1
|
Izutsu M, Lenski RE. Experimental test of the contributions of initial variation and new mutations to adaptive evolution in a novel environment. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.958406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Experimental evolution is an approach that allows researchers to study organisms as they evolve in controlled environments. Despite the growing popularity of this approach, there are conceptual gaps among projects that use different experimental designs. One such gap concerns the contributions to adaptation of genetic variation present at the start of an experiment and that of new mutations that arise during an experiment. The primary source of genetic variation has historically depended largely on the study organisms. In the long-term evolution experiment (LTEE) using Escherichia coli, for example, each population started from a single haploid cell, and therefore, adaptation depended entirely on new mutations. Most other microbial evolution experiments have followed the same strategy. By contrast, evolution experiments using multicellular, sexually reproducing organisms typically start with preexisting variation that fuels the response to selection. New mutations may also come into play in later generations of these experiments, but it is generally difficult to quantify their contribution in these studies. Here, we performed an experiment using E. coli to compare the contributions of initial genetic variation and new mutations to adaptation in a new environment. Our experiment had four treatments that varied in their starting diversity, with 18 populations in each treatment. One treatment depended entirely on new mutations, while the other three began with mixtures of clones, whole-population samples, or mixtures of whole-population samples from the LTEE. We tracked a genetic marker associated with different founders in two treatments. These data revealed significant variation in fitness among the founders, and that variation impacted evolution in the early generations of our experiment. However, there were no differences in fitness among the treatments after 500 or 2,000 generations in the new environment, despite the variation in fitness among the founders. These results indicate that new mutations quickly dominated, and eventually they contributed more to adaptation than did the initial variation. Our study thus shows that preexisting genetic variation can have a strong impact on early evolution in a new environment, but new beneficial mutations may contribute more to later evolution and can even drive some initially beneficial variants to extinction.
Collapse
|
2
|
Mutations in a Novel Cadherin Gene Associated with Bt Resistance in Helicoverpa zea. G3-GENES GENOMES GENETICS 2020; 10:1563-1574. [PMID: 32179620 PMCID: PMC7202007 DOI: 10.1534/g3.120.401053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transgenic corn and cotton produce crystalline (Cry) proteins derived from the soil bacterium Bacillus thuringiensis (Bt) that are toxic to lepidopteran larvae. Helicoverpa zea, a key pest of corn and cotton in the U.S., has evolved widespread resistance to these proteins produced in Bt corn and cotton. While the genomic targets of Cry selection and the mutations that produce resistant phenotypes are known in other lepidopteran species, little is known about how selection by Cry proteins shape the genome of H. zea. We scanned the genomes of Cry1Ac-selected and unselected H. zea lines, and identified twelve genes on five scaffolds that differed between lines, including cadherin-86C (cad-86C), a gene from a family that is involved in Cry1A resistance in other lepidopterans. Although this gene was expressed in the H. zea larval midgut, the protein it encodes has only 17 to 22% identity with cadherin proteins from other species previously reported to be involved in Bt resistance. An analysis of midgut-expressed cDNAs showed significant between-line differences in the frequencies of putative nonsynonymous substitutions (both SNPs and indels). Our results indicate that cad-86C is a likely target of Cry1Ac selection in H. zea. It remains unclear, however, whether genomic changes at this locus directly disrupt midgut binding of Cry1Ac and cause Bt resistance, or indirectly enhance fitness of H. zea in the presence of Cry1Ac by some other mechanism. Future work should investigate phenotypic effects of these nonsynonymous substitutions and their impact on fitness of H. zea larvae that ingest Cry1Ac.
Collapse
|
3
|
Özer I, Carle T. Back to the light, coevolution between vision and olfaction in the "Dark-flies" (Drosophila melanogaster). PLoS One 2020; 15:e0228939. [PMID: 32045466 PMCID: PMC7012446 DOI: 10.1371/journal.pone.0228939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/27/2020] [Indexed: 11/19/2022] Open
Abstract
Trade-off between vision and olfaction, the fact that investment in one correlates with decreased investment in the other, has been demonstrated by a wealth of comparative studies. However, there is still no empirical evidence suggesting how these two sensory systems coevolve, i.e. simultaneously or alternatively. The "Dark-flies" (Drosophila melanogaster) constitute a unique model to investigate such relation since they have been reared in the dark since 1954, approximately 60 years (~1500 generations). To observe how vision and olfaction evolve, populations of Dark-flies were reared in normal lighting conditions for 1 (DF1G) and 65 (DF65G) generations. We measured the sizes of the visual (optic lobes, OLs) and olfactory (antennal lobes, ALs) primary centres, as well as the rest of the brain, and compared the results with the original and its genetically most similar strain (Oregon flies). We found that, whereas the ALs decreased in size, the OLs (together with the brain) increased in size in the Dark-flies returned back to the light, both in the DF1G and DF65G. These results experimentally show that trade-off between vision and olfaction occurs simultaneously, and suggests that there are possible genetic and epigenetic processes regulating the size of both optic and antennal lobes. Furthermore, although the Dark-flies were able to mate and survive in the dark with a reduced neural investment, individuals being returned to the light seem to have been selected with reinvestment in visual capabilities despite a potential higher energetic cost.
Collapse
Affiliation(s)
- Ismet Özer
- Institute of Neuroscience, Framlington place, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas Carle
- Institute of Neuroscience, Framlington place, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Guillet A, Stergiou A, Carle T. Effect of Light Exposure upon Food Consumption and Brain Size in Dark-Flies (Drosophila melanogaster). BRAIN, BEHAVIOR AND EVOLUTION 2019; 94:18-26. [PMID: 31770768 DOI: 10.1159/000504121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 10/13/2019] [Indexed: 11/19/2022]
Abstract
While reducing the investment in the visual system of nocturnal/cave-dwelling species appears to be an evolutionarily stable strategy in response to the difficulty of locating food in the dark, relying on visual information for diurnal species is crucial for their survival and reproduction. However, the manner in which species evolve and adapt to the energetic demands placed upon them by environmental changes is not perfectly understood. In particular, if life in the dark is associated with a reduction in energetic demand, would relocation to a well-lit environment increase energetic demand? This question has a bearing upon our understanding of factors that influence the ability of species to adapt to new habitats. After observing that a sub-population of "Dark-flies" (i.e., fruit flies bred in the dark for more than 60 years) has been selected with a larger visual system (optic lobes) and brain over the course of being maintained in normal lighting conditions for 3 years (DFLight), we used the CAFÉ assay method to investigate the differences in the two strains' energetic demands in the present study. We therefore measured brain size, body size, and food consumption in Dark-flies, DFLight, and Oregon flies (i.e., the fly species most genetically similar to Dark-flies). We found that the DFLight consumed more food solution than the Dark-flies, which correlates with that strain's larger brain size and improved visual capability compared to the Dark-flies. In addition, and although the -Oregon flies initially consumed less food solution than the DFLight, the amount consumed by these two strains by the end of the CAFÉ assay was approximately the same. This suggests that the Dark-flies have adapted their metabolism or feeding strategies in response to a dark environment. Our investigation therefore provides empirical evidence elucidating the manner in which energetic demands change in response to environmental changes and the cross-generational effect upon sensory-system investment.
Collapse
Affiliation(s)
- Alban Guillet
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Antonia Stergiou
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas Carle
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan, .,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom,
| |
Collapse
|
5
|
Affiliation(s)
- Sudhakar Krittika
- Fly Laboratory, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Pankaj Yadav
- Fly Laboratory, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
6
|
Frolov RV, Immonen EV, Saari P, Torkkeli PH, Liu H, French AS. Phenotypic plasticity in Periplaneta americana photoreceptors. J Gen Physiol 2018; 150:1386-1396. [PMID: 30115661 PMCID: PMC6168239 DOI: 10.1085/jgp.201812107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/04/2018] [Accepted: 07/31/2018] [Indexed: 12/16/2022] Open
Abstract
Plasticity is a crucial aspect of neuronal physiology essential for proper development and continuous functional optimization of neurons and neural circuits. Despite extensive studies of different visual systems, little is known about plasticity in mature microvillar photoreceptors. Here we investigate changes in electrophysiological properties and gene expression in photoreceptors of the adult cockroach, Periplaneta americana, after exposure to constant light (CL) or constant dark (CD) for several months. After CL, we observed a decrease in mean whole-cell capacitance, a proxy for cell membrane area, from 362 ± 160 to 157 ± 58 pF, and a decrease in absolute sensitivity. However, after CD, we observed an increase in capacitance to 561 ± 155 pF and an increase in absolute sensitivity. Small changes in the expression of light-sensitive channels and signaling molecules were detected in CD retinas, together with a substantial increase in the expression of the primary green-sensitive opsin (GO1). Accordingly, light-induced currents became larger in CD photoreceptors. Even though normal levels of GO1 expression were retained in CL photoreceptors, light-induced currents became much smaller, suggesting that factors other than opsin are involved. Latency of phototransduction also decreased significantly in CL photoreceptors. Sustained voltage-activated K+ conductance was not significantly different between the experimental groups. The reduced capacitance of CL photoreceptors expanded their bandwidth, increasing the light-driven voltage signal at high frequencies. However, voltage noise was also amplified, probably because of unaltered expression of TRPL channels. Consequently, information transfer rates were lower in CL than in control or CD photoreceptors. These changes in whole-cell capacitance and electrophysiological parameters suggest that structural modifications can occur in the photoreceptors to adapt their function to altered environmental conditions. The opposing patterns of modifications in CL and CD photoreceptors differ profoundly from previous findings in Drosophila melanogaster photoreceptors.
Collapse
Affiliation(s)
- Roman V Frolov
- Biophysics group, Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
| | - Esa-Ville Immonen
- Biophysics group, Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
| | - Paulus Saari
- Biophysics group, Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
| | - Päivi H Torkkeli
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Hongxia Liu
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
7
|
Sakai K, Tsutsui K, Yamashita T, Iwabe N, Takahashi K, Wada A, Shichida Y. Drosophila melanogaster rhodopsin Rh7 is a UV-to-visible light sensor with an extraordinarily broad absorption spectrum. Sci Rep 2017; 7:7349. [PMID: 28779161 PMCID: PMC5544684 DOI: 10.1038/s41598-017-07461-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/28/2017] [Indexed: 01/15/2023] Open
Abstract
The genome of Drosophila melanogaster contains seven rhodopsin genes. Rh1-6 proteins are known to have respective absorption spectra and function as visual pigments in ocelli and compound eyes. In contrast, Rh7 protein was recently revealed to function as a circadian photoreceptor in the brain. However, its molecular properties have not been characterized yet. Here we successfully prepared a recombinant protein of Drosophila Rh7 in mammalian cultured cells. Drosophila Rh7 bound both 11-cis-retinal and 11-cis-3-hydroxyretinal to form photo-pigments which can absorb UV light. Irradiation with UV light caused formation of a visible-light absorbing metarhodopsin that activated Gq-type of G protein. This state could be photoconverted back to the original state and, thus Rh7 is a Gq-coupled bistable pigment. Interestingly, Rh7 (lambda max = 350 nm) exhibited an unusual broad spectrum with a longer wavelength tail reaching 500 nm, whose shape is like a composite of spectra of two pigments. In contrast, replacement of lysine at position 90 with glutamic acid caused the formation of a normal-shaped absorption spectrum with maximum at 450 nm. Therefore, Rh7 is a unique photo-sensor that can cover a wide wavelength region by a single pigment to contribute to non-visual photoreception.
Collapse
Affiliation(s)
- Kazumi Sakai
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Kei Tsutsui
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Naoyuki Iwabe
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Keisuke Takahashi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Akimori Wada
- Department of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan. .,Research Organization for Science and Technology, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
8
|
Genome research elucidating environmental adaptation: Dark-fly project as a case study. Curr Opin Genet Dev 2017; 45:97-102. [DOI: 10.1016/j.gde.2017.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/21/2017] [Accepted: 03/02/2017] [Indexed: 01/08/2023]
|
9
|
Abhilash L, Shindey R, Sharma VK. To be or not to be rhythmic? A review of studies on organisms inhabiting constant environments. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1345426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lakshman Abhilash
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Radhika Shindey
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Vijay Kumar Sharma
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| |
Collapse
|
10
|
Zhuo Z, Fang S, Hu Q, Huang D, Feng J. Digital gene expression profiling analysis of duodenum transcriptomes in SD rats administered ferrous sulfate or ferrous glycine chelate by gavage. Sci Rep 2016; 6:37923. [PMID: 27901057 PMCID: PMC5128800 DOI: 10.1038/srep37923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022] Open
Abstract
The absorption of different iron sources is a trending research topic. Many studies have revealed that organic iron exhibits better bioavailability than inorganic iron, but the concrete underlying mechanism is still unclear. In the present study, we examined the differences in bioavailability of ferrous sulfate and ferrous glycinate in the intestines of SD rats using Illumina sequencing technology. Digital gene expression analysis resulted in the generation of almost 128 million clean reads, with expression data for 17,089 unigenes. A total of 123 differentially expressed genes with a |log2(fold change)| >1 and q-value < 0.05 were identified between the FeSO4 and Fe-Gly groups. Gene Ontology functional analysis revealed that these genes were involved in oxidoreductase activity, iron ion binding, and heme binding. Kyoto Encyclopedia of Genes and Genomes pathway analysis also showed relevant important pathways. In addition, the expression patterns of 9 randomly selected genes were further validated by qRT-PCR, which confirmed the digital gene expression results. Our study showed that the two iron sources might share the same absorption mechanism, and that differences in bioavailability between FeSO4 and Fe-Gly were not only in the absorption process but also during the transport and utilization process.
Collapse
Affiliation(s)
- Zhao Zhuo
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shenglin Fang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Qiaoling Hu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Danping Huang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jie Feng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
11
|
Flies reared in the dark for 60 years give up their genetic secrets. Nature 2016. [DOI: 10.1038/nature.2016.19339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Abstract
Environmental adaptation is one of the most fundamental features of organisms. Modern genome science has identified some genes associated with adaptive traits of organisms, and has provided insights into environmental adaptation and evolution. However, how genes contribute to adaptive traits and how traits are selected under an environment in the course of evolution remain mostly unclear. To approach these issues, we utilize “Dark-fly”, a Drosophila melanogaster line maintained in constant dark conditions for more than 60 years. Our previous analysis identified 220,000 single nucleotide polymorphisms (SNPs) in the Dark-fly genome, but did not clarify which SNPs of Dark-fly are truly adaptive for living in the dark. We found here that Dark-fly dominated over the wild-type fly in a mixed population under dark conditions, and based on this domination we designed an experiment for genome reselection to identify adaptive genes of Dark-fly. For this experiment, large mixed populations of Dark-fly and the wild-type fly were maintained in light conditions or in dark conditions, and the frequencies of Dark-fly SNPs were compared between these populations across the whole genome. We thereby detected condition-dependent selections toward approximately 6% of the genome. In addition, we observed the time-course trajectory of SNP frequency in the mixed populations through generations 0, 22, and 49, which resulted in notable categorization of the selected SNPs into three types with different combinations of positive and negative selections. Our data provided a list of about 100 strong candidate genes associated with the adaptive traits of Dark-fly.
Collapse
|
13
|
Henze MJ, Oakley TH. The Dynamic Evolutionary History of Pancrustacean Eyes and Opsins. Integr Comp Biol 2015; 55:830-42. [DOI: 10.1093/icb/icv100] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
14
|
Oide S, Gunji W, Moteki Y, Yamamoto S, Suda M, Jojima T, Yukawa H, Inui M. Thermal and solvent stress cross-tolerance conferred to Corynebacterium glutamicum by adaptive laboratory evolution. Appl Environ Microbiol 2015; 81:2284-98. [PMID: 25595768 PMCID: PMC4357955 DOI: 10.1128/aem.03973-14] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/12/2015] [Indexed: 11/20/2022] Open
Abstract
Reinforcing microbial thermotolerance is a strategy to enable fermentation with flexible temperature settings and thereby to save cooling costs. Here, we report on adaptive laboratory evolution (ALE) of the amino acid-producing bacterium Corynebacterium glutamicum under thermal stress. After 65 days of serial passage of the transgenic strain GLY3, in which the glycolytic pathway is optimized for alanine production under oxygen deprivation, three strains adapted to supraoptimal temperatures were isolated, and all the mutations they acquired were identified by whole-genome resequencing. Of the 21 mutations common to the three strains, one large deletion and two missense mutations were found to promote growth of the parental strain under thermal stress. Additive effects on thermotolerance were observed among these mutations, and the combination of the deletion with the missense mutation on otsA, encoding a trehalose-6-phosphate synthase, allowed the parental strain to overcome the upper limit of growth temperature. Surprisingly, the three evolved strains acquired cross-tolerance for isobutanol, which turned out to be partly attributable to the genomic deletion associated with the enhanced thermotolerance. The deletion involved loss of two transgenes, pfk and pyk, encoding the glycolytic enzymes, in addition to six native genes, and elimination of the transgenes, but not the native genes, was shown to account for the positive effects on thermal and solvent stress tolerance, implying a link between energy-producing metabolism and bacterial stress tolerance. Overall, the present study provides evidence that ALE can be a powerful tool to refine the phenotype of C. glutamicum and to investigate the molecular bases of stress tolerance.
Collapse
Affiliation(s)
- Shinichi Oide
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan
| | - Wataru Gunji
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan
| | - Yasuhiro Moteki
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan
| | - Shogo Yamamoto
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan
| | - Masako Suda
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan
| | - Toru Jojima
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan
| | - Hideaki Yukawa
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| |
Collapse
|
15
|
Guan D, Mo F, Han Y, Gu W, Zhang M. Digital gene expression profiling (DGE) of cadmium-treated Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:300-6. [PMID: 25543212 DOI: 10.1016/j.etap.2014.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 11/28/2014] [Accepted: 11/29/2014] [Indexed: 05/06/2023]
Abstract
Cadmium is highly toxic and can cause oxidative damage, metabolic disorders, and reduced lifespan and fertility in animals. In this study, we investigated the effects of cadmium in Drosophila melanogaster, performing transcriptome analysis by using tag-based digital gene expression (DGE) profiling. Among 1970 candidate genes, 1443 were up-regulated and 527 were down-regulated following cadmium exposure. Using Gene Ontology analysis, we found that cadmium stress affects three processes: transferase activity, stress response, and the cell cycle. Furthermore, we identified five differentially expressed genes (confirmed by real-time PCR) involved in all three processes: Ald, Cdc2, skpA, tefu, and Pvr. Pathway analysis revealed that these genes were involved in the cell cycle pathway and fat digestion and absorption pathway. This study reveals the gene expression response to cadmium stress in Drosophila, it provides insights into the mechanisms of this response, and it could contribute to our understanding of cadmium toxicity in humans.
Collapse
Affiliation(s)
- Delong Guan
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Fei Mo
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yan Han
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Gu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Min Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
16
|
|
17
|
Abstract
UNLABELLED Changes in protein function and other biological properties, such as RNA structure, are crucial for adaptation of organisms to novel or inhibitory environments. To investigate how mutations that do not alter amino acid sequence may be positively selected, we performed a thermal adaptation experiment using the single-stranded RNA bacteriophage Qβ in which the culture temperature was increased from 37.2°C to 41.2°C and finally to an inhibitory temperature of 43.6°C in a stepwise manner in three independent lines. Whole-genome analysis revealed 31 mutations, including 14 mutations that did not result in amino acid sequence alterations, in this thermal adaptation. Eight of the 31 mutations were observed in all three lines. Reconstruction and fitness analyses of Qβ strains containing only mutations observed in all three lines indicated that five mutations that did not result in amino acid sequence changes but increased the amplification ratio appeared in the course of adaptation to growth at 41.2°C. Moreover, these mutations provided a suitable genetic background for subsequent mutations, altering the fitness contribution from deleterious to beneficial. These results clearly showed that mutations that do not alter the amino acid sequence play important roles in adaptation of this single-stranded RNA virus to elevated temperature. IMPORTANCE Recent studies using whole-genome analysis technology suggested the importance of mutations that do not alter the amino acid sequence for adaptation of organisms to novel environmental conditions. It is necessary to investigate how these mutations may be positively selected and to determine to what degree such mutations that do not alter amino acid sequences contribute to adaptive evolution. Here, we report the roles of these silent mutations in thermal adaptation of RNA bacteriophage Qβ based on experimental evolution during which Qβ showed adaptation to growth at an inhibitory temperature. Intriguingly, four synonymous mutations and one mutation in the untranslated region that spread widely in the Qβ population during the adaptation process at moderately high temperature provided a suitable genetic background to alter the fitness contribution of subsequent mutations from deleterious to beneficial at a higher temperature.
Collapse
|
18
|
Yadav P, Sharma VK. Breakdown of selection-mediated correlation between development time and clock period. Physiol Behav 2014; 129:110-7. [PMID: 24548681 DOI: 10.1016/j.physbeh.2014.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 10/25/2022]
Abstract
Previously we have reported that selection for faster pre-adult development in fruit flies speeded-up development by ~29-h and shortened the clock period (τ) by ~0.5h, which suggests that development time and τ are correlated. Since it is known that τ is altered following exposure to light/dark (LD) cycles, we asked whether this correlation persists in the faster developing (FD) and control (BD) flies by examining the τ of the activity/rest rhythm and its difference between the two stocks following exposure to a variety of cyclic conditions. We assayed the activity/rest behavior of FD and BD flies under DD, following a week-long exposure to (a) LD cycles of 10:10h, 12:12h and 14:14h, or (b) LD12:12h with different light intensities (10, 100 and 1000lx), or (c) 12:12h warm/cold (WC) cycles of 25:18°C (WC1) and 29:25°C (WC2), or (d) WC1 or WC2, in-phase or out-of-phase with LD. The results revealed that both LD and WC altered the τ of FD and BD flies, and considerably reduced the selection-mediated difference between the two stocks. LD10:10 caused more severe after-effects on τ compared to LD12:12 and LD14:14. Among the WC cycles, WC1 which had a higher contrast caused period shortening. Irrespective of the phase relationship, imposition of LD cycles on WC cycles made no difference to the extent of after-effects; however, interestingly there was a reversal in the trend, in that, now WC2 with LD caused most drastic reduction in τ. These results suggest that cyclic environments modulate the circadian organization of Drosophila melanogaster altering the selection-mediated correlation between pre-adult development time and clock period.
Collapse
Affiliation(s)
- Pankaj Yadav
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, P.O. Box 6436, Jakkur, Bangalore 560064, Karnataka, India
| | - Vijay Kumar Sharma
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, P.O. Box 6436, Jakkur, Bangalore 560064, Karnataka, India.
| |
Collapse
|
19
|
Abstract
Evolutionary changes in organismal traits may occur either gradually or suddenly. However, until recently, there has been little direct information about how phenotypic changes are related to the rate and the nature of the underlying genotypic changes. Technological advances that facilitate whole-genome and whole-population sequencing, coupled with experiments that 'watch' evolution in action, have brought new precision to and insights into studies of mutation rates and genome evolution. In this Review, we discuss the evolutionary forces and ecological processes that govern genome dynamics in various laboratory systems in the context of relevant population genetic theory, and we relate these findings to evolution in natural populations.
Collapse
Affiliation(s)
- Jeffrey E Barrick
- 1] Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas, Austin, Texas 78712, USA. [2] BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
20
|
DeWoody JA, Abts KC, Fahey AL, Ji Y, Kimble SJA, Marra NJ, Wijayawardena BK, Willoughby JR. Of contigs and quagmires: next‐generation sequencing pitfalls associated with transcriptomic studies. Mol Ecol Resour 2013; 13:551-8. [PMID: 23615313 DOI: 10.1111/1755-0998.12107] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 12/15/2022]
Affiliation(s)
- J. Andrew DeWoody
- Department of Biological Sciences Purdue University West Lafayette IN 47907 USA
- Department of Forestry & Natural Resources Purdue University West Lafayette IN 47907 USA
| | - Kendra C. Abts
- Department of Forestry & Natural Resources Purdue University West Lafayette IN 47907 USA
| | - Anna L. Fahey
- Department of Forestry & Natural Resources Purdue University West Lafayette IN 47907 USA
| | - Yanzhu Ji
- Department of Forestry & Natural Resources Purdue University West Lafayette IN 47907 USA
| | - Steven J. A. Kimble
- Department of Forestry & Natural Resources Purdue University West Lafayette IN 47907 USA
| | - Nicholas J. Marra
- Department of Forestry & Natural Resources Purdue University West Lafayette IN 47907 USA
| | | | - Janna R. Willoughby
- Department of Forestry & Natural Resources Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
21
|
Kikuchi A, Ohashi S, Fuse N, Ohta T, Suzuki M, Suzuki Y, Fujita T, Miyamoto T, Aonishi T, Miyakawa H, Morimoto T. Experience-dependent Plasticity of the Optomotor Response inDrosophila melanogaster. Dev Neurosci 2012; 34:533-42. [DOI: 10.1159/000346266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 11/28/2012] [Indexed: 11/19/2022] Open
|