1
|
Lawrence LA, Vidal P, Varughese RS, Tiger Li ZR, Chen TD, Tuske SC, Jimenez AR, Lowen AC, Shafer WM, Swaims-Kohlmeier A. Murine modeling of menstruation identifies immune correlates of protection during Chlamydia muridarum challenge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595090. [PMID: 38826233 PMCID: PMC11142139 DOI: 10.1101/2024.05.21.595090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The menstrual cycle influences the risk of acquiring sexually transmitted infections (STIs), including Chlamydia trachomatis (C. trachomatis), although the underlying immune contributions are poorly defined. A mouse model simulating the immune-mediated process of menstruation could provide valuable insights into tissue-specific determinants of protection against chlamydial infection within the cervicovaginal and uterine mucosae comprising the female reproductive tract (FRT). Here, we used the pseudopregnancy approach in naïve C57Bl/6 mice and performed vaginal challenge with Chlamydia muridarum (C. muridarum) at decidualization, endometrial tissue remodeling, or uterine repair. This strategy identified that the time frame comprising uterine repair correlated with robust infection and greater bacterial burden as compared with mice on hormonal contraception, while challenges during endometrial remodeling were least likely to result in a productive infection. By comparing the infection site at early time points following chlamydial challenge, we found that a greater abundance of innate effector populations and proinflammatory signaling, including IFNγ correlated with protection. FRT immune profiling in uninfected mice over pseudopregnancy or in pig-tailed macaques over the menstrual cycle identified NK cell infiltration into the cervicovaginal tissues and lumen over the course of endometrial remodeling. Notably, NK cell depletion over this time frame reversed protection, with mice now productively infected with C. muridarum following challenge. This study shows that the pseudopregnancy murine menstruation model recapitulates immune changes in the FRT as a result of endometrial remodeling and identifies NK cell localization at the FRT as essential for immune protection against primary C. muridarum infection.
Collapse
Affiliation(s)
- Laurel A Lawrence
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Paola Vidal
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Richa S Varughese
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Zheng-Rong Tiger Li
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Thien Duy Chen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Steven C Tuske
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Ariana R Jimenez
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - William M Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
- Laboratories of Bacterial Pathogenesis, Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - Alison Swaims-Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
- Department of GYNOB, Emory University School of Medicine, Atlanta, Georgia
- Division of HIV Prevention Centers for Disease Control and Prevention, Atlanta, Georgia (previous affiliation)
| |
Collapse
|
2
|
Abstract
The uterine lining (endometrium) regenerates repeatedly over the life span as part of its normal physiology. Substantial portions of the endometrium are shed during childbirth (parturition) and, in some species, menstruation, but the tissue is rapidly rebuilt without scarring, rendering it a powerful model of regeneration in mammals. Nonetheless, following some assaults, including medical procedures and infections, the endometrium fails to regenerate and instead forms scars that may interfere with normal endometrial function and contribute to infertility. Thus, the endometrium provides an exceptional platform to answer a central question of regenerative medicine: Why do some systems regenerate while others scar? Here, we review our current understanding of diverse endometrial disruption events in humans, nonhuman primates, and rodents, and the associated mechanisms of regenerative success and failure. Elucidating the determinants of these disparate repair processes promises insights into fundamental mechanisms of mammalian regeneration with substantial implications for reproductive health.
Collapse
Affiliation(s)
- Claire J Ang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA;
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Taylor D Skokan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA;
| | - Kara L McKinley
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA;
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Kriseman ML, Tang S, Liao Z, Jiang P, Parks SE, Cope DI, Yuan F, Chen F, Masand RP, Castro PD, Ittmann MM, Creighton CJ, Tan Z, Monsivais D. SMAD2/3 signaling in the uterine epithelium controls endometrial cell homeostasis and regeneration. Commun Biol 2023; 6:261. [PMID: 36906706 PMCID: PMC10008566 DOI: 10.1038/s42003-023-04619-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/21/2023] [Indexed: 03/13/2023] Open
Abstract
The regenerative potential of the endometrium is attributed to endometrial stem cells; however, the signaling pathways controlling its regenerative potential remain obscure. In this study, genetic mouse models and endometrial organoids are used to demonstrate that SMAD2/3 signaling controls endometrial regeneration and differentiation. Mice with conditional deletion of SMAD2/3 in the uterine epithelium using Lactoferrin-iCre develop endometrial hyperplasia at 12-weeks and metastatic uterine tumors by 9-months of age. Mechanistic studies in endometrial organoids determine that genetic or pharmacological inhibition of SMAD2/3 signaling disrupts organoid morphology, increases the glandular and secretory cell markers, FOXA2 and MUC1, and alters the genome-wide distribution of SMAD4. Transcriptomic profiling of the organoids reveals elevated pathways involved in stem cell regeneration and differentiation such as the bone morphogenetic protein (BMP) and retinoic acid signaling (RA) pathways. Therefore, TGFβ family signaling via SMAD2/3 controls signaling networks which are integral for endometrial cell regeneration and differentiation.
Collapse
Affiliation(s)
- Maya L Kriseman
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Division of Reproductive Endocrinology and Infertility, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Suni Tang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zian Liao
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Peixin Jiang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sydney E Parks
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Dominique I Cope
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Fei Yuan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Fengju Chen
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ramya P Masand
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Patricia D Castro
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael M Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chad J Creighton
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhi Tan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA.
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX, 77030, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Zhang S, Chan RWS, Ng EHY, Yeung WSB. The role of Notch signaling in endometrial mesenchymal stromal/stem-like cells maintenance. Commun Biol 2022; 5:1064. [PMID: 36207605 PMCID: PMC9547015 DOI: 10.1038/s42003-022-04044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Human endometrium undergoes cycles of regeneration in women of reproductive age. The endometrial mesenchymal stromal/stem cells (eMSC) contribute to this process. Notch signaling is essential for homeostasis of somatic stem cells. However, its role in eMSC remains unclear. We show with gain- and loss-of-function experiments that activation of Notch signaling promotes eMSC maintenance, while inhibition induces opposite effect. The activation of Notch signaling better maintains eMSC in a quiescent state. However, these quiescent eMSC can re-enter the cell cycle depending on the Notch and Wnt activities in the microenvironment, suggesting a crosstalk between the two signaling pathways. We further show that the Notch signaling is involved in endometrial remodeling event in a mouse menstrual-like model. Suppression of Notch signaling reduces the proliferation of Notch1+ label-retaining stromal cells and delays endometrial repair. Our data demonstrate the importance of Notch signaling in regulating the endometrial stem/progenitor cells in vitro and in vivo. Notch signaling promotes the quiescent state of endometrial mesenchymal stromal/stem cells (eMSC), whose re-rentry into the cell cycle is in turn influenced by Notch and Wnt signaling from the microenvironment.
Collapse
Affiliation(s)
- Sisi Zhang
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China.,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, 518000, China
| | - Rachel W S Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China. .,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, 518000, China.
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China.,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, 518000, China
| | - William S B Yeung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China. .,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, 518000, China.
| |
Collapse
|
5
|
Tsolova AO, Aguilar RM, Maybin JA, Critchley HOD. Pre-clinical models to study abnormal uterine bleeding (AUB). EBioMedicine 2022; 84:104238. [PMID: 36081283 PMCID: PMC9465267 DOI: 10.1016/j.ebiom.2022.104238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
Abnormal Uterine Bleeding (AUB) is a common debilitating condition that significantly reduces quality of life of women across the reproductive age span. AUB creates significant morbidity, medical, social, and economic problems for women, their families, workplace, and health services. Despite the profoundly negative effects of AUB on public health, advancement in understanding the pathophysiology of AUB and the discovery of novel effective therapies is slow due to lack of reliable pre-clinical models. This review discusses currently available laboratory-based pre-clinical scientific models and how they are used to study AUB. Human and animal in vitro, ex vivo, and in vivo models will be described along with advantages and limitations of each method.
Collapse
|
6
|
Hypoxia Regulates the Self-Renewal of Endometrial Mesenchymal Stromal/Stem-like Cells via Notch Signaling. Int J Mol Sci 2022; 23:ijms23094613. [PMID: 35563003 PMCID: PMC9104239 DOI: 10.3390/ijms23094613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/24/2022] [Accepted: 04/20/2022] [Indexed: 01/16/2023] Open
Abstract
Human endometrium is an incredibly dynamic tissue undergoing cyclic regeneration and shedding during a woman’s reproductive life. Endometrial mesenchymal stromal/stem-like cells (eMSC) contribute to this process. A hypoxic niche with low oxygen levels has been reported in multiple somatic stem cell types. However, the knowledge of hypoxia on eMSC remains limited. In mice, stromal stem/progenitor cells can be identified by the label-retaining technique. We examined the relationship between the label-retaining stromal cells (LRSC) and hypoxia during tissue breakdown in a mouse model of simulated menses. Our results demonstrated that LRSC resided in a hypoxic microenvironment during endometrial breakdown and early repair. Immunofluorescence staining revealed that the hypoxic-located LRSC underwent proliferation and was highly colocalized with Notch1. In vitro studies illustrated that hypoxia activated Notch signaling in eMSC, leading to enhanced self-renewal, clonogenicity and proliferation of cells. More importantly, HIF-1α played an essential role in the hypoxia-mediated maintenance of eMSC through the activation of Notch signaling. In conclusion, our findings show that some endometrial stem/progenitor cells reside in a hypoxic niche during menstruation, and hypoxia can regulate the self-renewal activity of eMSC via Notch signaling.
Collapse
|
7
|
Yi C, Ni Y, Sun P, Gao T, Li K. Differential Size Distribution and Estrogen Receptor Cargo of Oviductal Extracellular Vesicles at Various Stages of Estrous Cycle in Mice. Reprod Sci 2022; 29:2847-2858. [PMID: 35137347 PMCID: PMC9537198 DOI: 10.1007/s43032-022-00862-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/20/2022] [Indexed: 11/30/2022]
Abstract
Oviductal extracellular vesicles (OEVs) play an important role in fertilization and embryo development. However, it remains largely unknown whether the size and protein cargo of OEVs change during the estrous cycle in mice. This study analyzed the changes in the size distribution and protein cargo of OEVs at four stages of the estrous cycle in mice. The distribution widths of OEVs according to the estrous cycle stage were as follows: proestrus, 20–690 nm in diameter, with two peaks at 50 and 250 nm; estrus, 22–420 nm in diameter, with two peaks at 40 and 200 nm; metestrus, 30–70 nm diameter, with a single peak at 40 nm; and diestrus, 10–26 nm diameter, with a single peak at 20 nm. The estrogen receptor (ER) level in OEVs at the proestrus stage differed significantly from that at estrus (P = 0.013) and diestrus (P = 0.005). The levels of CD9 and Hsc70 fluctuated across the four stages, although with no significant differences. Furthermore, OEVs were observed among the cilia and microvilli of epithelial cells at the proestrus, estrus, and diestrus stages, but not at the metestrus stage. The number of observed OEVs was the highest at the proestrus stage, followed by the estrus, and the diestrus stage. Endosomes were also observed at the estrus and diestrus stages. The change of the OEV size and ER cargo is associated with the estrous cycle in mice. Our findings increase the understanding of the physiological characteristics of OEVs, which may have clinical applications.
Collapse
Affiliation(s)
- Chenchen Yi
- Institute for Reproductive Health, Hang Medical College, Hangzhou, 310013, Zhejiang, China
| | - Ya Ni
- Institute for Reproductive Health, Hang Medical College, Hangzhou, 310013, Zhejiang, China
| | - Peibei Sun
- Institute for Reproductive Health, Hang Medical College, Hangzhou, 310013, Zhejiang, China
| | - Tian Gao
- Institute for Reproductive Health, Hang Medical College, Hangzhou, 310013, Zhejiang, China
| | - Kun Li
- Institute for Reproductive Health, Hang Medical College, Hangzhou, 310013, Zhejiang, China.
| |
Collapse
|
8
|
Cousins FL, Filby CE, Gargett CE. Endometrial Stem/Progenitor Cells–Their Role in Endometrial Repair and Regeneration. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 3:811537. [PMID: 36304009 PMCID: PMC9580754 DOI: 10.3389/frph.2021.811537] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
The human endometrium is a remarkable tissue, undergoing ~450 cycles of proliferation, differentiation, shedding (menstruation), repair, and regeneration over a woman's reproductive lifespan. Post-menstrual repair is an extremely rapid and scar-free process, with re-epithelialization of the luminal epithelium completed within 48 h of initiation of shedding. Following menstruation, the functionalis grows from the residual basalis layer during the proliferative phase under the influence of rising circulating estrogen levels. The regenerative capacity of the endometrium is attributed to stem/progenitor cells which reside in both the epithelial and stromal cell compartments of the basalis layer. Finding a definitive marker for endometrial epithelial progenitors (eEPCs) has proven difficult. A number of different markers have been suggested as putative progenitor markers including, N-cadherin, SSEA-1, AXIN2, SOX-9 and ALDH1A1, some of which show functional stem cell activity in in vitro assays. Each marker has a unique location(s) in the glandular epithelium, which has led to the suggestion that a differentiation hierarchy exists, from the base of epithelial glands in the basalis to the luminal epithelium lining the functionalis, where epithelial cells express different combinations of markers as they differentiate and move up the gland into the functionalis away from the basalis niche. Perivascular endometrial mesenchymal stem cells (eMSCs) can be identified by co-expression of PDGFRβ and CD146 or by a single marker, SUSD2. This review will detail the known endometrial stem/progenitor markers; their identity, location and known interactions and hierarchy across the menstrual cycle, in particular post-menstrual repair and estrogen-driven regeneration, as well as their possible contributions to menstruation-related disorders such as endometriosis and regeneration-related disorder Asherman's syndrome. We will also highlight new techniques that allow for a greater understanding of stem/progenitor cells' role in repair and regeneration, including 3D organoids, 3D slice cultures and gene sequencing at the single cell level. Since mouse models are commonly used to study menstruation, repair and regeneration we will also detail the mouse stem/progenitor markers that have been investigated in vivo.
Collapse
Affiliation(s)
- Fiona L. Cousins
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, VIC, Australia
- *Correspondence: Fiona L. Cousins
| | - Caitlin E. Filby
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, VIC, Australia
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
9
|
Kirkwood PM, Shaw IW, Saunders PTK. Mechanisms of Scarless Repair at Time of Menstruation: Insights From Mouse Models. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 3:801843. [PMID: 36304046 PMCID: PMC9580659 DOI: 10.3389/frph.2021.801843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/08/2021] [Indexed: 11/18/2022] Open
Abstract
The human endometrium is a remarkable tissue which may experience up to 400 cycles of hormone-driven proliferation, differentiation and breakdown during a woman's reproductive lifetime. During menstruation, when the luminal portion of tissue breaks down, it resembles a bloody wound with piecemeal shedding, exposure of underlying stroma and a strong inflammatory reaction. In the absence of pathology within a few days the integrity of the tissue is restored without formation of a scar and the endometrium is able to respond appropriately to subsequent endocrine signals in preparation for establishment of pregnancy if fertilization occurs. Understanding mechanisms regulating scarless repair of the endometrium is important both for design of therapies which can treat conditions where this is aberrant (heavy menstrual bleeding, fibroids, endometriosis, Asherman's syndrome) as well as to provide new information that might allow us to reduce fibrosis and scar formation in other tissues. Menstruation only occurs naturally in species that exhibit spontaneous stromal cell decidualization during the fertile cycle such as primates (including women) and the Spiny mouse. To take advantage of genetic models and detailed time course analysis, mouse models of endometrial shedding/repair involving hormonal manipulation, artificial induction of decidualization and hormone withdrawal have been developed and refined. These models are useful in modeling dynamic changes across the time course of repair and have recapitulated key features of endometrial repair in women including local hypoxia and immune cell recruitment. In this review we will consider the evidence that scarless repair of endometrial tissue involves changes in stromal cell function including mesenchyme to epithelial transition, epithelial cell proliferation and multiple populations of immune cells. Processes contributing to endometrial fibrosis (Asherman's syndrome) as well as scarless repair of other tissues including skin and oral mucosa are compared to that of menstrual repair.
Collapse
|
10
|
Bellofiore N, McKenna J, Ellery S, Temple-Smith P. The Spiny Mouse—A Menstruating Rodent to Build a Bridge From Bench to Bedside. FRONTIERS IN REPRODUCTIVE HEALTH 2021; 3:784578. [PMID: 36303981 PMCID: PMC9580678 DOI: 10.3389/frph.2021.784578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Menstruation, the cyclical breakdown of the uterine lining, is arguably one of evolution's most mysterious reproductive strategies. The complexity and rarity of menstruation within the animal kingdom is undoubtedly a leading contributor to our current lack of understanding about menstrual function and disorders. In particular, the molecular and environmental mechanisms that drive menstrual and fertility dysregulation remain ambiguous, owing to the restricted opportunities to study menstruation and model menstrual disorders in species outside the primates. The recent discovery of naturally occurring menstruation in the Egyptian spiny mouse (Acomys cahirinus) offers a new laboratory model with significant benefits for prospective research in women's health. This review summarises current knowledge of spiny mouse menstruation, with an emphasis on spiral artery formation, inflammation and endocrinology. We offer a new perspective on cycle variation in menstrual bleeding between individual animals, and propose that this is indicative of fertility success. We discuss how we can harness our knowledge of the unique physiology of the spiny mouse to better understand vascular remodelling and its implications for successful implantation, placentation, and foetal development. Our research suggests that the spiny mouse has the potential as a translational research model to bridge the gap between bench to bedside and provide improved reproductive health outcomes for women.
Collapse
Affiliation(s)
- Nadia Bellofiore
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- *Correspondence: Nadia Bellofiore
| | - Jarrod McKenna
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Stacey Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Peter Temple-Smith
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
11
|
Catalini L, Fedder J. Characteristics of the endometrium in menstruating species: lessons learned from the animal kingdom†. Biol Reprod 2021; 102:1160-1169. [PMID: 32129461 PMCID: PMC7253787 DOI: 10.1093/biolre/ioaa029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/03/2020] [Accepted: 02/28/2020] [Indexed: 12/21/2022] Open
Abstract
Here we have summarized what is currently known about menstruating animal species with special emphasis on non-primate species: length of their menstrual cycle, ovulation, implantation, placentation, decidualization, and endometrial characteristics. Having an overview of all the possible animal models that can be used to study menstruation and the menstrual cycle could be useful to select the one that better matches the needs of the individual research projects. The most promising species to study menstruation seems to be the spiny mouse Acomys cahirinus. It is a rodent that could be easily held in the existing laboratory facilities for rats and mice but with the great advantage of having spontaneous menstruation and several human-like menstrual cycle characteristics. Among the species of menstruating bats, the black mastiff bat Molossus ater and wild fulvous fruit bat Rousettus leschenaultii are the ones presenting the most human-like characteristics. The elephant shrew seems to be the less suitable species among the ones analyzed. The induced mouse model of menstruation is also presented as an adaptable alternative to study menstruation.
Collapse
Affiliation(s)
- Laura Catalini
- Centre of Andrology and Fertility Clinic Dept. D, Odense University Hospital, Odense, Denmark
| | - Jens Fedder
- Centre of Andrology and Fertility Clinic Dept. D, Odense University Hospital, Odense, Denmark
| |
Collapse
|
12
|
Nenicu A, Yordanova K, Gu Y, Menger MD, Laschke MW. Differences in growth and vascularization of ectopic menstrual and non-menstrual endometrial tissue in mouse models of endometriosis. Hum Reprod 2021; 36:2202-2214. [PMID: 34109385 DOI: 10.1093/humrep/deab139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/29/2021] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Is there a difference in the growth and vascularization between murine endometriotic lesions originating from menstrual or non-menstrual endometrial fragments? SUMMARY ANSWER Endometriotic lesions developing from menstrual and non-menstrual tissue fragments share many similarities, but also exhibit distinct differences in growth and vascularization, particularly under exogenous estrogen stimulation. WHAT IS KNOWN ALREADY Mouse models are increasingly used in endometriosis research. For this purpose, menstrual or non-menstrual endometrial fragments serve for the induction of endometriotic lesions. So far, these two fragment types have never been directly compared under identical experimental conditions. STUDY DESIGN, SIZE, DURATION This was a prospective experimental study in a murine peritoneal and dorsal skinfold chamber model of endometriosis. Endometrial tissue fragments from menstruated (n = 15) and non-menstruated (n = 21) C57BL/6 mice were simultaneously transplanted into the peritoneal cavity or dorsal skinfold chamber of non-ovariectomized (non-ovx, n = 17), ovariectomized (ovx, n = 17) and ovariectomized, estrogen-substituted (ovx+E2, n = 17) recipient animals and analyzed throughout an observation period of 28 and 14 days, respectively. PARTICIPANTS/MATERIALS, SETTING, METHODS The engraftment, growth and vascularization of the newly developing endometriotic lesions were analyzed by means of high-resolution ultrasound imaging, intravital fluorescence microscopy, histology and immunohistochemistry. MAIN RESULTS AND THE ROLE OF CHANCE Menstrual and non-menstrual tissue fragments developed into peritoneal endometriotic lesions without differences in growth, microvessel density and cell proliferation in non-ovx mice. Lesion formation out of both fragment types was markedly suppressed in ovx mice. In case of non-menstrual tissue fragments, this effect could be reversed by estrogen supplementation. In contrast, endometriotic lesions originating from menstrual tissue fragments exhibited a significantly smaller volume in ovx+E2 mice, which may be due to a reduced hormone sensitivity. Moreover, menstrual tissue fragments showed a delayed vascularization and a reduced blood perfusion after transplantation into dorsal skinfold chambers when compared to non-menstrual tissue fragments, indicating different vascularization modes of the two fragment types. To limit the role of chance, the experiments were conducted under standardized laboratory conditions. Statistical significance was accepted for a value of P < 0.05. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Endometriotic lesions were induced by syngeneic tissue transplantation into recipient mice without the use of pathological endometriotic tissue of human nature. Therefore, the results obtained in this study may not fully relate to human patients with endometriosis. WIDER IMPLICATIONS OF THE FINDINGS The present study significantly contributes to the characterization of common murine endometriosis models. These models represent important tools for studies focusing on the basic mechanisms of endometriosis and the development of novel therapeutic strategies for the treatment of this frequent gynecological disease. The presented findings indicate that the combination of different experimental models and approaches may be the most appropriate strategy to study the pathophysiology and drug sensitivity of a complex disease such as endometriosis under preclinical conditions. STUDY FUNDING/COMPETING INTEREST(S) There was no specific funding of this study. The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- A Nenicu
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - K Yordanova
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Y Gu
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - M D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - M W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
13
|
Cousins FL, Pandoy R, Jin S, Gargett CE. The Elusive Endometrial Epithelial Stem/Progenitor Cells. Front Cell Dev Biol 2021; 9:640319. [PMID: 33898428 PMCID: PMC8063057 DOI: 10.3389/fcell.2021.640319] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
The human endometrium undergoes approximately 450 cycles of proliferation, differentiation, shedding and regeneration over a woman's reproductive lifetime. The regenerative capacity of the endometrium is attributed to stem/progenitor cells residing in the basalis layer of the tissue. Mesenchymal stem cells have been extensively studied in the endometrium, whereas endometrial epithelial stem/progenitor cells have remained more elusive. This review details the discovery of human and mouse endometrial epithelial stem/progenitor cells. It highlights recent significant developments identifying putative markers of these epithelial stem/progenitor cells that reveal their in vivo identity, location in both human and mouse endometrium, raising common but also different viewpoints. The review also outlines the techniques used to identify epithelial stem/progenitor cells, specifically in vitro functional assays and in vivo lineage tracing. We will also discuss their known interactions and hierarchy and known roles in endometrial dynamics across the menstrual or estrous cycle including re-epithelialization at menses and regeneration of the tissue during the proliferative phase. We also detail their potential role in endometrial proliferative disorders such as endometriosis.
Collapse
Affiliation(s)
- Fiona L. Cousins
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, VIC, Australia
| | - Ronald Pandoy
- Buck Institute for Research on Aging, Novato, CA, United States
| | - Shiying Jin
- Buck Institute for Research on Aging, Novato, CA, United States
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
14
|
Norton KA, Niri F, Weatherill CB, Williams CE, Duong K, McDermid HE. Implantation failure and embryo loss contribute to subfertility in female mice mutant for chromatin remodeler Cecr2†. Biol Reprod 2021; 104:835-849. [PMID: 33354716 DOI: 10.1093/biolre/ioaa231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/10/2020] [Accepted: 12/18/2020] [Indexed: 01/26/2023] Open
Abstract
Defects in the maternal reproductive system that result in early pregnancy loss are important causes of human female infertility. A wide variety of biological processes are involved in implantation and establishment of a successful pregnancy. Although chromatin remodelers have been shown to play an important role in many biological processes, our understanding of the role of chromatin remodelers in female reproduction remains limited. Here, we demonstrate that female mice mutant for chromatin remodeler Cecr2 are subfertile, with defects detected at the peri-implantation stage or early pregnancy. Using both a less severe hypomorphic mutation (Cecr2GT) and a more severe presumptive null mutation (Cecr2Del), we demonstrate a clear difference in the severity of the phenotype depending on the mutation. Although neither strain shows detectable defects in folliculogenesis, both Cecr2GT/GT and Cecr2GT/Del dams show defects in pregnancy. Cecr2GT/GT females have a normal number of implantation sites at embryonic day 5.5 (E5.5), but significant embryo loss by E10.5 accompanied by the presence of vaginal blood. Cecr2GT/Del females show a more severe phenotype, with significantly fewer detectable implantation sites than wild type at E5.5. Some Cecr2GT/Del females also show premature loss of decidual tissue after artificial decidualization. Together, these results suggest a role for Cecr2 in the establishment of a successful pregnancy.
Collapse
Affiliation(s)
- Kacie A Norton
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Farshad Niri
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Chelsey B Weatherill
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Christine E Williams
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Duong
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Heather E McDermid
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Critchley HOD, Babayev E, Bulun SE, Clark S, Garcia-Grau I, Gregersen PK, Kilcoyne A, Kim JYJ, Lavender M, Marsh EE, Matteson KA, Maybin JA, Metz CN, Moreno I, Silk K, Sommer M, Simon C, Tariyal R, Taylor HS, Wagner GP, Griffith LG. Menstruation: science and society. Am J Obstet Gynecol 2020; 223:624-664. [PMID: 32707266 PMCID: PMC7661839 DOI: 10.1016/j.ajog.2020.06.004] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/13/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
Women's health concerns are generally underrepresented in basic and translational research, but reproductive health in particular has been hampered by a lack of understanding of basic uterine and menstrual physiology. Menstrual health is an integral part of overall health because between menarche and menopause, most women menstruate. Yet for tens of millions of women around the world, menstruation regularly and often catastrophically disrupts their physical, mental, and social well-being. Enhancing our understanding of the underlying phenomena involved in menstruation, abnormal uterine bleeding, and other menstruation-related disorders will move us closer to the goal of personalized care. Furthermore, a deeper mechanistic understanding of menstruation-a fast, scarless healing process in healthy individuals-will likely yield insights into a myriad of other diseases involving regulation of vascular function locally and systemically. We also recognize that many women now delay pregnancy and that there is an increasing desire for fertility and uterine preservation. In September 2018, the Gynecologic Health and Disease Branch of the Eunice Kennedy Shriver National Institute of Child Health and Human Development convened a 2-day meeting, "Menstruation: Science and Society" with an aim to "identify gaps and opportunities in menstruation science and to raise awareness of the need for more research in this field." Experts in fields ranging from the evolutionary role of menstruation to basic endometrial biology (including omic analysis of the endometrium, stem cells and tissue engineering of the endometrium, endometrial microbiome, and abnormal uterine bleeding and fibroids) and translational medicine (imaging and sampling modalities, patient-focused analysis of menstrual disorders including abnormal uterine bleeding, smart technologies or applications and mobile health platforms) to societal challenges in health literacy and dissemination frameworks across different economic and cultural landscapes shared current state-of-the-art and future vision, incorporating the patient voice at the launch of the meeting. Here, we provide an enhanced meeting report with extensive up-to-date (as of submission) context, capturing the spectrum from how the basic processes of menstruation commence in response to progesterone withdrawal, through the role of tissue-resident and circulating stem and progenitor cells in monthly regeneration-and current gaps in knowledge on how dysregulation leads to abnormal uterine bleeding and other menstruation-related disorders such as adenomyosis, endometriosis, and fibroids-to the clinical challenges in diagnostics, treatment, and patient and societal education. We conclude with an overview of how the global agenda concerning menstruation, and specifically menstrual health and hygiene, are gaining momentum, ranging from increasing investment in addressing menstruation-related barriers facing girls in schools in low- to middle-income countries to the more recent "menstrual equity" and "period poverty" movements spreading across high-income countries.
Collapse
Affiliation(s)
- Hilary O D Critchley
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, United Kingdom.
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Serdar E Bulun
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | - Iolanda Garcia-Grau
- Igenomix Foundation-Instituto de Investigación Sanitaria Hospital Clínico, INCLIVA, Valencia, Spain; Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
| | - Peter K Gregersen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY
| | | | | | | | - Erica E Marsh
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI
| | - Kristen A Matteson
- Division of Research, Department of Obstetrics and Gynecology, Women and Infants Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | - Jacqueline A Maybin
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, United Kingdom
| | - Christine N Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY
| | - Inmaculada Moreno
- Igenomix Foundation-Instituto de Investigación Sanitaria Hospital Clínico, INCLIVA, Valencia, Spain
| | - Kami Silk
- Department of Communication, University of Delaware, Newark, DE
| | - Marni Sommer
- Department of Sociomedical Sciences, Columbia University Mailman School of Public Health, New York, NY
| | - Carlos Simon
- Igenomix Foundation-Instituto de Investigación Sanitaria Hospital Clínico, INCLIVA, Valencia, Spain; Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain; Beth Israel Deaconess Medical Center, Harvard University, Boston, MA; Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | | | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Department of Obstetrics, Gynecology and Reproductive Sciences, Systems Biology Institute, Yale University, New Haven, CT; Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Linda G Griffith
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
16
|
Liu T, Shi F, Ying Y, Chen Q, Tang Z, Lin H. Mouse model of menstruation: An indispensable tool to investigate the mechanisms of menstruation and gynaecological diseases (Review). Mol Med Rep 2020; 22:4463-4474. [PMID: 33174022 PMCID: PMC7646730 DOI: 10.3892/mmr.2020.11567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
Abnormal menstruation may result in several pathological alterations and gynaecological diseases, including endometriosis, menstrual pain and miscarriage. However, the pathogenesis of menstruation remains unclear due to the limited number of animal models available to study the menstrual cycle. In recent years, an effective, reproducible, and highly adaptive mouse model to study menstruation has been developed. In this model, progesterone and oestrogen were administered in cycles following the removal of ovaries. Subsequently, endometrial decidualisation was induced using sesame oil, followed by withdrawal of progesterone administration. Vaginal bleeding in mice is similar to that in humans. Therefore, the use of mice as a model organism to study the mechanism of menstruation and gynaecological diseases may prove to be an important breakthrough. The present review is focussed ond the development and applications of a mouse model of menstruation. Furthermore, various studies have been described to improve this model and the research findings that may aid in the treatment of menstrual disorders in women are presented.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Fuli Shi
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Ying Ying
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Qiongfeng Chen
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Zhimin Tang
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
17
|
Critchley HOD, Maybin JA, Armstrong GM, Williams ARW. Physiology of the Endometrium and Regulation of Menstruation. Physiol Rev 2020; 100:1149-1179. [DOI: 10.1152/physrev.00031.2019] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The physiological functions of the uterine endometrium (uterine lining) are preparation for implantation, maintenance of pregnancy if implantation occurs, and menstruation in the absence of pregnancy. The endometrium thus plays a pivotal role in reproduction and continuation of our species. Menstruation is a steroid-regulated event, and there are alternatives for a progesterone-primed endometrium, i.e., pregnancy or menstruation. Progesterone withdrawal is the trigger for menstruation. The menstruating endometrium is a physiological example of an injured or “wounded” surface that is required to rapidly repair each month. The physiological events of menstruation and endometrial repair provide an accessible in vivo human model of inflammation and tissue repair. Progress in our understanding of endometrial pathophysiology has been facilitated by modern cellular and molecular discovery tools, along with animal models of simulated menses. Abnormal uterine bleeding (AUB), including heavy menstrual bleeding (HMB), imposes a massive burden on society, affecting one in four women of reproductive age. Understanding structural and nonstructural causes underpinning AUB is essential to optimize and provide precision in patient management. This is facilitated by careful classification of causes of bleeding. We highlight the crucial need for understanding mechanisms underpinning menstruation and its aberrations. The endometrium is a prime target tissue for selective progesterone receptor modulators (SPRMs). This class of compounds has therapeutic potential for the clinical unmet need of HMB. SPRMs reduce menstrual bleeding by mechanisms still largely unknown. Human menstruation remains a taboo topic, and many questions concerning endometrial physiology that pertain to menstrual bleeding are yet to be answered.
Collapse
Affiliation(s)
- Hilary O. D. Critchley
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Jacqueline A. Maybin
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Gregory M. Armstrong
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Alistair R. W. Williams
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Peterse D, Clercq KD, Goossens C, Binda MM, F O D, Saunders P, Vriens J, Fassbender A, D'Hooghe TM. Optimization of Endometrial Decidualization in the Menstruating Mouse Model for Preclinical Endometriosis Research. Reprod Sci 2018; 25:1577-1588. [PMID: 29455621 DOI: 10.1177/1933719118756744] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
BACKGROUND To induce endometrial decidualization in rodents, an intrauterine oil stimulus can be delivered via the nontraumatic vagina or via the traumatic laparotomy. However, there is considerable variation in amount of decidualization using these inducing methods. Therefore, we studied which oil delivery route could achieve the highest rate of endometrial decidualization along the full length of both uterine horns. METHODS To induce decidualization, ovariectomized C57Bl/6J mice were injected with estrogen (100 ng/day; 3 days). A progesterone pellet (5 mg) was implanted subcutaneously, followed by estrogen injections (5 ng/day; 3 days). Oil (20 µL/horn) was injected in the uterus via laparotomy, laparoscopy, or vagina. Four days later, the pellet was removed, followed by hysterectomy after 4 to 6 hours. Endometrial decidualization was evaluated macroscopically and microscopically using hematoxylin and eosin and desmin staining. Furthermore, uterine weight and hormone levels were measured. RESULTS The proportion of animals with macroscopic bicornuate decidualization was higher after laparoscopic (83%) and laparotomic (89%) injection than after sham injection (11%). Furthermore, macroscopic bicornuate decidualization was significantly higher after laparotomic injection (89%) compared to the vaginal injection (38%). Uterine weight and endometrial surface area were significantly higher in both laparotomy and laparoscopy groups compared to the sham group, while the relative desmin-positive endometrial surface area was only significantly different between the laparotomy and the sham animals. CONCLUSION Methods using laparoscopic and laparotomic intrauterine oil injection resulted in a higher amount of decidualized endometrium compared to sham injection, although further optimization is needed to reach full bicornuate decidualization.
Collapse
Affiliation(s)
- Daniëlle Peterse
- 1 Department of Obstetrics and Gynaecology, Leuven University Fertility Center, University Hospital Leuven, Leuven, Belgium
- 2 Department of Development and Regeneration, Laboratory of Endometrium, Endometriosis & Reproductive Medicine, KU Leuven, Leuven, Belgium
| | - Katrien De Clercq
- 2 Department of Development and Regeneration, Laboratory of Endometrium, Endometriosis & Reproductive Medicine, KU Leuven, Leuven, Belgium
| | - Chloë Goossens
- 2 Department of Development and Regeneration, Laboratory of Endometrium, Endometriosis & Reproductive Medicine, KU Leuven, Leuven, Belgium
| | - M Mercedes Binda
- 2 Department of Development and Regeneration, Laboratory of Endometrium, Endometriosis & Reproductive Medicine, KU Leuven, Leuven, Belgium
| | - Dorien F O
- 1 Department of Obstetrics and Gynaecology, Leuven University Fertility Center, University Hospital Leuven, Leuven, Belgium
- 2 Department of Development and Regeneration, Laboratory of Endometrium, Endometriosis & Reproductive Medicine, KU Leuven, Leuven, Belgium
| | - Philippa Saunders
- 3 MRC Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Joris Vriens
- 2 Department of Development and Regeneration, Laboratory of Endometrium, Endometriosis & Reproductive Medicine, KU Leuven, Leuven, Belgium
| | - Amelie Fassbender
- 1 Department of Obstetrics and Gynaecology, Leuven University Fertility Center, University Hospital Leuven, Leuven, Belgium
- 2 Department of Development and Regeneration, Laboratory of Endometrium, Endometriosis & Reproductive Medicine, KU Leuven, Leuven, Belgium
| | - Thomas M D'Hooghe
- 2 Department of Development and Regeneration, Laboratory of Endometrium, Endometriosis & Reproductive Medicine, KU Leuven, Leuven, Belgium
- 4 Global Medical Affairs Fertility, Research and Development, Merck, Darmstadt, Germany
| |
Collapse
|
19
|
Brosens I, Muter J, Ewington L, Puttemans P, Petraglia F, Brosens JJ, Benagiano G. Adolescent Preeclampsia: Pathological Drivers and Clinical Prevention. Reprod Sci 2018; 26:159-171. [DOI: 10.1177/1933719118804412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ivo Brosens
- Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Joanne Muter
- Division of Biomedical Sciences, Warwick Medical School, Coventry, United Kingdom
| | - Lauren Ewington
- Division of Biomedical Sciences, Warwick Medical School, Coventry, United Kingdom
| | | | - Felice Petraglia
- Department of Biomedical, Experimental and Clinical Sciences (Mario Serio), University of Florence, Florence, Italy
| | - Jan J. Brosens
- Division of Biomedical Sciences, Warwick Medical School, Coventry, United Kingdom
| | - Giuseppe Benagiano
- Department of Gynaecology, Obstetrics and Urology, “Sapienza” University, Rome, Italy
| |
Collapse
|
20
|
Bellofiore N, Cousins F, Temple-Smith P, Dickinson H, Evans J. A missing piece: the spiny mouse and the puzzle of menstruating species. J Mol Endocrinol 2018; 61:R25-R41. [PMID: 29789322 DOI: 10.1530/jme-17-0278] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/11/2018] [Indexed: 12/12/2022]
Abstract
We recently discovered the first known menstruating rodent. With the exception of four bats and the elephant shrew, the common spiny mouse (Acomys cahirinus) is the only species outside the primate order to exhibit menses. There are few widely accepted theories on why menstruation developed as the preferred reproductive strategy of these select mammals, all of which reference the evolution of spontaneous decidualisation prior to menstrual shedding. Though menstruating species share several reproductive traits, there has been no identifiable feature unique to menstruating species. Such a feature might suggest why spontaneous decidualisation, and thus menstruation, evolved in these species. We propose that a ≥3-fold increase in progesterone during the luteal phase of the reproductive cycle is a unique characteristic linking menstruating species. We discuss spontaneous decidualisation as a consequence of high progesterone, and the potential role of prolactin in screening for defective embryos in these species to aid in minimising implantation of abnormal embryos. We further explore the possible impact of nutrition in selecting species to undergo spontaneous decidualisation and subsequent menstruation. We summarise the current knowledge of menstruation, discuss current pre-clinical models of menstruation and how the spiny mouse may benefit advancing our understanding of this rare biological phenomenon.
Collapse
Affiliation(s)
- Nadia Bellofiore
- The Ritchie CentreHudson Institute of Medical Research, Clayton, Australia
- Obstetrics and GynaecologyMonash University, Clayton, Australia
| | - Fiona Cousins
- The Ritchie CentreHudson Institute of Medical Research, Clayton, Australia
- Obstetrics and GynaecologyMonash University, Clayton, Australia
| | | | - Hayley Dickinson
- The Ritchie CentreHudson Institute of Medical Research, Clayton, Australia
- Obstetrics and GynaecologyMonash University, Clayton, Australia
| | - Jemma Evans
- Centre for Reproductive HealthHudson Institute of Medical Research, Clayton, Australia
| |
Collapse
|
21
|
Kuramoto G, Shimizu T, Takagi S, Ishitani K, Matsui H, Okano T. Endometrial regeneration using cell sheet transplantation techniques in rats facilitates successful fertilization and pregnancy. Fertil Steril 2018; 110:172-181.e4. [PMID: 29980256 DOI: 10.1016/j.fertnstert.2018.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To regenerate functional endometrium tissue using "cell sheet" techniques as a regenerative medicine approach to address endometrial disorders causing female factor infertility. DESIGN In vivo experimental study. SETTING Preclinical surgical and biomedical research laboratories. ANIMAL(S) Green fluorescent protein (GFP) transgenic rats [SD-Tg (CAG-EGFP) rats] and nude rats (F344/NJcl-rnu/rnu). INTERVENTION(S) GFP-positive rat uterine-derived cells as cell sheets were transplanted into resected rat uterine endometrial sites. Transplanted cell sheet areas were then analyzed using macroscopic observations and histological analysis including immunohistochemistry. Subsequently, crossbreeding was performed to establish fertility and confirm pregnancy in the rat-regenerated uterus. MAIN OUTCOME MEASURE(S) Morphologic and biochemical markers of regenerated endometrium and establishment of pregnancy in otherwise sterile animals. RESULT(S) After cell sheet transplantation, regenerated endometrium was confirmed as GFP-positive tissue engraftment both visually and under histological analysis. After crossbreeding, GFP-positive tissue areas and living fetuses were observed in the transplantation group. CONCLUSION(S) Cell sheet transplantation can regenerate endometrial tissue with histological structure and physiological function supporting pregnancy similar to normal endometrial tissue. Translation of this endometrial cell sheet transplantation method to human patients with endometrial disorders could yield a novel therapy for uterine infertility.
Collapse
Affiliation(s)
- Goro Kuramoto
- Department of Obstetrics and Gynecology, Tokyo Women's Medical University, Tokyo, Japan; Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan.
| | - Soichi Takagi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Ken Ishitani
- Department of Obstetrics and Gynecology, Tokyo Women's Medical University, Tokyo, Japan; Department of Obstetrics and Gynecology, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Hideo Matsui
- Department of Obstetrics and Gynecology, Tokyo Women's Medical University, Tokyo, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
22
|
Matsumoto YK, Kasai M, Tomihara K. The enhancement effect of estradiol on contextual fear conditioning in female mice. PLoS One 2018; 13:e0197441. [PMID: 29763466 PMCID: PMC5953469 DOI: 10.1371/journal.pone.0197441] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/02/2018] [Indexed: 01/08/2023] Open
Abstract
Several studies have reported regulatory effects of estrogens on fear conditioning in female rodents. However, these studies used different doses, durations, and/or administration methods, and reported inconsistent results. To clarify the effect of estrogen on fear conditioning, we investigated the effects of different doses and durations of estradiol administration on freezing behavior during contextual fear conditioning in ovariectomized (OVX) mice. In Experiment 1, OVX ICR mice received a single subcutaneous (s.c.) injection of either oil vehicle (control, 0.1 ml sesame oil) or varied doses (0.5 μg/0.1 ml, 5 μg/0.1 ml, or 50 μg/0.1 ml) of 17β-estradiol-3-benzoate (EB). Fear conditioning was conducted two days post-EB treatment, and the mice were tested for the learned fear response the following day. In Experiment 2, OVX female mice received an s.c. implantation of a Silastic capsule (I.D. 1.98 × 20.0 mm) containing either vehicle or varied doses (0.05 μg/0.1 ml, 0.5 μg/0.1 ml, 5 μg/0.1 ml, 50 μg/0.1 ml) of EB. Two weeks after implantation, fear conditioning was conducted. During the tests conducted 24 h after conditioning, the high dose EB group showed longer freezing times in both experiments, and lower locomotor activity compared to the control or lower dose groups. In Experiment 3, serum estradiol concentrations of the mice that were treated like those in Experiment 2, were measured; the serum levels of estradiol increased linearly according to the dose of EB administered. The results suggest that mice treated with a high dose of EB exhibit enhanced fear learning, regardless of treatment duration. As a woman’s vulnerability to emotional disorders increases in the peripregnancy period, during which estrogen levels are high, the results from the high-dose EB groups may be important for understanding the hormonal mechanisms involved in these disorders.
Collapse
Affiliation(s)
- Yui K. Matsumoto
- Department of Chemistry and Bioscience, Faculty of Science, Kagoshima University, Kagoshima, Japan
| | - Masanori Kasai
- Department of Chemistry and Bioscience, Faculty of Science, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Kazuya Tomihara
- Department of Psychology, Faculty of Law, Economics and Humanities, Kagoshima University, Kagoshima, Japan
- * E-mail:
| |
Collapse
|
23
|
Kiani K, Movahedin M, Malekafzali H, Mirfasihi F, Sadati SN, Moini A, Ostad SN, Aflatoonian R. Effect of the estrus cycle stage on the establishment of murine endometriosis lesions. Int J Reprod Biomed 2018. [DOI: 10.29252/ijrm.16.5.305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
24
|
Kiani K, Movahedin M, Malekafzali H, Mirfasihi F, Sadati SN, Moini A, Ostad S, Aflatoonian R. Effect of the estrus cycle stage on the establishment of murine endometriosis lesions. Int J Reprod Biomed 2018; 16:305-314. [PMID: 30027146 PMCID: PMC6046203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 12/20/2017] [Accepted: 02/03/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Establishment of a standardized animal endometriosis model is necessary for evaluation of new drug effects and for explaining different ethological aspects of this disease. For this purpose, we need a model which has more similarity to human endometriosis. OBJECTIVE Our objective was to establish an autologous endometriosis mouse model based on endogenous estrogen level and analyze the influence of estrus cycle on the maintenance of endometriotic lesions. MATERIALS AND METHODS In this experimental study, endometriotic lesions were induced in 52 female NMRI mice by suturing uterine tissue samples to the abdominal wall. The transplantation was either performed at proestrus/estrus or at metestrus/diestrus cycles. Urine-soaked beddings from males and also male vasectomized mice were transferred to the cages to synchronize and maintenance of estrus cycle in female mice. The mice were sacrificed after different transplantation periods (2, 4, 6 or 8 wk). The lesions size, macroscopic growth, model success rate, histological and immune-histochemical analyses were assessed at the end. RESULTS From a total of 200 tissue samples sutured into the peritoneal cavity, 83 endometriotic lesions were confirmed by histopathology (41.5%). Model success rate for proestrus/estrus mice was 60.7% vs. 79.2% for metestrus/diestrus mice. The endometriotic lesions had similar growth in both groups. Number of caspase-3, Ki67-positive cells and CD31-positive micro vessels were also similar in endometriotic lesions of two groups. CONCLUSION If we maintain the endogenous estrogen levels in mice, we can induce endometriosis mouse model in both proestrus/estrus and metestrus/diestrus cycle without any significant difference.
Collapse
Affiliation(s)
- Kiandokht Kiani
- Valiasr Reproductive Health Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hossein Malekafzali
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Seyedeh Nargess Sadati
- Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ashraf Moini
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
- Department of Obstetrics and Gynecology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - SeyedNasser Ostad
- Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
25
|
De Clercq K, Van den Eynde C, Hennes A, Van Bree R, Voets T, Vriens J. The functional expression of transient receptor potential channels in the mouse endometrium. Hum Reprod 2018; 32:615-630. [PMID: 28077439 DOI: 10.1093/humrep/dew344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/15/2016] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Does mouse endometrial epithelial cells and stromal cells have a similar transient receptor potential (TRP)-channel expression profile and to that found in the human endometrium? SUMMARY ANSWER Mouse endometrial epithelial and stromal cells have a distinct TRP channel expression profile analogous to what has been found in human endometrium, and hence suggests the mouse a good model to investigate the role of TRP channels in reproduction. WHAT IS KNOWN ALREADY An optimal intercellular communication between epithelial and stromal endometrial cells is crucial for successful reproduction. Members of the TRP family were recently described in the human endometrial stroma; however their functional expression in murine endometrium remains unspecified. Furthermore, epithelial and stromal cells have distinct functions in the reproductive process, implying the possibility for a different expression profile. However, knowledge about the functional expression pattern of TRP channels in either epithelial or stromal cells is not available. STUDY DESIGN, SIZE, DURATION In this study, the expression pattern of TRP channels in the murine (C57BL/6 J strain) endometrium was investigated and compared to the human expression pattern. Therefore, expression was examined in uterine tissue isolated during the natural estrous cycle (n = 16) or during an induced menstrual cycle using the menstruating mouse model (n = 28). Next, the functional expression of TRP channels was assessed separately in endometrial epithelial and stromal cell populations. PARTICIPANTS/MATERIALS, SETTING, METHODS Quantitative RT-PCR was used to evaluate the relative mRNA expression of TRP channels in murine uterine tissue and cells. To further assess the functional expression in epithelial or stromal cells, primary endometrial cell cultures and Fura2-based calcium-microfluorimetry experiments were performed. MAIN RESULTS AND THE ROLE OF CHANCE The expression pattern of TRP channels during the natural estrous cycle or the induced menstrual cycle is analog to what has been shown in human samples. Furthermore, a very distinct expression pattern was observed in epithelial cells compared to stromal cells. Expression of TRPV4, TRPV6 and TRPM6 was significantly higher in epithelial cells whereas TRPV2, TRPC1/4 and TRPC6 were almost exclusively expressed in stromal cells. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Although relevant mRNA levels are detected for TRPV6 and TRPM6, and TRPM4, lack of selective, available pharmacology restricted functional analysis of these ion channels. WIDER IMPLICATIONS OF THE FINDINGS Successful reproduction, and more specifically embryo implantation, is a dynamic developmental process that integrates many signaling molecules into a precisely orchestrated program. Here, we describe the expression pattern of TRP channels in mouse endometrium that is similar to human tissue and their restricted functionality in either stromal cells or epithelial cells, suggesting a role in the epithelial-stromal crosstalk. These results will be very helpful to identify key players involved in the signaling cascades required for successful embryo implantation. In addition, these results illustrate that mouse endometrium is a valid representative for human endometrium to investigate TRP channels in the field of reproduction. STUDY FUNDING/COMPETING INTEREST(S) The Research Foundation-Flanders (G.0856.13 N to J.V.); the Research Council of the Katholieke Universiteit Leuven (OT/13/113 to J.V. and PF-TRPLe to T.V.); the Planckaert-De Waele fund (to J.V.); Fonds Wetenschappelijk Onderzoek Belgium (to K.D.C. and A.H.). None of the authors have a conflict of interest.
Collapse
Affiliation(s)
- Katrien De Clercq
- Laboratory of Obstetrics and Experimental Gynaecology, KU Leuven, Herestraat 49 box 611, B-3000 Leuven, Belgium
| | - Charlotte Van den Eynde
- Laboratory of Obstetrics and Experimental Gynaecology, KU Leuven, Herestraat 49 box 611, B-3000 Leuven, Belgium
| | - Aurélie Hennes
- Laboratory of Obstetrics and Experimental Gynaecology, KU Leuven, Herestraat 49 box 611, B-3000 Leuven, Belgium
| | - Rieta Van Bree
- Laboratory of Obstetrics and Experimental Gynaecology, KU Leuven, Herestraat 49 box 611, B-3000 Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), KU Leuven, Herestraat 49 box 802, B-3000 Leuven, Belgium
| | - Joris Vriens
- Laboratory of Obstetrics and Experimental Gynaecology, KU Leuven, Herestraat 49 box 611, B-3000 Leuven, Belgium
| |
Collapse
|
26
|
Strug MR, Su RW, Kim TH, Mauriello A, Ticconi C, Lessey BA, Young SL, Lim JM, Jeong JW, Fazleabas AT. RBPJ mediates uterine repair in the mouse and is reduced in women with recurrent pregnancy loss. FASEB J 2018; 32:2452-2466. [PMID: 29242273 DOI: 10.1096/fj.201701032r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Unexplained recurrent pregnancy loss (uRPL) is associated with repeated embryo loss and endometrial repair with elevated endometrial expression of inflammatory cytokines, including IFN-γ. Notch signaling through its transcription factor recombination signal binding protein Jκ (RBPJ) regulates mechanisms including the immune response and repair after tissue injury. Initially, null mutation of RBPJ in the mouse uterus ( Pgrcre/+Rbpjf/f; Rbpj c-KO) results in subfertility, but we have found that these mice become infertile after pregnancy as a result of dysfunctional postpartum uterine repair, including delayed endometrial epithelial and myometrial regeneration. RNA sequencing of postpartum uterine repair sites revealed global up-regulation of inflammatory pathways, including IFN signaling. Consistent with elevated IFN-γ, macrophages were recruited and polarized toward an M1-cytotoxic phenotype, which is associated with preventing repair and promoting further tissue injury. Through embryo transfer experiments, we show that dysfunctional postpartum repair directly impairs future embryo implantation in Rbpj c-KO mice. Last, we clinically correlated our findings from the Rbpj c-KO mouse in women diagnosed with uRPL. Reduced RBPJ in women with uRPL was associated with increased levels of IFN-γ. The data, taken together, indicate that RBPJ regulates inflammation during endometrial repair, which is essential for future pregnancy potential, and its dysregulation may serve as an unidentified contributor to uRPL in women.-Strug, M. R., Su, R.-W., Kim, T. H., Mauriello, A., Ticconi, C., Lessey, B. A., Young, S. L., Lim, J. M., Jeong, J.-W., Fazleabas, A. T. RBPJ mediates uterine repair in the mouse and is reduced in women with recurrent pregnancy loss.
Collapse
Affiliation(s)
- Michael R Strug
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| | - Ren-Wei Su
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| | - Alessandro Mauriello
- Section of Gynecology and Obstetrics, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Carlo Ticconi
- Section of Gynecology and Obstetrics, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Greenville Health System, Greenville, South Carolina, USA
| | - Steven L Young
- Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeong Mook Lim
- World Class University (WCU) Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| | - Asgerally T Fazleabas
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| |
Collapse
|
27
|
Brosens I, Muter J, Gargett CE, Puttemans P, Benagiano G, Brosens JJ. The impact of uterine immaturity on obstetrical syndromes during adolescence. Am J Obstet Gynecol 2017; 217:546-555. [PMID: 28578177 DOI: 10.1016/j.ajog.2017.05.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 05/09/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022]
Abstract
Pregnant nulliparous adolescents are at increased risk, inversely proportional to their age, of major obstetric syndromes, including preeclampsia, fetal growth restriction, and preterm birth. Emerging evidence indicates that biological immaturity of the uterus accounts for the increased incidence of obstetrical disorders in very young mothers, possibly compounded by sociodemographic factors associated with teenage pregnancy. The endometrium in most newborns is intrinsically resistant to progesterone signaling, and the rate of transition to a fully responsive tissue likely determines pregnancy outcome during adolescence. In addition to ontogenetic progesterone resistance, other factors appear important for the transition of the immature uterus to a functional organ, including estrogen-dependent growth and tissue-specific conditioning of uterine natural killer cells, which plays a critical role in vascular adaptation during pregnancy. The perivascular space around the spiral arteries is rich in endometrial mesenchymal stem-like cells, and dynamic changes in this niche are essential to accommodate endovascular trophoblast invasion and deep placentation. Here we evaluate the intrinsic (uterine-specific) mechanisms that predispose adolescent mothers to the great obstetrical syndromes and discuss the convergence of extrinsic risk factors that may be amenable to intervention.
Collapse
Affiliation(s)
- Ivo Brosens
- Faculty of Medicine, Catholic University of Leuven, Leuven, Belgium.
| | - Joanne Muter
- Division of Biomedical Sciences, Warwick Medical School, Coventry, United Kingdom
| | - Caroline E Gargett
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, and Department of Obstetrics and Gynaecology, Monash University, Victoria, Australia
| | | | - Giuseppe Benagiano
- Department of Gynecology, Obstetrics, and Urology, Sapienza, University of Rome, Rome, Italy
| | - Jan J Brosens
- Division of Biomedical Sciences, Warwick Medical School, Coventry, United Kingdom
| |
Collapse
|
28
|
Bellofiore N, Ellery SJ, Mamrot J, Walker DW, Temple-Smith P, Dickinson H. First evidence of a menstruating rodent: the spiny mouse (Acomys cahirinus). Am J Obstet Gynecol 2017; 216:40.e1-40.e11. [PMID: 27503621 DOI: 10.1016/j.ajog.2016.07.041] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Advances in research relating to menstruation and associated disorders (eg, endometriosis and premenstrual syndrome) have been hindered by the lack of an appropriate animal model. Menstruation, the cyclical shedding of the decidualized endometrium in the absence of pregnancy, is believed to be limited to 78 higher-order primates (human beings and Old World monkeys), 4 species of bat, and the elephant shrew. This represents only 1.5% of the known 5502 mammalian species and <0.09% of these are nonprimates. Thus, many aspects of menstruation remain poorly understood, limiting the development of effective treatments for women with menstrual disorders. Menstruation occurs as a consequence of progesterone priming of the endometrial stroma and a spontaneous decidual reaction. At the end of each infertile cycle as progesterone levels decline the uterus is unable to maintain this terminally differentiated stroma and the superficial endometrium is shed. True menstruation has never been reported in rodents. OBJECTIVE Here we describe the first observation of menstruation in a rodent, the spiny mouse (Acomys cahirinus). STUDY DESIGN Virgin female spiny mice (n = 14) aged 12-16 weeks were sampled through daily vaginal lavage for 2 complete reproductive cycles. Stage-specific collection of reproductive tissue and plasma was used for histology, prolactin immunohistochemistry, and enzyme-linked immunosorbent assay of progesterone (n = 4-5/stage of the menstrual cycle). Normally distributed data are reported as the mean ± SE and significant differences calculated using a 1-way analysis of variance. Nonnormal data are displayed as the median values of replicates (with interquartile range) and significant differences calculated using Kruskal-Wallis test. RESULTS Mean menstrual cycle length was 8.7 ± 0.4 days with red blood cells observed in the lavages over 3.0 ± 0.2 days. Cyclic endometrial shedding and blood in the vaginal canal concluding with each infertile cycle was confirmed in all virgin females. The endometrium was thickest during the luteal phase at 322.6 μm (254.8, 512.2), when plasma progesterone peaked at 102.1 ng/mL (70.1, 198.6) and the optical density for prolactin immunoreactivity was strongest (0.071 ± 0.01 arbitrary units). CONCLUSION The spiny mouse undergoes spontaneous decidualization, demonstrating for the first time menstruation in a rodent. The spiny mouse provides a readily accessible nonprimate model to study the mechanisms of menstrual shedding and repair, and may therefore be useful in furthering studies of human menstrual and pregnancy-associated disorders.
Collapse
|
29
|
Maybin JA, Critchley HOD. Menstrual physiology: implications for endometrial pathology and beyond. Hum Reprod Update 2015; 21:748-61. [PMID: 26253932 PMCID: PMC4594618 DOI: 10.1093/humupd/dmv038] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/08/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Each month the endometrium becomes inflamed, and the luminal portion is shed during menstruation. The subsequent repair is remarkable, allowing implantation to occur if fertilization takes place. Aberrations in menstrual physiology can lead to common gynaecological conditions, such as heavy or prolonged bleeding. Increased knowledge of the processes involved in menstrual physiology may also have translational benefits at other tissue sites. METHODS Pubmed and Cochrane databases were searched for all original and review articles published in English until April 2015. Search terms included ‘endometrium’, ‘menstruation’, ‘endometrial repair’, ‘endometrial regeneration’ ‘angiogenesis’, ‘inflammation’ and ‘heavy menstrual bleeding’ or ‘menorrhagia’. RESULTS Menstruation occurs naturally in very few species. Human menstruation is thought to occur as a consequence of preimplantation decidualization, conferring embryo selectivity and the ability to adapt to optimize function. We highlight how current and future study of endometrial inflammation, vascular changes and repair/regeneration will allow us to identify new therapeutic targets for common gynaecological disorders. In addition, we describe how increased knowledge of this endometrial physiology will have many translational applications at other tissue sites. We highlight the clinical applications of what we know, the key questions that remain and the scientific and medical possibilities for the future. CONCLUSIONS The study of menstruation, in both normal and abnormal scenarios, is essential for the production of novel, acceptable medical treatments for common gynaecological complaints. Furthermore, collaboration and communication with specialists in other fields could significantly advance the therapeutic potential of this dynamic tissue.
Collapse
Affiliation(s)
- Jacqueline A Maybin
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Hilary O D Critchley
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
30
|
Cousins FL, Murray A, Esnal A, Gibson DA, Critchley HOD, Saunders PTK. Evidence from a mouse model that epithelial cell migration and mesenchymal-epithelial transition contribute to rapid restoration of uterine tissue integrity during menstruation. PLoS One 2014; 9:e86378. [PMID: 24466063 PMCID: PMC3899239 DOI: 10.1371/journal.pone.0086378] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/10/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In women dynamic changes in uterine tissue architecture occur during each menstrual cycle. Menses, characterised by the shedding of the upper functional layer of the endometrium, is the culmination of a cascade of irreversible changes in tissue function including stromal decidualisation, inflammation and production of degradative enzymes. The molecular mechanisms that contribute to the rapid restoration of tissue homeostasis at time of menses are poorly understood. METHODOLOGY A modified mouse model of menses was developed to focus on the events occurring within the uterine lining during endometrial shedding/repair. Decidualisation, vaginal bleeding, tissue architecture and cell proliferation were evaluated at 4, 8, 12, and 24 hours after progesterone (P4) withdrawal; mice received a single injection of bromodeoxyuridine (BrdU) 90 mins before culling. Expression of genes implicated in the regulation of mesenchymal to epithelial transition (MET) was determined using a RT2 PCR profiler array, qRTPCR and bioinformatic analysis. PRINCIPAL FINDINGS Mice exhibited vaginal bleeding between 4 and 12 hours after P4 withdrawal, concomitant with detachment of the decidualised cell mass from the basal portion of the endometrial lining. Immunostaining for BrdU and pan cytokeratin revealed evidence of epithelial cell proliferation and migration. Cells that appeared to be in transition from a mesenchymal to an epithelial cell identity were identified within the stromal compartment. Analysis of mRNAs encoding genes expressed exclusively in the epithelial or stromal compartments, or implicated in MET, revealed dynamic changes in expression, consistent with a role for reprogramming of mesenchymal cells so that they could contribute to re-epithelialisation. CONCLUSIONS/SIGNIFICANCE These studies have provided novel insights into the cellular processes that contribute to re-epithelialisation post-menses implicating both epithelial cell migration and mesenchymal cell differentiation in restoration of an intact epithelial cell layer. These insights may inform development of new therapies to induce rapid healing in the endometrium and other tissues and offer hope to women who suffer from heavy menstrual bleeding.
Collapse
Affiliation(s)
- Fiona L. Cousins
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Alison Murray
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Arantza Esnal
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Douglas A. Gibson
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Hilary O. D. Critchley
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Philippa T. K. Saunders
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Wang Q, Xu X, He B, Li Y, Chen X, Wang J. A critical period of progesterone withdrawal precedes endometrial breakdown and shedding in mouse menstrual-like model. Hum Reprod 2013; 28:1670-8. [DOI: 10.1093/humrep/det052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Abstract
Menstruation has many of the features of an inflammatory process. The complexity and sequence of inflammatory-type events leading to the final tissue breakdown and bleeding are slowly being unravelled. Progesterone has anti-inflammatory properties, and its rapidly declining levels (along with those of estrogen) in the late secretory phase of each non-conception cycle, initiates a sequence of interdependent events of an inflammatory nature involving local inter-cellular interactions within the endometrium. Intracellular responses to loss of progesterone (in decidualized stromal, vascular and epithelial cells) lead to decreased prostaglandin metabolism and loss of protection from reactive oxygen species (ROS). Increased ROS results in release of NFκB from suppression with activation of target gene transcription and increased synthesis of pro-inflammatory prostaglandins, cytokines, chemokines and matrix metalloproteinases (MMP). The resultant leukocyte recruitment, with changing phenotypes and activation, provide further degradative enzymes and MMP activators, which together with a hypoxic environment induced by prostaglandin actions, lead to the tissue breakdown and bleeding characteristic of menstruation. In parallel, at sites where shedding is complete, microenvironmentally-induced changes in phenotypes of neutrophils and macrophages from pro- to anti-inflammatory, in addition to induction of growth factors, contribute to the very rapid re-epithelialization and restoration of tissue integrity.
Collapse
Affiliation(s)
- Jemma Evans
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
| | | |
Collapse
|
33
|
Abstract
Much of our understanding of the molecular control of menstruation arises from laboratory models that experimentally recapitulate some, but not all, aspects of uterine bleeding observed in women. These models include: in vitro culture of endometrial explants or isolated endometrial cells, transplantation of human endometrial tissue into immunodeficient mice and the induction of endometrial breakdown in appropriately pretreated mice. Each of these models has contributed to our understanding of molecular and cellular mechanisms of menstruation, but nonhuman primates, especially macaques, are the animal model of choice for evaluating therapies for menstrual disorders. In this chapter we review some basic aspects of menstruation, with special emphasis on the macaque model and its relevance to the clinical issues of irregular and heavy menstrual bleeding (HMB).
Collapse
Affiliation(s)
- Robert M Brenner
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA.
| | | |
Collapse
|
34
|
Abstract
The ovarian steroid hormones progesterone and estradiol are well established regulators of human endometrial function. However, more recent evidence suggests that androgens and locally generated steroids, such as the glucocorticoids, also have a significant impact on endometrial breakdown and repair. The temporal and spatial pattern of steroid receptor presence in endometrial cells has a significant impact on the endometrial response to steroids. Furthermore, regulation of steroid receptor function by modulatory proteins further refines local responses. This review focuses on steroid regulation of endometrial function during the luteo-follicular transition with a focus on menstruation and endometrial repair.
Collapse
Affiliation(s)
- Jacqueline A Maybin
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | | |
Collapse
|
35
|
McLean AC, Valenzuela N, Fai S, Bennett SAL. Performing vaginal lavage, crystal violet staining, and vaginal cytological evaluation for mouse estrous cycle staging identification. J Vis Exp 2012:e4389. [PMID: 23007862 PMCID: PMC3490233 DOI: 10.3791/4389] [Citation(s) in RCA: 297] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A rapid means of assessing reproductive status in rodents is useful not only in the study of reproductive dysfunction but is also required for the production of new mouse models of disease and investigations into the hormonal regulation of tissue degeneration (or regeneration) following pathological challenge. The murine reproductive (or estrous) cycle is divided into 4 stages: proestrus, estrus, metestrus, and diestrus. Defined fluctuations in circulating levels of the ovarian steroids 17-β-estradiol and progesterone, the gonadotropins luteinizing and follicle stimulating hormones, and the luteotropic hormone prolactin signal transition through these reproductive stages. Changes in cell typology within the murine vaginal canal reflect these underlying endocrine events. Daily assessment of the relative ratio of nucleated epithelial cells, cornified squamous epithelial cells, and leukocytes present in vaginal smears can be used to identify murine estrous stages. The degree of invasiveness, however, employed in collecting these samples can alter reproductive status and elicit an inflammatory response that can confound cytological assessment of smears. Here, we describe a simple, non-invasive protocol that can be used to determine the stage of the estrous cycle of a female mouse without altering her reproductive cycle. We detail how to differentiate between the four stages of the estrous cycle by collection and analysis of predominant cell typology in vaginal smears and we show how these changes can be interpreted with respect to endocrine status.
Collapse
Affiliation(s)
- Ashleigh C McLean
- Department of Biochemistry, Microbiology and Immunology, Neural Regeneration Laboratory and Ottawa Institute of Systems Biology
| | | | | | | |
Collapse
|
36
|
Menning A, Walter A, Rudolph M, Gashaw I, Fritzemeier KH, Roese L. Granulocytes and vascularization regulate uterine bleeding and tissue remodeling in a mouse menstruation model. PLoS One 2012; 7:e41800. [PMID: 22879894 PMCID: PMC3413732 DOI: 10.1371/journal.pone.0041800] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/25/2012] [Indexed: 12/31/2022] Open
Abstract
Menstruation-associated disorders negatively interfere with the quality of life of many women. However, mechanisms underlying pathogenesis of menstrual disorders remain poorly investigated up to date. Among others, this is based on a lack of appropriate pre-clinical animal models. We here employ a mouse menstruation model induced by priming mice with gonadal hormones and application of a physical stimulus into the uterus followed by progesterone removal. As in women, these events are accompanied by menstrual-like bleeding and tissue remodeling processes, i.e. disintegration of decidualized endometrium, as well as subsequent repair. We demonstrate that the onset of bleeding coincides with strong upregulation of inflammatory mediators and massive granulocyte influx into the uterus. Uterine granulocytes play a central role in regulating local tissue remodeling since depletion of these cells results in dysregulated expression of matrix modifying enzymes. As described here for the first time, uterine blood loss can be quantified by help of tampon-like cotton pads. Using this novel technique, we reveal that blood loss is strongly reduced upon inhibition of endometrial vascularization and thus, is a key regulator of menstrual bleeding. Taken together, we here identify angiogenesis and infiltrating granulocytes as critical determinants of uterine bleeding and tissue remodeling in a mouse menstruation model. Importantly, our study provides a technical and scientific basis allowing quantification of uterine blood loss in mice and thus, assessment of therapeutic intervention, proving great potential for future use in basic research and drug discovery.
Collapse
Affiliation(s)
- Astrid Menning
- Therapeutic Research Group Oncology/Gynecological Therapy, Bayer HealthCare Pharmaceuticals, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|