1
|
Rasmussen L, Stafford D, LaFontaine J, Allen A, Antony L, Kim H, Raju SV. Alcohol-Induced Mucociliary Dysfunction: Role of Defective CFTR Channel Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.548927. [PMID: 37502889 PMCID: PMC10370077 DOI: 10.1101/2023.07.17.548927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Excessive alcohol use is thought to increase the risk of respiratory infections by impairing mucociliary clearance (MCC). In this study, we investigate the hypothesis that alcohol reduces the function of CFTR, the protein that is defective in individuals with cystic fibrosis, thus altering mucus properties to impair MCC and the airway's defense against inhaled pathogens. Methods Sprague Dawley rats with wild type CFTR (+/+), matched for age and sex, were administered either a Lieber-DeCarli alcohol diet or a control diet with the same number of calories for eight weeks. CFTR activity was measured using nasal potential difference (NPD) assay and Ussing chamber electrophysiology of tracheal tissue samples. In vivo MCC was determined by measuring the radiographic clearance of inhaled Tc99 particles and the depth of the airway periciliary liquid (PCL) and mucus transport rate in excised trachea using micro-optical coherence tomography (μOCT). The levels of rat lung MUC5b and CFTR were estimated by protein and mRNA analysis. Results Alcohol diet was found to decrease CFTR ion transport in the nasal and tracheal epithelium in vivo and ex vivo. This decrease in activity was also reflected in partially reduced full-length CFTR protein levels but not, in mRNA copies, in the lungs of rats. Furthermore, alcohol-fed rats showed a significant decrease in MCC after 8 weeks of alcohol consumption. The trachea from these rats also showed reduced PCL depth, indicating a decrease in mucosal surface hydration that was reflected in delayed mucus transport. Diminished MCC rate was also likely due to the elevated MUC5b expression in alcohol-fed rat lungs. Conclusions Excessive alcohol use can decrease the expression and activity of CFTR channels, leading to reduced airway surface hydration and impaired mucus clearance. This suggests that CFTR dysfunction plays a role in the compromised lung defense against respiratory pathogens in individuals who drink alcohol excessively.
Collapse
Affiliation(s)
- Lawrence Rasmussen
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Environment Health Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Denise Stafford
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer LaFontaine
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Antonio Allen
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Linto Antony
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hyunki Kim
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - S. Vamsee Raju
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Environment Health Science, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
2
|
Maia C, Pinheiro BG, Soares da Silva CC, Cunha RA, Souza-Monteiro D, Martins Ferreira MK, Schmidt TR, de Souza Balbinot G, Collares FM, Martins MD, Lima RR. Prolonged caffeine intake decreases alveolar bone damage induced by binge-like ethanol consumption in adolescent female rats. Biomed Pharmacother 2020; 130:110608. [PMID: 32784050 DOI: 10.1016/j.biopha.2020.110608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Accepted: 08/02/2020] [Indexed: 12/14/2022] Open
Abstract
Ethanol consumption has been reported to negatively impact on periodontal disease. In particular, oral cavity disorders occur upon ethanol exposure during adolescence, a life period associated with particular patterns of short and intense ('binge-like') ethanol consumption that is most deleterious to oral health. The hazardous central effects of ethanol have been linked to the overfunction of adenosine receptors, which are antagonized by caffeine, a bioactive substance present in numerous natural nutrients, which can also modify bone metabolism. The aim of this study was to investigate the effects of caffeine on alveolar bone damage induced by an ethanol binge drinking paradigm during adolescence. Female Wistar rats (35 days old; n = 30) were allocated to six groups: control (vehicle), ethanol (3 g/kg/day; 3 days On-4 days Off challenge), caffeine (10 mg/kg/day), caffeine plus ethanol, SCH58261 (0.1 mg/kg/day, an antagonist of A2A receptors), and SCH58261 plus ethanol. Bone micromorphology and vertical bone loss were analyzed by computed microtomography. Our data showed that ethanol binge drinking reduced alveolar bone quality, with repercussion on alveolar bone size. This ethanol-induced alveolar bone deterioration was abrogated upon treatment with caffeine, but not with SCH58261. This shows that caffeine prevented the periodontal disorder caused by ethanol binge drinking during adolescence, an effect that was not mediated by adenosine A2A receptor blockade.
Collapse
Affiliation(s)
- Cristiane Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil.
| | - Bruno Gonçalves Pinheiro
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | - Carla Cristiane Soares da Silva
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | - Rodrigo A Cunha
- CNC-Center for Neurosciences and Cell Biology, Faculty of Medicine, University of Coimbra, Portugal
| | - Deiweson Souza-Monteiro
- Laboratory of Functional and Structural Biology, Biological Science Institute, Federal University of Pará, Belém, Pará, Brazil
| | - Maria Karolina Martins Ferreira
- Laboratory of Functional and Structural Biology, Biological Science Institute, Federal University of Pará, Belém, Pará, Brazil
| | - Tuany Rafaeli Schmidt
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriela de Souza Balbinot
- Department of Dental Materials, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabrício Mezzomo Collares
- Department of Dental Materials, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Manoela Domingues Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Biological Science Institute, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
3
|
Rasmussen LW, Stanford D, Patel K, Raju SV. Evaluation of secondhand smoke effects on CFTR function in vivo. Respir Res 2020; 21:70. [PMID: 32192506 PMCID: PMC7082971 DOI: 10.1186/s12931-020-1324-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/17/2020] [Indexed: 01/01/2023] Open
Affiliation(s)
- Lawrence W Rasmussen
- Departments of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
- Environmental Health Sciences, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Denise Stanford
- Departments of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Krina Patel
- Departments of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - S Vamsee Raju
- Departments of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, USA.
- Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
4
|
Cho DY, Skinner D, Zhang S, Fortenberry J, Sorscher EJ, Dean NR, Woodworth BA. Cystic fibrosis transmembrane conductance regulator activation by the solvent ethanol: implications for topical drug delivery. Int Forum Allergy Rhinol 2015; 6:178-84. [PMID: 26869199 DOI: 10.1002/alr.21638] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND Decreased cystic fibrosis transmembrane conductance regulator (CFTR)-mediated chloride (Cl) secretion across mucosal surfaces contributes to the development of airway disease by depleting airway surface liquid, increasing mucus viscosity and adhesion, and consequently hindering mucociliary clearance. We serendipitously discovered during testing of drugs solubilized in low concentrations ethanol (0.25%, 43 mM) that the control vehicle produced robust activation of CFTR-mediated Cl(-) transport. The objective of the current study is to investigate low concentrations of ethanol for effects on Cl(-) secretion and ciliary beat frequency (CBF). METHODS Wild-type (WT) and transgenic CFTR(-/-) primary murine nasoseptal epithelial (MNSE) cultures and WT and F508del/F508del human sinonasal epithelial (HSNE) cultures were subjected to transepithelial ion transport measurements using pharmacologic manipulation in Ussing chambers. CBF activation was also monitored. Murine nasal potential difference (NPD) was measured in vivo. RESULTS Ussing chamber tracings revealed ethanol activated CFTR-mediated Cl transport in a dose-dependent fashion in WT MNSE (n = 4, p < 0.05) and HSNE (n = 4, p < 0.05). Ethanol also significantly increased CBF (fold change) in WT MNSE cultures in a dose-dependent fashion (phosphate-buffered saline [PBS], 1.33 ± 0.04; 0.25% ethanol, 1.37 ± 0.09; 0.5% ethanol, 1.53 ± 0.06 [p < 0.05]; 1% ethanol, 1.62 ± 0.1 [p < 0.05]). Lack of stimulation in CFTR(-/-) and F508del/F508del cultures indicated activity was dependent on the presence of intact functional CFTR. Ethanol perfusion (0.5%) resulted in a significant -3.5-mV mean NPD polarization when compared to control solution (p < 0.05). CONCLUSION The observation that brief exposure of ethanol stimulated Cl(-) secretion via CFTR-mediated pathways indicates its possible use as topical aerosol delivered alone or in combination with other CFTR activators for diseases of dysfunctional mucociliary clearance (MCC) in chronic rhinosinusitis (CRS).
Collapse
Affiliation(s)
- Do-Yeon Cho
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Birmingham, AL
| | - Daniel Skinner
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Shaoyan Zhang
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - James Fortenberry
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Birmingham, AL
| | - Eric J Sorscher
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Birmingham, AL.,Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Birmingham, AL.,Department of Medicine, University of Alabama at Birmingham, Birmingham, Birmingham, AL
| | - Nichole R Dean
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Bradford A Woodworth
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Birmingham, AL
| |
Collapse
|
5
|
Traphagen N, Tian Z, Allen-Gipson D. Chronic Ethanol Exposure: Pathogenesis of Pulmonary Disease and Dysfunction. Biomolecules 2015; 5:2840-53. [PMID: 26492278 PMCID: PMC4693259 DOI: 10.3390/biom5042840] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/04/2015] [Accepted: 09/28/2015] [Indexed: 12/18/2022] Open
Abstract
Ethanol (EtOH) is the world’s most commonly used drug, and has been widely recognized as a risk factor for developing lung disorders. Chronic EtOH exposure affects all of the organ systems in the body and increases the risk of developing pulmonary diseases such as acute lung injury and pneumonia, while exacerbating the symptoms and resulting in increased mortality in many other lung disorders. EtOH and its metabolites inhibit the immune response of alveolar macrophages (AMs), increase airway leakage, produce damaging reactive oxygen species (ROS), and disrupt the balance of antioxidants/oxidants within the lungs. In this article, we review the role of EtOH exposure in the pathogenesis and progression of pulmonary disease.
Collapse
Affiliation(s)
- Nicole Traphagen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida Health, Tampa, FL 33612, USA.
| | - Zhi Tian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida Health, Tampa, FL 33612, USA.
| | - Diane Allen-Gipson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida Health, Tampa, FL 33612, USA.
- Department of Internal Medicine, Division of Allergy and Immunology, University of South Florida Health, Tampa, FL 33612, USA.
| |
Collapse
|
6
|
Ruenraroengsak P, Tetley TD. Differential bioreactivity of neutral, cationic and anionic polystyrene nanoparticles with cells from the human alveolar compartment: robust response of alveolar type 1 epithelial cells. Part Fibre Toxicol 2015; 12:19. [PMID: 26133975 PMCID: PMC4489088 DOI: 10.1186/s12989-015-0091-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/22/2015] [Accepted: 05/26/2015] [Indexed: 12/31/2022] Open
Abstract
Background Engineered nanoparticles (NP) are being developed for inhaled drug delivery. This route is non-invasive and the major target; alveolar epithelium provides a large surface area for drug administration and absorption, without first pass metabolism. Understanding the interaction between NPs and target cells is crucial for safe and effective NP-based drug delivery. We explored the differential effect of neutral, cationic and anionic polystyrene latex NPs on the target cells of the human alveolus, using primary human alveolar macrophages (MAC) and primary human alveolar type 2 (AT2) epithelial cells and a unique human alveolar epithelial type I-like cell (TT1). We hypothesized that the bioreactivity of the NPs would relate to their surface chemistry, charge and size as well as the functional role of their interacting cells in vivo. Methods Amine- (ANP) and carboxyl- surface modified (CNP) and unmodified (UNP) polystyrene NPs, 50 and 100 nm in diameter, were studied. Cells were exposed to 1–100 μg/ml (1.25-125 μg/cm2; 0 μg/ml control) NP for 4 and 24 h at 37 °C with or without the antioxidant, N-acetyl cysteine (NAC). Cells were assessed for cell viability, reactive oxygen species (ROS), oxidised glutathione (GSSG/GSH ratio), mitochondrial integrity, cell morphology and particle uptake (using electron microscopy and laser scanning confocal microscopy). Results ANP-induced cell death occurred in all cell types, inducing increased oxidative stress, mitochondrial disruption and release of cytochrome C, indicating apoptotic cell death. UNP and CNP exhibited little cytotoxicity or mitochondrial damage, although they induced ROS in AT2 and MACs. Addition of NAC reduced epithelial cell ROS, but not MAC ROS, for up to 4 h. TT1 and MAC cells internalised all NP formats, whereas only a small fraction of AT2 cells internalized ANP (not UNP or CNP). TT1 cells were the most resistant to the effects of UNP and CNP. Conclusion ANP induced marked oxidative damage and cell death via apoptosis in all cell types, while UNP and CNP exhibited low cytotoxicity via oxidative stress. MAC and TT1 cell models show strong particle-internalization compared to the AT2 cell model, reflecting their cell function in vivo. The 50 nm NPs induced a higher bioreactivity in epithelial cells, whereas the 100 nm NPs show a stronger effect on phagocytic cells. Electronic supplementary material The online version of this article (doi:10.1186/s12989-015-0091-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pakatip Ruenraroengsak
- Lung Cell Biology, Section of Airways Disease, National Heart & Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK.
| | - Teresa D Tetley
- Lung Cell Biology, Section of Airways Disease, National Heart & Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK.
| |
Collapse
|
7
|
Raju SV, Jackson PL, Courville CA, McNicholas CM, Sloane PA, Sabbatini G, Tidwell S, Tang LP, Liu B, Fortenberry JA, Jones CW, Boydston JA, Clancy JP, Bowen LE, Accurso FJ, Blalock JE, Dransfield MT, Rowe SM. Cigarette smoke induces systemic defects in cystic fibrosis transmembrane conductance regulator function. Am J Respir Crit Care Med 2014; 188:1321-30. [PMID: 24040746 DOI: 10.1164/rccm.201304-0733oc] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Several extrapulmonary disorders have been linked to cigarette smoking. Smoking is reported to cause cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction in the airway, and is also associated with pancreatitis, male infertility, and cachexia, features characteristic of cystic fibrosis and suggestive of an etiological role for CFTR. OBJECTIVES To study the effect of cigarette smoke on extrapulmonary CFTR function. METHODS Demographics, spirometry, exercise tolerance, symptom questionnaires, CFTR genetics, and sweat chloride analysis were obtained in smokers with and without chronic obstructive pulmonary disease (COPD). CFTR activity was measured by nasal potential difference in mice and by Ussing chamber electrophysiology in vitro. Serum acrolein levels were estimated with mass spectroscopy. MEASUREMENTS AND MAIN RESULTS Healthy smokers (29.45 ± 13.90 mEq), smokers with COPD (31.89 ± 13.9 mEq), and former smokers with COPD (25.07 ± 10.92 mEq) had elevated sweat chloride levels compared with normal control subjects (14.5 ± 7.77 mEq), indicating reduced CFTR activity in a nonrespiratory organ. Intestinal current measurements also demonstrated a 65% decrease in CFTR function in smokers compared with never smokers. CFTR activity was decreased by 68% in normal human bronchial epithelial cells exposed to plasma from smokers, suggesting that one or more circulating agents could confer CFTR dysfunction. Cigarette smoke-exposed mice had decreased CFTR activity in intestinal epithelium (84.3 and 45%, after 5 and 17 wk, respectively). Acrolein, a component of cigarette smoke, was higher in smokers, blocked CFTR by inhibiting channel gating, and was attenuated by antioxidant N-acetylcysteine, a known scavenger of acrolein. CONCLUSIONS Smoking causes systemic CFTR dysfunction. Acrolein present in cigarette smoke mediates CFTR defects in extrapulmonary tissues in smokers.
Collapse
|
8
|
Judák L, Hegyi P, Rakonczay Z, Maléth J, Gray MA, Venglovecz V. Ethanol and its non-oxidative metabolites profoundly inhibit CFTR function in pancreatic epithelial cells which is prevented by ATP supplementation. Pflugers Arch 2013; 466:549-62. [PMID: 23948742 DOI: 10.1007/s00424-013-1333-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/26/2013] [Accepted: 07/30/2013] [Indexed: 02/06/2023]
Abstract
Excessive alcohol consumption is a major cause of acute pancreatitis, but the mechanism involved is not well understood. Recent investigations suggest that pancreatic ductal epithelial cells (PDECs) help defend the pancreas from noxious agents such as alcohol. Because the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel plays a major role in PDEC physiology and mutated CFTR is often associated with pancreatitis, we tested the hypothesis that ethanol affects CFTR to impair ductal function. Electrophysiological studies on native PDECs showed that ethanol (10 and 100 mM) increased basal, but reversibly blocked, forskolin-stimulated CFTR currents. The inhibitory effect of ethanol was mimicked by its non-oxidative metabolites, palmitoleic acid ethyl ester (POAEE) and palmitoleic acid (POA), but not by the oxidative metabolite, acetaldehyde. Ethanol, POAEE and POA markedly reduced intracellular ATP (ATPi) which was linked to CFTR inhibition since the inhibitory effects were almost completely abolished if ATPi depletion was prevented. We propose that ethanol causes functional damage of CFTR through an ATPi-dependent mechanism, which compromises ductal fluid secretion and likely contributes to the pathogenesis of acute pancreatitis. We suggest that the maintenance of ATPi may represent a therapeutic option in the treatment of the disease.
Collapse
Affiliation(s)
- L Judák
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
9
|
Chronic alcohol ingestion changes the landscape of the alveolar epithelium. BIOMED RESEARCH INTERNATIONAL 2012; 2013:470217. [PMID: 23509726 PMCID: PMC3591140 DOI: 10.1155/2013/470217] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/03/2012] [Indexed: 02/07/2023]
Abstract
Similar to effects of alcohol on the heart, liver, and brain, the effects of ethanol (EtOH) on lung injury are preventable. Unlike other vital organ systems, however, the lethal effects of alcohol on the lung are underappreciated, perhaps because there are no signs of overt pulmonary disorder until a secondary insult, such as a bacterial infection or injury, occurs in the lung. This paper provides overview of the complex changes in the alveolar environment known to occur following both chronic and acute alcohol exposures. Contemporary animal and cell culture models for alcohol-induced lung dysfunction are discussed, with emphasis on the effect of alcohol on transepithelial transport processes, namely, epithelial sodium channel activity (ENaC). The cascading effect of tissue and phagocytic Nadph oxidase (Nox) may be triggered by ethanol exposure, and as such, alcohol ingestion and exposure lead to a prooxidative environment; thus impacting alveolar macrophage (AM) function and oxidative stress. A better understanding of how alcohol changes the landscape of the alveolar epithelium can lead to improvements in treating acute respiratory distress syndrome (ARDS) for which hospitalized alcoholics are at an increased risk.
Collapse
|