1
|
El Kheir W, Naasri S, Marcos B, Virgilio N, Paquette B, Faucheux N, Lauzon MA. CXCL12 impact on glioblastoma cells behaviors under dynamic culture conditions: Insights for developing new therapeutic approaches. PLoS One 2024; 19:e0315038. [PMID: 39715221 DOI: 10.1371/journal.pone.0315038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent malignant brain tumor, with an average survival time of 14 to 20 months. Its capacity to invade brain parenchyma leads to the failure of conventional treatments and subsequent tumor recurrence. Recent studies have explored new therapeutic strategies using a chemoattracting gradient to attract GBM cells into a soft hydrogel trap where they can be exposed to higher doses of radiation or chemotherapy. It has been demonstrated in vitro under static conditions, that nanoparticles (NPs) encapsulating the chemoattractant CXCL12 can create a gradient to attract GBM cell. However, GBM cell invasion is also largely dependent on interstitial fluid flow (IFF). In the present study, a custom-made in vitro 3D model with indirect perfusion to mimic IFF at flow rates of 0.5 μL/min and 3 μL/min was used to examine the invasive behavior of F98-rodent-derived and U87-human-derived GBM cells. This model simulated IFF and CXCL12 gradient within an alginate:matrigel-based hydrogel mimicking brain parenchyma. Findings revealed that CXCL12 (1600 ng/mL) released from NPs significantly increased the migration of F98 GBM cells after 72 hours under IFF conditions at both 0.5 and 3 μL/min. In contrast, U87 GBM cells required a higher CXCL12 concentration (2400 ng/mL) and longer incubation time for migration (120 hours). Unlike the F98 cells, U87 GBM cells showed a CXCL12 dose-dependent proliferation. Semi-quantitative qPCR showed higher CXCR4 mRNA levels in F98 cells than in U87 cells. CXCL12 significantly increased intracellular calcium levels via CXCR4 activation, with a 2.3-fold rise in F98 cells compared to U87, consistent with observed cell behavior during perfusion. This highlights the combined influence of IFF and CXCL12 on cell migration, dependent on cell line. This 3D dynamic model is a valuable tool to analyze parameters like interstitial fluid flow (IFF) and chemokine gradients, influenced by GBM tumor diversity.
Collapse
Affiliation(s)
- Wiam El Kheir
- Faculty of Engineering, Department of Chemical Engineering and Biotechnological Engineering, 3D Dynamic Cell Culture Systems Laboratory, Université de Sherbrooke, Sherbrooke, QC, Canada
- Faculty of Engineering, Department of Chemical Engineering and Biotechnological Engineering, Laboratory of Cell-Biomaterial Biohybrid Systems, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sahar Naasri
- Faculty of Medicine and Health Sciences, Department of Medical Imaging and Radiation Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Bernard Marcos
- Faculty of Engineering, Department of Chemical Engineering and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nick Virgilio
- Department of Chemical Engineering, Polytechnique Montréal, Montreal, QC, Canada
| | - Benoit Paquette
- Faculty of Medicine and Health Sciences, Department of Medical Imaging and Radiation Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Clinical Research Center of the Centre Hospitalier Universitaire de l'Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nathalie Faucheux
- Faculty of Engineering, Department of Chemical Engineering and Biotechnological Engineering, Laboratory of Cell-Biomaterial Biohybrid Systems, Université de Sherbrooke, Sherbrooke, QC, Canada
- Clinical Research Center of the Centre Hospitalier Universitaire de l'Université de Sherbrooke, Sherbrooke, QC, Canada
- The Quebec Network for Research on Protein Function, Engineering and Applications, Montreal, QC, Canada
| | - Marc-Antoine Lauzon
- Faculty of Engineering, Department of Chemical Engineering and Biotechnological Engineering, 3D Dynamic Cell Culture Systems Laboratory, Université de Sherbrooke, Sherbrooke, QC, Canada
- The Quebec Network for Research on Protein Function, Engineering and Applications, Montreal, QC, Canada
- Research Center on Aging, Sherbrooke, QC, Canada
| |
Collapse
|
2
|
D'Uonnolo G, Isci D, Nosirov B, Kuppens A, Wantz M, Nazarov PV, Golebiewska A, Rogister B, Chevigné A, Neirinckx V, Szpakowska M. Patient-based multilevel transcriptome exploration highlights relevant chemokines and chemokine receptor axes in glioblastoma. Comput Biol Med 2024; 182:109197. [PMID: 39353298 DOI: 10.1016/j.compbiomed.2024.109197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/02/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Chemokines and their receptors form a complex interaction network, crucial for precise leukocyte positioning and trafficking. In cancer, they promote malignant cell proliferation and survival but are also critical for immune cell infiltration in the tumor microenvironment. Glioblastoma (GBM) is the most common and lethal brain tumor, characterized by an immunosuppressive TME, with restricted immune cell infiltration. A better understanding of chemokine-receptor interactions is therefore essential for improving tumor immunogenicity. In this study, we assessed the expression of all human chemokines in adult-type diffuse gliomas, with particular focus on GBM, based on patient-derived samples. Publicly available bulk RNA sequencing datasets allowed us to identify the chemokines most abundantly expressed in GBM, with regard to disease severity and across different tumor subregions. To gain insight into the chemokines-receptor network at the single cell resolution, we explored GBmap, a curated resource integrating multiple scRNAseq datasets from different published studies. Our study constitutes the first patient-based handbook highlighting the relevant chemokine-receptor crosstalks, which are of significant interest in the perspective of a therapeutic modulation of the TME in GBM.
Collapse
Affiliation(s)
- Giulia D'Uonnolo
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Damla Isci
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Belgium
| | - Bakhtiyor Nosirov
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg; Multiomics Data Science Research Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg
| | - Amandine Kuppens
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Belgium
| | - May Wantz
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg
| | - Petr V Nazarov
- Multiomics Data Science Research Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg
| | - Bernard Rogister
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Belgium; University Hospital, Neurology Department, University of Liège, Belgium
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg
| | - Virginie Neirinckx
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Belgium.
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg
| |
Collapse
|
3
|
Hatlen RR, Rajagopalan P. Investigating Trans-differentiation of Glioblastoma Cells in an In Vitro 3D Model of the Perivascular Niche. ACS Biomater Sci Eng 2023. [PMID: 37129167 DOI: 10.1021/acsbiomaterials.2c01310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Glioblastoma multiforme (GBM) is the deadliest form of brain cancer, responsible for over 50% of adult brain tumors. A specific region within the GBM environment is known as the perivascular niche (PVN). This area is defined as within approximately 100 μm of vasculature and plays an important role in the interactions between endothelial cells (ECs), astrocytes, GBM cells, and stem cells. We have designed a 3D in vitro model of the PVN comprising either collagen Type 1 or HyStem-C, human umbilical vein ECs (HUVECs), and LN229 (GBM) cells. HUVECs were encapsulated within the hydrogels to form vascular networks. After 7 days, LN229 cells were co-cultured to investigate changes in both cell types. Over a 14 day culture period, we measured alterations in HUVEC networks, the contraction of the hydrogels, trans-differentiation of LN229 cells, and the concentrations of two chemokines; CXCL12 and TGF-β. Increased cellular proliferation ranging from 10- to 16-fold was exhibited in co-cultures from days 8 to 14. This was accompanied with a decrease in the height of hydrogels of up to 68%. These changes in the biomaterial scaffold indicate that LN229-HUVEC interactions promote changes to the matrix. TGF-β and CXCL12 secretion increased approximately 2-2.6-fold each from day 8 to 14 in all co-cultures. The expression of CXCL12 correlated with cell colocalization, indicating a chemotactic role in enabling the migration of LN229 cells toward HUVECs in co-cultures. von Willebrand factor (vWF) was co-expressed with glial fibrillary acidic protein (GFAP) in up to 15% of LN229 cells after 24 h in co-culture. Additionally, when LN229 cells were co-cultured with human brain microvascular ECs, the percentages of GFAP+/vWF+ cells were up to 20% higher than that in co-cultures with HUVECs in collagen (2.2 mg/mL) and HyStem-C gels on day 14. The expression of vWF indicates the early stages of trans-differentiation of LN229 cells to an EC phenotype. Designing in vitro models of trans-differentiation may provide additional insights into how vasculature and cellular phenotypes are altered in GBM.
Collapse
Affiliation(s)
- Rosalyn R Hatlen
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
4
|
Tabata H, Sasaki M, Agetsuma M, Sano H, Hirota Y, Miyajima M, Hayashi K, Honda T, Nishikawa M, Inaguma Y, Ito H, Takebayashi H, Ema M, Ikenaka K, Nabekura J, Nagata KI, Nakajima K. Erratic and blood vessel-guided migration of astrocyte progenitors in the cerebral cortex. Nat Commun 2022; 13:6571. [PMID: 36323680 PMCID: PMC9630450 DOI: 10.1038/s41467-022-34184-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Astrocytes are one of the most abundant cell types in the mammalian brain. They play essential roles in synapse formation, maturation, and elimination. However, how astrocytes migrate into the gray matter to accomplish these processes is poorly understood. Here, we show that, by combinational analyses of in vitro and in vivo time-lapse observations and lineage traces, astrocyte progenitors move rapidly and irregularly within the developing cortex, which we call erratic migration. Astrocyte progenitors also adopt blood vessel-guided migration. These highly motile progenitors are generated in the restricted prenatal stages and differentiate into protoplasmic astrocytes in the gray matter, whereas postnatally generated progenitors do not move extensively and differentiate into fibrous astrocytes in the white matter. We found Cxcr4/7, and integrin β1 regulate the blood vessel-guided migration, and their functional blocking disrupts their positioning. This study provides insight into astrocyte development and may contribute to understanding the pathogenesis caused by their defects.
Collapse
Affiliation(s)
- Hidenori Tabata
- grid.440395.f0000 0004 1773 8175Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi 480-0392 Japan ,grid.26091.3c0000 0004 1936 9959Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Megumi Sasaki
- grid.26091.3c0000 0004 1936 9959Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Masakazu Agetsuma
- grid.467811.d0000 0001 2272 1771Division of Homeostatic Development, National Institute for Physiological Sciences, 38 Nishigohnaka Myodaiji-cho, Okazaki, Aichi 444-8585 Japan
| | - Hitomi Sano
- grid.26091.3c0000 0004 1936 9959Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Yuki Hirota
- grid.26091.3c0000 0004 1936 9959Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Michio Miyajima
- grid.26091.3c0000 0004 1936 9959Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Kanehiro Hayashi
- grid.26091.3c0000 0004 1936 9959Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Takao Honda
- grid.26091.3c0000 0004 1936 9959Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Masashi Nishikawa
- grid.440395.f0000 0004 1773 8175Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi 480-0392 Japan
| | - Yutaka Inaguma
- grid.440395.f0000 0004 1773 8175Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi 480-0392 Japan
| | - Hidenori Ito
- grid.440395.f0000 0004 1773 8175Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi 480-0392 Japan
| | - Hirohide Takebayashi
- grid.260975.f0000 0001 0671 5144Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510 Japan
| | - Masatsugu Ema
- grid.410827.80000 0000 9747 6806Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192 Japan
| | - Kazuhiro Ikenaka
- grid.467811.d0000 0001 2272 1771Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787 Japan
| | - Junichi Nabekura
- grid.467811.d0000 0001 2272 1771Division of Homeostatic Development, National Institute for Physiological Sciences, 38 Nishigohnaka Myodaiji-cho, Okazaki, Aichi 444-8585 Japan
| | - Koh-ichi Nagata
- grid.440395.f0000 0004 1773 8175Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi 480-0392 Japan
| | - Kazunori Nakajima
- grid.26091.3c0000 0004 1936 9959Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| |
Collapse
|
5
|
Erbani J, Boon M, Akkari L. Therapy-induced shaping of the glioblastoma microenvironment: Macrophages at play. Semin Cancer Biol 2022; 86:41-56. [PMID: 35569742 DOI: 10.1016/j.semcancer.2022.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023]
Abstract
The intricate cross-talks between tumor cells and their microenvironment play a key role in cancer progression and resistance to treatment. In recent years, targeting pro-tumorigenic components of the tumor microenvironment (TME) has emerged as a tantalizing strategy to improve the efficacy of standard-of-care (SOC) treatments, particularly for hard-to-treat cancers such as glioblastoma. In this review, we explore how the distinct microenvironmental niches characteristic of the glioblastoma TME shape response to therapy. In particular, we delve into the interplay between tumor-associated macrophages (TAM) and glioblastoma cells within angiogenic and hypoxic niches, and interrogate their dynamic co-evolution upon SOC therapies that fuels malignancy. Resolving the complexity of therapy-induced alterations in the glioblastoma TME and their impact on disease relapse is a stepping stone to identify targetable pro-tumorigenic pathways and TAM subsets, and may open the way to efficient combination therapies that will improve clinical outcomes.
Collapse
Affiliation(s)
- Johanna Erbani
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Menno Boon
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Leila Akkari
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Ngo MT, Sarkaria JN, Harley BA. Perivascular Stromal Cells Instruct Glioblastoma Invasion, Proliferation, and Therapeutic Response within an Engineered Brain Perivascular Niche Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201888. [PMID: 36109186 PMCID: PMC9631060 DOI: 10.1002/advs.202201888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Glioblastoma (GBM) tumor cells are found in the perivascular niche microenvironment and are believed to associate closely with the brain microvasculature. However, it is largely unknown how the resident cells of the perivascular niche, such as endothelial cells, pericytes, and astrocytes, influence GBM tumor cell behavior and disease progression. A 3D in vitro model of the brain perivascular niche developed by encapsulating brain-derived endothelial cells, pericytes, and astrocytes in a gelatin hydrogel is described. It is shown that brain perivascular stromal cells, namely pericytes and astrocytes, contribute to vascular architecture and maturation. Cocultures of patient-derived GBM tumor cells with brain microvascular cells are used to identify a role for pericytes and astrocytes in establishing a perivascular niche environment that modulates GBM cell invasion, proliferation, and therapeutic response. Engineered models provide unique insight regarding the spatial patterning of GBM cell phenotypes in response to a multicellular model of the perivascular niche. Critically, it is shown that engineered perivascular models provide an important resource to evaluate mechanisms by which intercellular interactions modulate GBM tumor cell behavior, drug response, and provide a framework to consider patient-specific disease phenotypes.
Collapse
Affiliation(s)
- Mai T. Ngo
- Department Chemical and Biomolecular EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | | | - Brendan A.C. Harley
- Department Chemical and Biomolecular EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
- Cancer Center at IllinoisUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
7
|
Tabata H. Crosstalk between Blood Vessels and Glia during the Central Nervous System Development. Life (Basel) 2022; 12:1761. [PMID: 36362915 PMCID: PMC9699316 DOI: 10.3390/life12111761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2023] Open
Abstract
The formation of proper blood vessel patterns in the central nervous system (CNS) is crucial to deliver oxygen and nutrient to neurons efficiently. At the same time, neurons must be isolated from the outer blood circulation by a specialized structure, the blood-brain barrier (BBB), to maintain the microenvironment of brain parenchyma for the survival of neurons and proper synaptic transmission. To develop this highly organized structure, glial cells, a major component of the brain, have been reported to play essential roles. In this review, the crosstalk between the macroglia, including astrocytes and oligodendrocytes, and endothelial cells during the development of CNS will be discussed. First, the known roles of astrocytes in neuro-vascular unit and its development, and then, the requirements of astrocytes for BBB development and maintenance are shown. Then, various genetic and cellular studies revealing the roles of astrocytes in the growth of blood vessels by providing a scaffold, including laminins and fibronectin, as well as by secreting trophic factors, including vascular endothelial growth factor (VEGF) and transforming growth factor-β (TGF-β) are introduced. Finally, the interactions between oligodendrocyte progenitors and blood vessels are overviewed. Although these studies revealed the necessity for proper communication between glia and endothelial cells for CNS development, our knowledge about the detailed cellular and molecular mechanisms for them is still limited. The questions to be clarified in the future are also discussed.
Collapse
Affiliation(s)
- Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| |
Collapse
|
8
|
Kollis PM, Ebert LM, Toubia J, Bastow CR, Ormsby RJ, Poonnoose SI, Lenin S, Tea MN, Pitson SM, Gomez GA, Brown MP, Gargett T. Characterising Distinct Migratory Profiles of Infiltrating T-Cell Subsets in Human Glioblastoma. Front Immunol 2022; 13:850226. [PMID: 35464424 PMCID: PMC9019231 DOI: 10.3389/fimmu.2022.850226] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma is the most common and aggressive form of primary brain cancer, with no improvements in the 5-year survival rate of 4.6% over the past three decades. T-cell-based immunotherapies such as immune-checkpoint inhibitors and chimeric antigen receptor T-cell therapy have prolonged the survival of patients with other cancers and have undergone early-phase clinical evaluation in glioblastoma patients. However, a major challenge for T-cell-based immunotherapy of glioblastoma and other solid cancers is T-cell infiltration into tumours. This process is mediated by chemokine-chemokine receptor and integrin-adhesion molecule interactions, yet the specific nature of the molecules that may facilitate T-cell homing into glioblastoma are unknown. Here, we have characterised chemokine receptor and integrin expression profiles of endogenous glioblastoma-infiltrating T cells, and the chemokine expression profile of glioblastoma-associated cells, by single-cell RNA-sequencing. Subsequently, chemokine receptors and integrins were validated at the protein level to reveal enrichment of receptors CCR2, CCR5, CXCR3, CXCR4, CXCR6, CD49a, and CD49d in glioblastoma-infiltrating T-cell populations relative to T cells in matched patient peripheral blood. Complementary chemokine ligand expression was then validated in glioblastoma biopsies and glioblastoma-derived primary cell cultures. Together, enriched expression of homing receptor-ligand pairs identified in this study implicate a potential role in mediating T-cell infiltration into glioblastoma. Importantly, our data characterising the migratory receptors on endogenous tumour-infiltrating T cells could be exploited to enhance the tumour-homing properties of future T-cell immunotherapies for glioblastoma.
Collapse
Affiliation(s)
- Paris M Kollis
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Lisa M Ebert
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - John Toubia
- Australian Cancer Research Foundation (ACRF) Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Cameron R Bastow
- Chemokine Biology Laboratory, Molecular Life Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Rebecca J Ormsby
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Santosh I Poonnoose
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.,Department of Neurosurgery, Flinders Medical Centre, Adelaide, SA, Australia
| | - Sakthi Lenin
- Molecular Therapeutics Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Melinda N Tea
- Molecular Therapeutics Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Stuart M Pitson
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.,Molecular Therapeutics Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Guillermo A Gomez
- Tissue Architecture and Organ Function Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Michael P Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Tessa Gargett
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
9
|
Zhang X, Detering L, Sultan D, Heo GS, Luehmann H, Taylor S, Choksi A, Rubin JB, Liu Y. C-X-C Chemokine Receptor Type 4-Targeted Imaging in Glioblastoma Multiforme Using 64Cu-Radiolabeled Ultrasmall Gold Nanoclusters. ACS APPLIED BIO MATERIALS 2022; 5:235-242. [PMID: 35014818 DOI: 10.1021/acsabm.1c01056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary malignant brain cancer in adults, and it carries a poor prognosis. Despite the current multimodality treatment, including surgery, radiation, and chemotherapy, the overall survival is still poor. Neurooncological imaging plays an important role in the initial diagnosis and prediction of the treatment response of GBM. Positron emission tomography (PET) imaging using radiotracers that target disease-specific hallmarks, which are both noninvasive and specific, has drawn much attention. C-X-C chemokine receptor 4 (CXCR4) plays an important role in neoangiogenesis and vasculogenesis, and, moreover, it is reported to be overexpressed in GBM, which is associated with poor patient survival; thus, CXCR4 can be an ideal candidate for PET imaging of GBM. Nanomaterials, which possess multifunctional capabilities, effective drug delivery, and favorable pharmacokinetics, are now being applied to improve the diagnosis and therapy of the most difficult-to-treat cancers. Herein, we engineered an ultrasmall, renal-clearable gold nanoclusters intrinsically radiolabeled with 64Cu (64Cu-AuNCs-FC131) for targeted PET imaging of CXCR4 in a U87 intracranial GBM mouse model. These targeted nanoclusters demonstrated specific binding to U87 cells with minimal cytotoxicity. The in vivo biodistribution showed favorable pharmacokinetics and efficient renal clearance. PET/computed tomography imaging of the U87 model revealed the effective delivery of 64Cu-AuNCs-FC131 into the tumors. In vivo toxicity studies demonstrated insignificant safety concerns at various dosages, indicating its potential as a useful platform for GBM imaging and drug delivery.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Lisa Detering
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Deborah Sultan
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Gyu Seong Heo
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Hannah Luehmann
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Sara Taylor
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Ankur Choksi
- School of Medicine, University of Maryland, Baltimore, Maryland 21201, United States
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
10
|
Wang Z, Liu Y, Mo Y, Zhang H, Dai Z, Zhang X, Ye W, Cao H, Liu Z, Cheng Q. The CXCL Family Contributes to Immunosuppressive Microenvironment in Gliomas and Assists in Gliomas Chemotherapy. Front Immunol 2021; 12:731751. [PMID: 34603309 PMCID: PMC8482424 DOI: 10.3389/fimmu.2021.731751] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/10/2021] [Indexed: 01/01/2023] Open
Abstract
Gliomas are a type of malignant central nervous system tumor with poor prognosis. Molecular biomarkers of gliomas can predict glioma patient's clinical outcome, but their limitations are also emerging. C-X-C motif chemokine ligand family plays a critical role in shaping tumor immune landscape and modulating tumor progression, but its role in gliomas is elusive. In this work, samples of TCGA were treated as the training cohort, and as for validation cohort, two CGGA datasets, four datasets from GEO database, and our own clinical samples were enrolled. Consensus clustering analysis was first introduced to classify samples based on CXCL expression profile, and the support vector machine was applied to construct the cluster model in validation cohort based on training cohort. Next, the elastic net analysis was applied to calculate the risk score of each sample based on CXCL expression. High-risk samples associated with more malignant clinical features, worse survival outcome, and more complicated immune landscape than low-risk samples. Besides, higher immune checkpoint gene expression was also noticed in high-risk samples, suggesting CXCL may participate in tumor evasion from immune surveillance. Notably, high-risk samples also manifested higher chemotherapy resistance than low-risk samples. Therefore, we predicted potential compounds that target high-risk samples. Two novel drugs, LCL-161 and ADZ5582, were firstly identified as gliomas' potential compounds, and five compounds from PubChem database were filtered out. Taken together, we constructed a prognostic model based on CXCL expression, and predicted that CXCL may affect tumor progression by modulating tumor immune landscape and tumor immune escape. Novel potential compounds were also proposed, which may improve malignant glioma prognosis.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yuze Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Clinic Medicine of 5-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuyao Mo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Clinic Medicine of 5-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Weijie Ye
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Cao
- Department of Psychiatry, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Clinical Diagnosis and Therapy Center for Gliomas of Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Clinical Diagnosis and Therapy Center for Gliomas of Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Hatlen RR, Rajagopalan P. Environmental interplay: Stromal cells and biomaterial composition influence in the glioblastoma microenvironment. Acta Biomater 2021; 132:421-436. [PMID: 33276155 DOI: 10.1016/j.actbio.2020.11.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is the most deadly form of brain cancer. Recurrence is common, and established therapies have not been able to significantly extend overall patient survival. One platform through which GBM research can progress is to design biomimetic systems for discovery and investigation into the mechanisms of invasion, cellular properties, as well as the efficacy of therapies. In this review, 2D and 3D GBM in vitro cultures will be discussed. We focus on the effects of biomaterial properties, interactions between stromal cells, and vascular influence on cancer cell survival and progression. This review will summarize critical findings in each of these areas and how they have led to a more comprehensive scientific understanding of GBM. STATEMENT OF SIGNIFICANCE: Glioblastoma multiforme (GBM) is the most deadly form of brain cancer. Recurrence is common, and established therapies have not been able to significantly extend overall patient survival. One platform through which GBM research can progress is to design biomimetic systems for discovery and investigation into the mechanisms of invasion, cellular properties, as well as the efficacy of therapies. In this review, 2D and 3D GBM in vitro cultures will be discussed. We focus on the effects of biomaterial properties, interactions between stromal cells and vascular influence on cancer cell survival and progression. This review will summarize critical findings in each of these areas and how they have lead to a more comprehensive scientific understanding of GBM.
Collapse
Affiliation(s)
- Rosalyn R Hatlen
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | | |
Collapse
|
12
|
Ngo MT, Karvelis E, Harley BAC. Multidimensional hydrogel models reveal endothelial network angiocrine signals increase glioblastoma cell number, invasion, and temozolomide resistance. Integr Biol (Camb) 2021; 12:139-149. [PMID: 32507878 DOI: 10.1093/intbio/zyaa010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 11/13/2022]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor. The tissue microenvironment adjacent to vasculature, termed the perivascular niche, has been implicated in promoting biological processes involved in glioblastoma progression such as invasion, proliferation, and therapeutic resistance. However, the exact nature of the cues that support tumor cell aggression in this niche is largely unknown. Soluble angiocrine factors secreted by tumor-associated vasculature have been shown to support such behaviors in other cancer types. Here, we exploit macroscopic and microfluidic gelatin hydrogel platforms to profile angiocrine factors secreted by self-assembled endothelial networks and evaluate their relevance to glioblastoma biology. Aggregate angiocrine factors support increases in U87-MG cell number, migration, and therapeutic resistance to temozolomide. We also identify a novel role for TIMP1 in facilitating glioblastoma tumor cell migration. Overall, this work highlights the use of multidimensional hydrogel models to evaluate the role of angiocrine signals in glioblastoma progression.
Collapse
Affiliation(s)
- Mai T Ngo
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Elijah Karvelis
- Dept. Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
13
|
Molley TG, Jalandhra GK, Nemec SR, Tiffany AS, Patkunarajah A, Poole K, Harley BAC, Hung TT, Kilian KA. Heterotypic tumor models through freeform printing into photostabilized granular microgels. Biomater Sci 2021; 9:4496-4509. [PMID: 34008601 PMCID: PMC8282188 DOI: 10.1039/d1bm00574j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The tissue microenvironment contains a complex assortment of multiple cell types, matrices, and vessel structures, which is difficult to reconstruct in vitro. Here, we demonstrate model tumor microenvironments formed through direct writing of vasculature channels and tumor cell aggregates, within a cell-laden microgel matrix. Photocrosslinkable microgels provide control over local and global mechanics, while enabling the integration of virtually any cell type. Direct writing of a Pluronic sacrificial ink into a stromal cell-microgel suspension is used to form vessel structures for endothelialization, followed by printing of melanoma aggregates. Tumor cells migrate into the prototype vessels as a function of spatial location, thereby providing a measure of invasive potential. The integration of perfusable channels with multiple spatially defined cell types provides new avenues for modelling development and disease, with scope for both fundamental research and drug development efforts.
Collapse
Affiliation(s)
- Thomas G Molley
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Gagan K Jalandhra
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Stephanie R Nemec
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Aleczandria S Tiffany
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Amrutha Patkunarajah
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Kate Poole
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tzong-Tyng Hung
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Kristopher A Kilian
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia. and School of Chemistry, Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
14
|
Malawsky DS, Weir SJ, Ocasio JK, Babcock B, Dismuke T, Cleveland AH, Donson AM, Vibhakar R, Wilhelmsen K, Gershon TR. Cryptic developmental events determine medulloblastoma radiosensitivity and cellular heterogeneity without altering transcriptomic profile. Commun Biol 2021; 4:616. [PMID: 34021242 PMCID: PMC8139976 DOI: 10.1038/s42003-021-02099-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
It is unclear why medulloblastoma patients receiving similar treatments experience different outcomes. Transcriptomic profiling identified subgroups with different prognoses, but in each subgroup, individuals remain at risk of incurable recurrence. To investigate why similar-appearing tumors produce variable outcomes, we analyzed medulloblastomas triggered in transgenic mice by a common driver mutation expressed at different points in brain development. We genetically engineered mice to express oncogenic SmoM2, starting in multipotent glio-neuronal stem cells, or committed neural progenitors. Both groups developed medulloblastomas with similar transcriptomic profiles. We compared medulloblastoma progression, radiosensitivity, and cellular heterogeneity, determined by single-cell transcriptomic analysis (scRNA-seq). Stem cell-triggered medulloblastomas progressed faster, contained more OLIG2-expressing stem-like cells, and consistently showed radioresistance. In contrast, progenitor-triggered MBs progressed slower, down-regulated stem-like cells and were curable with radiation. Progenitor-triggered medulloblastomas also contained more diverse stromal populations, with more Ccr2+ macrophages and fewer Igf1+ microglia, indicating that developmental events affected the subsequent tumor microenvironment. Reduced mTORC1 activity in M-Smo tumors suggests that differential Igf1 contributed to differences in phenotype. Developmental events in tumorigenesis that were obscure in transcriptomic profiles thus remained cryptic determinants of tumor composition and outcome. Precise understanding of medulloblastoma pathogenesis and prognosis requires supplementing transcriptomic/methylomic studies with analyses that resolve cellular heterogeneity.
Collapse
Affiliation(s)
- Daniel Shiloh Malawsky
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Seth J Weir
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jennifer Karin Ocasio
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Benjamin Babcock
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Taylor Dismuke
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Abigail H Cleveland
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- UNC Cancer Cell Biology Training Program, University of North Carolina, Chapel Hill, NC, USA
| | - Andrew M Donson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's, Hospital Colorado, Aurora, CO, USA
| | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's, Hospital Colorado, Aurora, CO, USA
| | - Kirk Wilhelmsen
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
- RENCI, Chapel Hill, NC, USA.
| | - Timothy R Gershon
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
- UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Luker GD, Yang J, Richmond A, Scala S, Festuccia C, Schottelius M, Wester HJ, Zimmermann J. At the Bench: Pre-clinical evidence for multiple functions of CXCR4 in cancer. J Leukoc Biol 2021; 109:969-989. [PMID: 33104270 PMCID: PMC8254203 DOI: 10.1002/jlb.2bt1018-715rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Signaling through chemokine receptor, C-X-C chemokine receptor type 4 (CXCR4) regulates essential processes in normal physiology, including embryogenesis, tissue repair, angiogenesis, and trafficking of immune cells. Tumors co-opt many of these fundamental processes to directly stimulate proliferation, invasion, and metastasis of cancer cells. CXCR4 signaling contributes to critical functions of stromal cells in cancer, including angiogenesis and multiple cell types in the tumor immune environment. Studies in animal models of several different types of cancers consistently demonstrate essential functions of CXCR4 in tumor initiation, local invasion, and metastasis to lymph nodes and distant organs. Data from animal models support clinical observations showing that integrated effects of CXCR4 on cancer and stromal cells correlate with metastasis and overall poor prognosis in >20 different human malignancies. Small molecules, Abs, and peptidic agents have shown anticancer efficacy in animal models, sparking ongoing efforts at clinical translation for cancer therapy. Investigators also are developing companion CXCR4-targeted imaging agents with potential to stratify patients for CXCR4-targeted therapy and monitor treatment efficacy. Here, pre-clinical studies demonstrating functions of CXCR4 in cancer are reviewed.
Collapse
Affiliation(s)
- Gary D Luker
- Departments of Radiology, Biomedical Engineering, and Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jinming Yang
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Ann Richmond
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Stefania Scala
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Napoli, Italy
| | - Claudio Festuccia
- Department of Applied Clinical Science and Biotechnologies, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Margret Schottelius
- Department of Nuclear Medicine, Centre Hospitalier Universitaire Vaudois, and Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Hans-Jürgen Wester
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
16
|
Asiry S, Kim G, Filippou PS, Sanchez LR, Entenberg D, Marks DK, Oktay MH, Karagiannis GS. The Cancer Cell Dissemination Machinery as an Immunosuppressive Niche: A New Obstacle Towards the Era of Cancer Immunotherapy. Front Immunol 2021; 12:654877. [PMID: 33927723 PMCID: PMC8076861 DOI: 10.3389/fimmu.2021.654877] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Although cancer immunotherapy has resulted in unpreceded survival benefits to subsets of oncology patients, accumulating evidence from preclinical animal models suggests that the immunosuppressive tumor microenvironment remains a detrimental factor limiting benefit for many patient subgroups. Recent efforts on lymphocyte-mediated immunotherapies are primarily focused on eliminating cancer foci at primary and metastatic sites, but few studies have investigated the impact of these therapies on the highly complex process of cancer cell dissemination. The metastatic cascade involves the directional streaming of invasive/migratory tumor cells toward specialized blood vessel intravasation gateways, called TMEM doorways, to the peripheral circulation. Importantly, this process occurs under the auspices of a specialized tumor microenvironment, herewith referred to as "Dissemination Trajectory", which is supported by an ample array of tumor-associated macrophages (TAMs), skewed towards an M2-like polarization spectrum, and which is also vital for providing microenvironmental cues for cancer cell invasion, migration and stemness. Based on pre-existing evidence from preclinical animal models, this article outlines the hypothesis that dissemination trajectories do not only support the metastatic cascade, but also embody immunosuppressive niches, capable of providing transient and localized immunosubversion cues to the migratory/invasive cancer cell subpopulation while in the act of departing from a primary tumor. So long as these dissemination trajectories function as "immune deserts", the migratory tumor cell subpopulation remains efficient in evading immunological destruction and seeding metastatic sites, despite administration of cancer immunotherapy and/or other cytotoxic treatments. A deeper understanding of the molecular and cellular composition, as well as the signaling circuitries governing the function of these dissemination trajectories will further our overall understanding on TAM-mediated immunosuppression and will be paramount for the development of new therapeutic strategies for the advancement of optimal cancer chemotherapies, immunotherapies, and targeted therapies.
Collapse
Affiliation(s)
- Saeed Asiry
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
| | - Gina Kim
- Department of Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
| | - Panagiota S. Filippou
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
- National Horizons Centre, Teesside University, Darlington, United Kingdom
| | - Luis Rivera Sanchez
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| | - Douglas K. Marks
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY, United States
| | - Maja H. Oktay
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| | - George S. Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| |
Collapse
|
17
|
Yeo ECF, Brown MP, Gargett T, Ebert LM. The Role of Cytokines and Chemokines in Shaping the Immune Microenvironment of Glioblastoma: Implications for Immunotherapy. Cells 2021; 10:607. [PMID: 33803414 PMCID: PMC8001644 DOI: 10.3390/cells10030607] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is the most common form of primary brain tumour in adults. For more than a decade, conventional treatment has produced a relatively modest improvement in the overall survival of glioblastoma patients. The immunosuppressive mechanisms employed by neoplastic and non-neoplastic cells within the tumour can limit treatment efficacy, and this can include the secretion of immunosuppressive cytokines and chemokines. These factors can play a significant role in immune modulation, thus disabling anti-tumour responses and contributing to tumour progression. Here, we review the complex interplay between populations of immune and tumour cells together with defined contributions by key cytokines and chemokines to these intercellular interactions. Understanding how these tumour-derived factors facilitate the crosstalk between cells may identify molecular candidates for potential immunotherapeutic targeting, which may enable better tumour control and improved patient survival.
Collapse
Affiliation(s)
- Erica C. F. Yeo
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia; (E.C.F.Y.); (M.P.B.); (T.G.)
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Michael P. Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia; (E.C.F.Y.); (M.P.B.); (T.G.)
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Tessa Gargett
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia; (E.C.F.Y.); (M.P.B.); (T.G.)
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Lisa M. Ebert
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia; (E.C.F.Y.); (M.P.B.); (T.G.)
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
18
|
Nicholson JG, Fine HA. Diffuse Glioma Heterogeneity and Its Therapeutic Implications. Cancer Discov 2021; 11:575-590. [PMID: 33558264 DOI: 10.1158/2159-8290.cd-20-1474] [Citation(s) in RCA: 212] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022]
Abstract
Diffuse gliomas represent a heterogeneous group of universally lethal brain tumors characterized by minimally effective genotype-targeted therapies. Recent advances have revealed that a remarkable level of genetic, epigenetic, and environmental heterogeneity exists within each individual glioma. Together, these interconnected layers of intratumoral heterogeneity result in extreme phenotypic heterogeneity at the cellular level, providing for multiple mechanisms of therapeutic resistance and forming a highly adaptable and resilient disease. In this review, we discuss how glioma intratumoral heterogeneity and malignant cellular state plasticity drive resistance to existing therapies and look to a future in which these challenges may be overcome. SIGNIFICANCE: Glioma intratumoral heterogeneity and malignant cell state plasticity represent formidable hurdles to the development of novel targeted therapies. However, the convergence of genotypically diverse glioma cells into a limited set of epigenetically encoded transcriptional cell states may present an opportunity for a novel therapeutic strategy we call "State Selective Lethality." In this approach, cellular states (as opposed to genetic perturbations/mutations) are the subject of therapeutic targeting, and plasticity-mediated resistance is minimized through the design of cell state "trapping agents."
Collapse
Affiliation(s)
- James G Nicholson
- Department of Neurology, The Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Howard A Fine
- Department of Neurology, The Meyer Cancer Center, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
19
|
Ngo MT, Harley BAC. Angiogenic biomaterials to promote therapeutic regeneration and investigate disease progression. Biomaterials 2020; 255:120207. [PMID: 32569868 PMCID: PMC7396313 DOI: 10.1016/j.biomaterials.2020.120207] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
The vasculature is a key component of the tissue microenvironment. Traditionally known for its role in providing nutrients and oxygen to surrounding cells, the vasculature is now also acknowledged to provide signaling cues that influence biological outcomes in regeneration and disease. These cues come from the cells that comprise vasculature, as well as the dynamic biophysical and biochemical properties of the surrounding extracellular matrix that accompany vascular development and remodeling. In this review, we illustrate the larger role of the vasculature in the context of regenerative biology and cancer progression. We describe cellular, biophysical, biochemical, and metabolic components of vascularized microenvironments. Moreover, we provide an overview of multidimensional angiogenic biomaterials that have been developed to promote therapeutic vascularization and regeneration, as well as to mimic elements of vascularized microenvironments as a means to uncover mechanisms by which vasculature influences cancer progression and therapy.
Collapse
Affiliation(s)
- Mai T Ngo
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
20
|
Salerno A, Brady K, Rikkers M, Li C, Caamaño-Gutierrez E, Falciani F, Blom AW, Whitehouse MR, Hollander AP. MMP13 and TIMP1 are functional markers for two different potential modes of action by mesenchymal stem/stromal cells when treating osteoarthritis. Stem Cells 2020; 38:1438-1453. [PMID: 32652878 DOI: 10.1002/stem.3255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/11/2020] [Indexed: 01/01/2023]
Abstract
Mesenchymal stem cells (MSCs) have been investigated as a potential injectable therapy for the treatment of knee osteoarthritis, with some evidence of success in preliminary human trials. However, optimization and scale-up of this therapeutic approach depends on the identification of functional markers that are linked to their mechanism of action. One possible mechanism is through their chondrogenic differentiation and direct role in neo-cartilage synthesis. Alternatively, they could remain undifferentiated and act through the release of trophic factors that stimulate endogenous repair processes within the joint. Here, we show that extensive in vitro aging of bone marrow-derived human MSCs leads to loss of chondrogenesis but no reduction in trophic repair, thereby separating out the two modes of action. By integrating transcriptomic and proteomic data using Ingenuity Pathway Analysis, we found that reduced chondrogenesis with passage is linked to downregulation of the FOXM1 signaling pathway while maintenance of trophic repair is linked to CXCL12. In an attempt at developing functional markers of MSC potency, we identified loss of mRNA expression for MMP13 as correlating with loss of chondrogenic potential of MSCs and continued secretion of high levels of TIMP1 protein as correlating with the maintenance of trophic repair capacity. Since an allogeneic injectable osteoar therapy would require extensive cell expansion in vitro, we conclude that early passage MMP13+ , TIMP1-secretinghigh MSCs should be used for autologous OA therapies designed to act through engraftment and chondrogenesis, while later passage MMP13- , TIMP1-secretinghigh MSCs could be exploited for allogeneic OA therapies designed to act through trophic repair.
Collapse
Affiliation(s)
- Anna Salerno
- Institute of Lifecourse and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Kyla Brady
- Institute of Lifecourse and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Margot Rikkers
- Institute of Lifecourse and Medical Sciences, University of Liverpool, Liverpool, UK.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Chao Li
- Institute of Lifecourse and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Eva Caamaño-Gutierrez
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Computational Biology Facility, University of Liverpool, Liverpool, UK
| | - Francesco Falciani
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Computational Biology Facility, University of Liverpool, Liverpool, UK
| | - Ashley W Blom
- Musculoskeletal Research Unit, University of Bristol, Bristol, UK.,National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Michael R Whitehouse
- Musculoskeletal Research Unit, University of Bristol, Bristol, UK.,National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Anthony P Hollander
- Institute of Lifecourse and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
21
|
Han JH, Yoon JS, Chang DY, Cho KG, Lim J, Kim SS, Suh-Kim H. CXCR4-STAT3 Axis Plays a Role in Tumor Cell Infiltration in an Orthotopic Mouse Glioblastoma Model. Mol Cells 2020; 43:539-550. [PMID: 32597394 PMCID: PMC7332361 DOI: 10.14348/molcells.2020.0098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 05/08/2020] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a fatal malignant tumor that is characterized by diffusive growth of tumor cells into the surrounding brain parenchyma. However, the diffusive nature of GBM and its relationship with the tumor microenvironment (TME) is still unknown. Here, we investigated the interactions of GBM with the surrounding microenvironment in orthotopic xenograft animal models using two human glioma cell lines, U87 and LN229. The GBM cells in our model showed different features on the aspects of cell growth rate during their development, dispersive nature of glioma tumor cells along blood vessels, and invasion into the brain parenchyma. Our results indicated that these differences in the two models are in part due to differences in the expression of CXCR4 and STAT3, both of which play an important role in tumor progression. In addition, the GBM shows considerable accumulation of resident microglia and peripheral macrophages, but polarizes differently into tumor-supporting cells. These results suggest that the intrinsic factors of GBM and their interaction with the TME determine the diffusive nature and probably the responsiveness to non-cancer cells in the TME.
Collapse
Affiliation(s)
- Ji-hun Han
- Department of Biomedical Sciences, Ajou Graduate School, Suwon 6499, Korea
- These authors contributed equally to this work.
| | - Jeong Seon Yoon
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
- These authors contributed equally to this work.
| | - Da-Young Chang
- Department of Biomedical Sciences, Ajou Graduate School, Suwon 6499, Korea
| | - Kyung Gi Cho
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam 1496, Korea
| | - Jaejoon Lim
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam 1496, Korea
| | - Sung-Soo Kim
- Department of Biomedical Sciences, Ajou Graduate School, Suwon 6499, Korea
| | - Haeyoung Suh-Kim
- Department of Biomedical Sciences, Ajou Graduate School, Suwon 6499, Korea
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
22
|
Prager BC, Bhargava S, Mahadev V, Hubert CG, Rich JN. Glioblastoma Stem Cells: Driving Resilience through Chaos. Trends Cancer 2020; 6:223-235. [PMID: 32101725 PMCID: PMC8779821 DOI: 10.1016/j.trecan.2020.01.009] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/22/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022]
Abstract
Glioblastoma is an aggressive and heterogeneous tumor in which glioblastoma stem cells (GSCs) are at the apex of an entropic hierarchy and impart devastating therapy resistance. The high entropy of GSCs is driven by a permissive epigenetic landscape and a mutational landscape that revokes crucial cellular checkpoints. The GSC population encompasses a complex array of diverse microstates that are defined and maintained by a wide variety of attractors including the complex tumor ecosystem and therapeutic intervention. Constant dynamic transcriptional fluctuations result in a highly adaptable and heterogeneous entity primed for therapy evasion and survival. Analyzing the transcriptional, epigenetic, and metabolic landscapes of GSC dynamics in the context of a stochastically fluctuating tumor network will provide novel strategies to target resistant populations of GSCs in glioblastoma.
Collapse
Affiliation(s)
- Briana C Prager
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, 92037, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, 44195, USA; Case Western Reserve University Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Shruti Bhargava
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, 92037, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Vaidehi Mahadev
- Department of Neurosurgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | | | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, 92037, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
23
|
Fazi B, Proserpio C, Galardi S, Annesi F, Cola M, Mangiola A, Michienzi A, Ciafrè SA. The Expression of the Chemokine CXCL14 Correlates with Several Aggressive Aspects of Glioblastoma and Promotes Key Properties of Glioblastoma Cells. Int J Mol Sci 2019; 20:ijms20102496. [PMID: 31117166 PMCID: PMC6566570 DOI: 10.3390/ijms20102496] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma (GBM) is a primary brain tumor whose prognosis is inevitably dismal, leading patients to death in about 15 months from diagnosis. Tumor cells in the mass of the neoplasm are in continuous exchange with cells of the stromal microenvironment, through the production of soluble molecules, among which chemokines play prominent roles. CXCL14 is a chemokine with a pro-tumor role in breast and prostate carcinoma, where it is secreted by cancer associated fibroblasts, and contributes to tumor growth and invasion. We previously observed that CXCL14 expression is higher in GBM tissues than in healthy white matter. Here, we study the effects of exogenously supplemented CXCL14 on key tumorigenic properties of human GBM cell lines. We show that CXCL14 enhances the migration ability and the proliferation of U87MG and LN229 GBM cell lines. None of these effects was affected by the use of AMD3100, an inhibitor of CXCR4 receptor, suggesting that the observed CXCL14 effects are not mediated by this receptor. We also provide evidence that CXCL14 enhances the sphere-forming ability of glioblastoma stem cells, considered the initiating cells, and is responsible for tumor onset, growth and recurrence. In support of our in vitro results, we present data from several GBM expression datasets, demonstrating that CXCL14 expression is inversely correlated with overall survival, that it is enriched at the leading edge of the tumors and in infiltrating tumor areas, and it characterizes mesenchymal and NON G-CIMP tumors, known to have a particularly bad prognosis. Overall, our results point to CXCL14 as a protumorigenic chemokine in GBM.
Collapse
Affiliation(s)
- Barbara Fazi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Carla Proserpio
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Silvia Galardi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Francesca Annesi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Mattia Cola
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Annunziato Mangiola
- Department of Neurosurgery, Università degli Studi "G. D'Annunzio", 65122 Pescara, Italy.
| | - Alessandro Michienzi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Silvia Anna Ciafrè
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
24
|
Wang C, Li J, Sinha S, Peterson A, Grant GA, Yang F. Mimicking brain tumor-vasculature microanatomical architecture via co-culture of brain tumor and endothelial cells in 3D hydrogels. Biomaterials 2019; 202:35-44. [PMID: 30836243 DOI: 10.1016/j.biomaterials.2019.02.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 11/17/2022]
Abstract
Glioblastoma (GBM) is an aggressive malignant brain tumor with median survival of 12 months and 5-year survival rate less than 5%. GBM is highly vascularized, and the interactions between tumor and endothelial cells play an important role in driving tumor growth. To study tumor-endothelial interactions, the gold standard co-culture model is transwell culture, which fails to recapitulate the biochemical or physical cues found in tumor niche. Recently, we reported the development of poly(ethylene-glycol)-based hydrogels as 3D niche that supported GBM proliferation and invasion. To further mimic the microanatomical architecture of tumor-endothelial interactions in vivo, here we developed a hydrogel-based co-culture model that mimics the spatial organization of tumor and endothelial cells. To increase the physiological relevance, patient-derived GBM cells and mouse brain endothelial cells were used as model cell types. Using hydrolytically-degradable alginate fibers as porogens, endothelial cells were deployed and patterned into vessel-like structures in 3D hydrogels with high cell viability and retention of endothelial phenotype. Co-culture led to a significant increase in GBM cell proliferation and decrease in endothelial cell expression of cell adhesion proteins. In summary, we have developed a novel 3D co-culture model that mimics the in vivo spatial organization of brain tumor and endothelial cells. Such model may provide a valuable tool for future mechanistic studies to elucidate the effects of tumor-endothelial interactions on tumor progression in a more physiologically-relevant manner.
Collapse
Affiliation(s)
- Christine Wang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Jianfeng Li
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, 94305, USA
| | - Sauradeep Sinha
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Addie Peterson
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Gerald A Grant
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - Fan Yang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Orthopaedic Surgery, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
25
|
Giordano FA, Link B, Glas M, Herrlinger U, Wenz F, Umansky V, Brown JM, Herskind C. Targeting the Post-Irradiation Tumor Microenvironment in Glioblastoma via Inhibition of CXCL12. Cancers (Basel) 2019; 11:cancers11030272. [PMID: 30813533 PMCID: PMC6468743 DOI: 10.3390/cancers11030272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 01/05/2023] Open
Abstract
Radiotherapy is a mainstay in glioblastoma therapy as it not only directly targets tumor cells but also depletes the tumor microvasculature. The resulting intra-tumoral hypoxia initiates a chain of events that ultimately leads to re-vascularization, immunosuppression and, ultimately, tumor-regrowth. The key component of this cascade is overexpression of the CXC-motive chemokine ligand 12 (CXCL12), formerly known as stromal-cell derived factor 1 (SDF-1). We here review the role of CXCL12 in recruitment of pro-vasculogenic and immunosuppressive cells and give an overview on future and current drugs that target this axis.
Collapse
Affiliation(s)
- Frank A Giordano
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany.
| | - Barbara Link
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany.
| | - Martin Glas
- Division of Clinical Neurooncology, Department of Neurology and West German Cancer Center (WTZ), University Hospital Essen and German Cancer Consortium, Partner Site University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| | - Ulrich Herrlinger
- Division of Clinical Neurooncology, Department of Neurology, University of Bonn Medical Center, 53105 Bonn, Germany.
| | - Frederik Wenz
- CEO, University Medical Center Freiburg, 79110 Freiburg, Germany.
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany.
| | - J Martin Brown
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Carsten Herskind
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany.
| |
Collapse
|
26
|
Neves M, Fumagalli A, van den Bor J, Marin P, Smit MJ, Mayor F. The Role of ACKR3 in Breast, Lung, and Brain Cancer. Mol Pharmacol 2019; 96:819-825. [PMID: 30745320 DOI: 10.1124/mol.118.115279] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/30/2019] [Indexed: 12/24/2022] Open
Abstract
Recent reports regarding the significance of chemokine receptors in disease have put a spotlight on atypical chemokine receptor 3 (ACKR3). This atypical chemokine receptor is overexpressed in numerous cancer types and has been involved in the modulation of tumor cell proliferation and migration, tumor angiogenesis, or resistance to drugs, thus contributing to cancer progression and metastasis occurrence. Here, we focus on the clinical significance and potential mechanisms underlying the pathologic role of ACKR3 in breast, lung, and brain cancer and discuss its possible relevance as a prognostic factor and potential therapeutic target in these contexts.
Collapse
Affiliation(s)
- Maria Neves
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma Madrid, Madrid, Spain (M.N., F.M.); Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.B., M.J.S.); and CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (F.M.)
| | - Amos Fumagalli
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma Madrid, Madrid, Spain (M.N., F.M.); Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.B., M.J.S.); and CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (F.M.)
| | - Jelle van den Bor
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma Madrid, Madrid, Spain (M.N., F.M.); Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.B., M.J.S.); and CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (F.M.)
| | - Philippe Marin
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma Madrid, Madrid, Spain (M.N., F.M.); Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.B., M.J.S.); and CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (F.M.)
| | - Martine J Smit
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma Madrid, Madrid, Spain (M.N., F.M.); Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.B., M.J.S.); and CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (F.M.)
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma Madrid, Madrid, Spain (M.N., F.M.); Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.B., M.J.S.); and CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (F.M.)
| |
Collapse
|
27
|
Eckert F, Schilbach K, Klumpp L, Bardoscia L, Sezgin EC, Schwab M, Zips D, Huber SM. Potential Role of CXCR4 Targeting in the Context of Radiotherapy and Immunotherapy of Cancer. Front Immunol 2018; 9:3018. [PMID: 30622535 PMCID: PMC6308162 DOI: 10.3389/fimmu.2018.03018] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/06/2018] [Indexed: 12/28/2022] Open
Abstract
Cancer immunotherapy has been established as standard of care in different tumor entities. After the first reports on synergistic effects with radiotherapy and the induction of abscopal effects-tumor shrinkage outside the irradiated volume attributed to immunological effects of radiotherapy-several treatment combinations have been evaluated. Different immunotherapy strategies (e.g., immune checkpoint inhibition, vaccination, cytokine based therapies) have been combined with local tumor irradiation in preclinical models. Clinical trials are ongoing in different cancer entities with a broad range of immunotherapeutics and radiation schedules. SDF-1 (CXCL12)/CXCR4 signaling has been described to play a major role in tumor biology, especially in hypoxia adaptation, metastasis and migration. Local tumor irradiation is a known inducer of SDF-1 expression and release. CXCR4 also plays a major role in immunological processes. CXCR4 antagonists have been approved for the use of hematopoietic stem cell mobilization from the bone marrow. In addition, several groups reported an influence of the SDF-1/CXCR4 axis on intratumoral immune cell subsets and anti-tumor immune response. The aim of this review is to merge the knowledge on the role of SDF-1/CXCR4 in tumor biology, radiotherapy and immunotherapy of cancer and in combinatorial approaches.
Collapse
Affiliation(s)
- Franziska Eckert
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Karin Schilbach
- Department of General Pediatrics/Pediatric Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Lukas Klumpp
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany.,Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Lilia Bardoscia
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany.,Department of Radiation Oncology, University of Brescia, Brescia, Italy
| | - Efe Cumhur Sezgin
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University Hospital and University Tuebingen, Tuebingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
28
|
Bouwens van der Vlis TAM, Kros JM, Mustafa DAM, van Wijck RTA, Ackermans L, van Hagen PM, van der Spek PJ. The complement system in glioblastoma multiforme. Acta Neuropathol Commun 2018; 6:91. [PMID: 30208949 PMCID: PMC6134703 DOI: 10.1186/s40478-018-0591-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022] Open
Abstract
The human complement system is represents the main effector arm of innate immunity and its ambivalent function in cancer has been subject of ongoing dispute. Glioma stem-like cells (GSC) residing in specific niches within glioblastomas (GBM) are capable of self-renewal and tumor proliferation. Recent data are indicative of the influence of the complement system on the maintenance of these cells. It appears that the role of the complement system in glial tumorigenesis, particularly its influence on GSC niches and GSC maintenance, is significant and warrants further exploration for therapeutic interventions.
Collapse
|
29
|
A three-dimensional (3D) organotypic microfluidic model for glioma stem cells - Vascular interactions. Biomaterials 2018; 198:63-77. [PMID: 30098794 DOI: 10.1016/j.biomaterials.2018.07.048] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/21/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023]
Abstract
Glioblastoma (GBM) is one of the deadliest forms of cancer. Despite many treatment options, prognosis of GBM remains dismal with a 5-year survival rate of 4.7%. Even then, tumors often recur after treatment. Tumor recurrence is hypothesized to be driven by glioma stem cell (GSC) populations which are highly tumorigenic, invasive, and resistant to several forms of therapy. GSCs are often concentrated around the tumor vasculature, referred to as the vascular niche, which are known to provide microenvironmental cues to maintain GSC stemness, promote invasion, and resistance to therapies. In this work, we developed a 3D organotypic microfluidic platform, integrated with hydrogel-based biomaterials, to mimic the GSC vascular niche and study the influence of endothelial cells (ECs) on patient-derived GSC behavior and identify signaling cues that mediate their invasion and phenotype. The established microvascular network enhanced GSC migration within a 3D hydrogel, promoted invasive morphology as well as maintained GSC proliferation rates and phenotype (Nestin, SOX2, CD44). Notably, we compared migration behavior to in vivo mice model and found similar invasive morphology suggesting that our microfluidic system could represent a physiologically relevant in vivo microenvironment. Moreover, we confirmed that CXCL12-CXCR4 signaling is involved in promoting GSC invasion in a 3D vascular microenvironment by utilizing a CXCR4 antagonist (AMD3100), while also demonstrating the effectiveness of the microfluidic as a drug screening assay. Our model presents a potential ex vivo platform for studying the interplay of GSCs with its surrounding microenvironment as well as development of future therapeutic strategies tailored toward disrupting key molecular pathways involved in GSC regulatory mechanisms.
Collapse
|
30
|
Garbow JR, Tsien CI, Beeman SC. Preclinical MRI: Studies of the irradiated brain. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 292:73-81. [PMID: 29705034 PMCID: PMC6029718 DOI: 10.1016/j.jmr.2018.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/20/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Radiation therapy (RT) plays a central role in the treatment of primary brain tumors. However, despite recent advances in RT treatment, local recurrences following therapy remain common. Radiation necrosis (RN) is a severe, late complication of radiation therapy in the brain. RN is a serious clinical problem often associated with devastating neurologic complications. Therapeutic strategies, including neuroprotectants, have been described, but have not been widely translated in routine clinical use. We have developed a mouse model that recapitulates all of the major pathologic features of late-onset RN for the purposes of characterizing the basic pathogenesis of RN, identifying non-invasive (imaging) biomarkers of RN that might allow for the radiologic discernment of tumor and RN, systematic testing of tumor and RN therapeutics, and exploring the complex interplay between RN pathogenesis and tumor recurrence. Herein, we describe the fundamental clinical challenges associated with RN and the progress made towards addressing these challenges by combining our novel mouse model of late-onset RN and magnetic resonance imaging (MRI). MRI techniques discussed include conventional T1- and T2-weighted imaging, diffusion-weighted imaging, magnetization transfer, and measures of tissue oxygenation. Studies of RN mitigation and neuroprotection are described, including the use of anti-VEGF antibodies, and inhibitors of GSK-3β, HIF-1α, and CXCR4. We conclude with some future perspectives on the irradiated brain and the study and treatment of recurrent tumor growing in an irradiated tumor microenvironment.
Collapse
Affiliation(s)
- Joel R Garbow
- Department of Radiology, Washington University, Saint Louis, MO, United States; The Alvin J. Siteman Cancer Center, Washington University, Saint Louis, MO, United States.
| | - Christina I Tsien
- Department of Radiation Oncology, Washington University, Saint Louis, MO, United States
| | - Scott C Beeman
- Department of Radiology, Washington University, Saint Louis, MO, United States
| |
Collapse
|
31
|
Chonan Y, Taki S, Sampetrean O, Saya H, Sudo R. Endothelium-induced three-dimensional invasion of heterogeneous glioma initiating cells in a microfluidic coculture platform. Integr Biol (Camb) 2018; 9:762-773. [PMID: 28752870 DOI: 10.1039/c7ib00091j] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) is a highly invasive primary brain tumor that displays cellular heterogeneity, which is composed of glioma initiating cells (GICs) and their differentiated progeny. GICs play an important role in driving aggressive invasion. In particular, the interaction between GICs and blood vessels is critical because blood vessels are known to serve as routes for the invasion of GICs. However, the effect of endothelial cells on the three-dimensional (3D) invasion process of GICs as well as the spatial relationship between GICs and their differentiated progeny remains unclear. Here, we utilized a microfluidic device to recapitulate the 3D brain tumor microenvironments constituted by human umbilical vein endothelial cells (HUVECs) and type I collagen. Using the device, we found that HUVECs promoted the 3D invasion of heterogeneous glioma cell populations into type I collagen gel. The invasion induced by HUVECs was predominantly preceded by cells positive for nestin, a neural stem cell marker. In contrast, cells positive for tubulin β3 (TUBB3), a differentiated cell marker, rarely preceded invasion. In addition, HUVECs induced the upregulation of TUBB3 in GICs. Finally, we found that the genes associated with invasion, such as integrins α2 and β3, were significantly upregulated in the presence of HUVECs. These results as well as the experimental approach provide valuable knowledge for the development of effective therapeutic strategies targeting the aggressive invasion of GBM.
Collapse
Affiliation(s)
- Yuta Chonan
- Department of System Design Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| | | | | | | | | |
Collapse
|
32
|
CXCR4 increases in-vivo glioma perivascular invasion, and reduces radiation induced apoptosis: A genetic knockdown study. Oncotarget 2018; 7:83701-83719. [PMID: 27863376 PMCID: PMC5341257 DOI: 10.18632/oncotarget.13295] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/17/2016] [Indexed: 01/19/2023] Open
Abstract
Glioblastoma (GBM) is a highly invasive brain tumor. Perivascular invasion, autovascularization and vascular co-option occur throughout the disease and lead to tumor invasion and progression. The molecular basis for perivascular invasion, i.e., the interaction of glioma tumor cells with endothelial cells is not well characterized. Recent studies indicate that glioma cells have increased expression of CXCR4. We investigated the in-vivo role of CXCR4 in perivascular invasion of glioma cells using shRNA-mediated knock down of CXCR4. We show that primary cultures of human glioma stem cells HF2303 and mouse glioma GL26-Cit cells exhibit significant migration towards human (HBMVE) and mouse (MBVE) brain microvascular endothelial cells. Blocking CXCR4 on tumor cells with AMD3100 in-vitro, inhibits migration of GL26-Cit and HF2303 toward MBVE and HBMVE cells. Additionally, genetic down regulation of CXCR4 in mouse glioma GL26-Cit cells inhibits their in-vitro migration towards MBVE cells; in an in-vivo intracranial mouse model, these cells display reduced tumor growth and perivascular invasion, leading to increased survival. Quantitative analysis of brain sections showed that CXCR4 knockdown tumors are less invasive. Lastly, we tested the effects of radiation on CXCR4 knock down GL26-Cit cells in an orthotopic brain tumor model. Radiation treatment increased apoptosis of CXCR4 downregulated tumor cells and prolonged median survival. In summary, our data suggest that CXCR4 signaling is critical for perivascular invasion of GBM cells and targeting this receptor makes tumors less invasive and more sensitive to radiation therapy. Combination of CXCR4 knock down and radiation treatment might improve the efficacy of GBM therapy.
Collapse
|
33
|
Klumpp L, Sezgin EC, Skardelly M, Eckert F, Huber SM. KCa3.1 Channels and Glioblastoma: In Vitro Studies. Curr Neuropharmacol 2018; 16:627-635. [PMID: 28786347 PMCID: PMC5997865 DOI: 10.2174/1570159x15666170808115821] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/29/2017] [Accepted: 07/12/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Several tumor entities including brain tumors aberrantly overexpress intermediate conductance Ca2+ activated KCa3.1 K+ channels. These channels contribute significantly to the transformed phenotype of the tumor cells. METHOD PubMed was searched in order to summarize our current knowledge on the molecular signaling upstream and downstream and the effector functions of KCa3.1 channel activity in tumor cells in general and in glioblastoma cells in particular. In addition, KCa3.1 expression and function for repair of DNA double strand breaks was determined experimentally in primary glioblastoma cultures in dependence on the abundance of proneural and mesenchymal stem cell markers. RESULTS By modulating membrane potential, cell volume, Ca2+ signals and the respiratory chain, KCa3.1 channels in both, plasma and inner mitochondrial membrane, have been demonstrated to regulate many cellular processes such as migration and tissue invasion, metastasis, cell cycle progression, oxygen consumption and metabolism, DNA damage response and cell death of cancer cells. Moreover, KCa3.1 channels have been shown to crucially contribute to resistance against radiotherapy. Futhermore, the original in vitro data on KCa3.1 channel expression in subtypes of glioblastoma stem(-like) cells propose KCa3.1 as marker for the mesenchymal subgroup of cancer stem cells and suggest that KCa3.1 contributes to the therapy resistance of mesenchymal glioblastoma stem cells. CONCLUSION The data suggest KCa3.1 channel targeting in combination with radiotherapy as promising new tool to eradicate therapy-resistant mesenchymal glioblastoma stem cells.
Collapse
Affiliation(s)
| | | | | | | | - Stephan M. Huber
- Address correspondence to this author at the Department of Radiation Oncology, University of Tübingen, Tübingen, Germany; Tel: +49-(0)7071-29-82183; E-mail:
| |
Collapse
|
34
|
Yang R, Duan C, Yuan L, Engelbach JA, Tsien CI, Beeman SC, Perez-Torres CJ, Ge X, Rich KM, Ackerman JJH, Garbow JR. Inhibitors of HIF-1α and CXCR4 Mitigate the Development of Radiation Necrosis in Mouse Brain. Int J Radiat Oncol Biol Phys 2017; 100:1016-1025. [PMID: 29485043 DOI: 10.1016/j.ijrobp.2017.12.257] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/30/2017] [Accepted: 12/11/2017] [Indexed: 01/06/2023]
Abstract
PURPOSE There is mounting evidence that, in addition to angiogenesis, hypoxia-induced inflammation via the hypoxia-inducible factor 1α (HIF-1α)-CXC chemokine receptor 4 (CXCR4) pathway may contribute to the pathogenesis of late-onset, irradiation-induced necrosis. This study investigates the mitigative efficacy of an HIF-1α inhibitor, topotecan, and a CXCR4 antagonist, AMD3100, on the development of radiation necrosis (RN) in an intracranial mouse model. METHODS AND MATERIALS Mice received a single-fraction, 50-Gy dose of hemispheric irradiation from the Leksell Gamma Knife Perfexion and were then treated with either topotecan, an HIF-1α inhibitor, from 1 to 12 weeks after irradiation, or AMD3100, a CXCR4 antagonist, from 4 to 12 weeks after irradiation. The onset and progression of RN were monitored longitudinally via noninvasive, in vivo magnetic resonance imaging (MRI) from 4 to 12 weeks after irradiation. Conventional hematoxylin-eosin staining and immunohistochemistry staining were performed to evaluate the treatment response. RESULTS The progression of brain RN was significantly mitigated for mice treated with either topotecan or AMD3100 compared with control animals. MRI-derived lesion volumes were significantly smaller for both of the treated groups, and histologic findings correlated well with the MRI data. By hematoxylin-eosin staining, both treated groups demonstrated reduced irradiation-induced tissue damage compared with controls. Furthermore, immunohistochemistry results revealed that expression levels of vascular endothelial growth factor, CXC chemokine ligand 12, CD68, CD3, and tumor necrosis factor α in the lesion area were significantly lower in treated (topotecan or AMD3100) brains versus control brains, while ionized calcium-binding adapter molecule 1 (Iba1) and HIF-1α expression was similar, though somewhat reduced. CXCR4 expression was reduced only in topotecan-treated mice, while interleukin 6 expression was unaffected by either topotecan or AMD3100. CONCLUSIONS By reducing inflammation, both topotecan and AMD3100 can, independently, mitigate the development of RN in the mouse brain. When combined with first-line, antiangiogenic treatment, anti-inflammation therapy may provide an adjuvant therapeutic strategy for clinical, postirradiation management of tumors, with additional benefits in the mitigation of RN development.
Collapse
Affiliation(s)
- Ruimeng Yang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China; Department of Radiology, Washington University, St Louis, Missouri
| | - Chong Duan
- Department of Chemistry, Washington University, St Louis, Missouri
| | - Liya Yuan
- Department of Neurosurgery, Washington University, St Louis, Missouri
| | - John A Engelbach
- Department of Radiology, Washington University, St Louis, Missouri
| | - Christina I Tsien
- Department of Radiation Oncology, Washington University, St Louis, Missouri
| | - Scott C Beeman
- Department of Radiology, Washington University, St Louis, Missouri
| | | | - Xia Ge
- Department of Radiology, Washington University, St Louis, Missouri
| | - Keith M Rich
- Department of Neurosurgery, Washington University, St Louis, Missouri; Department of Radiation Oncology, Washington University, St Louis, Missouri
| | - Joseph J H Ackerman
- Department of Radiology, Washington University, St Louis, Missouri; Department of Chemistry, Washington University, St Louis, Missouri; Department of Medicine, Washington University, St Louis, Missouri; Alvin J. Siteman Cancer Center, Washington University, St Louis, Missouri
| | - Joel R Garbow
- Department of Radiology, Washington University, St Louis, Missouri; Alvin J. Siteman Cancer Center, Washington University, St Louis, Missouri.
| |
Collapse
|
35
|
Quezada C, Torres Á, Niechi I, Uribe D, Contreras-Duarte S, Toledo F, San Martín R, Gutiérrez J, Sobrevia L. Role of extracellular vesicles in glioma progression. Mol Aspects Med 2017; 60:38-51. [PMID: 29222067 DOI: 10.1016/j.mam.2017.12.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022]
Abstract
The role of extracellular vesicles in cancer biology has emerged as a focus of the study of great importance and has been shown to directly influence tumour development in several cancers including brain tumours, such as gliomas. Gliomas are the most aggressive brain tumours, and in the last time, a considerable effort has been made to understand their biology. Studies focus in the signalling pathways involved in the processes of angiogenesis, viability, drug resistance and immune response evasion, as well as gliomas ability to infiltrate healthy tissue, a phenomenon regulated by the migratory and invasive capacity of the cells within a tumour. In this review, we summarize the different types and classifications of extracellular vesicles, their intravesicular content, and their role in the regulation of tumour progression processes in glioma.
Collapse
Affiliation(s)
- Claudia Quezada
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile.
| | - Ángelo Torres
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Ignacio Niechi
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Daniel Uribe
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Susana Contreras-Duarte
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán 3780000, Chile
| | - Rody San Martín
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Jaime Gutiérrez
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Health Sciences Faculty, Universidad San Sebastián, Santiago 7510157, Chile.
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Queensland, Australia.
| |
Collapse
|
36
|
Ngo MT, Harley BA. The Influence of Hyaluronic Acid and Glioblastoma Cell Coculture on the Formation of Endothelial Cell Networks in Gelatin Hydrogels. Adv Healthc Mater 2017; 6:10.1002/adhm.201700687. [PMID: 28941173 PMCID: PMC5719875 DOI: 10.1002/adhm.201700687] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/01/2017] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is the most common and deadly form of brain cancer. Interactions between GBM cells and vasculature in vivo contribute to poor clinical outcomes, with GBM-induced vessel co-option, regression, and subsequent angiogenesis strongly influencing GBM invasion. Here, elements of the GBM perivascular niche are incorporated into a methacrylamide-functionalized gelatin hydrogel as a means to examine GBM-vessel interactions. The complexity of 3D endothelial cell networks formed from human umbilical vein endothelial cells and normal human lung fibroblasts as a function of hydrogel properties and vascular endothelial growth factor (VEGF) presentation is presented. While overall length and branching of the endothelial cell networks decrease with increasing hydrogel stiffness and incorporation of brain-mimetic hyaluronic acid, it can be separately altered by changing the vascular cell seeding density. It is shown that covalent incorporation of VEGF supports network formation as robustly as continuously available soluble VEGF. The impact of U87-MG GBM cells on the endothelial cell networks is subsequently investigated. GBM cells localize in proximity to the endothelial cell networks and hasten network regression in vitro. Together, this in vitro platform recapitulates the close association between GBM cells and vessel structures as well as elements of vessel co-option and regression preceding angiogenesis in vivo.
Collapse
Affiliation(s)
- Mai T Ngo
- 193 Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| | - Brendan A Harley
- 110 Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| |
Collapse
|
37
|
Increased Transendothelial Transport of CCL3 Is Insufficient to Drive Immune Cell Transmigration through the Blood-Brain Barrier under Inflammatory Conditions In Vitro. Mediators Inflamm 2017. [PMID: 28626344 PMCID: PMC5463143 DOI: 10.1155/2017/6752756] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Many neuroinflammatory diseases are characterized by massive immune cell infiltration into the central nervous system. Identifying the underlying mechanisms could aid in the development of therapeutic strategies specifically interfering with inflammatory cell trafficking. To achieve this, we implemented and validated a blood–brain barrier (BBB) model to study chemokine secretion, chemokine transport, and leukocyte trafficking in vitro. In a coculture model consisting of a human cerebral microvascular endothelial cell line and human astrocytes, proinflammatory stimulation downregulated the expression of tight junction proteins, while the expression of adhesion molecules and chemokines was upregulated. Moreover, chemokine transport across BBB cocultures was upregulated, as evidenced by a significantly increased concentration of the inflammatory chemokine CCL3 at the luminal side following proinflammatory stimulation. CCL3 transport occurred independently of the chemokine receptors CCR1 and CCR5, albeit that migrated cells displayed increased expression of CCR1 and CCR5. However, overall leukocyte transmigration was reduced in inflammatory conditions, although higher numbers of leukocytes adhered to activated endothelial cells. Altogether, our findings demonstrate that prominent barrier activation following proinflammatory stimulation is insufficient to drive immune cell recruitment, suggesting that additional traffic cues are crucial to mediate the increased immune cell infiltration seen in vivo during neuroinflammation.
Collapse
|
38
|
Hu B, Emdad L, Kegelman TP, Shen XN, Das SK, Sarkar D, Fisher PB. Astrocyte Elevated Gene-1 Regulates β-Catenin Signaling to Maintain Glioma Stem-like Stemness and Self-Renewal. Mol Cancer Res 2016; 15:225-233. [PMID: 27903708 DOI: 10.1158/1541-7786.mcr-16-0239] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/24/2016] [Accepted: 11/11/2016] [Indexed: 11/16/2022]
Abstract
Glioblastoma multiforme is a common malignant brain tumor that portends extremely poor patient survival. Recent studies reveal that glioma stem-like cells (GSC) are responsible for glioblastoma multiforme escape from chemo-radiotherapy and mediators of tumor relapse. Previous studies suggest that AEG-1 (MTDH), an oncogene upregulated in most types of cancers, including glioblastoma multiforme, plays a focal role linking multiple signaling pathways in tumorigenesis. We now report a crucial role of AEG-1 in glioma stem cell biology. Primary glioblastoma multiforme cells were isolated from tumor specimens and cultured as neurospheres. Using the surface marker CD133, negative and positive cells were separated as nonstem and stem populations by cell sorting. Tissue samples and low passage cells were characterized and compared with normal controls. Functional biological assays were performed to measure stemness, self-renewal, differentiation, adhesion, protein-protein interactions, and cell signaling. AEG-1 was upregulated in all glioblastoma multiforme neurospheres compared with normal neural stem cells. Expression of AEG-1 was strongly associated with stem cell markers CD133 and SOX2. AEG-1 facilitated β-catenin translocation into the nucleus by forming a complex with LEF1 and β-catenin, subsequently activating Wnt signaling downstream genes. Through an AEG-1/Akt/GSK3β signaling axis, AEG-1 controlled phosphorylation levels of β-catenin that stabilized the protein. IMPLICATIONS This study discovers a previously unrecognized role of AEG-1 in GSC biology and supports the significance of this gene as a potential therapeutic target for glioblastoma multiforme. Mol Cancer Res; 15(2); 225-33. ©2016 AACR.
Collapse
Affiliation(s)
- Bin Hu
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Luni Emdad
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Timothy P Kegelman
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Swadesh K Das
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia. .,VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
39
|
Novel chemical library screen identifies naturally occurring plant products that specifically disrupt glioblastoma-endothelial cell interactions. Oncotarget 2016; 6:18282-92. [PMID: 26286961 PMCID: PMC4621891 DOI: 10.18632/oncotarget.4957] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/09/2015] [Indexed: 12/23/2022] Open
Abstract
Tumor growth is not solely a consequence of autonomous tumor cell properties. Rather, tumor cells act upon and are acted upon by their microenvironment. It is tumor tissue biology that ultimately determines tumor growth. Thus, we developed a compound library screen for agents that could block essential tumor-promoting effects of the glioblastoma (GBM) perivascular stem cell niche (PVN). We modeled the PVN with three-dimensional primary cultures of human brain microvascular endothelial cells in Matrigel. We previously demonstrated stimulated growth of GBM cells in this PVN model and used this to assay PVN function. We screened the Microsource Spectrum Collection library for drugs that specifically blocked PVN function, without any direct effect on GBM cells themselves. Three candidate PVN-disrupting agents, Iridin, Tigogenin and Triacetylresveratrol (TAR), were identified and evaluated in secondary in vitro screens against a panel of primary GBM isolates as well as in two different in vivo intracranial models. Iridin and TAR significantly inhibited intracranial tumor growth and prolonged survival in these mouse models. Together these data identify Iridin and TAR as drugs with novel GBM tissue disrupting effects and validate the importance of preclinical screens designed to address tumor tissue function rather than the mechanisms of autonomous tumor cell growth.
Collapse
|
40
|
Stegen B, Klumpp L, Misovic M, Edalat L, Eckert M, Klumpp D, Ruth P, Huber SM. K + channel signaling in irradiated tumor cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:585-598. [PMID: 27165704 DOI: 10.1007/s00249-016-1136-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/24/2016] [Accepted: 04/20/2016] [Indexed: 12/17/2022]
Abstract
K+ channels crosstalk with biochemical signaling cascades and regulate virtually all cellular processes by adjusting the intracellular K+ concentration, generating the membrane potential, mediating cell volume changes, contributing to Ca2+ signaling, and directly interacting within molecular complexes with membrane receptors and downstream effectors. Tumor cells exhibit aberrant expression and activity patterns of K+ channels. The upregulation of highly "oncogenic" K+ channels such as the Ca2+-activated IK channel may drive the neoplastic transformation, malignant progression, metastasis, or therapy resistance of tumor cells. In particular, ionizing radiation in doses used for fractionated radiotherapy in the clinic has been shown to activate K+ channels. Radiogenic K+ channel activity, in turn, contributes to the DNA damage response and promotes survival of the irradiated tumor cells. Tumor-specific overexpression of certain K+ channel types together with the fact that pharmacological K+ channel modulators are already in clinical use or well tolerated in clinical trials suggests that K+ channel targeting alone or in combination with radiotherapy might become a promising new strategy of anti-cancer therapy. The present article aims to review our current knowledge on K+ channel signaling in irradiated tumor cells. Moreover, it provides new data on molecular mechanisms of radiogenic K+ channel activation and downstream signaling events.
Collapse
Affiliation(s)
- Benjamin Stegen
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Lukas Klumpp
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany.,Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Milan Misovic
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Lena Edalat
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Marita Eckert
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Dominik Klumpp
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
41
|
Glioblastoma Stem Cells Microenvironment: The Paracrine Roles of the Niche in Drug and Radioresistance. Stem Cells Int 2016; 2016:6809105. [PMID: 26880981 PMCID: PMC4736577 DOI: 10.1155/2016/6809105] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 12/13/2022] Open
Abstract
Among all solid tumors, the high-grade glioma appears to be the most vascularized one. In fact, "microvascular hyperplasia" is a hallmark of GBM. An altered vascular network determines irregular blood flow, so that tumor cells spread rapidly beyond the diffusion distance of oxygen in the tissue, with the consequent formation of hypoxic or anoxic areas, where the bulk of glioblastoma stem cells (GSCs) reside. The response to this event is the induction of angiogenesis, a process mediated by hypoxia inducible factors. However, this new capillary network is not efficient in maintaining a proper oxygen supply to the tumor mass, thereby causing an oxygen gradient within the neoplastic zone. This microenvironment helps GSCs to remain in a "quiescent" state preserving their potential to proliferate and differentiate, thus protecting them by the effects of chemo- and radiotherapy. Recent evidences suggest that responses of glioblastoma to standard therapies are determined by the microenvironment of the niche, where the GSCs reside, allowing a variety of mechanisms that contribute to the chemo- and radioresistance, by preserving GSCs. It is, therefore, crucial to investigate the components/factors of the niche in order to formulate new adjuvant therapies rendering more efficiently the gold standard therapies for this neoplasm.
Collapse
|
42
|
Huber SM, Butz L, Stegen B, Klumpp L, Klumpp D, Eckert F. Role of ion channels in ionizing radiation-induced cell death. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2657-64. [DOI: 10.1016/j.bbamem.2014.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/30/2014] [Accepted: 11/05/2014] [Indexed: 02/05/2023]
|
43
|
Warrington NM, Sun T, Rubin JB. Targeting brain tumor cAMP: the case for sex-specific therapeutics. Front Pharmacol 2015; 6:153. [PMID: 26283963 PMCID: PMC4516881 DOI: 10.3389/fphar.2015.00153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/10/2015] [Indexed: 12/20/2022] Open
Abstract
A relationship between cyclic adenosine 3′, 5′-monophosphate (cAMP) levels and brain tumor biology has been evident for nearly as long as cAMP and its synthetase, adenylate cyclase (ADCY) have been known. The importance of the pathway in brain tumorigenesis has been demonstrated in vitro and in multiple animal models. Recently, we provided human validation for a cooperating oncogenic role for cAMP in brain tumorigenesis when we found that SNPs in ADCY8 were correlated with glioma (brain tumor) risk in individuals with Neurofibromatosis type 1 (NF1). Together, these studies provide a strong rationale for targeting cAMP in brain tumor therapy. However, the cAMP pathway is well-known to be sexually dimorphic, and SNPs in ADCY8 affected glioma risk in a sex-specific fashion, elevating the risk for females while protecting males. The cAMP pathway can be targeted at multiple levels in the regulation of its synthesis and degradation. Sex differences in response to drugs that target cAMP regulators indicate that successful targeting of the cAMP pathway for brain tumor patients is likely to require matching specific mechanisms of drug action with patient sex.
Collapse
Affiliation(s)
- Nicole M Warrington
- Department of Pediatrics, Washington University School of Medicine St Louis, MO, USA
| | - Tao Sun
- Department of Pediatrics, Washington University School of Medicine St Louis, MO, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine St Louis, MO, USA ; Department of Anatomy and Neurobiology, Washington University School of Medicine St Louis, MO, USA
| |
Collapse
|
44
|
Yamada K, Maishi N, Akiyama K, Towfik Alam M, Ohga N, Kawamoto T, Shindoh M, Takahashi N, Kamiyama T, Hida Y, Taketomi A, Hida K. CXCL12-CXCR7 axis is important for tumor endothelial cell angiogenic property. Int J Cancer 2015; 137:2825-36. [PMID: 26100110 DOI: 10.1002/ijc.29655] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/29/2015] [Accepted: 06/11/2015] [Indexed: 12/27/2022]
Abstract
We reported that tumor endothelial cells (TECs) differ from normal endothelial cells (NECs) in many aspects, such as gene expression profiles. Although CXCR7 is reportedly highly expressed in blood vessels of several tumors, its function in TECs is still unknown. To investigate this role, we isolated TECs from mouse tumor A375SM xenografts, and compared them with NECs from normal mouse dermis. After confirming CXCR7 upregulation in TECs, we analyzed its function using CXCR7 siRNA and CXCR7 inhibitor; CCX771. CXCR7 siRNA and CCX771 inhibited migration, tube formation and resistance to serum starvation in TECs but not in NECs. ERK1/2 phosphorylation was inhibited by CXCR7 knockdown in TECs. These results suggest that CXCR7 promotes angiogenesis in TECs via ERK1/2 phosphorylation. Using ELISA, we also detected CXCL12, a ligand of CXCR7, in conditioned medium from TECs, but not from NECs. CXCL12 neutralizing antibody significantly inhibited TEC random motility. VEGF stimulation upregulated CXCR7 expression in NECs, implying that VEGF mediates CXCR7 expression in endothelial cells. A CXCR7 inhibitor, CCX771 also inhibited tumor growth, lung metastasis and tumor angiogenesis in vivo. Taken together, the CXCL12-CXCR7 autocrine loop affects TEC proangiogenic properties, and could be the basis for an antiangiogenic therapy that specifically targets tumor blood vessels rather than normal vessels.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nako Maishi
- Department of Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Kosuke Akiyama
- Department of Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Mohammad Towfik Alam
- Department of Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Noritaka Ohga
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Taisuke Kawamoto
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Masanobu Shindoh
- Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Norihiko Takahashi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshiya Kamiyama
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kyoko Hida
- Department of Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| |
Collapse
|
45
|
Blaylock RL. Cancer microenvironment, inflammation and cancer stem cells: A hypothesis for a paradigm change and new targets in cancer control. Surg Neurol Int 2015; 6:92. [PMID: 26097771 PMCID: PMC4455122 DOI: 10.4103/2152-7806.157890] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 05/03/2015] [Indexed: 12/13/2022] Open
Abstract
Since President Nixon officially declared a war on cancer with the National Cancer Act, billions of dollars have been spent on research in hopes of finding a cure for cancer. Recent reviews have pointed out that over the ensuing 42 years, cancer death rates have barely changed for the major cancers. Recently, several researchers have questioned the prevailing cancer paradigm based on recent discoveries concerning the mechanism of carcinogenesis and the origins of cancer. Over the past decade we have learned a great deal concerning both of these central issues. Cell signaling has taken center stage, particularly as regards the links between chronic inflammation and cancer development. It is now evident that the common factor among a great number of carcinogenic agents is activation of genes controlling inflammation cell-signaling pathways and that these signals control all aspects of the cancer process. Of these pathways, the most important and common to all cancers is the NFκB and STAT3 pathways. The second discovery of critical importance is that mutated stem cells appear to be in charge of the cancer process. Most chemotherapy agents and radiotherapy kill daughter cells of the cancer stem cell, many of which are not tumorigenic themselves. Most cancer stem cells are completely resistant to conventional treatments, which explain dormancy and the poor cure rate with metastatic tumors. A growing number of studies are finding that several polyphenol extracts can kill cancer stem cells as well as daughter cells and can enhance the effectiveness and safety of conventional treatments. These new discoveries provide the clinician with a whole new set of targets for cancer control and cure.
Collapse
Affiliation(s)
- Russell L. Blaylock
- Theoretical Neuroscience Research, LLC, Assistant Editor-in-Chief, Surgical Neurology International, 315 Rolling Meadows Rd, Ridgeland, MS 39157, USA
| |
Collapse
|
46
|
Barone A, Sengupta R, Warrington NM, Smith E, Wen PY, Brekken RA, Romagnoli B, Douglas G, Chevalier E, Bauer MP, Dembowsky K, Piwnica-Worms D, Rubin JB. Combined VEGF and CXCR4 antagonism targets the GBM stem cell population and synergistically improves survival in an intracranial mouse model of glioblastoma. Oncotarget 2014; 5:9811-22. [PMID: 25238146 PMCID: PMC4259439 DOI: 10.18632/oncotarget.2443] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/08/2014] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma recurrence involves the persistence of a subpopulation of cells with enhanced tumor-initiating capacity (TIC) that reside within the perivascular space, or niche (PVN). Anti-angiogenic therapies may prevent the formation of new PVN but have not prevented recurrence in clinical trials, suggesting they cannot abrogate TIC activity. We hypothesized that combining anti-angiogenic therapy with blockade of PVN function would have superior anti-tumor activity. We tested this hypothesis in an established intracranial xenograft model of GBM using a monoclonal antibody specific for murine and human VEGF (mcr84) and a Protein Epitope Mimetic (PEM) CXCR4 antagonist, POL5551. When doses of POL5551 were increased to overcome an mcr84-induced improvement in vascular barrier function, combinatorial therapy significantly inhibited intracranial tumor growth and improved survival. Anti-tumor activity was associated with significant changes in tumor cell proliferation and apoptosis, and a reduction in the numbers of perivascular cells expressing the TIC marker nestin. A direct effect on TICs was demonstrated for POL5551, but not mcr84, in three primary patient-derived GBM isolates. These findings indicate that targeting the structure and function of the PVN has superior anti-tumor effect and provide a strong rationale for clinical evaluation of POL5551 and Avastin in patients with GBM.
Collapse
Affiliation(s)
- Amy Barone
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Ave, St. Louis, MO
| | - Rajarshi Sengupta
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Ave, St. Louis, MO
| | - Nicole M. Warrington
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Ave, St. Louis, MO
| | - Erin Smith
- BRIGHT Institute, Washington University School of Medicine, 660 South Euclid Ave, St. Louis, MO
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 South Euclid Ave, St. Louis, MO
| | - Patrick Y. Wen
- Center for Neuro-Oncology, Dana Farber/Brigham and Women’s Cancer Center, Brookline Ave, Boston, MA
- Division of Neuro-Oncology, Department of Neurology, Brigham and Women’s Hospital, Brookline Ave, Boston, MA
| | - Rolf A. Brekken
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Harry Hines Blvd. Dallas, TX
| | | | - Garry Douglas
- PolyPhor Ltd, Hegenheimermattweg 125 CH-4123 Allschwil, Switzerland
| | - Eric Chevalier
- PolyPhor Ltd, Hegenheimermattweg 125 CH-4123 Allschwil, Switzerland
| | - Michael P. Bauer
- PolyPhor Ltd, Hegenheimermattweg 125 CH-4123 Allschwil, Switzerland
| | - Klaus Dembowsky
- PolyPhor Ltd, Hegenheimermattweg 125 CH-4123 Allschwil, Switzerland
| | - David Piwnica-Worms
- BRIGHT Institute, Washington University School of Medicine, 660 South Euclid Ave, St. Louis, MO
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 South Euclid Ave, St. Louis, MO
- Department of Cell Biology & Physiology, Washington University School of Medicine, 660 South Euclid Ave, St. Louis, MO
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Holcombe Dr., Houston, TX
| | - Joshua B. Rubin
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Ave, St. Louis, MO
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Ave, St. Louis, MO
| |
Collapse
|
47
|
Merino JJ, Bellver-Landete V, Oset-Gasque MJ, Cubelos B. CXCR4/CXCR7 Molecular Involvement in Neuronal and Neural Progenitor Migration: Focus in CNS Repair. J Cell Physiol 2014; 230:27-42. [DOI: 10.1002/jcp.24695] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 06/03/2014] [Indexed: 12/13/2022]
Affiliation(s)
- José Joaquín Merino
- Biochemistry and Molecular Biology Dept II; Universidad Complutense de Madrid (UCM); Madrid Spain
- Instituto de Investigación; Neuroquímica (IUIN), UCM; Madrid Spain
| | - Victor Bellver-Landete
- Biochemistry and Molecular Biology Dept II; Universidad Complutense de Madrid (UCM); Madrid Spain
| | - María Jesús Oset-Gasque
- Biochemistry and Molecular Biology Dept II; Universidad Complutense de Madrid (UCM); Madrid Spain
- Instituto de Investigación; Neuroquímica (IUIN), UCM; Madrid Spain
| | - Beatriz Cubelos
- Departamento de Biología Molecular; Centro de Biología Molecular Severo Ochoa (CBMSO); Universidad Autónoma de Madrid; Madrid Spain
| |
Collapse
|
48
|
Brooks MD, Jackson E, Warrington NM, Luo J, Forys JT, Taylor S, Mao DD, Leonard JR, Kim AH, Piwnica-Worms D, Mitra RD, Rubin JB. PDE7B is a novel, prognostically significant mediator of glioblastoma growth whose expression is regulated by endothelial cells. PLoS One 2014; 9:e107397. [PMID: 25203500 PMCID: PMC4159344 DOI: 10.1371/journal.pone.0107397] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 08/15/2014] [Indexed: 11/18/2022] Open
Abstract
Cell-cell interactions between tumor cells and constituents of their microenvironment are critical determinants of tumor tissue biology and therapeutic responses. Interactions between glioblastoma (GBM) cells and endothelial cells (ECs) establish a purported cancer stem cell niche. We hypothesized that genes regulated by these interactions would be important, particularly as therapeutic targets. Using a computational approach, we deconvoluted expression data from a mixed physical co-culture of GBM cells and ECs and identified a previously undescribed upregulation of the cAMP specific phosphodiesterase PDE7B in GBM cells in response to direct contact with ECs. We further found that elevated PDE7B expression occurs in most GBM cases and has a negative effect on survival. PDE7B overexpression resulted in the expansion of a stem-like cell subpopulation in vitro and increased tumor growth and aggressiveness in an in vivo intracranial GBM model. Collectively these studies illustrate a novel approach for studying cell-cell interactions and identifying new therapeutic targets like PDE7B in GBM.
Collapse
Affiliation(s)
- Michael D. Brooks
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Erin Jackson
- BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Nicole M. Warrington
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jingqin Luo
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jason T. Forys
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sara Taylor
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Diane D. Mao
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jeffrey R. Leonard
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Albert H. Kim
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David Piwnica-Worms
- BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Robi D. Mitra
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joshua B. Rubin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
49
|
Liu Y, Carson-Walter E, Walter KA. Chemokine receptor CXCR7 is a functional receptor for CXCL12 in brain endothelial cells. PLoS One 2014; 9:e103938. [PMID: 25084358 PMCID: PMC4118981 DOI: 10.1371/journal.pone.0103938] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/06/2014] [Indexed: 12/12/2022] Open
Abstract
The chemokine CXCL12 regulates multiple cell functions through its receptor, CXCR4. However, recent studies have shown that CXCL12 also binds a second receptor, CXCR7, to potentiate signal transduction and cell activity. In contrast to CXCL12/CXCR4, few studies have focused on the role of CXCR7 in vascular biology and its role in human brain microvascular endothelial cells (HBMECs) remains unclear. In this report, we used complementary methods, including immunocytofluorescence, Western blot, and flow cytometry analyses, to demonstrate that CXCR7 was expressed on HBMECs. We then employed short hairpin RNA (shRNA) technology to knockdown CXCR7 in HBMECs. Knockdown of CXCR7 in HBMECs resulted in significantly reduced HBMEC proliferation, tube formation, and migration, as well as adhesion to matrigel and tumor cells. Blocking CXCR7 with a specific antibody or small molecule antagonist similarly disrupted HBMEC binding to matrigel or tumor cells. We found that tumor necrosis factor (TNF)-α induced CXCR7 in a time and dose-response manner and that this increase preceded an increase in vascular cell adhesion molecule-1 (VCAM-1). Knockdown of CXCR7 resulted in suppression of VCAM-1, suggesting that the reduced binding of CXCR7-knockdown HBMECs may result from suppression of VCAM-1. Collectively, CXCR7 acted as a functional receptor for CXCL12 in brain endothelial cells. Targeting CXCR7 in tumor vasculature may provide novel opportunities for improving brain tumor therapy.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurosurgery, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- * E-mail: (YL); (KAW)
| | - Eleanor Carson-Walter
- Department of Neurosurgery, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Kevin A. Walter
- Department of Neurosurgery, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- * E-mail: (YL); (KAW)
| |
Collapse
|
50
|
Zhou W, Jiang Z, Li X, Xu Y, Shao Z. Cytokines: shifting the balance between glioma cells and tumor microenvironment after irradiation. J Cancer Res Clin Oncol 2014; 141:575-89. [PMID: 25005789 DOI: 10.1007/s00432-014-1772-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/30/2014] [Indexed: 12/13/2022]
Abstract
Malignant gliomas invariably recur after irradiation, showing radioresistance. Meanwhile, cranial irradiation can bring some risk for developing cognitive dysfunction. There is increasing evidence that cytokines play their peculiar roles in these processes. On the one hand, cytokines directly influence the progression of malignant glioma, promoting or suppressing tumor progression. On the other hand, cytokines indirectly contribute to the immunologic response against gliomas, exhibiting pro-inflammatory or immunosuppressive activities. We propose that cytokines are not simply unregulated products from tumor cells or immune cells, but mediators finely adjust the balance between glioma cells and tumor microenvironment after irradiation. The paper, therefore, focuses on the changes of cytokines after irradiation, analyzing how these mediate the response of tumor cells and normal cells to irradiation. In addition, cytokine-based immunotherapeutic strategies, accompanied with irradiation, for the treatment of gliomas are also discussed.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Radiation Oncology, Cancer Centre, Qilu Hospital, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | | | | | | | | |
Collapse
|