1
|
Klaus L, de Almeida BP, Vlasova A, Nemčko F, Schleiffer A, Bergauer K, Hofbauer L, Rath M, Stark A. Systematic identification and characterization of repressive domains in Drosophila transcription factors. EMBO J 2023; 42:e112100. [PMID: 36545802 PMCID: PMC9890238 DOI: 10.15252/embj.2022112100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
All multicellular life relies on differential gene expression, determined by regulatory DNA elements and DNA-binding transcription factors that mediate activation and repression via cofactor recruitment. While activators have been extensively characterized, repressors are less well studied: the identities and properties of their repressive domains (RDs) are typically unknown and the specific co-repressors (CoRs) they recruit have not been determined. Here, we develop a high-throughput, next-generation sequencing-based screening method, repressive-domain (RD)-seq, to systematically identify RDs in complex DNA-fragment libraries. Screening more than 200,000 fragments covering the coding sequences of all transcription-related proteins in Drosophila melanogaster, we identify 195 RDs in known repressors and in proteins not previously associated with repression. Many RDs contain recurrent short peptide motifs, which are conserved between fly and human and are required for RD function, as demonstrated by motif mutagenesis. Moreover, we show that RDs that contain one of five distinct repressive motifs interact with and depend on different CoRs, such as Groucho, CtBP, Sin3A, or Smrter. These findings advance our understanding of repressors, their sequences, and the functional impact of sequence-altering mutations and should provide a valuable resource for further studies.
Collapse
Affiliation(s)
- Loni Klaus
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Bernardo P de Almeida
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Anna Vlasova
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
| | - Filip Nemčko
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Institute of Molecular Biotechnology (IMBA)Vienna BioCenter (VBC)ViennaAustria
| | - Katharina Bergauer
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
| | - Lorena Hofbauer
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Martina Rath
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Medical University of ViennaVienna BioCenter (VBC)ViennaAustria
| |
Collapse
|
2
|
Kulkarni A, Pandey A, Trainor P, Carlisle S, Yu W, Kukutla P, Xu J. Aryl hydrocarbon receptor and Krüppel like factor 10 mediate a transcriptional axis modulating immune homeostasis in mosquitoes. Sci Rep 2022; 12:6005. [PMID: 35397616 PMCID: PMC8994780 DOI: 10.1038/s41598-022-09817-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Immune responses require delicate controls to maintain homeostasis while executing effective defense. Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor. The Krüppel-like factor 10 (KLF10) is a C2H2 zinc-finger containing transcription factor. The functions of mosquito AhR and KLF10 have not been characterized. Here we show that AhR and KLF10 constitute a transcriptional axis to modulate immune responses in mosquito Anopheles gambiae. The manipulation of AhR activities via agonists or antagonists repressed or enhanced the mosquito antibacterial immunity, respectively. KLF10 was recognized as one of the AhR target genes in the context. Phenotypically, silencing KLF10 reversed the immune suppression caused by the AhR agonist. The transcriptome comparison revealed that silencing AhR and KLF10 plus challenge altered the expression of 2245 genes in the same way. The results suggest that KLF10 is downstream of AhR in a transcriptional network responsible for immunomodulation. This AhR–KLF10 axis regulates a set of genes involved in metabolism and circadian rhythms in the context. The axis was required to suppress the adverse effect caused by the overactivation of the immune pathway IMD via the inhibitor gene Caspar silencing without a bacterial challenge. These results demonstrate that the AhR–KLF10 axis mediates an immunoregulatory transcriptional network as a negative loop to maintain immune homeostasis.
Collapse
Affiliation(s)
- Aditi Kulkarni
- Biology Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Ashmita Pandey
- Biology Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Patrick Trainor
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Samantha Carlisle
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Wanqin Yu
- Biology Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Phanidhar Kukutla
- Biology Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Jiannong Xu
- Biology Department, New Mexico State University, Las Cruces, NM, 88003, USA.
| |
Collapse
|
3
|
Agrawal P, Chung P, Heberlein U, Kent C. Enabling cell-type-specific behavioral epigenetics in Drosophila: a modified high-yield INTACT method reveals the impact of social environment on the epigenetic landscape in dopaminergic neurons. BMC Biol 2019; 17:30. [PMID: 30967153 PMCID: PMC6456965 DOI: 10.1186/s12915-019-0646-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/07/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Epigenetic mechanisms play fundamental roles in brain function and behavior and stressors such as social isolation can alter animal behavior via epigenetic mechanisms. However, due to cellular heterogeneity, identifying cell-type-specific epigenetic changes in the brain is challenging. Here, we report the first use of a modified isolation of nuclei tagged in specific cell type (INTACT) method in behavioral epigenetics of Drosophila melanogaster, a method we call mini-INTACT. RESULTS Using ChIP-seq on mini-INTACT purified dopaminergic nuclei, we identified epigenetic signatures in socially isolated and socially enriched Drosophila males. Social experience altered the epigenetic landscape in clusters of genes involved in transcription and neural function. Some of these alterations could be predicted by expression changes of four transcription factors and the prevalence of their binding sites in several clusters. These transcription factors were previously identified as activity-regulated genes, and their knockdown in dopaminergic neurons reduced the effects of social experience on sleep. CONCLUSIONS Our work enables the use of Drosophila as a model for cell-type-specific behavioral epigenetics and establishes that social environment shifts the epigenetic landscape in dopaminergic neurons. Four activity-related transcription factors are required in dopaminergic neurons for the effects of social environment on sleep.
Collapse
Affiliation(s)
- Pavan Agrawal
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Phuong Chung
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ulrike Heberlein
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Clement Kent
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
- Department of Biology, York University, Toronto, Canada.
| |
Collapse
|
4
|
Muñoz-Soriano V, Belacortu Y, Sanz FJ, Solana-Manrique C, Dillon L, Suay-Corredera C, Ruiz-Romero M, Corominas M, Paricio N. Cbt modulates Foxo activation by positively regulating insulin signaling in Drosophila embryos. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:S1874-9399(18)30034-8. [PMID: 30055320 DOI: 10.1016/j.bbagrm.2018.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/10/2018] [Accepted: 07/19/2018] [Indexed: 01/05/2023]
Abstract
In late Drosophila embryos, the epidermis exhibits a dorsal hole as a consequence of germ band retraction. It is sealed during dorsal closure (DC), a morphogenetic process in which the two lateral epidermal layers converge towards the dorsal midline and fuse. We previously demonstrated the involvement of the Cbt transcription factor in Drosophila DC. However its molecular role in the process remained obscure. In this study, we used genomic approaches to identify genes regulated by Cbt as well as its direct targets during late embryogenesis. Our results reveal a complex transcriptional circuit downstream of Cbt and evidence that it is functionally related with the Insulin/insulin-like growth factor signaling pathway. In this context, Cbt may act as a positive regulator of the pathway, leading to the repression of Foxo activity. Our results also suggest that the DC defects observed in cbt embryos could be partially due to Foxo overactivation and that a regulatory feedback loop between Foxo and Cbt may be operating in the DC context.
Collapse
Affiliation(s)
- Verónica Muñoz-Soriano
- Departamento de Genética, Facultad CC Biológicas, Universitat de València, 46100 Burjasot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, 46100 Burjassot, Spain
| | - Yaiza Belacortu
- Departamento de Genética, Facultad CC Biológicas, Universitat de València, 46100 Burjasot, Spain
| | - Francisco José Sanz
- Departamento de Genética, Facultad CC Biológicas, Universitat de València, 46100 Burjasot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, 46100 Burjassot, Spain
| | - Cristina Solana-Manrique
- Departamento de Genética, Facultad CC Biológicas, Universitat de València, 46100 Burjasot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, 46100 Burjassot, Spain
| | - Luke Dillon
- Departamento de Genética, Facultad CC Biológicas, Universitat de València, 46100 Burjasot, Spain
| | - Carmen Suay-Corredera
- Departamento de Genética, Facultad CC Biológicas, Universitat de València, 46100 Burjasot, Spain
| | - Marina Ruiz-Romero
- Departament de Genètica, Facultat de Biologia, and Institut de Biomedicina (IBUB) de la Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Corominas
- Departament de Genètica, Facultat de Biologia, and Institut de Biomedicina (IBUB) de la Universitat de Barcelona, Barcelona, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Universitat de València, 46100 Burjasot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, 46100 Burjassot, Spain.
| |
Collapse
|
5
|
Bartok O, Teesalu M, Ashwall-Fluss R, Pandey V, Hanan M, Rovenko BM, Poukkula M, Havula E, Moussaieff A, Vodala S, Nahmias Y, Kadener S, Hietakangas V. The transcription factor Cabut coordinates energy metabolism and the circadian clock in response to sugar sensing. EMBO J 2015; 34:1538-53. [PMID: 25916830 DOI: 10.15252/embj.201591385] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/01/2015] [Indexed: 12/16/2022] Open
Abstract
Nutrient sensing pathways adjust metabolism and physiological functions in response to food intake. For example, sugar feeding promotes lipogenesis by activating glycolytic and lipogenic genes through the Mondo/ChREBP-Mlx transcription factor complex. Concomitantly, other metabolic routes are inhibited, but the mechanisms of transcriptional repression upon sugar sensing have remained elusive. Here, we characterize cabut (cbt), a transcription factor responsible for the repressive branch of the sugar sensing transcriptional network in Drosophila. We demonstrate that cbt is rapidly induced upon sugar feeding through direct regulation by Mondo-Mlx. We found that CBT represses several metabolic targets in response to sugar feeding, including both isoforms of phosphoenolpyruvate carboxykinase (pepck). Deregulation of pepck1 (CG17725) in mlx mutants underlies imbalance of glycerol and glucose metabolism as well as developmental lethality. Furthermore, we demonstrate that cbt provides a regulatory link between nutrient sensing and the circadian clock. Specifically, we show that a subset of genes regulated by the circadian clock are also targets of CBT. Moreover, perturbation of CBT levels leads to deregulation of the circadian transcriptome and circadian behavioral patterns.
Collapse
Affiliation(s)
- Osnat Bartok
- Biological Chemistry Department, Silberman Institute of Life Sciences The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mari Teesalu
- Department of Biosciences, University of Helsinki, Helsinki, Finland Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Reut Ashwall-Fluss
- Biological Chemistry Department, Silberman Institute of Life Sciences The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Varun Pandey
- Biological Chemistry Department, Silberman Institute of Life Sciences The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mor Hanan
- Biological Chemistry Department, Silberman Institute of Life Sciences The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bohdana M Rovenko
- Department of Biosciences, University of Helsinki, Helsinki, Finland Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Minna Poukkula
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Essi Havula
- Department of Biosciences, University of Helsinki, Helsinki, Finland Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Arieh Moussaieff
- Department of Cell Biology, Silberman Institute of Life Sciences The Hebrew University of Jerusalem, Jerusalem, Israel Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sadanand Vodala
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA, USA
| | - Yaakov Nahmias
- Department of Cell Biology, Silberman Institute of Life Sciences The Hebrew University of Jerusalem, Jerusalem, Israel Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sebastian Kadener
- Biological Chemistry Department, Silberman Institute of Life Sciences The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ville Hietakangas
- Department of Biosciences, University of Helsinki, Helsinki, Finland Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Ruiz-Romero M, Blanco E, Paricio N, Serras F, Corominas M. Cabut/dTIEG associates with the transcription factor Yorkie for growth control. EMBO Rep 2015; 16:362-9. [PMID: 25572844 PMCID: PMC4364875 DOI: 10.15252/embr.201439193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Drosophila transcription factor Cabut/dTIEG (Cbt) is a growth regulator, whose expression is modulated by different stimuli. Here, we determine Cbt association with chromatin and identify Yorkie (Yki), the transcriptional co-activator of the Hippo (Hpo) pathway as its partner. Cbt and Yki co-localize on common gene promoters, and the expression of target genes varies according to changes in Cbt levels. Down-regulation of Cbt suppresses the overgrowth phenotypes caused by mutations in expanded (ex) and yki overexpression, whereas its up-regulation promotes cell proliferation. Our results imply that Cbt is a novel partner of Yki that is required as a transcriptional co-activator in growth control.
Collapse
Affiliation(s)
- Marina Ruiz-Romero
- Departament de Genètica, Facultat de Biologia and Institut de Biomedicina (IBUB) de la Universitat de Barcelona, Barcelona, Spain
| | - Enrique Blanco
- Departament de Genètica, Facultat de Biologia and Institut de Biomedicina (IBUB) de la Universitat de Barcelona, Barcelona, Spain Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Valencia, Spain
| | - Florenci Serras
- Departament de Genètica, Facultat de Biologia and Institut de Biomedicina (IBUB) de la Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Corominas
- Departament de Genètica, Facultat de Biologia and Institut de Biomedicina (IBUB) de la Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
de Assuncao TM, Lomberk G, Cao S, Yaqoob U, Mathison A, Simonetto DA, Huebert RC, Urrutia RA, Shah VH. New role for Kruppel-like factor 14 as a transcriptional activator involved in the generation of signaling lipids. J Biol Chem 2014; 289:15798-809. [PMID: 24759103 DOI: 10.1074/jbc.m113.544346] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sphingosine kinase 1 (SK1) is an FGF-inducible gene responsible for generation of sphingosine-1-phosphate, a critical lipid signaling molecule implicated in diverse endothelial cell functions. In this study, we identified SK1 as a target of the canonical FGF2/FGF receptor 1 activation pathway in endothelial cells and sought to identify novel transcriptional pathways that mediate lipid signaling. Studies using the 1.9-kb SK1 promoter and deletion mutants revealed that basal and FGF2-stimulated promoter activity occurred through two GC-rich regions located within 633 bp of the transcription start site. Screening for GC-rich binding transcription factors that could activate this site demonstrated that KLF14, a gene implicated in obesity and the metabolic syndrome, binds to this region. Congruently, overexpression of KLF14 increased basal and FGF2-stimulated SK1 promoter activity by 3-fold, and this effect was abrogated after mutation of the GC-rich sites. In addition, KLF14 siRNA transfection decreased SK1 mRNA and protein levels by 3-fold. Congruently, SK1 mRNA and protein levels were decreased in livers from KLF14 knock-out mice. Combined, luciferase, gel shift, and chromatin immunoprecipitation assays showed that KLF14 couples to p300 to increase the levels of histone marks associated with transcriptional activation (H4K8ac and H3K14ac), while decreasing repressive marks (H3K9me3 and H3K27me3). Collectively, the results demonstrate a novel mechanism whereby SK1 lipid signaling is regulated by epigenetic modifications conferred by KLF14 and p300. Thus, this is the first description of the activity and mechanisms underlying the function of KLF14 as an activator protein and novel regulator of lipid signaling.
Collapse
Affiliation(s)
- Thiago M de Assuncao
- From the Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Physiology and Biophysics, and Medicine and
| | - Gwen Lomberk
- From the Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Physiology and Biophysics, and Medicine and the Epigenomics Translational Program, Mayo Clinic Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Sheng Cao
- From the Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Physiology and Biophysics, and Medicine and
| | - Usman Yaqoob
- From the Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Physiology and Biophysics, and Medicine and
| | - Angela Mathison
- From the Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Physiology and Biophysics, and Medicine and
| | - Douglas A Simonetto
- From the Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Physiology and Biophysics, and Medicine and
| | - Robert C Huebert
- From the Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Physiology and Biophysics, and Medicine and
| | - Raul A Urrutia
- From the Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Physiology and Biophysics, and Medicine and the Epigenomics Translational Program, Mayo Clinic Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Vijay H Shah
- From the Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Physiology and Biophysics, and Medicine and
| |
Collapse
|
8
|
Song M, Zhang Y, Katzaroff AJ, Edgar BA, Buttitta L. Hunting complex differential gene interaction patterns across molecular contexts. Nucleic Acids Res 2014; 42:e57. [PMID: 24482443 PMCID: PMC3985659 DOI: 10.1093/nar/gku086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Heterogeneity in genetic networks across different signaling molecular contexts can suggest molecular regulatory mechanisms. Here we describe a comparative chi-square analysis (CPχ2) method, considerably more flexible and effective than other alternatives, to screen large gene expression data sets for conserved and differential interactions. CPχ2 decomposes interactions across conditions to assess homogeneity and heterogeneity. Theoretically, we prove an asymptotic chi-square null distribution for the interaction heterogeneity statistic. Empirically, on synthetic yeast cell cycle data, CPχ2 achieved much higher statistical power in detecting differential networks than alternative approaches. We applied CPχ2 to Drosophila melanogaster wing gene expression arrays collected under normal conditions, and conditions with overexpressed E2F and Cabut, two transcription factor complexes that promote ectopic cell cycling. The resulting differential networks suggest a mechanism by which E2F and Cabut regulate distinct gene interactions, while still sharing a small core network. Thus, CPχ2 is sensitive in detecting network rewiring, useful in comparing related biological systems.
Collapse
Affiliation(s)
- Mingzhou Song
- Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA, Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA and German Cancer Research Center (DKFZ)-Center for Molecular Biology Heidelberg (ZMBH) Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|