1
|
Granovskiy DL, Khudainazarova NS, Evtushenko EA, Ryabchevskaya EM, Kondakova OA, Arkhipenko MV, Kovrizhko MV, Kolpakova EP, Tverdokhlebova TI, Nikitin NA, Karpova OV. Novel Universal Recombinant Rotavirus A Vaccine Candidate: Evaluation of Immunological Properties. Viruses 2024; 16:438. [PMID: 38543803 PMCID: PMC10976063 DOI: 10.3390/v16030438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 05/23/2024] Open
Abstract
Rotavirus infection is a leading cause of severe dehydrating gastroenteritis in children under 5 years of age. Although rotavirus-associated mortality has decreased considerably because of the introduction of the worldwide rotavirus vaccination, the global burden of rotavirus-associated gastroenteritis remains high. Current vaccines have a number of disadvantages; therefore, there is a need for innovative approaches in rotavirus vaccine development. In the current study, a universal recombinant rotavirus antigen (URRA) for a novel recombinant vaccine candidate against rotavirus A was obtained and characterised. This antigen included sequences of the VP8* subunit of rotavirus spike protein VP4. For the URRA, for the first time, two approaches were implemented simultaneously-the application of a highly conserved neutralising epitope and the use of the consensus of the extended protein's fragment. The recognition of URRA by antisera to patient-derived field rotavirus isolates was proven. Plant virus-based spherical particles (SPs), a novel, effective and safe adjuvant, considerably enhanced the immunogenicity of the URRA in a mouse model. Given these facts, a URRA + SPs vaccine candidate is regarded as a prospective basis for a universal vaccine against rotavirus.
Collapse
Affiliation(s)
- Dmitriy L. Granovskiy
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (E.A.E.); (E.M.R.); (O.A.K.); (M.V.A.); (N.A.N.); (O.V.K.)
| | - Nelli S. Khudainazarova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (E.A.E.); (E.M.R.); (O.A.K.); (M.V.A.); (N.A.N.); (O.V.K.)
| | - Ekaterina A. Evtushenko
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (E.A.E.); (E.M.R.); (O.A.K.); (M.V.A.); (N.A.N.); (O.V.K.)
| | - Ekaterina M. Ryabchevskaya
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (E.A.E.); (E.M.R.); (O.A.K.); (M.V.A.); (N.A.N.); (O.V.K.)
| | - Olga A. Kondakova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (E.A.E.); (E.M.R.); (O.A.K.); (M.V.A.); (N.A.N.); (O.V.K.)
| | - Marina V. Arkhipenko
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (E.A.E.); (E.M.R.); (O.A.K.); (M.V.A.); (N.A.N.); (O.V.K.)
| | - Marina V. Kovrizhko
- Rostov Research Institute of Microbiology and Parasitology, 344010 Rostov-On-Don, Russia; (M.V.K.); (E.P.K.); (T.I.T.)
| | - Elena P. Kolpakova
- Rostov Research Institute of Microbiology and Parasitology, 344010 Rostov-On-Don, Russia; (M.V.K.); (E.P.K.); (T.I.T.)
| | - Tatyana I. Tverdokhlebova
- Rostov Research Institute of Microbiology and Parasitology, 344010 Rostov-On-Don, Russia; (M.V.K.); (E.P.K.); (T.I.T.)
| | - Nikolai A. Nikitin
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (E.A.E.); (E.M.R.); (O.A.K.); (M.V.A.); (N.A.N.); (O.V.K.)
| | - Olga V. Karpova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (E.A.E.); (E.M.R.); (O.A.K.); (M.V.A.); (N.A.N.); (O.V.K.)
| |
Collapse
|
2
|
Reyes C, Patarroyo MA. Adjuvants approved for human use: What do we know and what do we need to know for designing good adjuvants? Eur J Pharmacol 2023; 945:175632. [PMID: 36863555 DOI: 10.1016/j.ejphar.2023.175632] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/04/2023]
Abstract
Adjuvants represent one of the most significant biotechnological solutions regarding vaccine development, thereby broadening the amount of candidates which can now be used and tested in vaccine formulations targeting various pathogens, as antigens which were previously discarded due to their low or null immunogenicity can now be included. Adjuvant development research has grown side-by-side with an increasing body of knowledge regarding immune systems and their recognition of foreign microorganisms. Alum-derived adjuvants were used in human vaccines for many years, even though complete understanding of their vaccination-related mechanism of action was lacking. The amount of adjuvants approved for human use has increased recently in line with attempts to interact with and stimulate the immune system. This review is aimed at summarising what is known about adjuvants, focusing on those approved for use in humans, their mechanism of action and why they are so necessary for vaccine candidate formulations; it also discusses what the future may hold in this growing research field.
Collapse
Affiliation(s)
- César Reyes
- PhD Programme in Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá, DC 111321, Colombia; Three-dimensional Structures Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, DC 111321, Colombia; Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá, DC 111166, Colombia.
| | - Manuel A Patarroyo
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá, DC 111321, Colombia; Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, DC 111321, Colombia.
| |
Collapse
|
3
|
Pazos-Castro D, Margain C, Gonzalez-Klein Z, Amores-Borge M, Yuste-Calvo C, Garrido-Arandia M, Zurita L, Esteban V, Tome-Amat J, Diaz-Perales A, Ponz F. Suitability of potyviral recombinant virus-like particles bearing a complete food allergen for immunotherapy vaccines. Front Immunol 2022; 13:986823. [PMID: 36159839 PMCID: PMC9492988 DOI: 10.3389/fimmu.2022.986823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Virus-like particles (VLPs) have been gaining attention as potential platforms for delivery of cargos in nanomedicine. Although animal viruses are largely selected due to their immunostimulatory capacities, VLPs from plant viruses constitute a promising alternative to be considered. VLPs derived from Turnip mosaic virus (TuMV) have proven to present a tridimensional structure suited to display molecules of interest on their surface, making them interesting tools to be studied in theragnostic strategies. Here, we study their potential in the treatment of food allergy by genetically coupling TuMV-derived VLPs to Pru p 3, one of the most dominant allergens in Mediterranean climates. VLPs-Pru p 3 were generated by cloning a synthetic gene encoding the TuMV coat protein and Pru p 3, separated by a linker, into a transient high-expression vector, followed by agroinfiltration in Nicotiana benthamiana plants. The generated fusion protein self-assembled in planta to form the VLPs, which were purified by exclusion chromatography. Their elongated morphology was confirmed by electron microscopy and their size (~400 nm), and monodispersity was confirmed by dynamic light scattering. Initial in vitro characterization confirmed that they were able to induce proliferation of human immune cells. This proliferative capability was enhanced when coupled with the natural lipid ligand of Pru p 3. The resultant formulation, called VLP-Complex, was also able to be transported by intestinal epithelial cells, without affecting the monolayer integrity. In light of all these results, VLP-Complex was furtherly tested in a mouse model of food allergy. Sublingual administration of VLP-Complex could effectively reduce some serological markers associated with allergic responses in mice, such as anti-Pru p 3 sIgE and sIgG2a. Noteworthy, no associated macroscopic, nephritic, or hepatic toxicity was detected, as assessed by weight, blood urea nitrogen (BUN) and galectin-3 analyses, respectively. Our results highlight the standardized production of allergen-coated TuMV-VLPs in N. benthamiana plants. The resulting formula exerts notable immunomodulatory properties without the need for potentially hazardous adjuvants. Accordingly, no detectable toxicity associated to their administration was detected. As a result, we propose them as good candidates to be furtherly studied in the treatment of immune-based pathologies.
Collapse
Affiliation(s)
- Diego Pazos-Castro
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria / Consejo Superior de Investigaciones Científicas (UPM–INIA/CSIC), Universidad Politécnica de Madrid, Madrid, Spain,Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Clémence Margain
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria / Consejo Superior de Investigaciones Científicas (UPM–INIA/CSIC), Universidad Politécnica de Madrid, Madrid, Spain
| | - Zulema Gonzalez-Klein
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria / Consejo Superior de Investigaciones Científicas (UPM–INIA/CSIC), Universidad Politécnica de Madrid, Madrid, Spain,Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Marina Amores-Borge
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria / Consejo Superior de Investigaciones Científicas (UPM–INIA/CSIC), Universidad Politécnica de Madrid, Madrid, Spain,Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Carmen Yuste-Calvo
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria / Consejo Superior de Investigaciones Científicas (UPM–INIA/CSIC), Universidad Politécnica de Madrid, Madrid, Spain
| | - Maria Garrido-Arandia
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria / Consejo Superior de Investigaciones Científicas (UPM–INIA/CSIC), Universidad Politécnica de Madrid, Madrid, Spain,Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Lucía Zurita
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria / Consejo Superior de Investigaciones Científicas (UPM–INIA/CSIC), Universidad Politécnica de Madrid, Madrid, Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Jaime Tome-Amat
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria / Consejo Superior de Investigaciones Científicas (UPM–INIA/CSIC), Universidad Politécnica de Madrid, Madrid, Spain
| | - Araceli Diaz-Perales
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria / Consejo Superior de Investigaciones Científicas (UPM–INIA/CSIC), Universidad Politécnica de Madrid, Madrid, Spain,Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain,*Correspondence: Araceli Diaz-Perales, ; Fernando Ponz,
| | - Fernando Ponz
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria / Consejo Superior de Investigaciones Científicas (UPM–INIA/CSIC), Universidad Politécnica de Madrid, Madrid, Spain,*Correspondence: Araceli Diaz-Perales, ; Fernando Ponz,
| |
Collapse
|
4
|
Ogrina A, Skrastina D, Balke I, Kalnciema I, Jansons J, Bachmann MF, Zeltins A. Comparison of Bacterial Expression Systems Based on Potato Virus Y-like Particles for Vaccine Generation. Vaccines (Basel) 2022; 10:vaccines10040485. [PMID: 35455234 PMCID: PMC9030781 DOI: 10.3390/vaccines10040485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 01/15/2023] Open
Abstract
Plant-based virus-like particle (VLP) vaccines have been studied for years, demonstrating their potential as antigen-presenting platforms. In this paper, we describe the development of, and compare between, simple Escherichia coli-based antigen display platforms for the generation of potato virus Y (PVY) VLP-derived vaccines, thus allowing the production of vaccines from a single bacterial cell culture. We constructed four systems with the major cat allergen Fel d 1; namely, direct fusion with plant virus PVY coat protein (CP), mosaic PVY VLPs, and two coexpression variants of conjugates (SpyTag/SpyCatcher) allowing coexpression and conjugation directly in E. coli cells. For control experiments, we included PVY VLPs chemically coupled with Fel d 1. All constructed PVY-Fel d 1 variants were well expressed and soluble, formed PVY-like filamentous particles, and were recognized by monoclonal Fel d 1 antibodies. Our results indicate that all vaccine variants induced high titers of anti-Fel d 1 antibodies in murine models. Mice that were immunized with the chemically coupled Fel d 1 antigen exhibited the highest antibody titers and antibody-antigen interaction specificity, as detected by binding avidity and recognition of native Fel d 1. IgG1 subclass antibodies were found to be the dominant IgG class against PVY-Fel d 1. PVY CP-derived VLPs represent an efficient platform for the comparison of various antigen presentation systems to help evaluate different vaccine designs.
Collapse
Affiliation(s)
- Anete Ogrina
- Plant Virology Laboratory, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (A.O.); (D.S.); (I.B.); (I.K.); (J.J.)
| | - Dace Skrastina
- Plant Virology Laboratory, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (A.O.); (D.S.); (I.B.); (I.K.); (J.J.)
| | - Ina Balke
- Plant Virology Laboratory, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (A.O.); (D.S.); (I.B.); (I.K.); (J.J.)
| | - Ieva Kalnciema
- Plant Virology Laboratory, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (A.O.); (D.S.); (I.B.); (I.K.); (J.J.)
| | - Juris Jansons
- Plant Virology Laboratory, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (A.O.); (D.S.); (I.B.); (I.K.); (J.J.)
| | - Martin F. Bachmann
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland;
| | - Andris Zeltins
- Plant Virology Laboratory, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (A.O.); (D.S.); (I.B.); (I.K.); (J.J.)
- Correspondence:
| |
Collapse
|
5
|
Kovalenko AO, Ryabchevskaya EM, Evtushenko EA, Manukhova TI, Kondakova OA, Ivanov PA, Arkhipenko MV, Gushchin VA, Nikitin NA, Karpova OV. Vaccine Candidate Against COVID-19 Based on Structurally Modified Plant Virus as an Adjuvant. Front Microbiol 2022; 13:845316. [PMID: 35295298 PMCID: PMC8919459 DOI: 10.3389/fmicb.2022.845316] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/04/2022] [Indexed: 12/24/2022] Open
Abstract
A recombinant vaccine candidate has been developed based on the major coronaviruses’ antigen (S protein) fragments and a novel adjuvant—spherical particles (SPs) formed during tobacco mosaic virus thermal remodeling. The receptor-binding domain and the highly conserved antigenic fragments of the S2 protein subunit were chosen for the design of recombinant coronavirus antigens. The set of three antigens (Co1, CoF, and PE) was developed and used to create a vaccine candidate composed of antigens and SPs (SPs + 3AG). Recognition of SPs + 3AG compositions by commercially available antibodies against spike proteins of SARS-CoV and SARS-CoV-2 was confirmed. The immunogenicity testing of these compositions in a mouse model showed that SPs improved immune response to the CoF and PE antigens. Total IgG titers against both proteins were 9–16 times higher than those to SPs. Neutralizing activity against SARS-CoV-2 in serum samples collected from hamsters immunized with the SPs + 3AG was demonstrated.
Collapse
Affiliation(s)
- Angelina O Kovalenko
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Ekaterina A Evtushenko
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana I Manukhova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga A Kondakova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Peter A Ivanov
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Marina V Arkhipenko
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir A Gushchin
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Nikolai A Nikitin
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga V Karpova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
6
|
Evtushenko EA, Ryabchevskaya EM, Nikitin NA, Atabekov JG, Karpova OV. Plant virus particles with various shapes as potential adjuvants. Sci Rep 2020; 10:10365. [PMID: 32587281 PMCID: PMC7316779 DOI: 10.1038/s41598-020-67023-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/01/2020] [Indexed: 01/15/2023] Open
Abstract
Plant viruses are biologically safe for mammals and can be successfully used as a carrier/platform to present foreign epitopes in the course of creating novel putative vaccines. However, there is mounting evidence that plant viruses, their virus-like and structurally modified particles may also have an immunopotentiating effect on antigens not bound with their surface covalently. Here, we present data on the adjuvant properties of plant viruses with various shapes (Tobacco mosaic virus, TMV; Potato virus X, PVX; Cauliflower mosaic virus, CaMV; Bean mild mosaic virus, BMMV) and structurally modified TMV spherical particles (SPs). We have analysed the effectiveness of immune response to individual model antigens (ovalbumin, OVA/hen egg lysozyme, HEL) and to OVA/HEL in compositions with plant viruses/SPs, and have shown that CaMV, TMV and SPs can effectively induce total IgG titers to model antigen. Some intriguing data were obtained when analysing the immune response to the plant viruses/SPs themselves. Strong immunity was induced to CaMV, BMMV and PVX, whereas TMV and SPs stimulated considerably lower self-IgG titers. Our results provide new insights into the immunopotentiating properties of plant viruses and can be useful in devising adjuvants based on plant viruses.
Collapse
Affiliation(s)
- Ekaterina A Evtushenko
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russian Federation.
| | - Ekaterina M Ryabchevskaya
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russian Federation
| | - Nikolai A Nikitin
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russian Federation
| | - Joseph G Atabekov
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russian Federation
| | - Olga V Karpova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russian Federation
| |
Collapse
|
7
|
Wang ZB, Xu J. Better Adjuvants for Better Vaccines: Progress in Adjuvant Delivery Systems, Modifications, and Adjuvant-Antigen Codelivery. Vaccines (Basel) 2020; 8:vaccines8010128. [PMID: 32183209 PMCID: PMC7157724 DOI: 10.3390/vaccines8010128] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional aluminum adjuvants can trigger strong humoral immunity but weak cellular immunity, limiting their application in some vaccines. Currently, various immunomodulators and delivery carriers are used as adjuvants, and the mechanisms of action of some of these adjuvants are clear. However, customizing targets of adjuvant action (cellular or humoral immunity) and action intensity (enhancement or inhibition) according to different antigens selected is time-consuming. Here, we review the adjuvant effects of some delivery systems and immune stimulants. In addition, to improve the safety, effectiveness, and accessibility of adjuvants, new trends in adjuvant development and their modification strategies are discussed.
Collapse
Affiliation(s)
| | - Jing Xu
- Correspondence: ; Tel.: +86-(10)-5224-5008
| |
Collapse
|
8
|
Zamani-Babgohari M, Hefferon KL, Huang T, AbouHaidar MG. How Computational Epitope Mapping Identifies the Interactions between Nanoparticles Derived from Papaya Mosaic Virus Capsid Proteins and Immune System. Curr Genomics 2020; 20:214-225. [PMID: 31929728 PMCID: PMC6935957 DOI: 10.2174/1389202920666190527080230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 11/22/2022] Open
Abstract
Background Nanoparticles derived from plant viruses possess fascinating structures, versa-tile functions and safe properties, rendering them valuable for a variety of applications. Papaya mosaic Virus-Like Particles (VLPs) are nanoparticles that contain a repetitive number of virus capsid proteins (PMV-CP) and are considered to be promising platforms for vaccine design. Previous studies have re-ported the antigenicity of PMV nanoparticles in mammalian systems. Materials and Methods As experiments that concern vaccine development require careful design and can be time consuming, computational experiments are of particular importance. Therefore, prior to ex-pressing PMV-CP in E. coli and producing nanoparticles, we performed an in silico analysis of the virus particles using software programs based on a series of sophisticated algorithms and modeling networks as useful tools for vaccine design. A computational study of PMV-CP in the context of the immune sys-tem reaction allowed us to clarify particle structure and other unknown features prior to their introduc-tion in vitro. Results The results illustrated that the produced nanoparticles can trigger an immune response in the absence of fusion with any foreign antigen. Conclusion Based on the in silico analyses, the empty capsid protein was determined to be recognised by different B and T cells, as well as cells which carry MHC epitopes.
Collapse
Affiliation(s)
| | - Kathleen L Hefferon
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, ON, Canada
| | - Tsu Huang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, ON, Canada
| | - Mounir G AbouHaidar
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, ON, Canada
| |
Collapse
|
9
|
Kumar BK, Kumar KM, Reddy GBM, Abraham S, Yogisharadhya R, Prashantha CN. Molecular Modelling and Insilico Engineering of PapMV-CP Towards Display and Development of Capripox Viral Like Particles Based on Immunogenic P32 Envelop Protein is the Homologous of the Vaccinia-Viral H3L Gene: An Insilico Approach. Int J Pept Res Ther 2020; 26:2155-2167. [PMID: 32421016 PMCID: PMC7222904 DOI: 10.1007/s10989-019-10007-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2019] [Indexed: 11/24/2022]
Abstract
Viral-like particles are assembled from capsid protein structural subunits of different viruses and have ability to establish research in biomedicals, like construction of novel safety vaccines, gene therapy vectors by delivering systems for nucleic acids, small biomolecules and diagnostics. Papaya Mosaic Viral nanoparticals can provide as a vaccine candidate helps to increase the immunity by fusing the epitope based peptide antigen. Capripox viruses are the genus comprises Lymphy skin-disease, Sheep and Goat pox Viruses are notified by The World Animal Health Organization (OIE) based on their economic impotence act as a transboundary animal diseases viruses of sheep, goat, and cattle’s respectively. Plant viral based innovative vaccines have been emerged ineffective vaccine development. This research describes the engineering and development of a new vaccine candidate by display immunogenic peptide using the carrier capsid protein of Papaya Mosaic Virus. The Capripox virus P32 immunogenic protein is homologous of the vaccinia virus H3L gene displayed PapMV CP. The antigenicity of P32 protein epitope lowest score among epitopes C-terminally docked epitopes are EP6 > EP3 > EP8 as well the lowest score among epitopes N-terminally docked epitopes are EP8 > EP3 > EP6 presented on the N-terminus of PMV CP region which are found to be suitable for epitope display. And these modelled immunogenic peptide could be used to develop a viral like particles. Epitope based Antibody developed against immunogenic epitopic regions can contribute to a novel and robust protection from infection. As well might be used for developing cost effective detection kits for Transboundary animal disease viruses.
Collapse
Affiliation(s)
| | - K M Kumar
- 1Department of Biotechnology, REVA University, Bengaluru, 560064 India.,3Dayananda Sagar College of Engineering, Bengaluru, India
| | - G B Manjunatha Reddy
- 2National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, India
| | - Sunil Abraham
- 4Department of Animal Behavior and Physiology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021 India
| | - R Yogisharadhya
- 2National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, India
| | - C N Prashantha
- 1Department of Biotechnology, REVA University, Bengaluru, 560064 India
| |
Collapse
|
10
|
Santoni M, Zampieri R, Avesani L. Plant Virus Nanoparticles for Vaccine Applications. Curr Protein Pept Sci 2020; 21:344-356. [PMID: 32048964 DOI: 10.2174/1389203721666200212100255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/16/2019] [Accepted: 10/19/2019] [Indexed: 12/29/2022]
Abstract
In the rapidly evolving field of nanotechnology, plant virus nanoparticles (pVNPs) are emerging as powerful tools in diverse applications ranging from biomedicine to materials science. The proteinaceous structure of plant viruses allows the capsid structure to be modified by genetic engineering and/or chemical conjugation with nanoscale precision. This means that pVNPs can be engineered to display peptides and proteins on their external surface, including immunodominant peptides derived from pathogens allowing pVNPs to be used for active immunization. In this context, pVNPs are safer than VNPs derived from mammalian viruses because there is no risk of infection or reversion to pathogenicity. Furthermore, pVNPs can be produced rapidly and inexpensively in natural host plants or heterologous production platforms. In this review, we discuss the use of pVNPs for the delivery of peptide antigens to the host immune in pre-clinical studies with the final aim of promoting systemic immunity against the corresponding pathogens. Furthermore, we described the versatility of plant viruses, with innate immunostimulatory properties, in providing a huge natural resource of carriers that can be used to develop the next generation of sustainable vaccines.
Collapse
Affiliation(s)
- Mattia Santoni
- Department of Biotechnology, University of Verona. Strada Le Grazie, 15. 37134 Verona, Italy
| | | | - Linda Avesani
- Department of Biotechnology, University of Verona. Strada Le Grazie, 15. 37134 Verona, Italy
- Diamante srl. Strada Le Grazie, 15. 37134 Verona, Italy
| |
Collapse
|
11
|
Laliberté-Gagné MÈ, Bolduc M, Thérien A, Garneau C, Casault P, Savard P, Estaquier J, Leclerc D. Increased Immunogenicity of Full-Length Protein Antigens through Sortase-Mediated Coupling on the PapMV Vaccine Platform. Vaccines (Basel) 2019; 7:vaccines7020049. [PMID: 31212772 PMCID: PMC6630801 DOI: 10.3390/vaccines7020049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 01/16/2023] Open
Abstract
Background: Flexuous rod-shape nanoparticles—made of the coat protein of papaya mosaic virus (PapMV)—provide a promising vaccine platform for the presentation of viral antigens to immune cells. The PapMV nanoparticles can be combined with viral antigens or covalently linked to them. The coupling to PapMV was shown to improve the immune response triggered against peptide antigens (<39 amino acids) but it remains to be tested if large proteins can be coupled to this platform and if the coupling will lead to an immune response improvement. Methods: Two full-length recombinant viral proteins, the influenza nucleoprotein (NP) and the simian immunodeficiency virus group-specific protein antigen (GAG) were coupled to PapMV nanoparticles using sortase A. Mice were immunized with the nanoparticles coupled to the antigens and the immune response directed to the antigens were analyzed by ELISA and ELISPOT. Results: We showed the feasibility of coupling two different full-length proteins (GAG and NP) to the nanoparticle. We also showed that the coupling to PapMV nanoparticles improved significantly the humoral and the cytotoxic T lymphocyte (CTL) immune response to the antigens. Conclusion: This proof of concept demonstrates the versatility and the efficacy of the PapMV vaccine platform in the design of vaccines against viral diseases.
Collapse
Affiliation(s)
- Marie-Ève Laliberté-Gagné
- Department of Microbiology, Infectiology and Immunology, faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada.
| | - Marilène Bolduc
- Department of Microbiology, Infectiology and Immunology, faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada.
| | - Ariane Thérien
- Department of Microbiology, Infectiology and Immunology, faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada.
| | - Caroline Garneau
- Department of Microbiology, Infectiology and Immunology, faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada.
| | - Philippe Casault
- Department of Microbiology, Infectiology and Immunology, faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada.
| | - Pierre Savard
- Department of Neurosciences, faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada.
| | - Jérome Estaquier
- Department of Microbiology, Infectiology and Immunology, faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada.
| | - Denis Leclerc
- Department of Microbiology, Infectiology and Immunology, faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada.
| |
Collapse
|
12
|
Ibrahim A, Odon V, Kormelink R. Plant Viruses in Plant Molecular Pharming: Toward the Use of Enveloped Viruses. FRONTIERS IN PLANT SCIENCE 2019; 10:803. [PMID: 31275344 PMCID: PMC6594412 DOI: 10.3389/fpls.2019.00803] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/04/2019] [Indexed: 05/03/2023]
Abstract
Plant molecular pharming has emerged as a reliable platform for recombinant protein expression providing a safe and low-cost alternative to bacterial and mammalian cells-based systems. Simultaneously, plant viruses have evolved from pathogens to molecular tools for recombinant protein expression, chimaeric viral vaccine production, and lately, as nanoagents for drug delivery. This review summarizes the genesis of viral vectors and agroinfection, the development of non-enveloped viruses for various biotechnological applications, and the on-going research on enveloped plant viruses.
Collapse
|
13
|
The quest for a nanoparticle-based vaccine inducing broad protection to influenza viruses. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2563-2574. [DOI: 10.1016/j.nano.2018.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/06/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
|
14
|
Narayanan KB, Han SS. Recombinant helical plant virus-based nanoparticles for vaccination and immunotherapy. Virus Genes 2018; 54:623-637. [PMID: 30008053 DOI: 10.1007/s11262-018-1583-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/23/2018] [Indexed: 01/15/2023]
Abstract
Plant virus-based nanoparticles (PVNs) are self-assembled capsid proteins of plant viruses, and can be virus-like nanoparticles (VLPs) or virus nanoparticles (VNPs). Plant viruses showing helical capsid symmetry are used as a versatile platform for the presentation of multiple copies of well-arrayed immunogenic antigens of various disease pathogens. Helical PVNs are non-infectious, biocompatible, and naturally immunogenic, and thus, they are suitable antigen carriers for vaccine production and can trigger humoral and/or cellular immune responses. Furthermore, recombinant PVNs as vaccines and adjuvants can be expressed in prokaryotic and eukaryotic systems, and plant expression systems can be used to produce cost-effective antigenic peptides on the surfaces of recombinant helical PVNs. This review discusses various recombinant helical PVNs based on different plant viral capsid shells that have been developed as prophylactic and/or therapeutic vaccines against bacterial, viral, and protozoal diseases, and cancer.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.,Department of Nano, Medical & Polymer Materials, College of Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea. .,Department of Nano, Medical & Polymer Materials, College of Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
15
|
Lin LCW, Chattopadhyay S, Lin JC, Hu CMJ. Advances and Opportunities in Nanoparticle- and Nanomaterial-Based Vaccines against Bacterial Infections. Adv Healthc Mater 2018; 7:e1701395. [PMID: 29508547 DOI: 10.1002/adhm.201701395] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/22/2018] [Indexed: 02/06/2023]
Abstract
As the dawn of the postantibiotic era we approach, antibacterial vaccines are becoming increasingly important for managing bacterial infection and reducing the need for antibiotics. Despite the success of vaccination, vaccines remain unavailable for many pressing microbial diseases, including tuberculosis, chlamydia, and staphylococcus infections. Amid continuing research efforts in antibacterial vaccine development, the advancement of nanomaterial engineering has brought forth new opportunities in vaccine designs. With increasing knowledge in antibacterial immunity and immunologic adjuvants, innovative nanoparticles are designed to elicit the appropriate immune responses for effective antimicrobial defense. Rationally designed nanoparticles are demonstrated to overcome delivery barriers to shape the adaptive immunity. This article reviews the advances in nanoparticle- and nanomaterial-based antibacterial vaccines and summarizes the development of nanoparticulate adjuvants for immune potentiation against microbial pathogens. In addition, challenges and progress in ongoing antibacterial vaccine development are discussed to highlight the opportunities for future vaccine designs.
Collapse
Affiliation(s)
- Leon Chien-Wei Lin
- Institute of Biomedical Sciences; Academia Sinica; 128, Sec. 2, Academia Road Nangang District Taipei 11529 Taiwan
| | - Saborni Chattopadhyay
- Institute of Biomedical Sciences; Academia Sinica; 128, Sec. 2, Academia Road Nangang District Taipei 11529 Taiwan
| | - Jung-Chen Lin
- Institute of Biomedical Sciences; Academia Sinica; 128, Sec. 2, Academia Road Nangang District Taipei 11529 Taiwan
| | - Che-Ming Jack Hu
- Institute of Biomedical Sciences; Academia Sinica; 128, Sec. 2, Academia Road Nangang District Taipei 11529 Taiwan
| |
Collapse
|
16
|
Masavuli MG, Wijesundara DK, Torresi J, Gowans EJ, Grubor-Bauk B. Preclinical Development and Production of Virus-Like Particles As Vaccine Candidates for Hepatitis C. Front Microbiol 2017; 8:2413. [PMID: 29259601 PMCID: PMC5723323 DOI: 10.3389/fmicb.2017.02413] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C Virus (HCV) infects 2% of the world’s population and is the leading cause of liver disease and liver transplantation. It poses a serious and growing worldwide public health problem that will only be partially addressed with the introduction of new antiviral therapies. However, these treatments will not prevent re-infection particularly in high risk populations. The introduction of a HCV vaccine has been predicted, using simulation models in a high risk population, to have a significant effect on reducing the incidence of HCV. A vaccine with 50 to 80% efficacy targeted to high-risk intravenous drug users could dramatically reduce HCV incidence in this population. Virus like particles (VLPs) are composed of viral structural proteins which self-assemble into non-infectious particles that lack genetic material and resemble native viruses. Thus, VLPs represent a safe and highly immunogenic vaccine delivery platform able to induce potent adaptive immune responses. Currently, many VLP-based vaccines have entered clinical trials, while licensed VLP vaccines for hepatitis B virus (HBV) and human papilloma virus (HPV) have been in use for many years. The HCV core, E1 and E2 proteins can self-assemble into immunogenic VLPs while inclusion of HCV antigens into heterogenous (chimeric) VLPs is also a promising approach. These VLPs are produced using different expression systems such as bacterial, yeast, mammalian, plant, or insect cells. Here, this paper will review HCV VLP-based vaccines and their immunogenicity in animal models as well as the different expression systems used in their production.
Collapse
Affiliation(s)
- Makutiro Ghislain Masavuli
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Danushka K Wijesundara
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Eric J Gowans
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Branka Grubor-Bauk
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
17
|
Thérien A, Bédard M, Carignan D, Rioux G, Gauthier-Landry L, Laliberté-Gagné MÈ, Bolduc M, Savard P, Leclerc D. A versatile papaya mosaic virus (PapMV) vaccine platform based on sortase-mediated antigen coupling. J Nanobiotechnology 2017; 15:54. [PMID: 28720097 PMCID: PMC5516373 DOI: 10.1186/s12951-017-0289-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 07/10/2017] [Indexed: 02/04/2023] Open
Abstract
Background Flexuous rod-shaped nanoparticles made of the coat protein (CP) of papaya mosaic virus (PapMV) have been shown to trigger innate immunity through engagement of toll-like receptor 7 (TLR7). PapMV nanoparticles can also serve as a vaccine platform as they can increase the immune response to fused peptide antigens. Although this approach shows great potential, fusion of antigens directly to the CP open reading frame (ORF) is challenging because the fused peptides can alter the structure of the CP and its capacity to self assemble into nanoparticles—a property essential for triggering an efficient immune response to the peptide. This represents a serious limitation to the utility of this approach as fusion of small peptides only is tolerated. Results We have developed a novel approach in which peptides are fused directly to pre-formed PapMV nanoparticles. This approach is based on the use of a bacterial transpeptidase (sortase A; SrtA) that can attach the peptide directly to the nanoparticle. An engineered PapMV CP harbouring the SrtA recognition motif allows efficient coupling. To refine our engineering, and to predict the efficacy of coupling with SrtA, we modeled the PapMV structure based on the known structure of PapMV CP and on recent reports revealing the structure of two closely related potexviruses: pepino mosaic virus (PepMV) and bamboo mosaic virus (BaMV). We show that SrtA can allow the attachment of long peptides [Influenza M2e peptide (26 amino acids) and the HIV-1 T20 peptide (39 amino acids)] to PapMV nanoparticles. Consistent with our PapMV structural model, we show that around 30% of PapMV CP subunits in each nanoparticle can be fused to the peptide antigen. As predicted, engineered nanoparticles were capable of inducing a strong antibody response to the fused antigen. Finally, in a challenge study with influenza virus, we show that mice vaccinated with PapMV-M2e are protected from infection. Conclusions This technology will allow the development of vaccines harbouring long peptides containing several B and/or T cell epitopes that can contribute to a broad and robust protection from infection. The design can be fast, versatile and can be adapted to the development of vaccines for many infectious diseases as well as cancer vaccines. Electronic supplementary material The online version of this article (doi:10.1186/s12951-017-0289-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ariane Thérien
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, 2705 Boul. Laurier, Quebec City, PQ, G1V 4G2, Canada
| | - Mikaël Bédard
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, 2705 Boul. Laurier, Quebec City, PQ, G1V 4G2, Canada
| | - Damien Carignan
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, 2705 Boul. Laurier, Quebec City, PQ, G1V 4G2, Canada
| | - Gervais Rioux
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, 2705 Boul. Laurier, Quebec City, PQ, G1V 4G2, Canada
| | - Louis Gauthier-Landry
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, 2705 Boul. Laurier, Quebec City, PQ, G1V 4G2, Canada
| | - Marie-Ève Laliberté-Gagné
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, 2705 Boul. Laurier, Quebec City, PQ, G1V 4G2, Canada
| | - Marilène Bolduc
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, 2705 Boul. Laurier, Quebec City, PQ, G1V 4G2, Canada
| | - Pierre Savard
- Neurosciences, Laval University, 2705 Boul. Laurier, Québec City, PQ, G1V 4G2, Canada
| | - Denis Leclerc
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, 2705 Boul. Laurier, Quebec City, PQ, G1V 4G2, Canada.
| |
Collapse
|
18
|
Study of rubella candidate vaccine based on a structurally modified plant virus. Antiviral Res 2017; 144:27-33. [PMID: 28511994 DOI: 10.1016/j.antiviral.2017.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 12/30/2022]
Abstract
A novel rubella candidate vaccine based on a structurally modified plant virus - spherical particles (SPs) - was developed. SPs generated by the thermal remodelling of the tobacco mosaic virus are promising platforms for the development of vaccines. SPs combine unique properties: biosafety, stability, high immunogenicity and the effective adsorption of antigens. We assembled in vitro and characterised complexes (candidate vaccine) based on SPs and the rubella virus recombinant antigen. The candidate vaccine induced a strong humoral immune response against rubella. The IgG isotypes ratio indicated the predominance of IgG1 which plays a key role in immunity to natural rubella infection. The immune response was generally directed against the rubella antigen within the complexes. We suggest that SPs can act as a platform (depot) for the rubella antigen, enhancing specific immune response. Our results demonstrate that SPs-antigen complexes can be an effective and safe candidate vaccine against rubella.
Collapse
|
19
|
Abstract
For over two decades now, plants have been explored for their potential to act as production platforms for biopharmaceuticals, such as vaccines and monoclonal antibodies. More recently, plant viruses have been designed as nontoxic nanoparticles that can target a variety of cancers and thus empower the immune system to slow or even reverse tumor progression. The following paper describes the employment of plant virus expression vectors for the treatment of some of the most challenging diseases known today. The paper concludes with a projection of the multiple avenues by which virus nanoparticles could impact developing countries.
Collapse
Affiliation(s)
- Kathleen Hefferon
- Department of Food Sciences, Cornell University, Ithaca, NY 14886, USA
| |
Collapse
|
20
|
Rioux G, Carignan D, Russell A, Bolduc M, Gagné MÈL, Savard P, Leclerc D. Influence of PapMV nanoparticles on the kinetics of the antibody response to flu vaccine. J Nanobiotechnology 2016; 14:43. [PMID: 27282291 PMCID: PMC4901503 DOI: 10.1186/s12951-016-0200-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/26/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The addition of an adjuvant to a vaccine is a promising approach to increasing strength and immunogenicity towards antigens. Despite the fact that adjuvants have been used in vaccines for decades, their mechanisms of action and their influence on the kinetics of the immune response are still not very well understood. The use of papaya mosaic virus (PapMV) nanoparticles-a novel TLR7 agonist-was recently shown to improve and broaden the immune response directed to trivalent inactivated flu vaccine (TIV) in mice and ferrets. RESULTS We investigated the capacity of PapMV nanoparticles to increase the speed of the immune response toward TIV. PapMV nanoparticles induced a faster and stronger humoral response to TIV that was measured as early as 5 days post-immunization. The addition of PapMV nanoparticles was shown to speed up the differentiation of B-cells into early plasma cells, and increased the growth of germinal centers in a CD4+ dependent manner. TIV vaccination with PapMV nanoparticles as an adjuvant protected mice against a lethal infection as early as 10 days post-immunization. CONCLUSION In conclusion, PapMV nanoparticles are able to accelerate a broad humoral response to TIV. This property is of the utmost importance in the field of vaccination, especially in the case of pandemics, where populations need to be protected as soon as possible after vaccination.
Collapse
Affiliation(s)
- Gervais Rioux
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, 2705 Boul. Laurier, Quebec City, PQ, G1V 4G2, Canada
| | - Damien Carignan
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, 2705 Boul. Laurier, Quebec City, PQ, G1V 4G2, Canada
| | - Alexis Russell
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, 2705 Boul. Laurier, Quebec City, PQ, G1V 4G2, Canada
| | - Marilène Bolduc
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, 2705 Boul. Laurier, Quebec City, PQ, G1V 4G2, Canada
| | - Marie-Ève Laliberté Gagné
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, 2705 Boul. Laurier, Quebec City, PQ, G1V 4G2, Canada
| | - Pierre Savard
- Neurosciences, Laval University, 2705 Boul. Laurier, Quebec City, PQ, G1V 4G2, Canada
| | - Denis Leclerc
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, 2705 Boul. Laurier, Quebec City, PQ, G1V 4G2, Canada.
| |
Collapse
|
21
|
Koch C, Wabbel K, Eber FJ, Krolla-Sidenstein P, Azucena C, Gliemann H, Eiben S, Geiger F, Wege C. Modified TMV Particles as Beneficial Scaffolds to Present Sensor Enzymes. FRONTIERS IN PLANT SCIENCE 2015; 6:1137. [PMID: 26734040 PMCID: PMC4689848 DOI: 10.3389/fpls.2015.01137] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/30/2015] [Indexed: 05/22/2023]
Abstract
Tobacco mosaic virus (TMV) is a robust nanotubular nucleoprotein scaffold increasingly employed for the high density presentation of functional molecules such as peptides, fluorescent dyes, and antibodies. We report on its use as advantageous carrier for sensor enzymes. A TMV mutant with a cysteine residue exposed on every coat protein (CP) subunit (TMVCys) enabled the coupling of bifunctional maleimide-polyethylene glycol (PEG)-biotin linkers (TMVCys/Bio). Its surface was equipped with two streptavidin [SA]-conjugated enzymes: glucose oxidase ([SA]-GOx) and horseradish peroxidase ([SA]-HRP). At least 50% of the CPs were decorated with a linker molecule, and all thereof with active enzymes. Upon use as adapter scaffolds in conventional "high-binding" microtiter plates, TMV sticks allowed the immobilization of up to 45-fold higher catalytic activities than control samples with the same input of enzymes. Moreover, they increased storage stability and reusability in relation to enzymes applied directly to microtiter plate wells. The functionalized TMV adsorbed to solid supports showed a homogeneous distribution of the conjugated enzymes and structural integrity of the nanorods upon transmission electron and atomic force microscopy. The high surface-increase and steric accessibility of the viral scaffolds in combination with the biochemical environment provided by the plant viral coat may explain the beneficial effects. TMV can, thus, serve as a favorable multivalent nanoscale platform for the ordered presentation of bioactive proteins.
Collapse
Affiliation(s)
- Claudia Koch
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of StuttgartStuttgart, Germany
| | - Katrin Wabbel
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of StuttgartStuttgart, Germany
| | - Fabian J. Eber
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of StuttgartStuttgart, Germany
| | - Peter Krolla-Sidenstein
- Chemistry of Oxydic and Organic Interfaces, Karlsruhe Institute of Technology, Institute of Functional InterfacesKarlsruhe, Germany
| | - Carlos Azucena
- Chemistry of Oxydic and Organic Interfaces, Karlsruhe Institute of Technology, Institute of Functional InterfacesKarlsruhe, Germany
| | - Hartmut Gliemann
- Chemistry of Oxydic and Organic Interfaces, Karlsruhe Institute of Technology, Institute of Functional InterfacesKarlsruhe, Germany
| | - Sabine Eiben
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of StuttgartStuttgart, Germany
| | - Fania Geiger
- Department of New Materials and Biosystems, Max-Planck-Institute for Intelligent SystemsStuttgart, Germany
| | - Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of StuttgartStuttgart, Germany
| |
Collapse
|
22
|
Carignan D, Thérien A, Rioux G, Paquet G, Gagné MÈL, Bolduc M, Savard P, Leclerc D. Engineering of the PapMV vaccine platform with a shortened M2e peptide leads to an effective one dose influenza vaccine. Vaccine 2015; 33:7245-7253. [DOI: 10.1016/j.vaccine.2015.10.123] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/17/2015] [Accepted: 10/28/2015] [Indexed: 12/18/2022]
|
23
|
Hassani-Mehraban A, Creutzburg S, van Heereveld L, Kormelink R. Feasibility of Cowpea chlorotic mottle virus-like particles as scaffold for epitope presentations. BMC Biotechnol 2015; 15:80. [PMID: 26311254 PMCID: PMC4551372 DOI: 10.1186/s12896-015-0180-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 06/29/2015] [Indexed: 11/23/2022] Open
Abstract
Background & Methods Within the last decade Virus-Like Particles (VLPs) have increasingly received attention from scientists for their use as a carrier of (peptide) molecules or as scaffold to present epitopes for use in subunit vaccines. To test the feasibility of Cowpea chlorotic mottle virus (CCMV) particles as a scaffold for epitope presentation and identify sites for epitope fusion or insertion that would not interfere with virus-like-particle formation, chimeric CCMV coat protein (CP) gene constructs were engineered, followed by expression in E. coli and assessment of VLP formation. Various constructs were made encoding a 6x-His-tag, or selected epitopes from Influenza A virus [IAV] (M2e, HA) or Foot and Mouth Disease Virus [FMDV] (VP1 and 2C). The epitopes were either inserted 1) in predicted exposed loop structures of the CCMV CP protein, 2) fused to the amino- (N) or carboxyl-terminal (C) ends, or 3) to a N-terminal 24 amino acid (aa) deletion mutant (N∆24-CP) of the CP protein. Results High levels of insoluble protein expression, relative to proteins from the entire cell lysate, were obtained for CCMV CP and all chimeric derivatives. A straightforward protocol was used that, without the use of purification columns, successfully enabled CCMV CP protein solubilization, reassembly and subsequent collection of CCMV CP VLPs. While insertions of His-tag or M2e (7-23 aa) into the predicted external loop structures did abolish VLP formation, high yields of VLPs were obtained with all fusions of His-tag or various epitopes (13- 27 aa) from IAV and FMDV at the N- or C-terminal ends of CCMV CP or N∆24-CP. VLPs derived from CCMV CP still encapsulated RNA, while those from CCMV CP-chimera containing a negatively charged N-terminal domain had lost this ability. The usefulness and rapid ease of exploitation of CCMV VLPs for the production of potential subunit vaccines was demonstrated with the synthesis of chimeric CCMV VLPs containing selected sequences from the GN and GC glycoproteins of the recently emerged Schmallenberg orthobunyavirus at both termini of the CP protein. Conclusions CCMV VLPs can be successfully exploited as scaffold for epitope fusions up to 31 aa at the N- and C-terminus, and at a N-terminal 24 amino acid (aa) deletion mutant (N∆24-CP) of the CP protein.
Collapse
Affiliation(s)
- Afshin Hassani-Mehraban
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Sjoerd Creutzburg
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Luc van Heereveld
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Richard Kormelink
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
24
|
Plant Viruses as Nanoparticle-Based Vaccines and Adjuvants. Vaccines (Basel) 2015; 3:620-37. [PMID: 26350598 PMCID: PMC4586470 DOI: 10.3390/vaccines3030620] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/22/2015] [Accepted: 07/29/2015] [Indexed: 12/11/2022] Open
Abstract
Vaccines are considered one of the greatest medical achievements in the battle against infectious diseases. However, the intractability of various diseases such as hepatitis C, HIV/AIDS, malaria, tuberculosis, and cancer poses persistent hurdles given that traditional vaccine-development methods have proven to be ineffective; as such, these challenges have driven the emergence of novel vaccine design approaches. In this regard, much effort has been put into the development of new safe adjuvants and vaccine platforms. Of particular interest, the utilization of plant virus-like nanoparticles and recombinant plant viruses has gained increasing significance as an effective tool in the development of novel vaccines against infectious diseases and cancer. The present review summarizes recent advances in the use of plant viruses as nanoparticle-based vaccines and adjuvants and their mechanism of action. Harnessing plant-virus immunogenic properties will enable the design of novel, safe, and efficacious prophylactic and therapeutic vaccines against disease.
Collapse
|
25
|
Li C, Yamagishi N, Kaido M, Yoshikawa N. Presentation of epitope sequences from foreign viruses on the surface of apple latent spherical virus particles. Virus Res 2014; 190:118-26. [PMID: 25058477 DOI: 10.1016/j.virusres.2014.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/11/2014] [Accepted: 07/12/2014] [Indexed: 02/07/2023]
Abstract
Apple latent spherical virus (ALSV) has small isometric particles that are comprised of two single-stranded RNA species (RNA1 and RNA2) and three capsid proteins (Vp25, Vp20, and Vp24). We constructed ALSV vectors for presenting foreign peptides on the surface of virus particles. In these vectors, peptides can be fused to either of two C-terminal regions of Vp20 (amino acid positions between G171 and P172 or between P172 and L173) or the C-terminus (T192) of Vp24. An ALSV vector presenting the epitope sequences of the coat protein (CP) of zucchini yellow mosaic virus (ZYMV) could systemically infect host plants and was specifically recognized by antiserum against ZYMV by ELISA, immunoelectron microscopy, and immunoblotting. RT-PCR showed that the epitope sequences up to 20 amino acids were stably maintained in the chimeric ALSV for more than 10 serial passages and at least six months. Purified chimeric ALSV particles induced an immune response and the production of antibodies against ZYMV-CP in rabbits. The ALSV vector was also used for expression of an epitope from VP1 of foot-and-mouth disease virus.
Collapse
Affiliation(s)
- C Li
- Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - N Yamagishi
- Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - M Kaido
- Department of Bioresource, Kyoto University, Kyoto 606-8502, Japan
| | - N Yoshikawa
- Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan.
| |
Collapse
|
26
|
Rioux G, Mathieu C, Russell A, Bolduc M, Laliberté-Gagné ME, Savard P, Leclerc D. PapMV nanoparticles improve mucosal immune responses to the trivalent inactivated flu vaccine. J Nanobiotechnology 2014; 12:19. [PMID: 24885884 PMCID: PMC4022981 DOI: 10.1186/1477-3155-12-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 04/23/2014] [Indexed: 11/14/2022] Open
Abstract
Background Trivalent inactivated flu vaccines (TIV) are currently the best means to prevent influenza infections. However, the protection provided by TIV is partial (about 50%) and it is needed to improve the efficacy of protection. Since the respiratory tract is the main site of influenza replications, a vaccine that triggers mucosal immunity in this region can potentially improve protection against this disease. Recently, PapMV nanoparticles used as an adjuvant in a formulation with TIV administered by the subcutaneous route have shown improving the immune response directed to the TIV and protection against an influenza challenge. Findings In the present study, we showed that intranasal instillation with a formulation containing TIV and PapMV nanoparticles significantly increase the amount of IgG, IgG2a and IgA in lungs of vaccinated mice as compared to mice that received TIV only. Instillation with the adjuvanted formulation leads to a more robust protection against an influenza infection with a strain that is lethal to mice vaccinated with the TIV. Conclusions We demonstrate for the first time that PapMV nanoparticles are an effective and potent mucosal adjuvant for vaccination.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Denis Leclerc
- Department of Microbiology, Infectiology and Immunology, 'Centre de recherche en Infectiologie', Laval University, 2705 boul, Laurier, Quebec City, PQ G1V 4G2, Canada.
| |
Collapse
|
27
|
Bellier B, Klatzmann D. Virus-like particle-based vaccines against hepatitis C virus infection. Expert Rev Vaccines 2014; 12:143-54. [DOI: 10.1586/erv.13.10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Lebel MÈ, Daudelin JF, Chartrand K, Tarrab E, Kalinke U, Savard P, Labrecque N, Leclerc D, Lamarre A. Nanoparticle Adjuvant Sensing by TLR7 Enhances CD8+ T Cell–Mediated Protection from Listeria Monocytogenes Infection. THE JOURNAL OF IMMUNOLOGY 2013; 192:1071-8. [DOI: 10.4049/jimmunol.1302030] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Leclerc D, Rivest M, Babin C, López-Macias C, Savard P. A novel M2e based flu vaccine formulation for dogs. PLoS One 2013; 8:e77084. [PMID: 24098576 PMCID: PMC3788766 DOI: 10.1371/journal.pone.0077084] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/05/2013] [Indexed: 12/04/2022] Open
Abstract
Background The USA 2004 influenza virus outbreak H3N8 in dogs heralded the emergence of a new disease in this species. A new inactivated H3N8 vaccine was developed to control the spread of the disease but, as in humans and swine, it is anticipated that the virus will mutate shift and drift in the dog population. Therefore, there is a need for a vaccine that can trigger a broad protection to prevent the spread of the virus and the emergence of new strains. Methodology and Principal Findings The universal M2e peptide is identical in almost all the H3N8 influenza strains sequenced to date and known to infect dogs. This epitope is therefore a good choice for development of a vaccine to provide broad protection. Malva mosaic virus (MaMV) nanoparticles were chosen as a vaccine platform to improve the stability of the M2e peptide and increase its immunogenicity in animals. The addition of an adjuvant (OmpC) purified from Salmonella typhi membrane in the vaccine formulation increased the immune response directed to the M2e peptide significantly and enlarged the protection to include the heterosubtypic strain of influenza in a mouse model. An optimal vaccine formulation was also shown to be immunogenic in dogs. Conclusions and Significance The MaMV vaccine platform triggered an improved immune response directed towards the universal M2e peptide. The adjuvant OmpC increased the immune response to the M2e peptide and protection to a heterosubtypic influenza strain that harbors a different M2e peptide in a mouse model. Antibodies generated by the vaccine formulation showed cross-reactivity with M2e peptides derived from influenza strains H9N2, H5N1 and H1N1. The vaccine formulation shows a potential for commercialization of a new M2e based vaccine in dogs.
Collapse
Affiliation(s)
- Denis Leclerc
- Microbiology, Infectiology and Immunology (Infectious Disease Research Centre), Laval University, Quebec City, P. Quebec, Canada
- * E-mail:
| | - Marie Rivest
- Microbiology, Infectiology and Immunology (Infectious Disease Research Centre), Laval University, Quebec City, P. Quebec, Canada
| | - Cindy Babin
- Microbiology, Infectiology and Immunology (Infectious Disease Research Centre), Laval University, Quebec City, P. Quebec, Canada
| | - Constantino López-Macias
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre “Siglo XXI”, Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Pierre Savard
- Neurosciences, Laval University, Quebec City, P. Quebec, Canada
| |
Collapse
|
30
|
Babin C, Majeau N, Leclerc D. Engineering of papaya mosaic virus (PapMV) nanoparticles with a CTL epitope derived from influenza NP. J Nanobiotechnology 2013; 11:10. [PMID: 23556511 PMCID: PMC3621093 DOI: 10.1186/1477-3155-11-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/25/2013] [Indexed: 11/29/2022] Open
Abstract
Background The ever-present threat of infectious disease, e.g. influenza pandemics, and the increasing need for new and effective treatments in immunotherapy are the driving forces that motivate research into new and innovative vaccine platforms. Ideally, such platforms should trigger an efficient CTL response, be safe, and easy to manufacture. We recently developed a novel nanoparticle adjuvant comprised of papaya mosaic virus (PapMV) coat protein (CP) assembled around an RNA. The PapMV nanoparticle is an efficient vaccine platform in which the peptide antigen is fused to the C-terminus of the PapMV CP, leading to nanoparticles presenting surface-exposed epitope. The fusion stabilizes the epitope and improves its immunogenicity. We found recently that C-terminal fusions are not always efficient, depending on the nature of the peptide fused to the platform. Results We chose a CTL epitope derived from the nucleocapsid (NP) of influenza virus (NP147-155) for this proof-of-concept demonstration. Recombinant nanoparticles harbouring a fusion at the N-terminus were more efficient in triggering a CTL response. Efficacy appeared to be linked to the stability of the nanoparticles at 37°C. We also showed that discs—smaller than nanoparticles—made of 20 subunits of PapMV CP are less efficient for induction of a CTL response in mice, revealing that assembly of the recombinant PapMV CP into nanoparticles is crucial to triggering an efficient CTL response. Conclusion The point of fusion on the PapMV vaccine platform is critical to triggering an efficient CTL response. Efficacy is linked to nanoparticle stability; nanoparticles must be stable at 37°C but remain susceptible to cellular proteases to ensure efficient processing of the CTL epitope by cells of the immune system. The results of this study improve our understanding of the PapMV vaccine platform, which will facilitate the design of efficient vaccines to various infectious threats.
Collapse
Affiliation(s)
- Cindy Babin
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, 2705 boul. Laurier, Quebec city, PQ G1V 4G2, Canada
| | | | | |
Collapse
|
31
|
Mathieu C, Rioux G, Dumas MC, Leclerc D. Induction of innate immunity in lungs with virus-like nanoparticles leads to protection against influenza and Streptococcus pneumoniae challenge. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:839-48. [PMID: 23499666 DOI: 10.1016/j.nano.2013.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/24/2013] [Accepted: 02/19/2013] [Indexed: 11/20/2022]
Abstract
UNLABELLED Nanoparticles composed of the coat protein of a plant virus (papaya mosaic virus; PapMV) and a single-stranded RNA (ssRNA) trigger a strong innate immune stimulation in the lungs of the animals a few hours following instillation. A rapid recruitment of neutrophils, monocytes/macrophages and lymphocytes follows. This treatment was able to provide protection to an influenza challenge that lasts at least 5 days. Protection could be recalled for longer periods by repeating the instillations once per week for more than 10 weeks. The treatment also conferred protection to a lethal challenge with Streptococcus pneumoniae--the major cause of bacterial pneumonia. Finally, we also showed that the nanoparticles could be used to treat mice infected with influenza and significantly decrease morbidity. These data strengthen the potential for using PapMV nanoparticles as non-specific inducers of the innate immune response in lungs during viral pandemics or to combat bioterrorist attack. FROM THE CLINICAL EDITOR In this study, virus-like nanoparticles were utilized to induce innate immune responses in a mouse model. They were also demonstrated to provide enhanced immune responses during actual pneumonia and ongoing viral infection. Strategies like this may become very helpful in human applications, including bioterrorism countermeasures.
Collapse
Affiliation(s)
- Claudia Mathieu
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Centre/CHU de Québec, Laval University, Laurier, Quebec City, PQ, Canada
| | | | | | | |
Collapse
|