurovirulence. PAGE analysis indicated a genome consisting of 10 segments of double-stranded RNA that demonstrated a 3–3–3–1 pattern, similar to the migrating bands of Tibet orbivirus (TIBOV). Phylogenetic analysis of the viral RNA-dependent RNA polymerase (Pol), sub-core-shell (T2, and outer core (T13) proteins revealed that DH13C120 clustered with TIBOV, and the amino acid sequences of DH13C120 virus shared more than 98% identity with TIBOV XZ0906. However, outer capsid protein VP2 and outer capsid protein VP5 shared only 43.1 and 79.3% identity, respectively, indicating that the DH13C120 virus belongs to TIBOV, and it may represent different serotypes with XZ0906. A serosurvey revealed the presence of neutralizing antibodies with 90% plaque-reduction neutralization against TIBOV DH13C120 in local cattle (44%), buffalo (20%), and goat (4%). Four-fold or higher levels of TIBOV-2-neutralizing antibody titers were detected between the convalescent and acute phases of infection in local livestock. Conclusions A new strain of TIBOV was isolated from Culicoides. This study provides the first evidence of TIBOV infection in livestock in Yunnan, China, and suggests that TIBOV could be a potential pathogen in livestock.
Collapse
Affiliation(s)
- Jinglin Wang
- Yunnan Animal Science and Veterinary Institute, Qinglongshan Jindian PanLong District Kunming, Kunming, Yunnan province, 650224, People's Republic of China.
| | - Huachun Li
- Yunnan Animal Science and Veterinary Institute, Qinglongshan Jindian PanLong District Kunming, Kunming, Yunnan province, 650224, People's Republic of China.
| | - Yuwen He
- Yunnan Animal Science and Veterinary Institute, Qinglongshan Jindian PanLong District Kunming, Kunming, Yunnan province, 650224, People's Republic of China
| | - Yang Zhou
- Yunnan Animal Science and Veterinary Institute, Qinglongshan Jindian PanLong District Kunming, Kunming, Yunnan province, 650224, People's Republic of China
| | - Aiguo Xin
- Yunnan Animal Science and Veterinary Institute, Qinglongshan Jindian PanLong District Kunming, Kunming, Yunnan province, 650224, People's Republic of China
| | - Defang Liao
- Yunnan Animal Science and Veterinary Institute, Qinglongshan Jindian PanLong District Kunming, Kunming, Yunnan province, 650224, People's Republic of China
| | - Jinxin Meng
- Yunnan Animal Science and Veterinary Institute, Qinglongshan Jindian PanLong District Kunming, Kunming, Yunnan province, 650224, People's Republic of China
| |
Collapse
|
13
|
Development and Evaluation of Real Time RT-PCR Assays for Detection and Typing of Bluetongue Virus. PLoS One 2016; 11:e0163014. [PMID: 27661614 PMCID: PMC5035095 DOI: 10.1371/journal.pone.0163014] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 09/01/2016] [Indexed: 11/19/2022] Open
Abstract
Bluetongue virus is the type species of the genus Orbivirus, family Reoviridae. Bluetongue viruses (BTV) are transmitted between their vertebrate hosts primarily by biting midges (Culicoides spp.) in which they also replicate. Consequently BTV distribution is dependent on the activity, geographic distribution, and seasonal abundance of Culicoides spp. The virus can also be transmitted vertically in vertebrate hosts, and some strains/serotypes can be transmitted horizontally in the absence of insect vectors. The BTV genome is composed of ten linear segments of double-stranded (ds) RNA, numbered in order of decreasing size (Seg-1 to Seg-10). Genome segment 2 (Seg-2) encodes outer-capsid protein VP2, the most variable BTV protein and the primary target for neutralising antibodies. Consequently VP2 (and Seg-2) determine the identity of the twenty seven serotypes and two additional putative BTV serotypes that have been recognised so far. Current BTV vaccines are serotype specific and typing of outbreak strains is required in order to deploy appropriate vaccines. We report development and evaluation of multiple 'TaqMan' fluorescence-probe based quantitative real-time type-specific RT-PCR assays targeting Seg-2 of the 27+1 BTV types. The assays were evaluated using orbivirus isolates from the 'Orbivirus Reference Collection' (ORC) held at The Pirbright Institute. The assays are BTV-type specific and can be used for rapid, sensitive and reliable detection / identification (typing) of BTV RNA from samples of infected blood, tissues, homogenised Culicoides, or tissue culture supernatants. None of the assays amplified cDNAs from closely related but heterologous orbiviruses, or from uninfected host animals or cell cultures.
Collapse
|
14
|
Drolet BS, van Rijn P, Howerth EW, Beer M, Mertens PP. A Review of Knowledge Gaps and Tools for Orbivirus Research. Vector Borne Zoonotic Dis 2016; 15:339-47. [PMID: 26086555 DOI: 10.1089/vbz.2014.1701] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although recognized as causing emerging and re-emerging disease outbreaks worldwide since the late 1800 s, there has been growing interest in the United States and Europe in recent years in orbiviruses, their insect vectors, and the diseases they cause in domestic livestock and wildlife. This is due, in part, to the emergence of bluetongue (BT) in northern Europe in 2006-2007 resulting in a devastating outbreak, as well as severe BT outbreaks in sheep and epizootic hemorrhagic disease (EHD) outbreaks in deer and cattle in the United States. Of notable concern is the isolation of as many as 10 new BT virus (BTV) serotypes in the United States since 1999 and their associated unknowns, such as route of introduction, virulence to mammals, and indigenous competent vectors. This review, based on a gap analysis workshop composed of international experts on orbiviruses conducted in 2013, gives a global perspective of current basic virological understanding of orbiviruses, with particular attention to BTV and the closely related epizootic hemorrhagic disease virus (EHDV), and identifies a multitude of basic virology research gaps, critical for predicting and preventing outbreaks.
Collapse
Affiliation(s)
- Barbara S Drolet
- 1 US Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Diseases Research Unit , Manhattan, Kansas
| | - Piet van Rijn
- 2 Department of Virology, Central Veterinary Institute of Wageningen University (CVI), The Netherlands; Department of Biochemistry, Centre for Human Metabonomics, North-West University , South Africa
| | - Elizabeth W Howerth
- 3 Department of Pathology, College of Veterinary Medicine, University of Georgia , Athens, Georgia
| | - Martin Beer
- 4 Institute of Diagnostic Virology, Friedrich-Loeffler-Institut , Insel Riems, Germany
| | - Peter P Mertens
- 5 Vector-Borne Diseases Programme, The Pirbright Institute , Pirbright, Woking, United Kingdom
| |
Collapse
|
15
|
Maan NS, Maan S, Potgieter AC, Wright IM, Belaganahalli M, Mertens PPC. Development of Real-Time RT-PCR Assays for Detection and Typing of Epizootic Haemorrhagic Disease Virus. Transbound Emerg Dis 2016; 64:1120-1132. [PMID: 26888716 PMCID: PMC5516135 DOI: 10.1111/tbed.12477] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 12/23/2022]
Abstract
Epizootic haemorrhagic disease virus (EHDV) is an emerging arboviral pathogen of wild and domestic ruminants worldwide. It is closely related to bluetongue virus (BTV) and is transmitted by adult females of competent Culicoides vector species. The EHDV genome consists of ten linear double‐stranded (ds)RNA segments, encoding five non‐structural and seven structural proteins. Genome‐segment reassortment contributes to a high level of genetic variation in individual virus strains, particularly in the areas where multiple and distinct virus lineages co‐circulate. In spite of the relatively close relationship between BTV and EHDV herd‐immunity to BTV does not appear to protect against the introduction and infection of animals by EHDV. Although EHDV can cause up to 80% morbidity in affected animals, vaccination with the homologous EHDV serotype is protective. Outer‐capsid protein VP2, encoded by Seg‐2, is the most variable of the EHDV proteins and determines both the specificity of reactions with neutralizing antibodies and consequently the identity of the eight EHDV serotypes. In contrast, VP6 (the viral helicase), encoded by Seg‐9, is highly conserved, representing a virus species/serogroup‐specific antigen. We report the development and evaluation of quantitative (q)RT‐PCR assays targeting EHDV Seg‐9 that can detect all EHDV strains (regardless of geographic origin/topotype/serotype), as well as type‐specific assays targeting Seg‐2 of the eight EHDV serotypes. The assays were evaluated using orbivirus isolates from the ‘Orbivirus reference collection’ (ORC) at The Pirbright Institute and were shown to be EHDV pan‐reactive or type‐specific. They can be used for rapid, sensitive and reliable detection and identification (typing) of EHDV RNA from infected blood, tissue samples, homogenized Culicoides, or tissue culture supernatant. None of the assays detected RNA from closely related but heterologous orbiviruses, or from uninfected host animals or cell cultures. The techniques presented could be used for both surveillance and vaccine matching (serotype identification) as part of control strategies for incursions in wild and domestic animal species.
Collapse
Affiliation(s)
- N S Maan
- The Pirbright Institute, Woking, Surrey, UK
| | - S Maan
- The Pirbright Institute, Woking, Surrey, UK
| | - A C Potgieter
- Deltamune Pty Ltd, Lyttelton, Centurion, South Africa.,Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - I M Wright
- Deltamune Pty Ltd, Lyttelton, Centurion, South Africa.,Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | | | | |
Collapse
|
16
|
Lei W, Guo X, Fu S, Feng Y, Nie K, Song J, Li Y, Ma X, Liang G, Zhou H. Isolation of Tibet orbivirus, TIBOV, from Culicoides Collected in Yunnan, China. PLoS One 2015; 10:e0136257. [PMID: 26295700 PMCID: PMC4546636 DOI: 10.1371/journal.pone.0136257] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 08/03/2015] [Indexed: 11/18/2022] Open
Abstract
We isolated a novel virus strain (YN12246) from Culicoides spp. specimens collected at the China-Laos-Myanmar border in southern Yunnan Province. This virus had a cytopathic effect (CPE) on both insect cells (C6/36) and mammalian cells (BHK-21). Electron microscopy revealed the structure of the virions to be spherical with a diameter of 75 nm. Polyacrylamide gel analysis demonstrated that the viral genome consisted of 10 segments of double-stranded RNA (dsRNA), with a distribution pattern of 3-3-3-1. The coding sequences of 9 genome segments of YN12246 (Seg1, Seg3-Seg10) were obtained by high-throughput sequencing and Sanger sequencing. Comparisons of conserved genome segments 1 and 3 (Seg1 and Seg3), encoding the polymerase-VP1 and sub-core T2 protein, respectively, showed that YN12246 groups with the Culicoides-borne orbiviruses. The highest levels of sequence identity were detected between YN12246 and Tibet orbivirus (TIBOV), indicating that they belong to the same virus species (with amino acid identity of 98.8% and 96.4% for the polymerase and T2 protein, respectively). The data presented here confirm that YN12246 is a member of the TIBOV species, which was first isolated from mosquitoes in 2009. This is the first report of the isolation of TIBOV from Culicoides.
Collapse
Affiliation(s)
- Wenwen Lei
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People’s Republic of China
| | - Xiaofang Guo
- Yunnan Institute of Parasitic Diseases, Pu’er, Yunnan, People’s Republic of China
| | - Shihong Fu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People’s Republic of China
| | - Yun Feng
- Yunnan Institute of Endemic Disease Control and Prevention, Yunnan Provincial Center of Virus and Rickettsia Research, Dali, Yunnan, People’s Republic of China
| | - Kai Nie
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Jingdong Song
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yang Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xuejun Ma
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Guodong Liang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People’s Republic of China
- * E-mail: (GL); (HZ)
| | - Hongning Zhou
- Yunnan Institute of Parasitic Diseases, Pu’er, Yunnan, People’s Republic of China
- * E-mail: (GL); (HZ)
| |
Collapse
|
17
|
Genetic characterization of the tick-borne orbiviruses. Viruses 2015; 7:2185-209. [PMID: 25928203 PMCID: PMC4452902 DOI: 10.3390/v7052185] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/18/2015] [Accepted: 04/21/2015] [Indexed: 12/24/2022] Open
Abstract
The International Committee for Taxonomy of Viruses (ICTV) recognizes four species of tick-borne orbiviruses (TBOs): Chenuda virus, Chobar Gorge virus, Wad Medani virus and Great Island virus (genus Orbivirus, family Reoviridae). Nucleotide (nt) and amino acid (aa) sequence comparisons provide a basis for orbivirus detection and classification, however full genome sequence data were only available for the Great Island virus species. We report representative genome-sequences for the three other TBO species (virus isolates: Chenuda virus (CNUV); Chobar Gorge virus (CGV) and Wad Medani virus (WMV)). Phylogenetic comparisons show that TBOs cluster separately from insect-borne orbiviruses (IBOs). CNUV, CGV, WMV and GIV share low level aa/nt identities with other orbiviruses, in ‘conserved’ Pol, T2 and T13 proteins/genes, identifying them as four distinct virus-species. The TBO genome segment encoding cell attachment, outer capsid protein 1 (OC1), is approximately half the size of the equivalent segment from insect-borne orbiviruses, helping to explain why tick-borne orbiviruses have a ~1 kb smaller genome.
Collapse
|
18
|
Maan NS, Maan S, Belaganahalli M, Pullinger G, Montes AJA, Gasparini MR, Guimera M, Nomikou K, Mertens PP. A quantitative real-time reverse transcription PCR (qRT-PCR) assay to detect genome segment 9 of all 26 bluetongue virus serotypes. J Virol Methods 2015; 213:118-26. [DOI: 10.1016/j.jviromet.2014.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/25/2014] [Accepted: 11/28/2014] [Indexed: 01/12/2023]
|
19
|
Dedkov VG, Dubina DA, Yurchenko OA, Bekova MV, Valdokhina AV, Shipulin GA. Characterization of Two Strains of Tribeč Virus Isolated in Ukraine. Vector Borne Zoonotic Dis 2014; 14:808-16. [DOI: 10.1089/vbz.2014.1683] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vladimir G. Dedkov
- Central Research Institute for Epidemiology, Russian Inspectorate for Protection of Consumer Rights and Human Welfare, Moscow, Russia
| | - Dmitriy A. Dubina
- I.I. Mechnikov, Ukrainian Anti-Plague Research Institute of the Ministry of Health of Ukraine, Odessa, Ukraine
| | - Oksana A. Yurchenko
- I.I. Mechnikov, Ukrainian Anti-Plague Research Institute of the Ministry of Health of Ukraine, Odessa, Ukraine
| | - Marina V. Bekova
- Central Research Institute for Epidemiology, Russian Inspectorate for Protection of Consumer Rights and Human Welfare, Moscow, Russia
| | - Anna V. Valdokhina
- Central Research Institute for Epidemiology, Russian Inspectorate for Protection of Consumer Rights and Human Welfare, Moscow, Russia
| | - German A. Shipulin
- Central Research Institute for Epidemiology, Russian Inspectorate for Protection of Consumer Rights and Human Welfare, Moscow, Russia
| |
Collapse
|
20
|
Belaganahalli MN, Maan S, Maan NS, Pritchard I, Kirkland PD, Brownlie J, Attoui H, Mertens PPC. Full genome characterization of the culicoides-borne marsupial orbiviruses: Wallal virus, Mudjinbarry virus and Warrego viruses. PLoS One 2014; 9:e108379. [PMID: 25299687 PMCID: PMC4191977 DOI: 10.1371/journal.pone.0108379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/19/2014] [Indexed: 01/24/2023] Open
Abstract
Viruses belonging to the species Wallal virus and Warrego virus of the genus Orbivirus were identified as causative agents of blindness in marsupials in Australia during 1994/5. Recent comparisons of nucleotide (nt) and amino acid (aa) sequences have provided a basis for the grouping and classification of orbivirus isolates. However, full-genome sequence data are not available for representatives of all Orbivirus species. We report full-genome sequence data for three additional orbiviruses: Wallal virus (WALV); Mudjinabarry virus (MUDV) and Warrego virus (WARV). Comparisons of conserved polymerase (Pol), sub-core-shell 'T2' and core-surface 'T13' proteins show that these viruses group with other Culicoides borne orbiviruses, clustering with Eubenangee virus (EUBV), another orbivirus infecting marsupials. WARV shares <70% aa identity in all three conserved proteins (Pol, T2 and T13) with other orbiviruses, consistent with its classification within a distinct Orbivirus species. Although WALV and MUDV share <72.86%/67.93% aa/nt identity with other orbiviruses in Pol, T2 and T13, they share >99%/90% aa/nt identities with each other (consistent with membership of the same virus species - Wallal virus). However, WALV and MUDV share <68% aa identity in their larger outer capsid protein VP2(OC1), consistent with membership of different serotypes within the species - WALV-1 and WALV-2 respectively.
Collapse
Affiliation(s)
- Manjunatha N. Belaganahalli
- Vector-borne Viral Diseases Programme, Institute for Animal Health, Pirbright, Woking, Surrey, United Kingdom
| | - Sushila Maan
- Vector-borne Viral Diseases Programme, Institute for Animal Health, Pirbright, Woking, Surrey, United Kingdom
| | - Narender S. Maan
- Vector-borne Viral Diseases Programme, Institute for Animal Health, Pirbright, Woking, Surrey, United Kingdom
| | - Ian Pritchard
- Australian Animal Health Laboratory, CSIRO, Geelong, Victoria, Australia
| | - Peter D. Kirkland
- Elizabeth Macarthur Agricultural Institute, Camden, New South Wales, Australia
| | - Joe Brownlie
- Department of Pathology and Infectious Diseases, Royal Veterinary College, North Mymms, Hatfield, Herts, United Kingdom
| | - Houssam Attoui
- Vector-borne Viral Diseases Programme, Institute for Animal Health, Pirbright, Woking, Surrey, United Kingdom
| | - Peter P. C. Mertens
- Vector-borne Viral Diseases Programme, Institute for Animal Health, Pirbright, Woking, Surrey, United Kingdom
| |
Collapse
|
21
|
Silva SP, Dilcher M, Weber F, Hufert FT, Weidmann M, Cardoso JF, Carvalho VL, Chiang JO, Martins LC, Lima CPS, Da Silva DEA, Vianez-Júnior JLSG, Popov VL, Travassos da Rosa APA, Tesh RB, Vasconcelos PFC, Nunes MRT. Genetic and biological characterization of selected Changuinola viruses (Reoviridae, Orbivirus) from Brazil. J Gen Virol 2014; 95:2251-2259. [PMID: 24986085 DOI: 10.1099/vir.0.064691-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The genus Orbivirus of the family Reoviridae comprises 22 virus species including the Changuinola virus (CGLV) serogroup. The complete genome sequences of 13 CGLV serotypes isolated between 1961 and 1988 from distinct geographical areas of the Brazilian Amazon region were obtained. All viral sequences were obtained from single-passaged CGLV strains grown in Vero cells. CGLVs are the only orbiviruses known to be transmitted by phlebotomine sandflies. Ultrastructure and molecular analysis by electron microscopy and gel electrophoresis, respectively, revealed viral particles with typical orbivirus size and morphology, as well as the presence of a segmented genome with 10 segments. Full-length nucleotide sequencing of each of the ten RNA segments of the 13 CGLV serotypes provided basic information regarding the genome organization, encoded proteins and genetic traits. Segment 2 (encoding VP2) of the CGLV is uncommonly larger in comparison to those found in other orbiviruses and shows varying sizes even among different CGLV serotypes. Phylogenetic analysis support previous serological findings, which indicate that CGLV constitutes a separate serogroup within the genus Orbivirus. In addition, six out of 13 analysed CGLV serotypes showed reassortment of their genome segments.
Collapse
Affiliation(s)
- Sandro P Silva
- Center for Technological Innovation of Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Brazil
| | - Meik Dilcher
- Department of Virology, University Medical Center Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany
| | - Franziska Weber
- Department of Virology, University Medical Center Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany
| | - Frank T Hufert
- Department of Virology, University Medical Center Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany
| | - Manfred Weidmann
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK
| | - Jedson F Cardoso
- Center for Technological Innovation of Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Brazil
| | - Valéria L Carvalho
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ministério da Saúde, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Brazil
| | - Jannifer O Chiang
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ministério da Saúde, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Brazil
| | - Lívia C Martins
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ministério da Saúde, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Brazil
| | - Clayton P S Lima
- Center for Technological Innovation of Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Brazil
| | - Daisy E A Da Silva
- Center for Technological Innovation of Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Brazil
| | - João L S G Vianez-Júnior
- Center for Technological Innovation of Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Brazil
| | - Vsevolod L Popov
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Amélia P A Travassos da Rosa
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert B Tesh
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pedro F C Vasconcelos
- Departamento de Patologia, Universidade do Estado do Pará, Belém, Brazil.,Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ministério da Saúde, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Brazil
| | - Márcio R T Nunes
- Center for Technological Innovation of Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Brazil
| |
Collapse
|
22
|
Bachanek-Bankowska K, Maan S, Castillo-Olivares J, Manning NM, Maan NS, Potgieter AC, Di Nardo A, Sutton G, Batten C, Mertens PPC. Real time RT-PCR assays for detection and typing of African horse sickness virus. PLoS One 2014; 9:e93758. [PMID: 24721971 PMCID: PMC3983086 DOI: 10.1371/journal.pone.0093758] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 03/05/2014] [Indexed: 12/25/2022] Open
Abstract
Although African horse sickness (AHS) can cause up to 95% mortality in horses, naïve animals can be protected by vaccination against the homologous AHSV serotype. Genome segment 2 (Seg-2) encodes outer capsid protein VP2, the most variable of the AHSV proteins. VP2 is also a primary target for AHSV specific neutralising antibodies, and consequently determines the identity of the nine AHSV serotypes. In contrast VP1 (the viral polymerase) and VP3 (the sub-core shell protein), encoded by Seg-1 and Seg-3 respectively, are highly conserved, representing virus species/orbivirus-serogroup-specific antigens. We report development and evaluation of real-time RT-PCR assays targeting AHSV Seg-1 or Seg-3, that can detect any AHSV type (virus species/serogroup-specific assays), as well as type-specific assays targeting Seg-2 of the nine AHSV serotypes. These assays were evaluated using isolates of different AHSV serotypes and other closely related orbiviruses, from the ‘Orbivirus Reference Collection’ (ORC) at The Pirbright Institute. The assays were shown to be AHSV virus-species-specific, or type-specific (as designed) and can be used for rapid, sensitive and reliable detection and identification (typing) of AHSV RNA in infected blood, tissue samples, homogenised Culicoides, or tissue culture supernatant. None of the assays amplified cDNAs from closely related heterologous orbiviruses, or from uninfected host animals or cell cultures.
Collapse
Affiliation(s)
| | - Sushila Maan
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Javier Castillo-Olivares
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Nicola M. Manning
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Narender Singh Maan
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Abraham C. Potgieter
- Deltamune (Pty) Ltd, Lyttelton, Centurion, South Africa
- Department of Biochemistry, Centre for Human Metabonomics, North-West University, Private Bag X6001, Potchefstroom, South Africa
| | - Antonello Di Nardo
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Geoff Sutton
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Carrie Batten
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Peter P. C. Mertens
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Tibet Orbivirus, a novel Orbivirus species isolated from Anopheles maculatus mosquitoes in Tibet, China. PLoS One 2014; 9:e88738. [PMID: 24533145 PMCID: PMC3923044 DOI: 10.1371/journal.pone.0088738] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 01/09/2014] [Indexed: 11/19/2022] Open
Abstract
Background The genus Orbivirus includes a number of important pathogenic viruses, including Bluetongue virus (BTV), African horse sickness virus (AHSV), and Epizootic hemorrhagic disease virus (EHDV). In this study we describe the isolation and characterization of an Orbivirus strain isolated from Anopheles maculatus mosquitoes collected in Tibet, China. Methods and Results Initial viral screening identified a viral strain (XZ0906) that caused significant cytopathic effect (CPE) in BHK-21 cells, including rounding, cell rupture, and floating. Although CPE was not observed in insect cells (C6/36), these cells supported viral replication. Polyacrylamide gel analysis revealed a genome consisting of 10 segments of double-stranded RNA (dsRNA), with a distribution pattern of 3-3-3-1. 454 high throughput sequencing of culture supernatant was used for viral identification. Complete genome sequencing was performed by Sanger sequencing in combination with 5′-RACE and 3′-RACE. Sequence analysis demonstrated that all 5′- and 3′- untranslated regions (UTRs) for each of the 10 genome segments contained a series of six highly conserved nucleotides. In addition, homology analysis and phylogenetic analysis based on amino acid sequence was completed, and all results show that virus XZ0906 was not a member of any known species or serotype of Orbivirus, indicating it to be a new species within the genus Orbivirus. Conclusions The isolated Orbivirus strain was designated Tibet Orbivirus, TIBOV to denote the location from which it was isolated. TIBOV is a novel orbivirus species which is isolated from Anopheles maculatus mosquitoes collected in Tibet, China.
Collapse
|
24
|
[Reverse genetics systems for orbiviruses reveal the essential mechanisms in their replication]. Uirusu 2014; 64:203-12. [PMID: 26437842 DOI: 10.2222/jsv.64.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The members of Orbivirus genus within the family Reoviridae cause severe arthropod-born diseases mainly in ruminants and equids. In addition, the orbiviruses, which can infect humans, have been reported. In the last decade, the molecular and structural studies for orbiviruses, including Bluetongue virus (BTV), has made a great progress. Especially, a reverse genetics system (RG) for BTV, developed soon after Orhoreovirus and Rotavirus, is a major breakthrough. Here, I introduced the recent findings in orbivirus replication, especially the function of an enzymatic protein, VP6.
Collapse
|
25
|
Cooper E, Anbalagan S, Klumper P, Scherba G, Simonson RR, Hause BM. Mobuck virus genome sequence and phylogenetic analysis: identification of a novel Orbivirus isolated from a white-tailed deer in Missouri, USA. J Gen Virol 2014; 95:110-116. [DOI: 10.1099/vir.0.058800-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The genus Orbivirus includes a diverse group of segmented dsRNA viruses that are transmitted via arthropods, have a global distribution and affect a wide range of hosts. A novel orbivirus was co-isolated with epizootic haemorrhagic disease virus (EHDV) from a white-tailed deer (Odocoileus virginianus) exhibiting clinical signs characteristic of EHDV. Using antiserum generated against EHDV, a pure isolate of the novel non-cytopathic orbivirus was obtained in Aedes albopictus cell culture. Genomic sequencing and phylogenetic analysis of predicted ORFs showed that eight of the ten ORFs were most homologous to Peruvian horse sickness virus (PHSV), with amino acid identities of 44.3–73.7 %. The remaining two ORFs, VP3 and VP5, were most similar to Middle Point orbivirus (35.9 %) and Yunnan orbivirus (59.8 %), respectively. Taxonomic classification of orbiviruses is largely based on homology of the major subcore structural protein VP2(T2), encoded by segment 2 for mobuck virus. With only 69.1 % amino acid identity to PHSV, we propose mobuck virus as the prototype of a new species of Orbivirus.
Collapse
Affiliation(s)
- Elyse Cooper
- Newport Laboratories, 1520 Prairie Drive, Worthington, MN 56187, USA
| | | | - Patricia Klumper
- Newport Laboratories, 1520 Prairie Drive, Worthington, MN 56187, USA
| | - Gail Scherba
- Department of Pathobiology and the Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL 61801, USA
| | - Randy R. Simonson
- Newport Laboratories, 1520 Prairie Drive, Worthington, MN 56187, USA
| | - Ben M. Hause
- Newport Laboratories, 1520 Prairie Drive, Worthington, MN 56187, USA
| |
Collapse
|
26
|
Belaganahalli MN, Maan S, Maan NS, Nomikou K, Guimera M, Brownlie J, Tesh R, Attoui H, Mertens PPC. Full genome sequencing of Corriparta virus, identifies California mosquito pool virus as a member of the Corriparta virus species. PLoS One 2013; 8:e70779. [PMID: 24015178 PMCID: PMC3754974 DOI: 10.1371/journal.pone.0070779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 06/21/2013] [Indexed: 11/19/2022] Open
Abstract
The species Corriparta virus (CORV), within the genus Orbivirus, family Reoviridae, currently contains six virus strains: corriparta virus MRM1 (CORV-MRM1); CS0109; V654; V370; Acado virus and Jacareacanga virus. However, lack of neutralization assays, or reference genome sequence data has prevented further analysis of their intra-serogroup/species relationships and identification of individual serotypes. We report whole-genome sequence data for CORV-MRM1, which was isolated in 1960 in Australia. Comparisons of the conserved, polymerase (VP1), sub-core-shell 'T2' and core-surface 'T13' proteins encoded by genome segments 1, 2 and 8 (Seg-1, Seg-2 and Seg-8) respectively, show that this virus groups with the other mosquito borne orbiviruses. However, highest levels of nt/aa sequence identity (75.9%/91.6% in Seg-2/T2: 77.6%/91.7% in Seg-8/T13, respectively) were detected between CORV-MRM1 and California mosquito pool virus (CMPV), an orbivirus isolated in the USA in 1974, showing that they belong to the same virus species. The data presented here identify CMPV as a member of the Corriparta virus species and will facilitate identification of additional CORV isolates, diagnostic assay design and epidemiological studies.
Collapse
Affiliation(s)
- Manjunatha N. Belaganahalli
- The Vector-Borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Sushila Maan
- The Vector-Borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Narender S. Maan
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Kyriaki Nomikou
- The Vector-Borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Marc Guimera
- The Vector-Borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Joe Brownlie
- Department of Pathology and Infectious Diseases, Royal Veterinary College, North Mymms, Hatfield, Herts, United Kingdom
| | - Robert Tesh
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Houssam Attoui
- The Vector-Borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Peter P. C. Mertens
- The Vector-Borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| |
Collapse
|
27
|
Junglen S, Drosten C. Virus discovery and recent insights into virus diversity in arthropods. Curr Opin Microbiol 2013; 16:507-13. [PMID: 23850098 PMCID: PMC7108301 DOI: 10.1016/j.mib.2013.06.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 11/29/2022]
Abstract
Overview on arthropod-associated virus discovery. Description of newly characterized virus species. Projections for further research.
Recent studies on virus discovery have focused mainly on mammalian and avian viruses. Arbovirology with its long tradition of ecologically oriented investigation is now catching up, with important novel insights into the diversity of arthropod-associated viruses. Recent discoveries include taxonomically outlying viruses within the families Flaviviridae, Togaviridae, and Bunyaviridae, and even novel virus families within the order Nidovirales. However, the current focusing of studies on blood-feeding arthropods has restricted the range of arthropod hosts analyzed for viruses so far. Future investigations should include species from other arthropod taxa than Ixodita, Culicidae and Phlebotominae in order to shed light on the true diversity of arthropod viruses.
Collapse
Affiliation(s)
- Sandra Junglen
- Institute of Virology, University of Bonn Medical Center, Bonn, Germany.
| | | |
Collapse
|
28
|
Kapoor A, Tesh RB, Duraisamy R, Popov VL, Travassos da Rosa APA, Lipkin WI. A novel mosquito-borne Orbivirus species found in South-east Asia. J Gen Virol 2013; 94:1051-1057. [PMID: 23364187 DOI: 10.1099/vir.0.046748-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The genus Orbivirus of the family Reoviridae includes a genetically diverse group of dsRNA arthropod-borne viruses that infect a wide variety of animal species. Here, we report the complete genome and phylogenetic analysis of a novel orbivirus (IAn-66411 or Sathuvachari virus, SVIV) isolated in 1963 from starlings (Brahminy myna) collected in Vellore, Tamil Nadu, India. Comparative genetic analysis of the SVIV polymerase (VP1 protein), core protein (VP3) and outer core protein (VP7) confirmed that SVIV is most closely related to the mosquito-borne orbiviruses, but that it is equally divergent from all known species. Therefore, SVIV should be tentatively considered as the prototype of a novel mosquito-associated Orbivirus species. These findings will aid in the development of molecular reagents that can identify genetically similar orbiviruses and help elucidate their geographical distribution, epidemiology, species tropism and possible disease association.
Collapse
Affiliation(s)
- Amit Kapoor
- Center for Infection and Immunity, Columbia University, New York, NY 10032, USA
| | - Robert B Tesh
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Raja Duraisamy
- Center for Infection and Immunity, Columbia University, New York, NY 10032, USA
| | - Vsevolod L Popov
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Amelia P A Travassos da Rosa
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, Columbia University, New York, NY 10032, USA
| |
Collapse
|
29
|
Nelson OW, Garrity GM. Genome sequences published outside of Standards in Genomic Sciences, March-April 2012. Stand Genomic Sci 2012. [PMCID: PMC3387800 DOI: 10.4056/sigs.2836114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of this table is to provide the community with a citable record of publications of ongoing genome sequencing projects that have led to a publication in the scientific literature. While our goal is to make the list complete, there is no guarantee that we may have omitted one or more publications appearing in this time frame. Readers and authors who wish to have publications added to subsequent versions of this list are invited to provide the bibliographic data for such references to the SIGS editorial office.
Collapse
Affiliation(s)
- Oranmiyan W. Nelson
- 1Editorial Office, Standards in Genomic Sciences and Department of Microbiology, Michigan State University, East Lansing, MI, USA
| | - George M. Garrity
- 1Editorial Office, Standards in Genomic Sciences and Department of Microbiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|