1
|
Herschberger JE, Ciesla L, Stieha CR, Kersch-Becker MF. Impacts of ramet density and herbivory on floral volatile emissions and seed production in Solidago altissima. AMERICAN JOURNAL OF BOTANY 2024; 111:e16414. [PMID: 39376035 DOI: 10.1002/ajb2.16414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 10/09/2024]
Abstract
PREMISE Plants produce an array of floral olfactory and visual cues to attract pollinators, including volatile organic compounds (VOC), which mediate plant-pollinator interactions and may be influenced by herbivory and neighboring plants. Consequently, these factors may affect plant fitness by disrupting pollination. However, most evidence comes from controlled experiments, limiting our understanding of how VOCs function in natural populations. This study investigated how herbivory and conspecific ramet density influence floral VOC profile, pollination, and seed production in a naturally occurring population of Solidago altissima. METHODS We recorded leaf herbivory and ramet density surrounding one focal ramet in 1-m2 plots. We collected VOCs from the floral headspace and measured ovary fertilization as a proxy for pollination success and the number of seeds produced by the focal ramet. RESULTS Our findings revealed interactive effects between ramet density and herbivory on floral VOC emission, richness, and diversity. Specifically, at lower ramet densities, herbivory did not affect floral volatile emissions. However, in highly dense stands, herbivory suppressed floral volatile emissions. Despite these changes, floral volatiles did not affect pollination and the number of seeds in S. altissima. CONCLUSIONS Our field-based findings underscore the importance of understanding the complex responses of floral VOCs to environmental stressors and their contributions to plant reproduction within natural communities. Our results suggest that while herbivory and ramet density influence floral scent, these changes do not affect reproduction in our study. Ultimately, generalist-pollinated plants like S. altissima might not rely heavily on chemical signaling during pollination.
Collapse
Affiliation(s)
- Jacob E Herschberger
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Lukasz Ciesla
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Christopher R Stieha
- Department of Biological Sciences, Millersville University, Millersville, PA, USA
| | - Mônica F Kersch-Becker
- Department of Entomology, Center for Chemical Ecology, and Ecology Institute, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
2
|
Dötterl S, Gershenzon J. Chemistry, biosynthesis and biology of floral volatiles: roles in pollination and other functions. Nat Prod Rep 2023; 40:1901-1937. [PMID: 37661854 DOI: 10.1039/d3np00024a] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Covering: 2010 to 2023Floral volatiles are a chemically diverse group of plant metabolites that serve multiple functions. Their composition is shaped by environmental, ecological and evolutionary factors. This review will summarize recent advances in floral scent research from chemical, molecular and ecological perspectives. It will focus on the major chemical classes of floral volatiles, on notable new structures, and on recent discoveries regarding the biosynthesis and the regulation of volatile emission. Special attention will be devoted to the various functions of floral volatiles, not only as attractants for different types of pollinators, but also as defenses of flowers against enemies. We will also summarize recent findings on how floral volatiles are affected by abiotic stressors, such as increased temperatures and drought, and by other organisms, such as herbivores and flower-dwelling microbes. Finally, this review will indicate current research gaps, such as the very limited knowledge of the isomeric pattern of chiral compounds and its importance in interspecific interactions.
Collapse
Affiliation(s)
- Stefan Dötterl
- Department of Environment & Biodiversity, Paris Lodron University Salzburg, Hellbrunnerstr 34, 5020 Salzburg, Austria.
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| |
Collapse
|
3
|
Barragán‐Fonseca KY, Rusman Q, Mertens D, Weldegergis BT, Peller J, Polder G, van Loon JJA, Dicke M. Insect exuviae as soil amendment affect flower reflectance and increase flower production and plant volatile emission. PLANT, CELL & ENVIRONMENT 2023; 46:931-945. [PMID: 36514238 PMCID: PMC10107842 DOI: 10.1111/pce.14516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Soil composition and herbivory are two environmental factors that can affect plant traits including flower traits, thus potentially affecting plant-pollinator interactions. Importantly, soil composition and herbivory may interact in these effects, with consequences for plant fitness. We assessed the main effects of aboveground insect herbivory and soil amendment with exuviae of three different insect species on visual and olfactory traits of Brassica nigra plants, including interactive effects. We combined various methodological approaches including gas chromatography/mass spectrometry, spectroscopy and machine learning to evaluate changes in flower morphology, colour and the emission of volatile organic compounds (VOCs). Soil amended with insect exuviae increased the total number of flowers per plant and VOC emission, whereas herbivory reduced petal area and VOC emission. Soil amendment and herbivory interacted in their effect on the floral reflectance spectrum of the base part of petals and the emission of 10 VOCs. These findings demonstrate the effects of insect exuviae as soil amendment on plant traits involved in reproduction, with a potential for enhanced reproductive success by increasing the strength of signals attracting pollinators and by mitigating the negative effects of herbivory.
Collapse
Affiliation(s)
- Katherine Y. Barragán‐Fonseca
- Laboratory of EntomologyWageningen University & ResearchWageningenThe Netherlands
- Grupo en Conservación y Manejo de Vida Silvestre, Instituto de Ciencias NaturalesUniversidad Nacional de ColombiaBogotáColombia
| | - Quint Rusman
- Laboratory of EntomologyWageningen University & ResearchWageningenThe Netherlands
| | - Daan Mertens
- Department of Entomology and NematologyUniversity of CaliforniaDavisCaliforniaUSA
| | | | - Joseph Peller
- Greenhouse HorticultureWageningen University & ResearchWageningenThe Netherlands
| | - Gerrit Polder
- Greenhouse HorticultureWageningen University & ResearchWageningenThe Netherlands
| | - Joop J. A. van Loon
- Laboratory of EntomologyWageningen University & ResearchWageningenThe Netherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
4
|
Whyle RL, Trowbridge AM, Jamieson MA. Genotype, mycorrhizae, and herbivory interact to shape strawberry plant functional traits. FRONTIERS IN PLANT SCIENCE 2022; 13:964941. [PMID: 36388560 PMCID: PMC9644214 DOI: 10.3389/fpls.2022.964941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) and herbivores are ubiquitous biotic agents affecting plant fitness. While individual effects of pairwise interactions have been well-studied, less is known about how species interactions above and belowground interact to influence phenotypic plasticity in plant functional traits, especially phytochemicals. We hypothesized that mycorrhizae would mitigate negative herbivore effects by enhancing plant physiology and reproductive traits. Furthermore, we expected genotypic variation would influence functional trait responses to these biotic agents. To test these hypotheses, we conducted a manipulative field-based experiment with three strawberry (Fragaria x ananassa) genotypes to evaluate plant phenotypic plasticity in multiple functional traits. We used a fully-crossed factorial design in which plants from each genotype were exposed to mycorrhizal inoculation, herbivory, and the combined factors to examine effects on plant growth, reproduction, and floral volatile organic compounds (VOCs). Genotype and herbivory were key determinants of phenotypic variation, especially for plant physiology, biomass allocation, and floral volatiles. Mycorrhizal inoculation increased total leaf area, but only in plants that received no herbivory, and also enhanced flower and fruit numbers across genotypes and herbivory treatments. Total fruit biomass increased for one genotype, with up to 30-40% higher overall yield depending on herbivory. Herbivory altered floral volatile profiles and increased total terpenoid emissions. The effects of biotic treatments, however, were less important than the overall influence of genotype on floral volatile composition and emissions. This study demonstrates how genotypic variation affects plant phenotypic plasticity to herbivory and mycorrhizae, playing a key role in shaping physiological and phytochemical traits that directly and indirectly influence productivity.
Collapse
Affiliation(s)
- Robert L. Whyle
- Department of Biological Sciences, Oakland University, Rochester, MI, United States
| | - Amy M. Trowbridge
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Mary A. Jamieson
- Department of Biological Sciences, Oakland University, Rochester, MI, United States
| |
Collapse
|
5
|
Kliszcz A, Danel A, Puła J, Barabasz-Krasny B, Możdżeń K. Fleeting Beauty-The World of Plant Fragrances and Their Application. Molecules 2021; 26:molecules26092473. [PMID: 33922689 PMCID: PMC8122868 DOI: 10.3390/molecules26092473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
This article is devoted to some aspects of the fragrant substances of plant origin applied in the food industry and perfumery as well. Since antiquity many extractive techniques have been developed to obtain essential oils. Some of them are still applied, but new ones, like microwave or ultrasound-assisted extractions, are more and more popular and they save time and cost. Independently of the procedure, the resulting essential oils are the source of many so-called isolates. These can be applied as food additives, medicines, or can be used as starting materials for organic synthesis. Some substances exist in very small amounts in plant material so the extraction is not economically profitable but, after their chemical structures were established and synthetic procedures were developed, in some cases they are prepared on an industrial scale. The substances described below are only a small fraction of the 2000–3000 fragrant molecules used to make our life more enjoyable, either in food or perfumes. Additionally, a few examples of allelopathic fragrant compounds, present in their natural state, will be denoted and some of their biocidal features will be mentioned as an arising “green” knowledge in agriculture.
Collapse
Affiliation(s)
- Angelika Kliszcz
- Department of Agroecology and Crop Production, Faculty of Agriculture and Economics, University of Agriculture, Mickiewicza 21 Ave, 31-120 Krakow, Poland;
- Correspondence:
| | - Andrzej Danel
- Faculty of Materials Engineering and Physics, Krakow University of Technology, Podchorążych St. 1, 30-084 Krakow, Poland;
| | - Joanna Puła
- Department of Agroecology and Crop Production, Faculty of Agriculture and Economics, University of Agriculture, Mickiewicza 21 Ave, 31-120 Krakow, Poland;
| | - Beata Barabasz-Krasny
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2 St., 30-084 Kraków, Poland; (B.B.-K.); (K.M.)
| | - Katarzyna Możdżeń
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2 St., 30-084 Kraków, Poland; (B.B.-K.); (K.M.)
| |
Collapse
|
6
|
Multiple Attack to Inflorescences of an Annual Plant Does Not Interfere with the Attraction of Parasitoids and Pollinators. J Chem Ecol 2021; 47:175-191. [PMID: 33507456 PMCID: PMC7904547 DOI: 10.1007/s10886-020-01239-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 11/15/2022]
Abstract
Plants in the flowering stage need to ensure reproduction by protecting themselves from attack and by preserving interactions with mutualist pollinators. When different plant mutualists are using the same type of cues, such as volatile compounds, attraction of parasitoids and pollinators may trade off. To explore this, we compared volatile emission of Brassica nigra plants in response to single or dual attack on their inflorescences. Additionally, we recorded flower visitation by pollinators and the attraction of parasitoids in the greenhouse and/or field. Brassica nigra were exposed in the flowering stage to one or two of the following three attackers: Brevicoryne brassicae aphids, Pieris brassicae caterpillars, and Xanthomonas campestris pv. raphani bacteria. We found that single attack by caterpillars, and dual attack by caterpillars plus aphids, induced the strongest changes in plant volatile emission. The caterpillars’ parasitoid C. glomerata did not exhibit preference for plants exposed to caterpillars only vs. plants exposed to caterpillars plus aphids or plus bacteria. However, the composition of the pollinator community associated with flowers of B. nigra was affected by plant exposure to the attackers, but the total number of pollinators visiting the plants did not change upon attack. We conclude that, when B. nigra were exposed to single or dual attack on their inflorescences, the plants maintained interactions with natural enemies of the insect attackers and with pollinators. We discuss how chemical diversity may contribute to plant resilience upon attack.
Collapse
|
7
|
Flacher F, Raynaud X, Hansart A, Geslin B, Motard E, Verstraet S, Bataille M, Dajoz I. Below-ground competition alters attractiveness of an insect-pollinated plant to pollinators. AOB PLANTS 2020; 12:plaa022. [PMID: 32742629 PMCID: PMC7384324 DOI: 10.1093/aobpla/plaa022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Competitive interactions between plants can affect patterns of allocation to reproductive structures through modulation of resource availability. As floral traits involved in plant attractiveness to pollinators can be sensitive to these resources, competition with any neighbouring species may influence the attractiveness of insect-pollinated plants. While pollination research has primarily focused on above-ground interactions, this study aims at investigating if the presence of a competitor plant can modulate neighbouring insect-pollinated plant attractiveness to pollinators and resulting fecundity, especially through below-ground competitive interactions for soil resources. We set up a plot experiment in which we grew an insect-pollinated plant, Sinapis alba (Brassicaceae), in a mixture dominated by a wind-pollinated plant, Holcus lanatus (Poaceae). Individuals of S. alba were either subjected to or isolated from (with buried tubes in the soil) below-ground competition. Across the flowering season, floral traits involved in attractiveness of S. alba and pollinator visitation were followed at the plot and plant level to investigate different scales of attractiveness. At the end of the experiment, seeds were harvested to assess plant fecundity. Competition had a significant negative effect on plot and plant floral display size as well as flower size while nectar traits were not affected. When plants of S. alba were in competition, the time to first visit was altered: the proportion of plots that received a visit was smaller for a given time; in other words, it took more time for a given proportion of plots to be visited and some plots were even never visited. Moreover, pollinators made fewer visits per plots. The proportion of viable seeds produced by S. alba in competition was lower and probably linked to the competition itself rather than changes in pollinator visitation. This study suggests that competitive interactions between plants can modulate pollination interactions even when competing plant species are not insect-pollinated.
Collapse
Affiliation(s)
- Floriane Flacher
- Sorbonne Université, CNRS, IRD, INRAE, Université de Paris, UPEC, Institute of Ecology and Environmental Sciences-Paris, Paris, France
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Xavier Raynaud
- Sorbonne Université, CNRS, IRD, INRAE, Université de Paris, UPEC, Institute of Ecology and Environmental Sciences-Paris, Paris, France
| | - Amandine Hansart
- Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), Département de biologie, Ecole normale supérieure, CNRS, PSL University, St-Pierre-les-Nemours, France
| | - Benoît Geslin
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Eric Motard
- Sorbonne Université, CNRS, IRD, INRAE, Université de Paris, UPEC, Institute of Ecology and Environmental Sciences-Paris, Paris, France
| | - Séléné Verstraet
- Sorbonne Université, CNRS, IRD, INRAE, Université de Paris, UPEC, Institute of Ecology and Environmental Sciences-Paris, Paris, France
| | - Manon Bataille
- Sorbonne Université, CNRS, IRD, INRAE, Université de Paris, UPEC, Institute of Ecology and Environmental Sciences-Paris, Paris, France
| | - Isabelle Dajoz
- Sorbonne Université, CNRS, IRD, INRAE, Université de Paris, UPEC, Institute of Ecology and Environmental Sciences-Paris, Paris, France
| |
Collapse
|
8
|
Nectar shortage caused by aphids may reduce seed output via pollination interference. Oecologia 2020; 194:321-332. [PMID: 32676820 DOI: 10.1007/s00442-020-04712-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/11/2020] [Indexed: 01/05/2023]
Abstract
Herbivores decrease plant fitness by consuming reproductive tissues, limiting resources, and/or affecting mutualisms. Although these mechanisms were extensively tested in chewing herbivores, the impact of other functional groups (e.g., sap-feeders) remains poorly understood. We investigated whether aphids affect plant reproduction via direct resource limitation on seed production and/or pollination interference. We compared plant traits and the seed set of naturally aphid-free vs. aphid-infested plants and then manipulated aphid presence and pollen receipt. We used path models to examine the links between variables. Nectar volume and seed set of aphid-infested plants was 54% and 42% lower than that of aphid-free plants. 72 h after removing aphids, nectar volume was restored to the level of aphid-free plants. When pollinators were excluded, the seed set of aphid-infested and aphid-free plants did not differ, suggesting that direct resource limitation on seed production was not the cause of reduced plant fitness. Manual addition of pollen restored the seed set of aphid-infested plants to the level of aphid-free plants, evidencing that plants were pollen limited. The path analysis showed a negative link between aphids and the seed set via nectar volume, supporting that nectar shortage caused by aphids may interfere with pollination and reduce plant fitness. Since aphids are crop pests and feed on a large number of animal-pollinated plants, the potential of these insects to influence pollination and plant fitness is high. This study emphasizes the ecological importance of aphids and the need to better understand the links between sap-feeding herbivory, pollination, and plant fitness.
Collapse
|
9
|
Tanoh EA, Boué GB, Nea F, Genva M, Wognin EL, Ledoux A, Martin H, Tonzibo ZF, Frederich M, Fauconnier ML. Seasonal Effect on the Chemical Composition, Insecticidal Properties and Other Biological Activities of Zanthoxylum leprieurii Guill. & Perr. Essential oils. Foods 2020; 9:foods9050550. [PMID: 32369948 PMCID: PMC7278710 DOI: 10.3390/foods9050550] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022] Open
Abstract
This study focused, for the first time, on the evaluation of the seasonal effect on the chemical composition and biological activities of essential oils hydrodistillated from leaves, trunk bark and fruits of Zanthoxylum leprieurii (Z. leprieurii), a traditional medicinal wild plant growing in Côte d'Ivoire. The essential oils were obtained by hydrodistillation from fresh organs of Z. leprieurii growing on the same site over several months using a Clevenger-type apparatus and analyzed by gas chromatography-mass spectrometry (GC/MS). Leaf essential oils were dominated by tridecan-2-one (9.00 ± 0.02-36.80 ± 0.06%), (E)-β-ocimene (1.30 ± 0.50-23.57 ± 0.47%), β-caryophyllene (7.00 ± 1.02-19.85 ± 0.48%), dendrolasin (1.79 ± 0.08-16.40 ± 0.85%) and undecan-2-one (1.20 ± 0.03-8.51 ± 0.35%). Fruit essential oils were rich in β-myrcene (16.40 ± 0.91-48.27 ± 0.26%), citronellol (1.90 ± 0.02-28.24 ± 0.10%) and geranial (5.30 ± 0.53-12.50 ± 0.47%). Tridecan-2-one (45.26 ± 0.96-78.80 ± 0.55%), β-caryophyllene (1.80 ± 0.23-13.20 ± 0.33%), ?-humulene (4.30 ±1.09-12.73 ± 1.41%) and tridecan-2-ol (2.23 ± 0.17-10.10 ± 0.61%) were identified as major components of trunk bark oils. Statistical analyses of essential oil compositions showed that the variability mainly comes from the organs. Indeed, principal component analysis (PCA) and hierarchical cluster analysis (HCA) allowed us to cluster the samples into three groups, each one consisting of one different Z. leprieurii organ, showing that essential oils hydrodistillated from the different organs do not display the same chemical composition. However, significant differences in essential oil compositions for the same organ were highlighted during the studied period, showing the impact of the seasonal effect on essential oil compositions. Biological activities of the produced essential oils were also investigated. Essential oils exhibited high insecticidal activities against Sitophilus granarius, as well as antioxidant, anti-inflammatory and moderate anti-plasmodial properties.
Collapse
Affiliation(s)
- Evelyne Amenan Tanoh
- Laboratory of Biological Organic Chemistry, UFR-SSMT, University Felix Houphouet-Boigny, 01 BP 582 Abidjan 01, Ivory Coast; (G.B.B.); (F.N.); (Z.F.T.)
- Laboratory of Chemistry of Natural Molecules, University of Liège, Gembloux Agro-Bio Tech, 2, Passage des Déportés, 5030 Gembloux, Belgium; (M.G.); (H.M.); (M.-L.F.)
- Correspondence: ; Tel.: +32-(0)4-6566-3587
| | - Guy Blanchard Boué
- Laboratory of Biological Organic Chemistry, UFR-SSMT, University Felix Houphouet-Boigny, 01 BP 582 Abidjan 01, Ivory Coast; (G.B.B.); (F.N.); (Z.F.T.)
| | - Fatimata Nea
- Laboratory of Biological Organic Chemistry, UFR-SSMT, University Felix Houphouet-Boigny, 01 BP 582 Abidjan 01, Ivory Coast; (G.B.B.); (F.N.); (Z.F.T.)
- Laboratory of Chemistry of Natural Molecules, University of Liège, Gembloux Agro-Bio Tech, 2, Passage des Déportés, 5030 Gembloux, Belgium; (M.G.); (H.M.); (M.-L.F.)
| | - Manon Genva
- Laboratory of Chemistry of Natural Molecules, University of Liège, Gembloux Agro-Bio Tech, 2, Passage des Déportés, 5030 Gembloux, Belgium; (M.G.); (H.M.); (M.-L.F.)
| | - Esse Leon Wognin
- Laboratory of Instrumentation Image and Spectroscopy, National Polytechnic Institute Felix Houphouët-Boigny, BP 1093 Yamoussoukro, Ivory Coast;
| | - Allison Ledoux
- Laboratory of Pharmacognosy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium; (A.L.); (M.F.)
| | - Henri Martin
- Laboratory of Chemistry of Natural Molecules, University of Liège, Gembloux Agro-Bio Tech, 2, Passage des Déportés, 5030 Gembloux, Belgium; (M.G.); (H.M.); (M.-L.F.)
| | - Zanahi Felix Tonzibo
- Laboratory of Biological Organic Chemistry, UFR-SSMT, University Felix Houphouet-Boigny, 01 BP 582 Abidjan 01, Ivory Coast; (G.B.B.); (F.N.); (Z.F.T.)
| | - Michel Frederich
- Laboratory of Pharmacognosy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium; (A.L.); (M.F.)
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, University of Liège, Gembloux Agro-Bio Tech, 2, Passage des Déportés, 5030 Gembloux, Belgium; (M.G.); (H.M.); (M.-L.F.)
| |
Collapse
|
10
|
Landi M, Araniti F, Flamini G, Piccolo EL, Trivellini A, Abenavoli MR, Guidi L. "Help is in the air": volatiles from salt-stressed plants increase the reproductive success of receivers under salinity. PLANTA 2020; 251:48. [PMID: 31932951 DOI: 10.1007/s00425-020-03344-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/09/2020] [Indexed: 05/22/2023]
Abstract
Salinity alters VOC profile in emitter sweet basil plants. Airborne signals by emitter plants promote earlier flowering of receivers and increase their reproductive success under salinity. Airborne signals can prime neighboring plants against pathogen and/or herbivore attacks, whilst little is known about the possibility that volatile organic compounds (VOCs) emitted by stressed plants alert neighboring plants against abiotic stressors. Salt stress (50 mM NaCl) was imposed on Ocimum basilicum L. plants (emitters, namely NaCl), and a putative alerting-priming interaction was tested on neighboring basil plants (receivers, namely NaCl-S). Compared with the receivers, the NaCl plants exhibited reduced biomass, lower photosynthesis, and changes in the VOC profile, which are common early responses of plants to salinity. In contrast, NaCl-S plants had physiological parameters similar to those of nonsalted plants (C), but exhibited a different VOC fingerprint, which overlapped, for most compounds, with that of emitters. NaCl-S plants exposed later to NaCl treatment (namely NaCl-S + NaCl) exhibited changes in the VOC profile, earlier plant senescence, earlier flowering, and higher seed yield than C + NaCl plants. This experiment offers the evidence that (1) NaCl-triggered VOCs promote metabolic changes in NaCl-S plants, which, finally, increase reproductive success and (2) the differences in VOC profiles observed between emitters and receivers subjected to salinity raise the question whether the receivers are able to "propagate" the warning signal triggered by VOCs in neighboring companions.
Collapse
Affiliation(s)
- Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
- CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Fabrizio Araniti
- Department of Agraria, University 'Mediterranea' of Reggio Calabria, località Feo di Vito, 89122, Reggio Calabria, RC, Italy
| | - Guido Flamini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126, Pisa, Italy
| | - Ermes Lo Piccolo
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Alice Trivellini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via Santa Cecilia 3, 56127, Pisa, Italy
| | - Maria Rosa Abenavoli
- Department of Agraria, University 'Mediterranea' of Reggio Calabria, località Feo di Vito, 89122, Reggio Calabria, RC, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
11
|
Noman A, Aqeel M, Qasim M, Haider I, Lou Y. Plant-insect-microbe interaction: A love triangle between enemies in ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134181. [PMID: 31520944 DOI: 10.1016/j.scitotenv.2019.134181] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 05/20/2023]
Abstract
In natural ecosystems, plants interact with biotic components such as microbes, insects, animals and other plants as well. Generally, researchers have focused on each interaction separately, which condenses the significance of the interaction. This limited presentation of the facts masks the collective role of constantly interacting organisms in complex communities disturbing not only plant responses but also the response of organisms for each other in natural ecological settings. Beneficial microorganisms interact with insect herbivores, their predators and pollinators in a bidirectional way through the plant. Fascinatingly, insects employ diverse tactics to protect themselves from parasites or predators. Influences of microbial and insects attack on plants can bring changes in info-chemical frameworks and play a role in the food chain also. After insect herbivory and microbial pathogenesis, plants exhibit intense morpho-physiological and chemical reprogramming that leads to repellence/attraction of attacking organism or its natural enemy. The characterization of such interactions in different ecosystems is receiving due consideration, and underlying molecular and physiological mechanisms must be the point of concentration to unveil the evolution of multifaceted multitrophic interactions. Therefore, we have focused this phenomenon in a more realistic setting by integrating ecology and physiology to portray these multidimensional interfaces. We have shown, in this article, physiological trajectories in plant-microbe and insect relationship and their ecological relevance in nature. We focus and discuss microbial pathogenesis in plants, induced defense and the corresponding behavior of herbivore insects and vice-versa. It is hoped that this review will stimulate interest and zeal in microbes mediated plant-insect interactions along with their ecological consequences and encourage scientists to accept the challenges in this field.
Collapse
Affiliation(s)
- Ali Noman
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Department of Botany, Government College University, Faisalabad 38040, Pakistan.
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Muhammad Qasim
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Ijaz Haider
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Yonggen Lou
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
12
|
Diversity of Floral Glands and Their Secretions in Pollinator Attraction. REFERENCE SERIES IN PHYTOCHEMISTRY 2020. [DOI: 10.1007/978-3-319-96397-6_48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Antioxidant and Lipoxygenase Inhibitory Activities of Essential Oils from Endemic Plants of Côte d'Ivoire: Zanthoxylum mezoneurispinosum Ake Assi and Zanthoxylum psammophilum Ake Assi. Molecules 2019; 24:molecules24132445. [PMID: 31277326 PMCID: PMC6651734 DOI: 10.3390/molecules24132445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/19/2019] [Accepted: 07/03/2019] [Indexed: 11/16/2022] Open
Abstract
Zanthoxylum mezoneurispinosum Ake Assi and Zanthoxylum psammophilum Ake Assi are species endemic to Côte d’Ivoire. In this study, we determined, for the first time, the composition and biological activities of essential oils obtained from each of these plants. Essential oils were obtained by hydrodistillation from different organs of each plant with a Clevenger-type apparatus and analyzed by gas chromatography–mass spectrometry (GC-MS). Thirty-four components, accounting for more than 99.9% of the overall composition, were identified in the oils. The Z. psammophilum leaf and trunk bark oils exhibited two unusual methylketones, undecan-2-one and tridecan-2-one, whereas the root oil was rich in thymol and sesquiterpenoids. The Z. mezoneurispinosum leaf and trunk bark oils were rich in monoterpenoids, whereas sesquiterpenoids were predominant in the root oil. These samples produced, for the first time, some new chemical profiles of essential oils. The oils’ antioxidant activities were determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity and ferric reducing antioxidant power (FRAP) assays. The results showed that the essential oil isolated from roots of Z. mezoneurispinosum had the highest antioxidant activity, which is in accordance with the high thymol content of that oil. We also determined the lipoxygenase inhibitory activities of the essential oils. The results showed that all of the tested oils displayed high and close lipoxygenase inhibitory activities.
Collapse
|
14
|
Rusman Q, Poelman EH, Nowrin F, Polder G, Lucas‐Barbosa D. Floral plasticity: Herbivore-species-specific-induced changes in flower traits with contrasting effects on pollinator visitation. PLANT, CELL & ENVIRONMENT 2019; 42:1882-1896. [PMID: 30659631 PMCID: PMC6850075 DOI: 10.1111/pce.13520] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/15/2019] [Indexed: 05/20/2023]
Abstract
Plant phenotypic plasticity in response to antagonists can affect other community members such as mutualists, conferring potential ecological costs associated with inducible plant defence. For flowering plants, induction of defences to deal with herbivores can lead to disruption of plant-pollinator interactions. Current knowledge on the full extent of herbivore-induced changes in flower traits is limited, and we know little about specificity of induction of flower traits and specificity of effect on flower visitors. We exposed flowering Brassica nigra plants to six insect herbivore species and recorded changes in flower traits (flower abundance, morphology, colour, volatile emission, nectar quantity, and pollen quantity and size) and the behaviour of two pollinating insects. Our results show that herbivory can affect multiple flower traits and pollinator behaviour. Most plastic floral traits were flower morphology, colour, the composition of the volatile blend, and nectar production. Herbivore-induced changes in flower traits resulted in positive, negative, or neutral effects on pollinator behaviour. Effects on flower traits and pollinator behaviour were herbivore species-specific. Flowers show extensive plasticity in response to antagonist herbivores, with contrasting effects on mutualist pollinators. Antagonists can potentially act as agents of selection on flower traits and plant reproduction via plant-mediated interactions with mutualists.
Collapse
Affiliation(s)
- Quint Rusman
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| | - Erik H. Poelman
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| | - Farzana Nowrin
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| | - Gerrit Polder
- Greenhouse HorticultureWageningen University, WageningenThe Netherlands
| | | |
Collapse
|
15
|
Moreira X, Castagneyrol B, Abdala‐Roberts L, Traveset A. A meta‐analysis of herbivore effects on plant attractiveness to pollinators. Ecology 2019; 100:e02707. [DOI: 10.1002/ecy.2707] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Xoaquín Moreira
- Misión Biológica de Galicia (MBG‐CSIC) Apartado de Correos 28 36080 Pontevedra Galicia Spain
| | | | - Luis Abdala‐Roberts
- Departamento de Ecología Tropical Campus de Ciencias Biológicas y Agropecuarias Universidad Autónoma de Yucatán Apartado Postal 4‐116, Itzimná 97000 Mérida Yucatán México
| | - Anna Traveset
- Mediterranean Institute for Advanced Studies (CSIC) Global Change Research Group C/Miquel Marquès 21 07190 Esporles Balearic Islands Spain
| |
Collapse
|
16
|
Silva RF, Rabeschini GBP, Peinado GLR, Cosmo LG, Rezende LHG, Murayama RK, Pareja M. The Ecology of Plant Chemistry and Multi-Species Interactions in Diversified Agroecosystems. FRONTIERS IN PLANT SCIENCE 2018; 9:1713. [PMID: 30524464 PMCID: PMC6262048 DOI: 10.3389/fpls.2018.01713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/05/2018] [Indexed: 05/27/2023]
Abstract
Over the past few years, our knowledge of how ecological interactions shape the structure and dynamics of natural communities has rapidly advanced. Plant chemical traits play key roles in these processes because they mediate a diverse range of direct and indirect interactions in a community-wide context. Many chemically mediated interactions have been extensively studied in industrial cropping systems, and thus have focused on simplified, pairwise and linear interactions that rarely incorporate a community perspective. A contrasting approach considers the agroecosystem as a functioning whole, in which food production occurs. It offers an opportunity to better understand how plant chemical traits mediate complex interactions which can enhance or hinder ecosystem functions. In this paper, we argue that studying chemically mediated interactions in agroecosystems is essential to comprehend how agroecosystem services emerge and how they can be guaranteed through ecosystem management. First, we discuss how plant chemical traits affect and are affected by ecological interactions. We then explore research questions and future directions on how studying chemical mediation in complex agroecosystems can help us understand the emergence and management of ecosystem services, specifically biological control and pollination.
Collapse
Affiliation(s)
- Rodolfo F Silva
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Gabriela B P Rabeschini
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | | | - Leandro G Cosmo
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Luiz H G Rezende
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Rafael K Murayama
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Martín Pareja
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| |
Collapse
|
17
|
Chrétien LTS, David A, Daikou E, Boland W, Gershenzon J, Giron D, Dicke M, Lucas‐Barbosa D. Caterpillars induce jasmonates in flowers and alter plant responses to a second attacker. THE NEW PHYTOLOGIST 2018; 217:1279-1291. [PMID: 29207438 PMCID: PMC5814890 DOI: 10.1111/nph.14904] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/19/2017] [Indexed: 05/22/2023]
Abstract
In nature, herbivorous insects and plant pathogens are generally abundant when plants are flowering. Thus, plants face a diversity of attackers during their reproductive phase. Plant responses to one attacker can interfere with responses to a second attacker, and phytohormones that orchestrate plant reproduction are also involved in resistance to insect and pathogen attack. We quantified phytohormonal responses of flowering plants exposed to single or dual attack and studied resistance mechanisms of plants in the flowering stage. Flowering Brassica nigra were exposed to either a chewing caterpillar, a phloem-feeding aphid or a bacterial pathogen, and plant hormonal responses were compared with dual attack situations. We quantified phytohormones in inflorescences and leaves, and determined the consequences of hormonal changes for components of direct and indirect plant resistance. Caterpillars were the main inducers of jasmonates in inflorescences, and the phytohormonal profile of leaves was not affected by either insect or pathogen attack. Dual attack increased plant resistance to caterpillars, but compromised resistance to aphids. Parasitoid performance was negatively correlated with the performance of their hosts. We conclude that plants prioritize resistance of reproductive tissues over vegetative tissues, and that a chewing herbivore species is the main driver of responses in flowering B. nigra.
Collapse
Affiliation(s)
- Lucille T. S. Chrétien
- Laboratory of EntomologyWageningen UniversityDroevendaalsesteeg 1, Radix building6708PBWageningenthe Netherlands
- Institut de Recherche sur la Biologie de l'Insecte (IRBI)UMR 7261CNRS/Université François‐Rabelais de ToursAvenue Monge, Parc Grandmont37200ToursFrance
- Department of BiologyÉcole Normale Supérieure de Lyon (ENS L)46 Allée d'Italie69007LyonFrance
| | - Anja David
- Department of Bioorganic ChemistryMax Planck Institute for Chemical Ecology (MPI CE)Beutenberg Campus, Hans‐Knoell‐Strasse 8D‐07745JenaGermany
| | - Eirini Daikou
- Laboratory of EntomologyWageningen UniversityDroevendaalsesteeg 1, Radix building6708PBWageningenthe Netherlands
| | - Wilhelm Boland
- Department of Bioorganic ChemistryMax Planck Institute for Chemical Ecology (MPI CE)Beutenberg Campus, Hans‐Knoell‐Strasse 8D‐07745JenaGermany
| | - Jonathan Gershenzon
- Department of BiochemistryMax Planck Institute for Chemical Ecology (MPI CE)Beutenberg Campus, Hans‐Knoell‐Strasse 8D‐07745JenaGermany
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte (IRBI)UMR 7261CNRS/Université François‐Rabelais de ToursAvenue Monge, Parc Grandmont37200ToursFrance
| | - Marcel Dicke
- Laboratory of EntomologyWageningen UniversityDroevendaalsesteeg 1, Radix building6708PBWageningenthe Netherlands
| | - Dani Lucas‐Barbosa
- Laboratory of EntomologyWageningen UniversityDroevendaalsesteeg 1, Radix building6708PBWageningenthe Netherlands
| |
Collapse
|
18
|
Rusman Q, Lucas‐Barbosa D, Poelman EH. Dealing with mutualists and antagonists: Specificity of plant‐mediated interactions between herbivores and flower visitors, and consequences for plant fitness. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13035] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Quint Rusman
- Laboratory of EntomologyWageningen University Wageningen The Netherlands
| | - Dani Lucas‐Barbosa
- Laboratory of EntomologyWageningen University Wageningen The Netherlands
| | - Erik H. Poelman
- Laboratory of EntomologyWageningen University Wageningen The Netherlands
| |
Collapse
|
19
|
Lucas‐Barbosa D, Dicke M, Kranenburg T, Aartsma Y, Beek TA, Huigens ME, Loon JJA. Endure and call for help: strategies of black mustard plants to deal with a specialized caterpillar. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dani Lucas‐Barbosa
- Laboratory of Entomology Wageningen University, PO Box 16 Wageningen AA 6700 The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology Wageningen University, PO Box 16 Wageningen AA 6700 The Netherlands
| | - Twan Kranenburg
- Laboratory of Entomology Wageningen University, PO Box 16 Wageningen AA 6700 The Netherlands
| | - Yavanna Aartsma
- Laboratory of Entomology Wageningen University, PO Box 16 Wageningen AA 6700 The Netherlands
| | - Teris A. Beek
- Laboratory of Organic Chemistry Wageningen University PO Box 8026 Wageningen 6700 EH The Netherlands
| | - Martinus E. Huigens
- Dutch Butterfly Conservation Mennonietenweg 10 Wageningen 6702 AD The Netherlands
| | - Joop J. A. Loon
- Laboratory of Entomology Wageningen University, PO Box 16 Wageningen AA 6700 The Netherlands
| |
Collapse
|
20
|
Burkle LA, Runyon JB. Drought and leaf herbivory influence floral volatiles and pollinator attraction. GLOBAL CHANGE BIOLOGY 2016; 22:1644-54. [PMID: 26546275 DOI: 10.1111/gcb.13149] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/11/2015] [Accepted: 10/21/2015] [Indexed: 05/10/2023]
Abstract
The effects of climate change on species interactions are poorly understood. Investigating the mechanisms by which species interactions may shift under altered environmental conditions will help form a more predictive understanding of such shifts. In particular, components of climate change have the potential to strongly influence floral volatile organic compounds (VOCs) and, in turn, plant-pollinator interactions. In this study, we experimentally manipulated drought and herbivory for four forb species to determine effects of these treatments and their interactions on (1) visual plant traits traditionally associated with pollinator attraction, (2) floral VOCs, and (3) the visitation rates and community composition of pollinators. For all forbs tested, experimental drought universally reduced flower size and floral display, but there were species-specific effects of drought on volatile emissions per flower, the composition of compounds produced, and subsequent pollinator visitation rates. Moreover, the community of pollinating visitors was influenced by drought across forb species (i.e. some pollinator species were deterred by drought while others were attracted). Together, these results indicate that VOCs may provide more nuanced information to potential floral visitors and may be relatively more important than visual traits for pollinator attraction, particularly under shifting environmental conditions.
Collapse
Affiliation(s)
- Laura A Burkle
- Department of Ecology, Montana State University, Bozeman, MT, 59717, USA
| | - Justin B Runyon
- Rocky Mountain Research Station, USDA Forest Service, 1648 S. 7th Avenue, Bozeman, MT, 59717, USA
| |
Collapse
|
21
|
Lucas-Barbosa D. Integrating Studies on Plant-Pollinator and Plant-Herbivore Interactions. TRENDS IN PLANT SCIENCE 2016; 21:125-133. [PMID: 26598297 DOI: 10.1016/j.tplants.2015.10.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 09/29/2015] [Accepted: 10/15/2015] [Indexed: 06/05/2023]
Abstract
Research on herbivore-induced plant defence and research on pollination ecology have had a long history of separation. Plant reproduction of most angiosperm species is mediated by pollinators, and the effects of herbivore-induced plant defences on pollinator behaviour have been largely neglected. Moreover, there is expected to be a trade-off between plant reproductive strategies and defence mechanisms. To investigate this trade-off, it is essential to study herbivore-induced plant resistance and allocation of resources by plants, within the same system, and to test if indirect plant resistance can conflict with pollinator attraction. Here, I review the key literature highlighting connection between plant defence and reproduction, and propose to exploit natural variation among plant species to assess the ecological costs of plant responses to herbivores and pollinators.
Collapse
Affiliation(s)
- Dani Lucas-Barbosa
- Laboratory of Entomology, Wageningen University, P.O. Box 16, AA 6700 Wageningen, The Netherlands.
| |
Collapse
|
22
|
Zu P, Blanckenhorn WU, Schiestl FP. Heritability of floral volatiles and pleiotropic responses to artificial selection in Brassica rapa. THE NEW PHYTOLOGIST 2016; 209:1208-1219. [PMID: 26391626 DOI: 10.1111/nph.13652] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 08/12/2015] [Indexed: 06/05/2023]
Abstract
The evolution of the vast diversity of floral volatiles is little understood, although they serve fundamental functions, such as pollinator attraction and herbivore deterrence. Floral volatiles are often species specific, yet highly variable and sensitive to environmental factors. To date, nothing is known about the heritability of floral volatiles, and whether individual compounds can evolve independently or solely in concert with the whole volatile bouquet. We conducted bi-directional artificial selection on four target floral volatiles to estimate heritability and correlated pleiotropic responses in the wild turnip (Brassica rapa). The realized heritability of the four target volatiles ranged from 20% to 45%. The average narrow-sense heritability of all 13 analyzed floral volatiles was 18% based on parent-offspring regressions. There were pleiotropic effects of the selected floral volatile compounds on other constituents of the floral scent bouquet, on flowering time and on some morphological traits. We found that the whole floral scent bouquet changed, even when there was selection only on single compounds, with the overall phenotypic covariance being unaffected. Our study demonstrates that floral scent can evolve rapidly under phenotypic selection, but with additional correlated responses in traits that are not direct targets of selection.
Collapse
Affiliation(s)
- Pengjuan Zu
- Institute of Systematic Botany, University of Zürich, Zollikerstrasse 107, CH-8008, Zürich, Switzerland
| | - Wolf U Blanckenhorn
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Florian P Schiestl
- Institute of Systematic Botany, University of Zürich, Zollikerstrasse 107, CH-8008, Zürich, Switzerland
| |
Collapse
|
23
|
Dong F, Fu X, Watanabe N, Su X, Yang Z. Recent Advances in the Emission and Functions of Plant Vegetative Volatiles. Molecules 2016; 21:124. [PMID: 26805805 PMCID: PMC6272994 DOI: 10.3390/molecules21020124] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 12/25/2022] Open
Abstract
Plants synthesize and emit a large variety of volatile organic compounds, which possess extremely important ecological functions. In most case, most plant volatiles are liquids, rather than gases, at room temperature. Some volatiles are emitted “on demand” when plants, especially vegetative parts, are exposed to abiotic or biotic stress. In this review, we summarize some of the highlights of plant vegetative volatile emission and functions research published during the past few years.
Collapse
Affiliation(s)
- Fang Dong
- Guangdong Food and Drug Vocational College, Longdongbei Road 321, Tianhe District, Guangzhou 510520, China.
| | - Xiumin Fu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
| | - Naoharu Watanabe
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan.
| | - Xinguo Su
- Guangdong Food and Drug Vocational College, Longdongbei Road 321, Tianhe District, Guangzhou 510520, China.
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
| |
Collapse
|
24
|
Impacts of Induction of Plant Volatiles by Individual and Multiple Stresses Across Trophic Levels. SIGNALING AND COMMUNICATION IN PLANTS 2016. [DOI: 10.1007/978-3-319-33498-1_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
25
|
Reisenman CE, Riffell JA. The neural bases of host plant selection in a Neuroecology framework. Front Physiol 2015; 6:229. [PMID: 26321961 PMCID: PMC4532911 DOI: 10.3389/fphys.2015.00229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/28/2015] [Indexed: 11/13/2022] Open
Abstract
Understanding how animals make use of environmental information to guide behavior is a fundamental problem in the field of neuroscience. Similarly, the field of ecology seeks to understand the role of behavior in shaping interactions between organisms at various levels of organization, including population-, community- and even ecosystem-level scales. Together, the newly emerged field of “Neuroecology” seeks to unravel this fundamental question by studying both the function of neurons at many levels of the sensory pathway and the interactions between organisms and their natural environment. The interactions between herbivorous insects and their host plants are ideal examples of Neuroecology given the strong ecological and evolutionary forces and the underlying physiological and behavioral mechanisms that shaped these interactions. In this review we focus on an exemplary herbivorous insect within the Lepidoptera, the giant sphinx moth Manduca sexta, as much is known about the natural behaviors related to host plant selection and the involved neurons at several level of the sensory pathway. We also discuss how herbivore-induced plant odorants and secondary metabolites in floral nectar in turn can affect moth behavior, and the underlying neural mechanisms.
Collapse
Affiliation(s)
- Carolina E Reisenman
- Department of Molecular and Cell Biology, University of California Berkeley, CA, USA
| | | |
Collapse
|
26
|
Aphid-deprivation from Brassica plants results in increased isothiocyanate release and parasitoid attraction. CHEMOECOLOGY 2015. [DOI: 10.1007/s00049-015-0199-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Herbivory Increases Fruit Set in Silene latifolia: A Consequence of Induced Pollinator-Attracting Floral Volatiles? J Chem Ecol 2015; 41:622-30. [DOI: 10.1007/s10886-015-0597-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/14/2015] [Accepted: 06/02/2015] [Indexed: 02/05/2023]
|
28
|
Meiners T. Chemical ecology and evolution of plant-insect interactions: a multitrophic perspective. CURRENT OPINION IN INSECT SCIENCE 2015; 8:22-28. [PMID: 32846665 DOI: 10.1016/j.cois.2015.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/02/2015] [Accepted: 02/04/2015] [Indexed: 06/11/2023]
Abstract
Gaining a better understanding of infochemical-mediated host plant/host location behaviour of herbivores and their natural enemies in complex and heterogeneous chemical environments provides a multitrophic perspective on the chemical ecology and evolution of plant-insect interactions. Here I focus on the sources of chemical complexity formed primarily by both host and non-host plants in their interaction with higher trophic levels and on the effect of this complexity on herbivores and their natural enemies. Future research should define the patterns and processes involved in these interactions, which are often complex, dynamic and intricately unique. Studying multitrophic interactions under more realistic conditions will help to identify mechanisms with evolutionary potential and patterns that can be used in biological control practice.
Collapse
Affiliation(s)
- Torsten Meiners
- Freie Universitaet Berlin, Dahlem Centre of Plant Sciences, Institute of Biology, Haderslebener Straße 9, 12163 Berlin, Germany.
| |
Collapse
|
29
|
Schiestl FP, Kirk H, Bigler L, Cozzolino S, Desurmont GA. Herbivory and floral signaling: phenotypic plasticity and tradeoffs between reproduction and indirect defense. THE NEW PHYTOLOGIST 2014; 203:257-266. [PMID: 24684288 DOI: 10.1111/nph.12783] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/24/2014] [Indexed: 06/03/2023]
Abstract
Plant defense against herbivores may compromise attraction of mutualists, yet information remains limited about the mechanisms underlying such signaling tradeoffs. Here, we investigated the effects of foliar herbivory by two herbivore species on defense compounds, floral signaling, pollinator and parasitoid attraction, and seed production. Herbivory generally reduced the quantity of many floral volatile organic compounds VOCs) in Brassica rapa. By contrast, floral color, flower diameter, and plant height remained unaffected. The decreased amounts of floral volatiles led to reduced attractiveness of flowers to pollinators, but increased the attractiveness of herbivore-infested plants to parasitoids. Plants infested with the native butterfly Pieris brassicae produced more flowers during early flowering, effectively compensating for the lower olfactory attractiveness. Herbivory by the invasive Spodoptera littoralis increased the amounts of glucobrassicanapin, and led to delayed flowering. These plants tended to attract fewer pollinators and to produce fewer seeds. Our study indicates a tradeoff between pollinator attraction and indirect defense (parasitoid attraction), which can be mitigated by reduced floral VOC emission and production of more early flowers. We suggest that this compensatory mechanism is specific to plant-herbivore associations with a coevolutionary history.
Collapse
Affiliation(s)
- Florian P Schiestl
- Institute of Systematic Botany, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
30
|
Page P, Favre A, Schiestl FP, Karrenberg S. Do flower color and floral scent of silene species affect host preference of Hadena bicruris, a seed-eating pollinator, under field conditions? PLoS One 2014; 9:e98755. [PMID: 24905986 PMCID: PMC4048206 DOI: 10.1371/journal.pone.0098755] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/06/2014] [Indexed: 01/19/2023] Open
Abstract
Specialization in plant–insect interactions is an important driver of evolutionary divergence; yet, plant traits mediating such interactions are poorly understood. In this study, we investigated how flower color and floral scent are related to seed predation by a seed-eating pollinator. We used field-transplanted recombinant F2 hybrids between Silene latifolia and S. dioica that are the preferred and alternative hosts of the moth Hadena bicruris and crosses within these species for comparison. We scored seed predation and flower color and analyzed floral scent. Pinker S. dioica-like flowers and emission of α-pinene decreased the odds of seed predation while emission of benzyl acetate and 6-methyl-5-hepten-2-one increased the odds of seed predation. Emission of these compounds did not differ significantly between the two Silene species. Our results suggest that flower color plays an important role in the specific interaction of H. bicruris with its preferred host S. latifolia. The compounds α-pinene, benzyl acetate and 6-methyl-5-hepten-2-one could represent non-specific deterrents and attractants to ovipositing moths. Alternatively, emission of these compounds could be related to herbivory or pathogen attack and act as a signal for host quality. This would weaken the predictability of the plant's costs and benefits of the interaction and act to maintain an imperfect degree of specialization.
Collapse
Affiliation(s)
- Paul Page
- ETH Zurich, Institute of Integrative Biology (IBZ), Zurich, Switzerland
| | - Adrien Favre
- ETH Zurich, Institute of Integrative Biology (IBZ), Zurich, Switzerland
- Department of Molecular Evolution and Systematics of Plants, Institute of Biology, University of Leipzig, Leipzig, Germany
| | - Florian P. Schiestl
- ETH Zurich, Institute of Integrative Biology (IBZ), Zurich, Switzerland
- Institute of Systematic Botany, University of Zurich, Zurich, Switzerland
| | - Sophie Karrenberg
- ETH Zurich, Institute of Integrative Biology (IBZ), Zurich, Switzerland
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
31
|
Lucas-Barbosa D, Poelman EH, Aartsma Y, Snoeren TAL, van Loon JJA, Dicke M. Caught between parasitoids and predators - survival of a specialist herbivore on leaves and flowers of mustard plants. J Chem Ecol 2014; 40:621-31. [PMID: 24888744 DOI: 10.1007/s10886-014-0454-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 01/13/2023]
Abstract
The survival of insect herbivores typically is constrained by food choice and predation risk. Here, we explored whether movement from leaves to flowers increases survival of herbivores that prefer to feed on floral tissues. Combining field and greenhouse experiments, we investigated whether flowering influences the behavior of Pieris brassicae butterflies and caterpillars and, consequently, herbivore survival in the field. In this context, we investigated also if flowers of Brassica nigra can provide caterpillars refuge from the specialist parasitoid Cotesia glomerata and from predatory social wasps. By moving to flowers, caterpillars escaped from the parasitoid. Flowers are nutritionally superior when compared with leaves, and caterpillars develop faster when feeding on flowers. However, late-stage caterpillars can be preyed upon intensively by social wasps, irrespective of whether they feed on leaves or flowers. We conclude that flower preference by P. brassicae is more likely driven by nutritional advantages and reduced parasitism on flowers, than by risks of being killed by generalist predators.
Collapse
Affiliation(s)
- Dani Lucas-Barbosa
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands,
| | | | | | | | | | | |
Collapse
|
32
|
Birkett MA, Pickett JA. Prospects of genetic engineering for robust insect resistance. CURRENT OPINION IN PLANT BIOLOGY 2014; 19:59-67. [PMID: 24747775 DOI: 10.1016/j.pbi.2014.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/24/2014] [Accepted: 03/09/2014] [Indexed: 05/08/2023]
Abstract
Secondary plant metabolites are potentially of great value for providing robust resistance in plants against insect pests. Such metabolites often comprise small lipophilic molecules (SLMs), and can be similar also in terms of activity to currently used insecticides, for example, the pyrethroids, neonicotinoids and butenolides, which provide more effective pest management than the resistance traits exploited by breeding. Crop plants mostly lack the SLMs that provide their wild ancestors with resistance to pests. However, resistance traits based on the biosynthesis of SLMs present promising new opportunities for crop resistance to pests. Advances in genetic engineering of secondary metabolite pathways that produce insecticidal compounds and, more recently, SLMs involved in plant colonisation and development, for example, insect pheromones, offer specific new approaches but which are more demanding than the genetic engineering approaches adopted so far. In addition, nature also offers various opportunities for exploiting induction or priming for resistance metabolite generation. Thus, use of non-constitutively expressed resistance traits delivered via the seed is a more sustainable approach than previously achieved, and could underpin development of perennial arable crops protected by sentinel plant technologies.
Collapse
Affiliation(s)
| | - John A Pickett
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK.
| |
Collapse
|
33
|
Pickett JA, Aradottír GI, Birkett MA, Bruce TJA, Hooper AM, Midega CAO, Jones HD, Matthes MC, Napier JA, Pittchar JO, Smart LE, Woodcock CM, Khan ZR. Delivering sustainable crop protection systems via the seed: exploiting natural constitutive and inducible defence pathways. Philos Trans R Soc Lond B Biol Sci 2014; 369:20120281. [PMID: 24535389 DOI: 10.1098/rstb.2012.0281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To reduce the need for seasonal inputs, crop protection will have to be delivered via the seed and other planting material. Plant secondary metabolism can be harnessed for this purpose by new breeding technologies, genetic modification and companion cropping, the latter already on-farm in sub-Saharan Africa. Secondary metabolites offer the prospect of pest management as robust as that provided by current pesticides, for which many lead compounds were, or are currently deployed as, natural products. Evidence of success and promise is given for pest management in industrial and developing agriculture. Additionally, opportunities for solving wider problems of sustainable crop protection, and also production, are discussed.
Collapse
Affiliation(s)
- John A Pickett
- Rothamsted Research, , Harpenden, Hertfordshire AL5 2JQ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bruinsma M, Lucas-Barbosa D, ten Broeke CJM, van Dam NM, van Beek TA, Dicke M, van Loon JJA. Folivory affects composition of nectar, floral odor and modifies pollinator behavior. J Chem Ecol 2013; 40:39-49. [PMID: 24317664 DOI: 10.1007/s10886-013-0369-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 11/30/2022]
Abstract
Herbivory induces changes in plants that influence the associated insect community. The present study addresses the potential trade-off between plant phytochemical responses to insect herbivory and interactions with pollinators. We used a multidisciplinary approach and have combined field and greenhouse experiments to investigate effects of herbivory in plant volatile emission, nectar production, and pollinator behavior, when Pieris brassicae caterpillars were allowed to feed only on the leaves of Brassica nigra plants. Interestingly, volatile emission by flowers changed upon feeding by herbivores on the leaves, whereas, remarkably, volatile emission by leaves did not significantly differ between infested and non-infested flowering plants. The frequency of flower visits by pollinators was generally not influenced by herbivory, but the duration of visits by honeybees and butterflies was negatively affected by herbivore damage to leaves. Shorter duration of pollinator visits could be beneficial for a plant, because it sustains pollen transfer between flowers while reducing nectar consumption per visit. Thus, no trade-off between herbivore-induced plant responses and pollination was evident. The effects of herbivore-induced plant responses on pollinator behavior underpin the importance of including ecological factors, such as herbivore infestation, in studies of the ecology of plant pollination.
Collapse
Affiliation(s)
- Maaike Bruinsma
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH, Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
35
|
Dudareva N, Klempien A, Muhlemann JK, Kaplan I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. THE NEW PHYTOLOGIST 2013; 198:16-32. [PMID: 23383981 DOI: 10.1111/nph.12145] [Citation(s) in RCA: 753] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/13/2012] [Indexed: 05/18/2023]
Abstract
Plants synthesize an amazing diversity of volatile organic compounds (VOCs) that facilitate interactions with their environment, from attracting pollinators and seed dispersers to protecting themselves from pathogens, parasites and herbivores. Recent progress in -omics technologies resulted in the isolation of genes encoding enzymes responsible for the biosynthesis of many volatiles and contributed to our understanding of regulatory mechanisms involved in VOC formation. In this review, we largely focus on the biosynthesis and regulation of plant volatiles, the involvement of floral volatiles in plant reproduction as well as their contribution to plant biodiversity and applications in agriculture via crop-pollinator interactions. In addition, metabolic engineering approaches for both the improvement of plant defense and pollinator attraction are discussed in light of methodological constraints and ecological complications that limit the transition of crops with modified volatile profiles from research laboratories to real-world implementation.
Collapse
Affiliation(s)
- Natalia Dudareva
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Antje Klempien
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Joëlle K Muhlemann
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Ian Kaplan
- Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
36
|
|