1
|
Wisniewski P, Gangnus T, Burckhardt BB. Recent advances in the discovery and development of drugs targeting the kallikrein-kinin system. J Transl Med 2024; 22:388. [PMID: 38671481 PMCID: PMC11046790 DOI: 10.1186/s12967-024-05216-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The kallikrein-kinin system is a key regulatory cascade involved in blood pressure maintenance, hemostasis, inflammation and renal function. Currently, approved drugs remain limited to the rare disease hereditary angioedema. However, growing interest in this system is indicated by an increasing number of promising drug candidates for further indications. METHODS To provide an overview of current drug development, a two-stage literature search was conducted between March and December 2023 to identify drug candidates with targets in the kallikrein-kinin system. First, drug candidates were identified using PubMed and Clinicaltrials.gov. Second, the latest publications/results for these compounds were searched in PubMed, Clinicaltrials.gov and Google Scholar. The findings were categorized by target, stage of development, and intended indication. RESULTS The search identified 68 drugs, of which 10 are approved, 25 are in clinical development, and 33 in preclinical development. The three most studied indications included diabetic retinopathy, thromboprophylaxis and hereditary angioedema. The latter is still an indication for most of the drug candidates close to regulatory approval (3 out of 4). For the emerging indications, promising new drug candidates in clinical development are ixodes ricinus-contact phase inhibitor for thromboprophylaxis and RZ402 and THR-149 for the treatment of diabetic macular edema (all phase 2). CONCLUSION The therapeutic impact of targeting the kallikrein-kinin system is no longer limited to the treatment of hereditary angioedema. Ongoing research on other diseases demonstrates the potential of therapeutic interventions targeting the kallikrein-kinin system and will provide further treatment options for patients in the future.
Collapse
Affiliation(s)
- Petra Wisniewski
- Individualized Pharmacotherapy, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Tanja Gangnus
- Individualized Pharmacotherapy, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Bjoern B Burckhardt
- Individualized Pharmacotherapy, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany.
| |
Collapse
|
2
|
Ebrahimi M, Thompson P, Lauer AK, Sivaprasad S, Perry G. The retina-brain axis and diabetic retinopathy. Eur J Ophthalmol 2023; 33:2079-2095. [PMID: 37259525 DOI: 10.1177/11206721231172229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Diabetic retinopathy (DR) is a major contributor to permanent vision loss and blindness. Changes in retinal neurons, glia, and microvasculature have been the focus of intensive study in the quest to better understand DR. However, the impact of diabetes on the rest of the visual system has received less attention. There are reports of associations of changes in the visual system with preclinical and clinical manifestations of diabetes. Simultaneous investigation of the retina and the brain may shed light on the mechanisms underlying neurodegeneration in diabetics. Additionally, investigating the links between DR and other neurodegenerative disorders of the brain including Alzheimer's and Parkinson's disease may reveal shared mechanisms for neurodegeneration and potential therapy options.
Collapse
Affiliation(s)
- Moein Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy, and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Paul Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andreas K Lauer
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Sobha Sivaprasad
- National Institute of Health and Care Research Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas and San Antonio, San Antonio, TX, USA
| |
Collapse
|
3
|
Gress C, Vogel-Claussen J, Badorrek P, Müller M, Hohl K, Konietzke M, Litzenburger T, Seibold W, Gupta A, Hohlfeld JM. The effect of bradykinin 1 receptor antagonist BI 1026706 on pulmonary inflammation after segmental lipopolysaccharide challenge in healthy smokers. Pulm Pharmacol Ther 2023; 82:102246. [PMID: 37562641 DOI: 10.1016/j.pupt.2023.102246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/25/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Bradykinin 1 receptor (B1R) signalling pathways may be involved in the inflammatory pathophysiology of chronic obstructive pulmonary disease (COPD). B1R signalling is induced by inflammatory stimuli or tissue injury and leads to activation and increased migration of pro-inflammatory cells. Lipopolysaccharide (LPS) lung challenge in man is an experimental method of exploring inflammation in the lung whereby interference in these pathways can help to assess pharmacologic interventions in COPD. BI 1026706, a potent B1R antagonist, was hypothesized to reduce the inflammatory activity after segmental lipopolysaccharide (LPS) challenge in humans due to decreased pulmonary cell influx. METHODS In a monocentric, randomized, double-blind, placebo-controlled, parallel-group, phase I trial, 57 healthy, smoking subjects were treated for 28 days with either oral BI 1026706 100 mg bid or placebo. At day 21, turbo-inversion recovery magnitude magnetic resonance imaging (TIRM MRI) was performed. On the last day of treatment, pre-challenge bronchoalveolar lavage fluid (BAL) and biopsies were sampled, followed by segmental LPS challenge (40 endotoxin units/kg body weight) and saline control instillation in different lung lobes. Twenty-four hours later, TIRM MRI was performed, then BAL and biopsies were collected from the challenged segments. In BAL samples, cells were differentiated for neutrophil numbers as the primary endpoint. Other endpoints included assessment of safety, biomarkers in BAL (e.g. interleukin-8 [IL-8], albumin and total protein), B1R expression in lung biopsies and TIRM score by MRI as a measure for the extent of pulmonary oedema. RESULTS After LPS, but not after saline, high numbers of inflammatory cells, predominantly neutrophils were observed in the airways. IL-8, albumin and total protein were also increased in BAL samples after LPS challenge as compared with saline control. There were no significant differences in cells or other biomarkers from BAL in volunteers treated with BI 1026706 compared with those treated with placebo. Unexpectedly, neutrophil numbers in BAL were 30% higher and MRI-derived extent of oedema was significantly higher with BI 1026706 treatment compared with placebo, 24 h after LPS challenge. Adverse events were mainly mild to moderate and not different between treatment groups. CONCLUSIONS Treatment with BI 1026706 for four weeks was safe and well-tolerated in healthy smoking subjects. BI 1026706 100 mg bid did not provide evidence for anti-inflammatory effects in the human bronchial LPS challenge model. TRIAL REGISTRATION The study was registered on January 14, 2016 at ClinicalTrials.gov (NCT02657408).
Collapse
Affiliation(s)
- Christina Gress
- Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany; German Center for Lung Research (BREATH), Hannover, Germany
| | - Jens Vogel-Claussen
- German Center for Lung Research (BREATH), Hannover, Germany; Department of Diagnostic and Interventional Radiology, Hannover Medical School, Germany
| | - Philipp Badorrek
- Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Meike Müller
- Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany; German Center for Lung Research (BREATH), Hannover, Germany
| | - Kathrin Hohl
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | | | | | - Abhya Gupta
- Boehringer Ingelheim International GmbH, Biberach, Germany
| | - Jens M Hohlfeld
- Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany; German Center for Lung Research (BREATH), Hannover, Germany; Department of Respiratory Medicine, Hannover Medical School, Germany.
| |
Collapse
|
4
|
Bianco L, Arrigo A, Aragona E, Antropoli A, Berni A, Saladino A, Battaglia Parodi M, Bandello F. Neuroinflammation and neurodegeneration in diabetic retinopathy. Front Aging Neurosci 2022; 14:937999. [PMID: 36051309 PMCID: PMC9424735 DOI: 10.3389/fnagi.2022.937999] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetic retinopathy (DR) is the most common complication of diabetes and has been historically regarded as a microangiopathic disease. Now, the paradigm is shifting toward a more comprehensive view of diabetic retinal disease (DRD) as a tissue-specific neurovascular complication, in which persistently high glycemia causes not only microvascular damage and ischemia but also intraretinal inflammation and neuronal degeneration. Despite the increasing knowledge on the pathogenic pathways involved in DR, currently approved treatments are focused only on its late-stage vasculopathic complications, and a single molecular target, vascular endothelial growth factor (VEGF), has been extensively studied, leading to drug development and approval. In this review, we discuss the state of the art of research on neuroinflammation and neurodegeneration in diabetes, with a focus on pathophysiological studies on human subjects, in vivo imaging biomarkers, and clinical trials on novel therapeutic options.
Collapse
Affiliation(s)
| | - Alessandro Arrigo
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
5
|
Van Bergen T, Hu TT, Little K, De Groef L, Moons L, Stitt AW, Vermassen E, Feyen JHM. Targeting Plasma Kallikrein With a Novel Bicyclic Peptide Inhibitor (THR-149) Reduces Retinal Thickening in a Diabetic Rat Model. Invest Ophthalmol Vis Sci 2021; 62:18. [PMID: 34677569 PMCID: PMC8556562 DOI: 10.1167/iovs.62.13.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the effect of plasma kallikrein (PKal)-inhibition by THR-149 on preventing key pathologies associated with diabetic macular edema (DME) in a rat model. Methods Following streptozotocin-induced diabetes, THR-149 or its vehicle was administered in the rat via either a single intravitreal injection or three consecutive intravitreal injections (with a 1-week interval; both, 12.5 µg/eye). At 4 weeks post-diabetes, the effect of all groups was compared by histological analysis of Iba1-positive retinal inflammatory cells, inflammatory cytokines, vimentin-positive Müller cells, inwardly rectifying potassium and water homeostasis-related channels (Kir4.1 and AQP4, respectively), vascular leakage (fluorescein isothiocyanate-labeled bovine serum albumin), and retinal thickness. Results Single or repeated THR-149 injections resulted in reduced inflammation, as depicted by decreasing numbers and activation state of immune cells and IL-6 cytokine levels in the diabetic retina. The processes of reactive gliosis, vessel leakage, and retinal thickening were only significantly reduced after multiple THR-149 administrations. Individual retinal layer analysis showed that repeated THR-149 injections significantly decreased diabetes-induced thickening of the inner plexiform, inner nuclear, outer nuclear, and photoreceptor layers. At the glial-vascular interface, reduced Kir4.1-channel levels in the diabetic retina were restored to control non-diabetic levels in the presence of THR-149. In contrast, little or no effect of THR-149 was observed on the AQP4-channel levels. Conclusions These data demonstrate that repeated THR-149 administration reduces several DME-related key pathologies such as retinal thickening and neuropil disruption in the diabetic rat. These observations indicate that modulation of the PKal pathway using THR-149 has clinical potential to treat patients with DME.
Collapse
Affiliation(s)
| | | | - Karis Little
- Queen's University Belfast, Belfast, United Kingdom
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Department of Biology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Alan W. Stitt
- Oxurion NV, Heverlee, Belgium
- Queen's University Belfast, Belfast, United Kingdom
| | | | | |
Collapse
|
6
|
Othman R, Cagnone G, Joyal JS, Vaucher E, Couture R. Kinins and Their Receptors as Potential Therapeutic Targets in Retinal Pathologies. Cells 2021; 10:1913. [PMID: 34440682 PMCID: PMC8391508 DOI: 10.3390/cells10081913] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/29/2022] Open
Abstract
The kallikrein-kinin system (KKS) contributes to retinal inflammation and neovascularization, notably in diabetic retinopathy (DR) and neovascular age-related macular degeneration (AMD). Bradykinin type 1 (B1R) and type 2 (B2R) receptors are G-protein-coupled receptors that sense and mediate the effects of kinins. While B2R is constitutively expressed and regulates a plethora of physiological processes, B1R is almost undetectable under physiological conditions and contributes to pathological inflammation. Several KKS components (kininogens, tissue and plasma kallikreins, and kinin receptors) are overexpressed in human and animal models of retinal diseases, and their inhibition, particularly B1R, reduces inflammation and pathological neovascularization. In this review, we provide an overview of the KKS with emphasis on kinin receptors in the healthy retina and their detrimental roles in DR and AMD. We highlight the crosstalk between the KKS and the renin-angiotensin system (RAS), which is known to be detrimental in ocular pathologies. Targeting the KKS, particularly the B1R, is a promising therapy in retinal diseases, and B1R may represent an effector of the detrimental effects of RAS (Ang II-AT1R).
Collapse
Affiliation(s)
- Rahmeh Othman
- School of Optometry, Université de Montréal, Montreal, QC H3T 1P1, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Gael Cagnone
- Department of Pediatry, Faculty of Medicine, CHU St Justine, Université de Montréal, Montreal, QC H3T 1J4, Canada; (G.C.); (J.-S.J.)
| | - Jean-Sébastien Joyal
- Department of Pediatry, Faculty of Medicine, CHU St Justine, Université de Montréal, Montreal, QC H3T 1J4, Canada; (G.C.); (J.-S.J.)
| | - Elvire Vaucher
- School of Optometry, Université de Montréal, Montreal, QC H3T 1P1, Canada
| | - Réjean Couture
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
7
|
Kinins and Kinin Receptors in Cardiovascular and Renal Diseases. Pharmaceuticals (Basel) 2021; 14:ph14030240. [PMID: 33800422 PMCID: PMC8000381 DOI: 10.3390/ph14030240] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
This review addresses the physiological role of the kallikrein–kinin system in arteries, heart and kidney and the consequences of kallikrein and kinin actions in diseases affecting these organs, especially ischemic and diabetic diseases. Emphasis is put on pharmacological and genetic studies targeting kallikrein; ACE/kininase II; and the two kinin receptors, B1 (B1R) and B2 (B2R), distinguished through the work of Domenico Regoli and his collaborators. Potential therapeutic interest and limitations of the pharmacological manipulation of B1R or B2R activity in cardiovascular and renal diseases are discussed. This discussion addresses either the activation or inhibition of these receptors, based on recent clinical and experimental studies.
Collapse
|
8
|
Wright WS, Eshaq RS, Lee M, Kaur G, Harris NR. Retinal Physiology and Circulation: Effect of Diabetes. Compr Physiol 2020; 10:933-974. [PMID: 32941691 PMCID: PMC10088460 DOI: 10.1002/cphy.c190021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this article, we present a discussion of diabetes and its complications, including the macrovascular and microvascular effects, with the latter of consequence to the retina. We will discuss the anatomy and physiology of the retina, including aspects of metabolism and mechanisms of oxygenation, with the latter accomplished via a combination of the retinal and choroidal blood circulations. Both of these vasculatures are altered in diabetes, with the retinal circulation intimately involved in the pathology of diabetic retinopathy. The later stages of diabetic retinopathy involve poorly controlled angiogenesis that is of great concern, but in our discussion, we will focus more on several alterations in the retinal circulation occurring earlier in the progression of disease, including reductions in blood flow and a possible redistribution of perfusion that may leave some areas of the retina ischemic and hypoxic. Finally, we include in this article a more recent area of investigation regarding the diabetic retinal vasculature, that is, the alterations to the endothelial surface layer that normally plays a vital role in maintaining physiological functions. © 2020 American Physiological Society. Compr Physiol 10:933-974, 2020.
Collapse
Affiliation(s)
- William S Wright
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, South Carolina, USA
| | - Randa S Eshaq
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Minsup Lee
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Gaganpreet Kaur
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
9
|
Differential Expression of Kinin Receptors in Human Wet and Dry Age-Related Macular Degeneration Retinae. Pharmaceuticals (Basel) 2020; 13:ph13060130. [PMID: 32599742 PMCID: PMC7345220 DOI: 10.3390/ph13060130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 11/17/2022] Open
Abstract
Kinins are vasoactive peptides and mediators of inflammation, which signal through two G protein-coupled receptors, B1 and B2 receptors (B1R, B2R). Recent pre-clinical findings suggest a primary role for B1R in a rat model of wet age-related macular degeneration (AMD). The aim of the present study was to investigate whether kinin receptors are differentially expressed in human wet and dry AMD retinae. The cellular distribution of B1R and B2R was examined by immunofluorescence and in situ hybridization in post-mortem human AMD retinae. The association of B1R with inflammatory proteins (inducible nitric oxide synthase (iNOS) and vascular endothelial growth factor A (VEGFA)), fibrosis markers and glial cells was also studied. While B2R mRNA and protein expression was not affected by AMD, a significant increase of B1R mRNA and immunoreactivity was measured in wet AMD retinae when compared to control and dry AMD retinae. B1R was expressed by Müller cells, astrocytes, microglia and endothelial/vascular smooth muscle cells, and colocalized with iNOS and fibrosis markers, but not with VEGFA. In conclusion, the induction and upregulation of the pro-inflammatory and pro-fibrotic kinin B1R in human wet AMD retinae support previous pre-clinical studies and provide a clinical proof-of-concept that B1R represents an attractive therapeutic target worth exploring in this retinal disease.
Collapse
|
10
|
Hachana S, Fontaine O, Sapieha P, Lesk M, Couture R, Vaucher E. The effects of anti-VEGF and kinin B 1 receptor blockade on retinal inflammation in laser-induced choroidal neovascularization. Br J Pharmacol 2020; 177:1949-1966. [PMID: 31883121 DOI: 10.1111/bph.14962] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Age-related macular degeneration (AMD) is a complex neurodegenerative disease treated by anti-VEGF intravitreal injections. As inflammation is potentially involved in retinal degeneration, the pro-inflammatory kallikrein-kinin system is a possible alternative pharmacological target. Here, we investigated the effects of anti-VEGF and anti-B1 receptor treatments on the inflammatory mechanisms in a rat model of choroidal neovascularization (CNV). EXPERIMENTAL APPROACH Immediately after laser-induced CNV, Long-Evans rats were treated by eye-drop application of a B1 receptor antagonist (R-954) or by intravitreal injection of B1 receptor siRNA or anti-VEGF antibodies. Effects of treatments on gene expression of inflammatory mediators, CNV lesion regression and integrity of the blood-retinal barrier was measured 10 days later in the retina. B1 receptor and VEGF-R2 cellular localization was assessed. KEY RESULTS The three treatments significantly inhibited the CNV-induced retinal changes. Anti-VEGF and R-954 decreased CNV-induced up-regulation of B1 and B2 receptors, TNF-α, and ICAM-1. Anti-VEGF additionally reversed up-regulation of VEGF-A, VEGF-R2, HIF-1α, CCL2 and VCAM-1, whereas R-954 inhibited gene expression of IL-1β and COX-2. Enhanced retinal vascular permeability was abolished by anti-VEGF and reduced by R-954 and B1 receptor siRNA treatments. Leukocyte adhesion was impaired by anti-VEGF and B1 receptor inhibition. B1 receptors were found on astrocytes and endothelial cells. CONCLUSION AND IMPLICATIONS B1 receptor and VEGF pathways were both involved in retinal inflammation and damage in laser-induced CNV. The non-invasive, self-administration of B1 receptor antagonists on the surface of the cornea by eye drops might be an important asset for the treatment of AMD.
Collapse
Affiliation(s)
- Soumaya Hachana
- School of Optometry, Université de Montréal, Montréal, Quebec, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montréal, Quebec, Canada
| | - Olivier Fontaine
- School of Optometry, Université de Montréal, Montréal, Quebec, Canada.,Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Montréal, Quebec, Canada
| | - Przemyslaw Sapieha
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Montréal, Quebec, Canada
| | - Mark Lesk
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Montréal, Quebec, Canada
| | - Réjean Couture
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Quebec, Canada
| | - Elvire Vaucher
- School of Optometry, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
11
|
Hachana S, Pouliot M, Couture R, Vaucher E. Diabetes-Induced Inflammation and Vascular Alterations in the Goto-Kakizaki Rat Retina. Curr Eye Res 2020; 45:965-974. [PMID: 31902231 DOI: 10.1080/02713683.2020.1712730] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Diabetic retinopathy is characterized by multiple microcirculatory dysfunctions and angiogenesis resulting from hyperglycemia, oxidative stress, and inflammation. In this study, the retina and retinal pigmented epithelium of non-insulin-dependent diabetic Goto-Kakizaki (GK) rats were examined to detect microvascular alterations, gliosis, macrophage infiltration, lipid deposits, and fibrosis. Emphasis was given to the distribution of kinin B1 receptor (B1R) and vascular endothelial growth factor (VEGF), two major factors in inflammation and angiogenesis. MATERIALS AND METHODS 30-week-old male GK rats and age-matched Wistar rats were used. The retinal vascular bed was examined using ADPase staining. The level of lipid accumulation was graded using triglyceride staining with Oil red O. Macrophage and retinal microglia activation, as well as other markers, were revealed by immunohistochemistry and studied with confocal laser scanning microscopy. RESULTS Abundant lipid deposits were observed in the Bruch's membrane of GK rats. Immunohistochemistry and quantitative analysis showed significantly higher B1R, VEGF, Iba1 (microglia), CD11 (macrophages), fibronectin, and collagen I labeling in the diabetic retina. B1R immunolabeling was detected in the vascular layers of the GK retina. A strong VEGF staining within different retinal cell processes was detected and a pattern of GFAP staining suggested strong Müller cells/astrocytes reactivity. Microgliosis was apparent in the GK retina. A greater tortuosity of the retinal microvessels (an index of endothelial dysfunction) and their increased number were also observed in GK retinas. CONCLUSIONS Data suggest retinal vascular bed alterations in spontaneous type 2 diabetic retinas at 30 weeks. Lipid and collagen accumulation in the retina and choroid, in addition to retinal upregulation of VEGF and B1R, microgliosis, and Müller cell reactivity, may contribute to vascular alterations and inflammatory processes.
Collapse
Affiliation(s)
- Soumaya Hachana
- École d'optométrie, Université de Montréal , Montréal, Québec, Canada.,Département de pharmacologie et physiologie, Université de Montréal , Montréal, Québec, Canada
| | - Mylène Pouliot
- École d'optométrie, Université de Montréal , Montréal, Québec, Canada.,Département de pharmacologie et physiologie, Université de Montréal , Montréal, Québec, Canada
| | - Réjean Couture
- Département de pharmacologie et physiologie, Université de Montréal , Montréal, Québec, Canada
| | - Elvire Vaucher
- École d'optométrie, Université de Montréal , Montréal, Québec, Canada
| |
Collapse
|
12
|
Liu X, Pan G. Roles of Drug Transporters in Blood-Retinal Barrier. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:467-504. [PMID: 31571172 PMCID: PMC7120327 DOI: 10.1007/978-981-13-7647-4_10] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Blood-retinal barrier (BRB) includes inner BRB (iBRB) and outer BRB (oBRB), which are formed by retinal capillary endothelial (RCEC) cells and by retinal pigment epithelial (RPE) cells in collaboration with Bruch's membrane and the choriocapillaris, respectively. Functions of the BRB are to regulate fluids and molecular movement between the ocular vascular beds and retinal tissues and to prevent leakage of macromolecules and other potentially harmful agents into the retina, keeping the microenvironment of the retina and retinal neurons. These functions are mainly attributed to absent fenestrations of RCECs, tight junctions, expression of a great diversity of transporters, and coverage of pericytes and glial cells. BRB existence also becomes a reason that systemic administration for some drugs is not suitable for the treatment of retinal diseases. Some diseases (such as diabetes and ischemia-reperfusion) impair BRB function via altering tight junctions, RCEC death, and transporter expression. This chapter will illustrate function of BRB, expressions and functions of these transporters, and their clinical significances.
Collapse
Affiliation(s)
- Xiaodong Liu
- grid.254147.10000 0000 9776 7793School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu China
| | - Guoyu Pan
- grid.9227.e0000000119573309Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, Shanghai China
| |
Collapse
|
13
|
Neuroprotective Peptides in Retinal Disease. J Clin Med 2019; 8:jcm8081146. [PMID: 31374938 PMCID: PMC6722704 DOI: 10.3390/jcm8081146] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
In the pathogenesis of many disorders, neuronal death plays a key role. It is now assumed that neurodegeneration is caused by multiple and somewhat converging/overlapping death mechanisms, and that neurons are sensitive to unique death styles. In this respect, major advances in the knowledge of different types, mechanisms, and roles of neurodegeneration are crucial to restore the neuronal functions involved in neuroprotection. Several novel concepts have emerged recently, suggesting that the modulation of the neuropeptide system may provide an entirely new set of pharmacological approaches. Neuropeptides and their receptors are expressed widely in mammalian retinas, where they exert neuromodulatory functions including the processing of visual information. In multiple models of retinal diseases, different peptidergic substances play neuroprotective actions. Herein, we describe the novel advances on the protective roles of neuropeptides in the retina. In particular, we focus on the mechanisms by which peptides affect neuronal death/survival and the vascular lesions commonly associated with retinal neurodegenerative pathologies. The goal is to highlight the therapeutic potential of neuropeptide systems as neuroprotectants in retinal diseases.
Collapse
|
14
|
Mesquida M, Drawnel F, Fauser S. The role of inflammation in diabetic eye disease. Semin Immunopathol 2019; 41:427-445. [PMID: 31175392 DOI: 10.1007/s00281-019-00750-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/21/2019] [Indexed: 12/15/2022]
Abstract
Mounting evidence suggests that immunological mechanisms play a fundamental role in the pathogenesis of diabetic retinopathy (DR) and diabetic macular edema (DME). Upregulation of cytokines and other proinflammatory mediators leading to persistent low-grade inflammation is believed to actively contribute to the DR-associated damage to the retinal vasculature, inducing breakdown of the blood-retinal barrier, subsequent macular edema formation, and promotion of retinal neovascularization. This review summarizes the current knowledge of the biological processes providing an inflammatory basis for DR and DME. In addition, emerging therapeutic approaches targeting inflammation are discussed, including blockade of angiopoietin 2 and other molecular targets such as interleukin (IL)-6, IL-1β, plasma kallikrein, and integrins.
Collapse
Affiliation(s)
- Marina Mesquida
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain.
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Faye Drawnel
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Sascha Fauser
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| |
Collapse
|
15
|
Cheng Y, Yu X, Zhang J, Chang Y, Xue M, Li X, Lu Y, Li T, Meng Z, Su L, Sun B, Chen L. Pancreatic kallikrein protects against diabetic retinopathy in KK Cg-A y/J and high-fat diet/streptozotocin-induced mouse models of type 2 diabetes. Diabetologia 2019; 62:1074-1086. [PMID: 30838453 PMCID: PMC6509079 DOI: 10.1007/s00125-019-4838-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/14/2019] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESIS Many studies have shown that tissue kallikrein has effects on diabetic vascular complications such as nephropathy, cardiomyopathy and neuropathy, but its effects on diabetic retinopathy are not fully understood. Here, we investigated the retinoprotective role of exogenous pancreatic kallikrein and studied potential mechanisms of action. METHODS We used KK Cg-Ay/J (KKAy) mice (a mouse model of spontaneous type 2 diabetes) and mice with high-fat diet/streptozotocin (STZ)-induced type 2 diabetes as our models. After the onset of diabetes, both types of mice were injected intraperitoneally with either pancreatic kallikrein (KKAy + pancreatic kallikrein and STZ + pancreatic kallikrein groups) or saline (KKAy + saline and STZ + saline groups) for 12 weeks. C57BL/6J mice were used as non-diabetic controls for both models. We analysed pathological changes in the retina; evaluated the effects of pancreatic kallikrein on retinal oxidative stress, inflammation and apoptosis; and measured the levels of bradykinin and B1 and B2 receptors in both models. RESULTS In both models, pancreatic kallikrein improved pathological structural features of the retina, increasing the thickness of retinal layers, and attenuated retinal acellular capillary formation and vascular leakage (p < 0.05). Furthermore, pancreatic kallikrein ameliorated retinal oxidative stress, inflammation and apoptosis in both models (p < 0.05). We also found that the levels of bradykinin and B1 and B2 receptors were increased after pancreatic kallikrein in both models (p < 0.05). CONCLUSIONS/INTERPRETATION Pancreatic kallikrein can protect against diabetic retinopathy by activating B1 and B2 receptors and inhibiting oxidative stress, inflammation and apoptosis. Thus, pancreatic kallikrein may represent a new therapeutic agent for diabetic retinopathy.
Collapse
Affiliation(s)
- Ying Cheng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaochen Yu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China
| | - Jie Zhang
- The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yunpeng Chang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China
| | - Mei Xue
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoyu Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China
| | - Yunhong Lu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China
| | - Ting Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China
| | - Ziyu Meng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China
| | - Long Su
- The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China.
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
16
|
Brondani LA, Crispim D, Pisco J, Guimarães JA, Berger M. The G Allele of the rs12050217 Polymorphism in the BDKRB1 Gene Is Associated with Protection for Diabetic Retinopathy. Curr Eye Res 2019; 44:994-999. [PMID: 31017477 DOI: 10.1080/02713683.2019.1610178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Purpose: The plasma kallikrein-kinin system is activated during vascular injury caused by diabetic retinopathy (DR), being involved in hyperpermeability and inflammation. Bradykinin B1 receptor (B1R) is expressed in human retina, and its levels are increased in murine models of diabetes. Experimental studies reveal that B1R antagonists ameliorate retinal injury caused by diabetes in rodents. Thus, the aim of this study was to investigate the association between the rs12050217A/G polymorphism in the BDKRB1 gene, the gene that codifies B1R, and DR in type 2 diabetes mellitus (T2DM) patients. Methods: We analyzed 636 T2DM patients and 443 non-diabetic subjects. T2DM patients were categorized by the presence of non-proliferative DR (NPDR, n = 267), proliferative DR (PDR, n = 197), and absence of DR (n = 172). The BDKRB1 rs12050217A/G polymorphism was genotyped by real-time PCR using TaqMan MGB probes. Results: The genotype frequencies of the BDKRB1 rs12050217A/G polymorphism are in Hardy-Weinberg equilibrium and did not differ between T2DM patients and non-diabetic subjects (P > 0.05). The presence of the genotypes containing the rs12050217 G allele was less frequent in patients with PDR when compared to patients with NPDR and without DR (32.0%, 41.9%, and 43.0%, P = 0.045, respectively). Interestingly, the presence of G allele was associated with ~40% protection for PDR, which was confirmed after correction for the presence of hypertension, ethnicity, age, HDL, and gender (odds ratio = 0.616, 95% confidence interval 0.385-0.986, P = 0.043). Conclusion: For the first time, we showed that BDKRB1 rs12050217 G allele is associated with protection for the advanced stage of DR in T2DM patients; however, further studies are needed to confirm this finding.
Collapse
Affiliation(s)
- Leticia A Brondani
- Endocrine Division, Hospital de Clínicas de Porto Alegre , Porto Alegre , Rio Grande do Sul , Brazil.,Postgraduate Program in Medical Science: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul , Porto Alegre , Rio Grande do Sul , Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre , Porto Alegre , Rio Grande do Sul , Brazil.,Postgraduate Program in Medical Science: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul , Porto Alegre , Rio Grande do Sul , Brazil
| | - Julia Pisco
- Endocrine Division, Hospital de Clínicas de Porto Alegre , Porto Alegre , Rio Grande do Sul , Brazil
| | - Jorge A Guimarães
- Biochemical Pharmacology Lab, Center for Experimental Research, Hospital de Clínicas de Porto Alegre , Porto Alegre , Rio Grande do Sul , Brazil.,Postgraduate Program in Cell and Molecular Biology, Center of Biotechnology, Instituto de Biociências, Universidade Federal do Rio Grande do Sul , Porto Alegre , Rio Grande do Sul , Brazil
| | - Markus Berger
- Biochemical Pharmacology Lab, Center for Experimental Research, Hospital de Clínicas de Porto Alegre , Porto Alegre , Rio Grande do Sul , Brazil.,Postgraduate Program in Health Sciences: Gynecology and Obstetrics, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul , Porto Alegre , Rio Grande do Sul , Brazil
| |
Collapse
|
17
|
Othman R, Vaucher E, Couture R. Bradykinin Type 1 Receptor - Inducible Nitric Oxide Synthase: A New Axis Implicated in Diabetic Retinopathy. Front Pharmacol 2019; 10:300. [PMID: 30983997 PMCID: PMC6449803 DOI: 10.3389/fphar.2019.00300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/11/2019] [Indexed: 12/15/2022] Open
Abstract
Compelling evidence suggests a role for the inducible nitric oxide synthase, iNOS, and the bradykinin type 1 receptor (B1R) in diabetic retinopathy, including a possible control of the expression and activity of iNOS by B1R. In diabetic retina, both iNOS and B1R contribute to inflammation, oxidative stress, and vascular dysfunction. The present study investigated whether inhibition of iNOS has any impact on inflammatory/oxidative stress markers and on the B1R-iNOS expression, distribution, and action in a model of type I diabetes. Diabetes was induced in 6-week-old Wistar rats by streptozotocin (65 mg.kg-1, i.p.). The selective iNOS inhibitor 1400W (150 μg.10 μl-1) was administered twice a day by eye-drops during the second week of diabetes. The retinae were collected 2 weeks after diabetes induction to assess the protein and gene expression of markers by Western blot and qRT-PCR, the distribution of iNOS and B1R by fluorescence immunocytochemistry, and the vascular permeability by the Evans Blue dye technique. Diabetic retinae showed enhanced expression of iNOS, B1R, carboxypeptidase M (involved in the biosynthesis of B1R agonists), IL-1β, TNF-α, vascular endothelium growth factor A (VEGF-A) and its receptor, VEGF-R2, nitrosylated proteins and increased vascular permeability. All those changes were reversed by treatment with 1400W. Moreover, the additional increase in vascular permeability in diabetic retina induced by intravitreal injection of R-838, a B1R agonist, was also prevented by 1400W. Immunofluorescence staining highlighted strong colocalization of iNOS and B1R in several layers of the diabetic retina, which was prevented by 1400W. This study suggests a critical role for iNOS and B1R in the early stage of diabetic retinopathy. B1R and iNOS appear to partake in a mutual auto-induction and amplification loop to enhance nitrogen species formation and inflammation in diabetic retina. Hence, B1R-iNOS axis deserves closer scrutiny in targeting diabetic retinopathy.
Collapse
Affiliation(s)
- Rahmeh Othman
- School of Optometry, University of Montreal, Montreal, QC, Canada.,Department of Pharmacology and Physiology, University of Montreal, Montreal, QC, Canada
| | - Elvire Vaucher
- School of Optometry, University of Montreal, Montreal, QC, Canada
| | - Réjean Couture
- Department of Pharmacology and Physiology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
18
|
Groleau M, Chamoun M, Vaucher E. Stimulation of Acetylcholine Release and Pharmacological Potentiation of Cholinergic Transmission Affect Cholinergic Receptor Expression Differently during Visual Conditioning. Neuroscience 2018; 386:79-90. [PMID: 29958942 DOI: 10.1016/j.neuroscience.2018.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 11/30/2022]
Abstract
Cholinergic stimulation coupled with visual conditioning enhances the visual acuity and cortical responses in the primary visual cortex. To determine which cholinergic receptors are involved in these processes, qRT-PCR was used. Two modes of cholinergic enhancement were tested: a phasic increase of acetylcholine release by an electrical stimulation of the basal forebrain cholinergic nucleus projecting to the visual cortex, or a tonic pharmacological potentiation of the cholinergic transmission by the acetylcholine esterase inhibitor, donepezil. A daily visual exposure to sine-wave gratings (training) was paired with the cholinergic enhancement, up to 14 days. qRT-PCR was performed at rest, 10 min, one week or two weeks of visual/cholinergic training with samples of the visual and somatosensory cortices, and the BF for determining mRNA expression of muscarinic receptor subtypes (m1, m2, m3, m4, m5), nicotinic receptor subunits (α3, α4, α7, β2, β4), and NMDA receptors, GAD65 and ChAT, as indexes of cortical plasticity. A Kruskal-Wallis test showed a modulation of the expression in the visual cortex of m2, m3, m4, m5, α7, β4, NMDA and GAD65, but only β4 within the basal forebrain and none of these mRNA within the somatosensory cortex. The two modes of cholinergic enhancement induced different effects on mRNA expression, related to the number of visual conditioning sessions and receptor specificity. This study suggests that the combination of cholinergic enhancement and visual conditioning is specific to the visual cortex and varies between phasic or tonic manipulation of acetylcholine levels.
Collapse
Affiliation(s)
- Marianne Groleau
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal, Montréal, Québec, Canada.
| | - Mira Chamoun
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal, Montréal, Québec, Canada.
| | - Elvire Vaucher
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
19
|
Teufel DP, Bennett G, Harrison H, van Rietschoten K, Pavan S, Stace C, Le Floch F, Van Bergen T, Vermassen E, Barbeaux P, Hu TT, Feyen JHM, Vanhove M. Stable and Long-Lasting, Novel Bicyclic Peptide Plasma Kallikrein Inhibitors for the Treatment of Diabetic Macular Edema. J Med Chem 2018. [DOI: 10.1021/acs.jmedchem.7b01625] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Daniel P. Teufel
- Bicycle Therapeutics
Limited, Building 900, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Gavin Bennett
- Bicycle Therapeutics
Limited, Building 900, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Helen Harrison
- Bicycle Therapeutics
Limited, Building 900, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | | | - Silvia Pavan
- Bicycle Therapeutics
Limited, Building 900, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Catherine Stace
- Bicycle Therapeutics
Limited, Building 900, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | | | - Tine Van Bergen
- Thrombogenics
N.V., Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Elke Vermassen
- Thrombogenics
N.V., Gaston Geenslaan 1, 3001 Leuven, Belgium
| | | | - Tjing-Tjing Hu
- Thrombogenics
N.V., Gaston Geenslaan 1, 3001 Leuven, Belgium
| | | | - Marc Vanhove
- Thrombogenics
N.V., Gaston Geenslaan 1, 3001 Leuven, Belgium
| |
Collapse
|
20
|
Hachana S, Bhat M, Sénécal J, Huppé-Gourgues F, Couture R, Vaucher E. Expression, distribution and function of kinin B 1 receptor in the rat diabetic retina. Br J Pharmacol 2018; 175:968-983. [PMID: 29285756 DOI: 10.1111/bph.14138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/22/2017] [Accepted: 12/15/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE The kinin B1 receptor contributes to vascular inflammation and blood-retinal barrier breakdown in diabetic retinopathy (DR). We investigated the changes in expression, cellular localization and vascular inflammatory effect of B1 receptors in retina of streptozotocin diabetic rats. EXPERIMENTAL APPROACH The distribution of B1 receptors on retinal cell types was investigated by immunocytochemistry. Effects of B1 receptor agonist, R-838, and antagonist, R-954, on retinal leukocyte adhesion, gene expression of kinin and VEGF systems, B1 receptor immunoreactivity, microgliosis and capillary leakage were measured. Effect of B1 receptor siRNA on gene expression was also assessed. KEY RESULTS mRNA levels of the kinin and VEGF systems were significantly enhanced at 2 weeks in streptozotocin (STZ)-retina compared to control-retina and were further increased at 6 weeks. B1 receptor mRNA levels remained increased at 6 months. B1 receptor immunolabelling was detected in vascular layers of the retina, on glial and ganglion cells. Intravitreal R-838 amplified B1 and B2 receptor gene expression, B1 receptor levels (immunodetection), leukostasis and vascular permeability at 2 weeks in STZ-retina. Topical application (eye drops) of R-954 reversed these increases in B1 receptors, leukostasis and vascular permeability. Intravitreal B1 receptor siRNA inhibited gene expression of kinin and VEGF systems in STZ-retina. Microgliosis was unaffected by R-838 or R-954 in STZ-retina. CONCLUSION AND IMPLICATIONS Our results support the detrimental role of B1 receptors on endothelial and glial cells in acute and advanced phases of DR. Topical application of the B1 receptor antagonist R-954 seems a feasible therapeutic approach for the treatment of DR.
Collapse
Affiliation(s)
- Soumaya Hachana
- École d'optométrie, Université de Montréal, Montréal, QC, Canada.,Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada
| | - Menakshi Bhat
- École d'optométrie, Université de Montréal, Montréal, QC, Canada.,Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada
| | - Jacques Sénécal
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada
| | | | - Réjean Couture
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada
| | - Elvire Vaucher
- École d'optométrie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
21
|
Barrett EJ, Liu Z, Khamaisi M, King GL, Klein R, Klein BEK, Hughes TM, Craft S, Freedman BI, Bowden DW, Vinik AI, Casellini CM. Diabetic Microvascular Disease: An Endocrine Society Scientific Statement. J Clin Endocrinol Metab 2017; 102:4343-4410. [PMID: 29126250 PMCID: PMC5718697 DOI: 10.1210/jc.2017-01922] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 01/18/2023]
Abstract
Both type 1 and type 2 diabetes adversely affect the microvasculature in multiple organs. Our understanding of the genesis of this injury and of potential interventions to prevent, limit, or reverse injury/dysfunction is continuously evolving. This statement reviews biochemical/cellular pathways involved in facilitating and abrogating microvascular injury. The statement summarizes the types of injury/dysfunction that occur in the three classical diabetes microvascular target tissues, the eye, the kidney, and the peripheral nervous system; the statement also reviews information on the effects of diabetes and insulin resistance on the microvasculature of skin, brain, adipose tissue, and cardiac and skeletal muscle. Despite extensive and intensive research, it is disappointing that microvascular complications of diabetes continue to compromise the quantity and quality of life for patients with diabetes. Hopefully, by understanding and building on current research findings, we will discover new approaches for prevention and treatment that will be effective for future generations.
Collapse
Affiliation(s)
- Eugene J. Barrett
- Division of Endocrinology, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
| | - Zhenqi Liu
- Division of Endocrinology, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
| | - Mogher Khamaisi
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215
| | - George L. King
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Barbara E. K. Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Timothy M. Hughes
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Suzanne Craft
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Barry I. Freedman
- Divisions of Nephrology and Endocrinology, Department of Internal Medicine, Centers for Diabetes Research, and Center for Human Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Donald W. Bowden
- Divisions of Nephrology and Endocrinology, Department of Internal Medicine, Centers for Diabetes Research, and Center for Human Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Aaron I. Vinik
- EVMS Strelitz Diabetes Center, Eastern Virginia Medical Center, Norfolk, Virginia 23510
| | - Carolina M. Casellini
- EVMS Strelitz Diabetes Center, Eastern Virginia Medical Center, Norfolk, Virginia 23510
| |
Collapse
|
22
|
Catanzaro OL, Capponi JA, Di Martino I, Labal ES, Sirois P. Oxidative stress in the optic nerve and cortical visual area of steptozotocin-induced diabetic Wistar rats: Blockade with a selective bradykinin B 1 receptor antagonist. Neuropeptides 2017; 66:97-102. [PMID: 29089149 DOI: 10.1016/j.npep.2017.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 08/07/2017] [Accepted: 10/19/2017] [Indexed: 01/13/2023]
Abstract
The role of bradykinin B1 receptors on the oxidative stress as measured by the levels of Na+/K+ ATPase activity, malondialdehyde (MDA) and glutathione (GSH) in male Wistar rat optic nerve and visual cortex area 1 and 4weeks after STZ treatment was studied. Rats were divided into 4 groups (n=6-7): 1. Controls (non-diabetics); 2. Diabetics (65mg/kg streptozotocin, STZ); 3. Diabetics injected with B1 antagonist R-954 (2mg/Kg) during the last 3days of a one week period; 4. Diabetics injected with B1 antagonist R-954 (2mg/Kg) during the last 3days of a 4week period. The results showed that plasma glucose levels increased by up to 4 fold in diabetic rats 1 or 4weeks following the STZ treatment. R-954 treatment did significantly decrease blood glucose levels. Levels of MDA was increased in the plasma of the 1 and 4week diabetic animals whereas the GSH levels were decreased. Both markers returned to normal following R-954 treatment. Na+/K+ ATPase activity significantly decreased in the optic nerve and visual cortex of diabetic rats at 1 and 4weeks but returned to normal following R-954 treatment. MDA levels increased markedly at 1 and 4weeks compared with control levels in the optic nerve but slightly in the visual cortex and returned to control levels in both tissues following R-954 treatment. GSH levels decreased in both tissues at 1 and 4weeks compared with control levels. Following administration of the selective BKB1R antagonist R-954, the levels of GSH returned to normal in both tissues of the 1 and 4week diabetic animals. These results showed that the inducible BKB1 receptors are associated with the oxidative stress in the optic nerve and cortical visual area of diabetic rats and suggested that BKB1-R antagonist R-954 could have a beneficial role in the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Orlando L Catanzaro
- Departamento de Biología y Bioquímica, Laboratorio de Diabetes Experimental, Universidad Argentina John F Kennedy, Buenos Aires, Argentina; Escuela de Medicina y Odontologia -USAL, Buenos Aires, Argentina.
| | - Jorgelina Aira Capponi
- Departamento de Biología y Bioquímica, Laboratorio de Diabetes Experimental, Universidad Argentina John F Kennedy, Buenos Aires, Argentina
| | - Irene Di Martino
- Departamento de Biología y Bioquímica, Laboratorio de Diabetes Experimental, Universidad Argentina John F Kennedy, Buenos Aires, Argentina
| | - Emilio S Labal
- Departamento de Biología y Bioquímica, Laboratorio de Diabetes Experimental, Universidad Argentina John F Kennedy, Buenos Aires, Argentina
| | - Pierre Sirois
- CHUL Research Center, Laval University, Québec, Canada
| |
Collapse
|
23
|
Abstract
INTRODUCTION Kinins are peptide mediators exerting their pro-inflammatory actions by the selective stimulation of two distinct G-protein coupled receptors, termed BKB1R and BKB2R. While BKB2R is constitutively expressed in a multitude of tissues, BKB1R is hardly expressed at baseline but highly inducible by inflammatory mediators. In particular, BKB1R was shown to be involved in the pathogenesis of numerous inflammatory diseases. Areas covered: This review intends to evaluate the therapeutic potential of substances interacting with the BKB1R. To this purpose we summarize the published literature on animal studies with antagonists and knockout mice for this receptor. Expert Opinion: In most cases the pharmacological inhibition of BKB1R or its genetic deletion was beneficial for the outcome of the disease in animal models. Therefore, several companies have developed BKB1R antagonists and tested them in phase I and II clinical trials. However, none of the developed BKB1R antagonists was further developed for clinical use. We discuss possible reasons for this failure of translation of preclinical findings on BKB1R antagonists into the clinic.
Collapse
Affiliation(s)
- Fatimunnisa Qadri
- a Max-Delbrück Center for Molecular Medicine (MDC) , Berlin , Germany
| | - Michael Bader
- a Max-Delbrück Center for Molecular Medicine (MDC) , Berlin , Germany.,b Berlin Institute of Health (BIH) , Berlin , Germany.,c Charité University Medicine Berlin , Germany.,d German Center for Cardiovascular Research (DZHK) site Berlin , Berlin , Germany.,e Institute for Biology , University of Lübeck , Lübeck , Germany
| |
Collapse
|
24
|
Haddad Y, Couture R. Localization and Interaction between Kinin B1 Receptor and NADPH Oxidase in the Vascular System of Diabetic Rats. Front Physiol 2017; 8:861. [PMID: 29163205 PMCID: PMC5671568 DOI: 10.3389/fphys.2017.00861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/16/2017] [Indexed: 01/17/2023] Open
Abstract
Kinin B1 receptor (B1R) enhanced superoxide anion (O2•-) production in the vasculature of diabetic rats. This study investigates the induction and distribution of B1R in diabetic blood vessels and addresses the hypothesis that B1R is co-localized with NADPH oxidase (NOX1 and NOX2) and produces its activation via protein kinase C (PKC). Diabetes was induced in rats with streptozotocin (STZ 65 mg.kg−1, i.p.). Two weeks later, the production of O2•- was measured in aorta rings in response to the B1R agonist (Sar[D-Phe8]-des-Arg9-BK, 20 μM) by the method of lucigenin-enhanced chemiluminescence. Various inhibitors were added (10 μM) to block PKCtotal (Ro-31-8220), PKCβ1/2 (LY333531), or NADPH oxidase (Diphenyleneiodonium). The cellular localization of B1R was studied in the aorta, popliteal artery, and renal glomerulus/arteries by immunofluorescence and confocal microscopy with markers of endothelial cells (anti-RECA-1), macrophages (anti-CD11), vascular smooth muscle cells (anti-SMA), and NADPH oxidase (anti-NOX1 and NOX2). Although B1R was largely distributed in resistant vessels, it was sparsely expressed in the aorta's endothelium. The greater basal production of O2•- in STZ-diabetic aorta was significantly enhanced by the B1R agonist (15–45 min). The peak response to the agonist (30 min) was inhibited by all inhibitors. Immunofluorescent staining for B1R, NOX1, and NOX2 was significantly increased in endothelial cells, vascular smooth muscle cells, and macrophages of STZ-diabetic aorta on which they were found co-localized. Data showed that B1R enhanced O2•- by activating vascular NADPH oxidase through PKCβ1/2. This was substantiated by the cellular co-localization of B1R with NOX1 and NOX2 and opens the possibility that B1R-enhanced oxidative stress is derived from vascular and infiltrating immune cells in diabetes.
Collapse
Affiliation(s)
- Youssef Haddad
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Réjean Couture
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
25
|
Du H, Zhang M, Yao K, Hu Z. Protective effect of Aster tataricus extract on retinal damage on the virtue of its antioxidant and anti-inflammatory effect in diabetic rat. Biomed Pharmacother 2017; 89:617-622. [DOI: 10.1016/j.biopha.2017.01.179] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 12/18/2022] Open
|
26
|
Dutra RC. Kinin receptors: Key regulators of autoimmunity. Autoimmun Rev 2017; 16:192-207. [DOI: 10.1016/j.autrev.2016.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/25/2016] [Indexed: 01/06/2023]
|
27
|
Dose-dependent effect of donepezil administration on long-term enhancement of visually evoked potentials and cholinergic receptor overexpression in rat visual cortex. ACTA ACUST UNITED AC 2016; 110:65-74. [PMID: 27913166 DOI: 10.1016/j.jphysparis.2016.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/04/2016] [Accepted: 11/25/2016] [Indexed: 12/14/2022]
Abstract
Stimulation of the cholinergic system tightly coupled with periods of visual stimulation boosts the processing of specific visual stimuli via muscarinic and nicotinic receptors in terms of intensity, priority and long-term effect. However, it is not known whether more diffuse pharmacological stimulation with donepezil, a cholinesterase inhibitor, is an efficient tool for enhancing visual processing and perception. The goal of the present study was to potentiate cholinergic transmission with donepezil treatment (0.5 and 1mg/kg) during a 2-week visual training to examine the effect on visually evoked potentials and to profile the expression of cholinergic receptor subtypes. The visual training was performed daily, 10min a day, for 2weeks. One week after the last training session, visual evoked potentials were recorded, or the mRNA expression level of muscarinic (M1-5) and nicotinic (α/β) receptors subunits was determined by quantitative RT-PCR. The visual stimulation coupled with any of the two doses of donepezil produced significant amplitude enhancement of cortical evoked potentials compared to pre-training values. The enhancement induced by the 1mg/kg dose of donepezil was spread to neighboring spatial frequencies, suggesting a better sensitivity near the visual detection threshold. The M3, M4, M5 and α7 receptors mRNA were upregulated in the visual cortex for the higher dose of donepezil but not the lower one, and the receptors expression was stable in the somatosensory (non-visual control) cortex. Therefore, higher levels of acetylcholine within the cortex sustain the increased intensity of the cortical response and trigger the upregulation of cholinergic receptors.
Collapse
|
28
|
Zhang Z, Yan J, Shi H. Role of Hypoxia Inducible Factor 1 in Hyperglycemia-Exacerbated Blood-Brain Barrier Disruption in Ischemic Stroke. Neurobiol Dis 2016. [PMID: 27425889 DOI: 10.1016/j.nbd.2016.07.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Diabetes is a major stroke risk factor and is associated with poor functional recovery after stroke. Accumulating evidence indicates that the worsened outcomes may be due to hyperglycemia-induced cerebral vascular complications, especially disruption of the blood-brain barrier (BBB). The present study tested a hypothesis that the activation of hypoxia inducible factor-1 (HIF-1) was involved in hyperglycemia-aggravated BBB disruption in an ischemic stroke model. Non-diabetic control and Streptozotocin-induced type I diabetic mice were subjected to 90min transient middle cerebral artery occlusion (MCAO) followed by reperfusion. Our results demonstrated that hyperglycemia induced higher expression of HIF-1α and vascular endothelial growth factor (VEGF) in brain microvessels after MCAO/reperfusion. Diabetic mice showed exacerbated BBB damage and tight junction disruption, increased infarct volume as well as worsened neurological deficits. Furthermore, suppressing HIF-1 activity by specific knock-out endothelial HIF-1α ameliorated BBB leakage and brain infarction in diabetic animals. Moreover, glycemic control by insulin abolished HIF-1α up-regulation in diabetic animals and reduced BBB permeability and brain infarction. These findings strongly indicate that HIF-1 plays an important role in hyperglycemia-induced exacerbation of BBB disruption in ischemic stroke. Endothelial HIF-1 inhibition warrants further investigation as a therapeutic target for the treatment of stroke patients with diabetes.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS 66045, United States
| | - Jingqi Yan
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS 66045, United States
| | - Honglian Shi
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS 66045, United States.
| |
Collapse
|
29
|
Abdulaal M, Haddad NMN, Sun JK, Silva PS. The Role of Plasma Kallikrein-Kinin Pathway in the Development of Diabetic Retinopathy: Pathophysiology and Therapeutic Approaches. Semin Ophthalmol 2016; 31:19-24. [PMID: 26959125 DOI: 10.3109/08820538.2015.1114829] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Diabetic retinal disease is characterized by a series of retinal microvascular changes and increases in retinal vascular permeability that lead to development of diabetic retinopathy (DR) and diabetic macular edema (DME), respectively. Current treatment strategies for DR and DME are mostly limited to vascular endothelial growth factor (VEGF) inhibitors and laser photocoagulation. These treatment modalities are not universally effective in all patients, and potential side effects persist in a significant portion of patients. The plasma kallikrein-kinin system (KKS) is one of the pathways that has been identified in the vitreous in proliferative DR and DME. Preclinical studies have shown that the activation of intraocular KKS induces retinal vascular permeability, vasodilation, and retinal thickening. Proteomic analysis from vitreous of eyes with DME has shown that KKS and VEGF pathways are potentially independent biologic pathways. Furthermore, proteins associated with DME in the vitreous were significantly more correlated with the KKS pathway compared to VEGF pathway. Preclinical experiments on diabetic animals showed that inhibition of KKS components was found to be an effective approach to decrease retinal vascular permeability. An initial phase I human trial of a novel plasma kallikrein inhibitor for the treatment of DME is currently ongoing to test the safety of this approach and serves as an initial step in the translation of basic science discovery into an innovative clinical intervention.
Collapse
Affiliation(s)
- Marwan Abdulaal
- a Beetham Eye Institute, Joslin Diabetes Center , Boston , Massachusetts , USA , and.,b Department of Ophthalmology , Harvard Medical School , Boston , Massachusetts , USA
| | - Nour Maya N Haddad
- a Beetham Eye Institute, Joslin Diabetes Center , Boston , Massachusetts , USA , and.,b Department of Ophthalmology , Harvard Medical School , Boston , Massachusetts , USA
| | - Jennifer K Sun
- a Beetham Eye Institute, Joslin Diabetes Center , Boston , Massachusetts , USA , and.,b Department of Ophthalmology , Harvard Medical School , Boston , Massachusetts , USA
| | - Paolo S Silva
- a Beetham Eye Institute, Joslin Diabetes Center , Boston , Massachusetts , USA , and.,b Department of Ophthalmology , Harvard Medical School , Boston , Massachusetts , USA
| |
Collapse
|
30
|
Tzeng TF, Liu WY, Liou SS, Hong TY, Liu IM. Antioxidant-Rich Extract from Plantaginis Semen Ameliorates Diabetic Retinal Injury in a Streptozotocin-Induced Diabetic Rat Model. Nutrients 2016; 8:nu8090572. [PMID: 27649243 PMCID: PMC5037557 DOI: 10.3390/nu8090572] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 02/06/2023] Open
Abstract
Plantaginis semen, the dried ripe seed of Plantago asiatica L. or Plantago depressa Willd. (Plantaginaceae), has been traditionally used to treat blurred vision in Asia. The aim of this work was to investigate the effect of plantaginis semen ethanol extract (PSEE) on the amelioration of diabetic retinopathy (DR) in streptozotocin (STZ)-diabetic rats. PSEE has abundant polyphenols with strong antioxidant activity. PSEE (100, 200 or 300 mg/kg) was oral administrated to the diabetic rats once daily consecutively for 8 weeks. Oral administration of PSEE resulted in significant reduction of hyperglycemia, the diameter of the retinal vessels, and retinal vascular permeability and leukostasis in diabetic rats. In addition, PSEE administration increased the activities of superoxidase dismutase (SOD) and catalase (CAT), and glutathione peroxidase (GSH) level in diabetic retinae. PSEE treatment inhibited the expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α) and the phosphorylation of Akt without altering the Akt protein expression in diabetic retinae. PSEE not only down-regulated the gene expression of hypoxia-inducible factor-1α (TNF-α) and interleukin-1β (IL-1β), but also reduced ICAM-1 and VCAM-1 expression in diabetic retinae. Moreover, PSEE reduced the nuclear factor-κB (NF-κB) activation and corrected imbalance between histone deacetylases (HDAC) and histone acetyltransferases (HAT) activities in diabetic retinae. In conclusion, phenolic antioxidants extract from plantaginis semen has potential benefits in the prevention and/or progression of DR.
Collapse
Affiliation(s)
- Thing-Fong Tzeng
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan.
| | - Wayne Young Liu
- Department of Urology, Jen-Ai Hospital, Taichung City 41625, Taiwan.
- Center for Basic Medical Science, Collage of Health Science, Central Taiwan University of Science and Technology, Taichung City 40601, Taiwan.
| | - Shorong-Shii Liou
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan.
| | - Tang-Yao Hong
- Department of Biotechnology, Collage of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan.
| | - I-Min Liu
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan.
| |
Collapse
|
31
|
Role of Hypoxia Inducible Factor 1 in Hyperglycemia-Exacerbated Blood-Brain Barrier Disruption in Ischemic Stroke. Neurobiol Dis 2016; 95:82-92. [PMID: 27425889 DOI: 10.1016/j.nbd.2016.07.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/16/2016] [Accepted: 07/13/2016] [Indexed: 12/18/2022] Open
Abstract
Diabetes is a major stroke risk factor and is associated with poor functional recovery after stroke. Accumulating evidence indicates that the worsened outcomes may be due to hyperglycemia-induced cerebral vascular complications, especially disruption of the blood-brain barrier (BBB). The present study tested a hypothesis that the activation of hypoxia inducible factor-1 (HIF-1) was involved in hyperglycemia-aggravated BBB disruption in an ischemic stroke model. Non-diabetic control and Streptozotocin-induced type I diabetic mice were subjected to 90min transient middle cerebral artery occlusion (MCAO) followed by reperfusion. Our results demonstrated that hyperglycemia induced higher expression of HIF-1α and vascular endothelial growth factor (VEGF) in brain microvessels after MCAO/reperfusion. Diabetic mice showed exacerbated BBB damage and tight junction disruption, increased infarct volume as well as worsened neurological deficits. Furthermore, suppressing HIF-1 activity by specific knock-out endothelial HIF-1α ameliorated BBB leakage and brain infarction in diabetic animals. Moreover, glycemic control by insulin abolished HIF-1α up-regulation in diabetic animals and reduced BBB permeability and brain infarction. These findings strongly indicate that HIF-1 plays an important role in hyperglycemia-induced exacerbation of BBB disruption in ischemic stroke. Endothelial HIF-1 inhibition warrants further investigation as a therapeutic target for the treatment of stroke patients with diabetes.
Collapse
|
32
|
Tolentino MS, Tolentino AJ, Tolentino MJ. Current and investigational drugs for the treatment of diabetic retinopathy. Expert Opin Investig Drugs 2016; 25:1011-22. [DOI: 10.1080/13543784.2016.1201062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
33
|
Blocking of Kinin B1 Receptor: A Promising Way for the Treatment of Acute Lung Injury. Crit Care Med 2016; 43:2520-2. [PMID: 26468711 DOI: 10.1097/ccm.0000000000001317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Hernández C, Bogdanov P, Corraliza L, García-Ramírez M, Solà-Adell C, Arranz JA, Arroba AI, Valverde AM, Simó R. Topical Administration of GLP-1 Receptor Agonists Prevents Retinal Neurodegeneration in Experimental Diabetes. Diabetes 2016; 65:172-87. [PMID: 26384381 DOI: 10.2337/db15-0443] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/08/2015] [Indexed: 11/13/2022]
Abstract
Retinal neurodegeneration is an early event in the pathogenesis of diabetic retinopathy (DR). Since glucagon-like peptide 1 (GLP-1) exerts neuroprotective effects in the central nervous system and the retina is ontogenically a brain-derived tissue, the aims of the current study were as follows: 1) to examine the expression and content of GLP-1 receptor (GLP-1R) in human and db/db mice retinas; 2) to determine the retinal neuroprotective effects of systemic and topical administration (eye drops) of GLP-1R agonists in db/db mice; and 3) to examine the underlying neuroprotective mechanisms. We have found abundant expression of GLP-1R in the human retina and retinas from db/db mice. Moreover, we have demonstrated that systemic administration of a GLP-1R agonist (liraglutide) prevents retinal neurodegeneration (glial activation, neural apoptosis, and electroretinographical abnormalities). This effect can be attributed to a significant reduction of extracellular glutamate and an increase of prosurvival signaling pathways. We have found a similar neuroprotective effect using topical administration of native GLP-1 and several GLP-1R agonists (liraglutide, lixisenatide, and exenatide). Notably, this neuroprotective action was observed without any reduction in blood glucose levels. These results suggest that GLP-1R activation itself prevents retinal neurodegeneration. Our results should open up a new approach in the treatment of the early stages of DR.
Collapse
Affiliation(s)
- Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Bogdanov
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia Corraliza
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta García-Ramírez
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Solà-Adell
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - José A Arranz
- Unidad de Metabolopatías, Laboratorios Clínicos, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ana I Arroba
- CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain
| | - Angela M Valverde
- CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
35
|
Kita T, Clermont AC, Murugesan N, Zhou Q, Fujisawa K, Ishibashi T, Aiello LP, Feener EP. Plasma Kallikrein-Kinin System as a VEGF-Independent Mediator of Diabetic Macular Edema. Diabetes 2015; 64:3588-99. [PMID: 25979073 PMCID: PMC4587649 DOI: 10.2337/db15-0317] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/03/2015] [Indexed: 11/13/2022]
Abstract
This study characterizes the kallikrein-kinin system in vitreous from individuals with diabetic macular edema (DME) and examines mechanisms contributing to retinal thickening and retinal vascular permeability (RVP). Plasma prekallikrein (PPK) and plasma kallikrein (PKal) were increased twofold and 11.0-fold (both P < 0.0001), respectively, in vitreous from subjects with DME compared with those with a macular hole (MH). While the vascular endothelial growth factor (VEGF) level was also increased in DME vitreous, PKal and VEGF concentrations do not correlate (r = 0.266, P = 0.112). Using mass spectrometry-based proteomics, we identified 167 vitreous proteins, including 30 that were increased in DME (fourfold or more, P < 0.001 vs. MH). The majority of proteins associated with DME displayed a higher correlation with PPK than with VEGF concentrations. DME vitreous containing relatively high levels of PKal and low VEGF induced RVP when injected into the vitreous of diabetic rats, a response blocked by bradykinin receptor antagonism but not by bevacizumab. Bradykinin-induced retinal thickening in mice was not affected by blockade of VEGF receptor 2. Diabetes-induced RVP was decreased by up to 78% (P < 0.001) in Klkb1 (PPK)-deficient mice compared with wild-type controls. B2- and B1 receptor-induced RVP in diabetic mice was blocked by endothelial nitric oxide synthase (NOS) and inducible NOS deficiency, respectively. These findings implicate the PKal pathway as a VEGF-independent mediator of DME.
Collapse
Affiliation(s)
- Takeshi Kita
- Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | | | | | - Qunfang Zhou
- Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Kimihiko Fujisawa
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka City, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka City, Japan
| | - Lloyd Paul Aiello
- Joslin Diabetes Center, Harvard Medical School, Boston, MA Beetham Eye Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Edward P Feener
- Joslin Diabetes Center, Harvard Medical School, Boston, MA Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
36
|
Catalioto RM, Valenti C, Maggi CA, Giuliani S. Enhanced Ca(2+) response and stimulation of prostaglandin release by the bradykinin B2 receptor in human retinal pigment epithelial cells primed with proinflammatory cytokines. Biochem Pharmacol 2015; 97:189-202. [PMID: 26235941 DOI: 10.1016/j.bcp.2015.07.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/27/2015] [Indexed: 12/18/2022]
Abstract
Kallikrein, kininogen and kinin receptors are present in human ocular tissues including the retinal pigment epithelium (RPE), suggesting a possible role of bradykinin (BK) in physiological and/or pathological conditions. To test this hypothesis, kinin receptors expression and function was investigated for the first time in human fetal RPE cells, a model close to native RPE, in both control conditions and after treatment with proinflammatory cytokines. Results showed that BK evoked intracellular Ca(2+) transients in human RPE cells by activating the kinin B2 receptor. Pretreatment of the cells with TNF-α and/or IL-1β enhanced Ca(2+) response in a time- and concentration-dependent additive manner, whereas the potency of BK and that of the selective B2 receptor antagonist, fasitibant chloride, both in the nanomolar range, remained unaffected. Cytokines have no significant effect on cell number and viability and on the activity of other GPCRs such as the kinin B1, acetylcholine, ATP and thrombin receptors. Immunoblot analysis and immunofluorescence studies revealed that cytokines treatment was associated with an increase in both kinin B2 receptor and COX-2 expression and with the secretion of prostaglandin E1 and E2 into the extracellular medium. BK, through activation of the kinin B2 receptor, potentiated the COX-2 mediated prostaglandin release in cytokines-primed RPE cells while new protein synthesis and prostaglandin production contribute to the potentiating effect of cytokines on BK-induced Ca(2+) response. In conclusion, overall data revealed a cross-talk between the kinin B2 receptor and cytokines in human RPE in promoting inflammation, a key feature in retinal pathologies including diabetic retinopathy and macular edema.
Collapse
Affiliation(s)
- Rose-Marie Catalioto
- Pharmacology Department, Menarini Ricerche SpA, Via Rismondo 12A, 50131 Florence, Italy.
| | - Claudio Valenti
- Pharmacology Department, Menarini Ricerche SpA, Via Rismondo 12A, 50131 Florence, Italy
| | - Carlo Alberto Maggi
- Pharmacology Department, Menarini Ricerche SpA, Via Rismondo 12A, 50131 Florence, Italy
| | - Sandro Giuliani
- Pharmacology Department, Menarini Ricerche SpA, Via Rismondo 12A, 50131 Florence, Italy
| |
Collapse
|
37
|
Hallberg M. Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors. Med Res Rev 2015; 35:464-519. [PMID: 24894913 DOI: 10.1002/med.21323] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The proteolytic processing of neuropeptides has an important regulatory function and the peptide fragments resulting from the enzymatic degradation often exert essential physiological roles. The proteolytic processing generates, not only biologically inactive fragments, but also bioactive fragments that modulate or even counteract the response of their parent peptides. Frequently, these peptide fragments interact with receptors that are not recognized by the parent peptides. This review discusses tachykinins, opioid peptides, angiotensins, bradykinins, and neuropeptide Y that are present in the central nervous system and their processing to bioactive degradation products. These well-known neuropeptide systems have been selected since they provide illustrative examples that proteolytic degradation of parent peptides can lead to bioactive metabolites with different biological activities as compared to their parent peptides. For example, substance P, dynorphin A, angiotensin I and II, bradykinin, and neuropeptide Y are all degraded to bioactive fragments with pharmacological profiles that differ considerably from those of the parent peptides. The review discusses a selection of the large number of drug-like molecules that act as agonists or antagonists at receptors of neuropeptides. It focuses in particular on the efforts to identify selective drug-like agonists and antagonists mimicking the effects of the endogenous peptide fragments formed. As exemplified in this review, many common neuropeptides are degraded to a variety of smaller fragments but many of the fragments generated have not yet been examined in detail with regard to their potential biological activities. Since these bioactive fragments contain a small number of amino acid residues, they provide an ideal starting point for the development of drug-like substances with ability to mimic the effects of the degradation products. Thus, these substances could provide a rich source of new pharmaceuticals. However, as discussed herein relatively few examples have so far been disclosed of successful attempts to create bioavailable, drug-like agonists or antagonists, starting from the structure of endogenous peptide fragments and applying procedures relying on stepwise manipulations and simplifications of the peptide structures.
Collapse
Affiliation(s)
- Mathias Hallberg
- Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, Biomedical Center, Uppsala, Sweden
| |
Collapse
|
38
|
Tidjane N, Hachem A, Zaid Y, Merhi Y, Gaboury L, Girolami JP, Couture R. A primary role for kinin B1 receptor in inflammation, organ damage, and lethal thrombosis in a rat model of septic shock in diabetes. EUR J INFLAMM 2015; 13:40-52. [PMID: 26413099 DOI: 10.1177/1721727x15577736] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Diabetes mellitus and septic shock increase the incidence of mortality by thrombosis. Although kinin B1 receptor (B1R) is involved in both pathologies, its role in platelet function and thrombosis remains unknown. This study investigates the expression, the inflammatory, and pro-thrombotic effects of B1R in a model of septic shock in diabetic rats. Sprague-Dawley rats were made diabetic with streptozotocin (STZ) (65 mg/kg, i.p.). Four days later, control and STZ-diabetic rats were injected with lipopolysaccharide (LPS) (2 mg/kg, i.p.) or the vehicle. B1R antagonist (SSR240612, 10 mg/kg by gavage) was given either acutely (12 and 24 h prior to endpoint analysis) or daily for up to 7 days. Moreover, a 7-day treatment was given either with cyclooxygenase (COX)-2 inhibitor (niflumic acid, 5 mg/kg, i.p.), non-selective COX-1 and COX-2 inhibitor (indomethacin, 10 mg/kg, i.p.), non-selective nitric oxide synthase (NOS) inhibitor (L-NAME, 50 mg/kg by gavage), iNOS inhibitor (1400W, 5 mg/kg, i.p.), or heparin (100 IU/kg, s.c.). The following endpoints were measured: edema and vascular permeability (Evans blue dye), B1R expression (qRT-PCR, western blot, flow cytometry), aggregation in platelet-rich plasma (optical aggregometry), and organ damage (histology). Rats treated with STZ, LPS, and STZ plus LPS showed significant increases in edema and vascular permeability (heart, kidney, lung, and liver) and increased expression of B1R in heart and kidney (mRNA) and platelets (protein). Lethal septic shock induced by LPS was enhanced in STZ-diabetic rats and was associated with lung and kidney damage, including platelet micro-aggregate formation. SSR240612 prevented all these abnormalities as well as STZ-induced hyperglycemia and LPS-induced hyperthermia. Similarly to SSR240612, blockade of iNOS and COX-2 improved survival. Data provide the first evidence that kinin B1R plays a primary role in lethal thrombosis in a rat model of septic shock in diabetes. Pharmacological rescue was made possible with B1R antagonism or by inhibition of iNOS and COX-2, which may act as downstream mechanisms.
Collapse
Affiliation(s)
- N Tidjane
- Department of Molecular and Integrative Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - A Hachem
- Laboratory of Thrombosis and Hemostasis, Research Centre, Montreal Heart Institute, Montréal, QC, Canada
| | - Y Zaid
- Laboratory of Thrombosis and Hemostasis, Research Centre, Montreal Heart Institute, Montréal, QC, Canada
| | - Y Merhi
- Laboratory of Thrombosis and Hemostasis, Research Centre, Montreal Heart Institute, Montréal, QC, Canada
| | - L Gaboury
- Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - J-P Girolami
- Institute of Metabolic and Cardiovascular Diseases, INSERM, U 1048, Université Paul Sabatier, Toulouse, France
| | - R Couture
- Department of Molecular and Integrative Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
39
|
Abu El-Asrar AM, Mohammad G, Nawaz MI, Siddiquei MM. High-Mobility Group Box-1 Modulates the Expression of Inflammatory and Angiogenic Signaling Pathways in Diabetic Retina. Curr Eye Res 2014; 40:1141-52. [PMID: 25495026 DOI: 10.3109/02713683.2014.982829] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE The expression of high-mobility group box-1 (HMGB1) is upregulated in epiretinal membranes and vitreous fluid from patients with proliferative diabetic retinopathy and in the diabetic retina. HMGB1 mediates inflammation, breakdown of the blood-retinal barrier and apoptosis in the diabetic retina. Here, we investigated inflammatory and angiogenic signaling pathways activated by HMGB1 in diabetic retina. METHODS Human retinal microvascular endothelial cells (HRMEC) and retinas from 1-month diabetic rats and normal rats intravitreally injected with HMGB1 were studied using RT-PCR, Western blot analysis and co-immunoprecipitation. We also studied the effect of the HMGB1 inhibitor glycyrrhizin on diabetes-induced biochemical changes in the retina. RESULTS Diabetes and intravitreal injection of HMGB1 in normal rats induced significant upregulation of the mRNA levels of the chemokine stromal cell-derived factor-1 (SDF-1/CXCL12) receptor CXCR4 and protein levels of hypoxia-inducible factor-1α, early growth response-1, tyrosine kinase 2 and the CXCL12/CXCR4 chemokine axis. Constant glycyrrhizin intake from onset of diabetes did not affect the metabolic status of the diabetic rats, but it restored these increased mediators to control values. Stimulation of HRMEC with HMGB1 and intraviteral injection of HMGB1 significantly increased the expression of vascular endothelial growth factor (VEGF) and VEGF receptor-2. Co-immunoprecipitation studies showed that diabetes increased the interaction between CXCL12 and CXCR4 and between HMGB1 and receptor for advanced glycation end products (RAGE), but not between HMGB1 and the CXCL12/CXCR4 chemokine axis. CONCLUSIONS Our findings suggest that HMGB1 activates inflammatory and angiogenic signaling pathways in diabetic retina mediated by RAGE.
Collapse
Affiliation(s)
- Ahmed M Abu El-Asrar
- a Department of Ophthalmology , College of Medicine, King Saud University, King Abdulaziz University Hospital , Riyadh , Saudi Arabia
| | - Ghulam Mohammad
- a Department of Ophthalmology , College of Medicine, King Saud University, King Abdulaziz University Hospital , Riyadh , Saudi Arabia
| | - Mohammad Imtiaz Nawaz
- a Department of Ophthalmology , College of Medicine, King Saud University, King Abdulaziz University Hospital , Riyadh , Saudi Arabia
| | - Mohammad Mairaj Siddiquei
- a Department of Ophthalmology , College of Medicine, King Saud University, King Abdulaziz University Hospital , Riyadh , Saudi Arabia
| |
Collapse
|
40
|
Arredondo Zamarripa D, Díaz-Lezama N, Meléndez García R, Chávez Balderas J, Adán N, Ledesma-Colunga MG, Arnold E, Clapp C, Thebault S. Vasoinhibins regulate the inner and outer blood-retinal barrier and limit retinal oxidative stress. Front Cell Neurosci 2014; 8:333. [PMID: 25368550 PMCID: PMC4202700 DOI: 10.3389/fncel.2014.00333] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/30/2014] [Indexed: 12/11/2022] Open
Abstract
Vasoinhibins are prolactin fragments present in the retina, where they have been shown to prevent the hypervasopermeability associated with diabetes. Enhanced bradykinin (BK) production contributes to the increased transport through the blood-retina barrier (BRB) in diabetes. Here, we studied if vasoinhibins regulate BRB permeability by targeting the vascular endothelium and retinal pigment epithelium (RPE) components of this barrier. Intravitreal injection of BK in male rats increased BRB permeability. Vasoinhibins prevented this effect, as did the B2 receptor antagonist Hoe-140. BK induced a transient decrease in mouse retinal and brain capillary endothelial monolayer resistance that was blocked by vasoinhibins. Both vasoinhibins and the nitric oxide (NO) synthase inhibitor L-NAME, but not the antioxidant N-acetyl cysteine (NAC), blocked the transient decrease in bovine umbilical vein endothelial cell (BUVEC) monolayer resistance induced by BK; this block was reversed by the NO donor DETANONOate. Vasoinhibins also prevented the BK-induced actin cytoskeleton redistribution, as did L-NAME. BK transiently decreased human RPE (ARPE-19) cell monolayer resistance, and this effect was blocked by vasoinhibins, L-NAME, and NAC. DETANONOate reverted the blocking effect of vasoinhibins. Similar to BK, the radical initiator Luperox induced a reduction in ARPE-19 cell monolayer resistance, which was prevented by vasoinhibins. These effects on RPE resistance coincided with actin cytoskeleton redistribution. Intravitreal injection of vasoinhibins reduced the levels of reactive oxygen species (ROS) in retinas of streptozotocin-induced diabetic rats, particularly in the RPE and capillary-containing layers. Thus, vasoinhibins reduce BRB permeability by targeting both its main inner and outer components through NO- and ROS-dependent pathways, offering potential treatment strategies against diabetic retinopathies.
Collapse
Affiliation(s)
- David Arredondo Zamarripa
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Nundehui Díaz-Lezama
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Rodrigo Meléndez García
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Jesús Chávez Balderas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Norma Adán
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Maria G Ledesma-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Edith Arnold
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Carmen Clapp
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Stéphanie Thebault
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| |
Collapse
|
41
|
Eshaq RS, Wright WS, Harris NR. Oxygen delivery, consumption, and conversion to reactive oxygen species in experimental models of diabetic retinopathy. Redox Biol 2014; 2:661-6. [PMID: 24936440 PMCID: PMC4052533 DOI: 10.1016/j.redox.2014.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 11/30/2022] Open
Abstract
Retinal tissue receives its supply of oxygen from two sources – the retinal and choroidal circulations. Decreases in retinal blood flow occur in the early stages of diabetes, with the eventual development of hypoxia thought to contribute to pathological neovascularization. Oxygen consumption in the retina has been found to decrease in diabetes, possibly due to either a reduction in neuronal metabolism or to cell death. Diabetes also enhances the rate of conversion of oxygen to superoxide in the retina, with experimental evidence suggesting that mitochondrial superoxide not only drives the overall production of reactive oxygen species, but also initiates several pathways leading to retinopathy, including the increased activity of the polyol and hexosamine pathways, increased production of advanced glycation end products and expression of their receptors, and activation of protein kinase C. Diabetes alters oxygen delivery and consumption in the retina. Conversion of oxygen to superoxide increases in the diabetic retina. An initial production of mitochondrial superoxide generates further ROS. ROS have been found to mediate deleterious pathways in the diabetic retina.
Collapse
Affiliation(s)
- Randa S Eshaq
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - William S Wright
- Department of Biomedical Sciences, University of South Carolina School of Medicine, Greenville, SC, USA
| | - Norman R Harris
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
42
|
Non-canonical signalling and roles of the vasoactive peptides angiotensins and kinins. Clin Sci (Lond) 2014; 126:753-74. [DOI: 10.1042/cs20130414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
GPCRs (G-protein-coupled receptors) are among the most important targets for drug discovery due to their ubiquitous expression and participation in cellular events under both healthy and disease conditions. These receptors can be activated by a plethora of ligands, such as ions, odorants, small ligands and peptides, including angiotensins and kinins, which are vasoactive peptides that are classically involved in the pathophysiology of cardiovascular events. These peptides and their corresponding GPCRs have been reported to play roles in other systems and under pathophysiological conditions, such as cancer, central nervous system disorders, metabolic dysfunction and bone resorption. More recently, new mechanisms have been described for the functional regulation of GPCRs, including the transactivation of other signal transduction receptors and the activation of G-protein-independent pathways. The existence of such alternative mechanisms for signal transduction and the discovery of agonists that can preferentially trigger one signalling pathway over other pathways (called biased agonists) have opened new perspectives for the discovery and development of drugs with a higher specificity of action and, therefore, fewer side effects. The present review summarizes the current knowledge on the non-canonical signalling and roles of angiotensins and kinins.
Collapse
|
43
|
Bhat M, Pouliot M, Couture R, Vaucher E. The kallikrein-kinin system in diabetic retinopathy. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 69:111-43. [PMID: 25130041 DOI: 10.1007/978-3-319-06683-7_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetic retinopathy (DR) is a major microvascular complication associated with type 1 and type 2 diabetes mellitus, which can lead to visual impairment and blindness. Current treatment strategies for DR are mostly limited to laser therapies, steroids, and anti-VEGF agents, which are often associated with unwanted side effects leading to further complications. Recent evidence suggests that kinins play a primary role in the development of DR through enhanced vascular permeability, leukocytes infiltration, and other inflammatory mechanisms. These deleterious effects are mediated by kinin B1 and B2 receptors, which are expressed in diabetic human and rodent retina. Importantly, kinin B1 receptor is virtually absent in sane tissue, yet it is induced and upregulated in diabetic retina. These peptides belong to the kallikrein-kinin system (KKS), which contains two separate and independent pathways of regulated serine proteases, namely plasma kallikrein (PK) and tissue kallikrein (TK) that are involved in the biosynthesis of bradykinin (BK) and kallidin (Lys-BK), respectively. Hence, ocular inhibition of kallikreins or antagonism of kinin receptors offers new therapeutic avenues in the treatment and management of DR. Herein, we present an overview of the principal features and known inflammatory mechanisms associated with DR along with the current therapeutic approaches and put special emphasis on the KKS as a new and promising therapeutic target due to its link with key pathways directly associated with the development of DR.
Collapse
|
44
|
Girolami JP, Blaes N, Bouby N, Alhenc-Gelas F. Genetic manipulation and genetic variation of the kallikrein-kinin system: impact on cardiovascular and renal diseases. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 69:145-196. [PMID: 25130042 DOI: 10.1007/978-3-319-06683-7_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Genetic manipulation of the kallikrein-kinin system (KKS) in mice, with either gain or loss of function, and study of human genetic variability in KKS components which has been well documented at the phenotypic and genomic level, have allowed recognizing the physiological role of KKS in health and in disease. This role has been especially documented in the cardiovascular system and the kidney. Kinins are produced at slow rate in most organs in resting condition and/or inactivated quickly. Yet the KKS is involved in arterial function and in renal tubular function. In several pathological situations, kinin production increases, kinin receptor synthesis is upregulated, and kinins play an important role, whether beneficial or detrimental, in disease outcome. In the setting of ischemic, diabetic or hemodynamic aggression, kinin release by tissue kallikrein protects against organ damage, through B2 and/or B1 bradykinin receptor activation, depending on organ and disease. This has been well documented for the ischemic or diabetic heart, kidney and skeletal muscle, where KKS activity reduces oxidative stress, limits necrosis or fibrosis and promotes angiogenesis. On the other hand, in some pathological situations where plasma prekallikrein is inappropriately activated, excess kinin release in local or systemic circulation is detrimental, through oedema or hypotension. Putative therapeutic application of these clinical and experimental findings through current pharmacological development is discussed in the chapter.
Collapse
|
45
|
Delemasure S, Blaes N, Richard C, Couture R, Bader M, Dutartre P, Girolami JP, Connat JL, Rochette L. Antioxidant/oxidant status and cardiac function in bradykinin B(1)- and B(2)-receptor null mice. Physiol Res 2013; 62:511-7. [PMID: 24020815 DOI: 10.33549/physiolres.932496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Kinin-vasoactive peptides activate two G-protein-coupled receptors (R), B(1)R (inducible) and B(2)R (constitutive). Their complex role in cardiovascular diseases could be related to differential actions on oxidative stress. This study investigated impacts of B(1)R or B(2)R gene deletion in mice on the cardiac function and plasma antioxidant and oxidant status. Echocardiography-Doppler was performed in B(1)R (B(1)R(-/-)) and B(2)R (B(2)R(-/-)) deficient and wild type (WT) adult male mice. No functional alteration was observed in B(2)R(-/-) hearts. B(1)R(-/-) mice had significantly lowered fractional shortening and increased isovolumetric contraction time. The diastolic E and A waves velocity ratio was similar in all mice groups. Thus B(1)R(-/-) mice provide a model of moderate systolic dysfunction, whereas B(2)R(-/-) mice displayed a normal cardiac phenotype. Plasma antioxidant capacity (ORAC) was significantly decreased in both B(1)R(-/-) and B(2)R(-/-) mice whereas the vitamin C levels were decreased in B(2)R(-/-) mice only. Plasma ascorbyl free radical was significantly higher in B(1)R(-/-) compared to WT and B(2)R(-/-) mice. Therefore, the oxidative stress index, ascorbyl free radical to vitamin C ratio, was increased in both B(1)R(-/-) and B(2)R(-/-) mice. Hence, B(1)R and B(2)R deficiency are associated with increased oxidative stress, but there is a differential imbalance between free radical production and antioxidant defense. The interrelationship between the differential B(1)R and B(2)R roles in oxidative stress and cardiovascular diseases remain to be investigated.
Collapse
Affiliation(s)
- S Delemasure
- COHIRO Biotechnology, Faculty of Medicine, Dijon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Liu J, Feener EP. Plasma kallikrein-kinin system and diabetic retinopathy. Biol Chem 2013; 394:319-28. [PMID: 23362193 DOI: 10.1515/hsz-2012-0316] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/09/2013] [Indexed: 12/12/2022]
Abstract
Diabetic retinopathy (DR) occurs, to some extent, in most people with at least 20 years' duration of diabetes mellitus. The progression of DR to its sight-threatening stages is usually associated with the worsening of underlying retinal vascular dysfunction and disease. The plasma kallikrein-kinin system (KKS) is activated during vascular injury, where it mediates important functions in innate inflammation, blood flow, and coagulation. Recent findings from human vitreous proteomics and experimental studies on diabetic animal models have implicated the KKS in contributing to DR. Vitreous fluid from people with advanced stages of DR contains increased levels of plasma KKS components, including plasma kallikrein (PK), coagulation factor XII, and high-molecular-weight kininogen. Both bradykinin B1 and B2 receptor isoforms (B1R and B2R, respectively) are expressed in human retina, and retinal B1R levels are increased in diabetic rodents. The activation of the intraocular KKS induces retinal vascular permeability, vasodilation, and retinal thickening, and these responses are exacerbated in diabetic rats. Preclinical studies have shown that the administration of PK inhibitors and B1R antagonists to diabetic rats ameliorates retinal vascular hyperpermeability and inflammation. These findings suggest that components of plasma KKS are potential therapeutic targets for diabetic macular edema.
Collapse
Affiliation(s)
- Jia Liu
- Research Division, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | | |
Collapse
|
47
|
Blaes N, Girolami JP. Targeting the 'Janus face' of the B2-bradykinin receptor. Expert Opin Ther Targets 2013; 17:1145-66. [PMID: 23957374 DOI: 10.1517/14728222.2013.827664] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Kinins are main active mediators of the kallikrein-kinin system (KKS) via bradykinin type 1 inducible (B1R) and type 2 constitutive (B2R) receptors. B2R mediates most physiological bradykinin (BK) responses, including vasodilation, natriuresis, NO, prostaglandins release. AREAS COVERED The article summarizes knowledge on kinins, B2R signaling and biological functions; highlights crosstalks between B2R and renin-angiotensin system (RAS). The double role (Janus face) in physiopathology, namely the beneficial protection of the endothelium, which forms the basis for the therapeutical utilization of B2 receptor agonists, on the one side, and the involvement of B2R in inflammation or infection diseases and in pain mechanisms, which justifies the use of B2R antagonists, on the other side, is extensively analyzed. EXPERT OPINION For decades, the B2R has been unconsciously activated during angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) treatments. Whether direct B2R targeting with stable agonists could bring additional therapeutic benefit to RAS inhibition should be investigated. Efficacy, established in experimental models, should be confirmed by translational studies in cardiovascular pathologies, glaucoma, Duchenne cardiopathy and during brain cancer therapy. The other face of B2R is targeted by antagonists already approved to treat hereditary angioedema. The use of antagonists could be extended to other angioedema and efficacy tested against acute pain and inflammatory diseases.
Collapse
Affiliation(s)
- Nelly Blaes
- INSERM, U1048, Institute of Metabolic and Cardiovascular Diseases, I2MC, Université Paul Sabatier , F-31432, Toulouse , France
| | | |
Collapse
|
48
|
Liu J, Clermont AC, Gao BB, Feener EP. Intraocular hemorrhage causes retinal vascular dysfunction via plasma kallikrein. Invest Ophthalmol Vis Sci 2013; 54:1086-94. [PMID: 23299478 DOI: 10.1167/iovs.12-10537] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Retinal hemorrhages occur in a variety of sight-threatening conditions including ocular trauma, high altitude retinopathy, and chronic diseases such as diabetic and hypertensive retinopathies. The goal of this study is to investigate the effects of blood in the vitreous on retinal vascular function in rats. METHODS Intravitreal injections of autologous blood, plasma kallikrein (PK), bradykinin, and collagenase were performed in Sprague-Dawley and Long-Evans rats. Retinal vascular permeability was measured using vitreous fluorophotometry and Evans blue dye permeation. Leukostasis was measured by fluorescein isothiocyanate-coupled concanavalin A lectin and acridine orange labeling. Retinal hemorrhage was examined on retinal flatmounts. Primary cultures of bovine retinal pericytes were cultured in the presence of 25 nM PK for 24 hours. The pericyte-conditioned medium was collected and the collagen proteome was analyzed by tandem mass spectrometry. RESULTS Intravitreal injection of autologous blood induced retinal vascular permeability and retinal leukostasis, and these responses were ameliorated by PK inhibition. Intravitreal injections of exogenous PK induced retinal vascular permeability, leukostasis, and retinal hemorrhage. Proteomic analyses showed that PK increased collagen degradation in pericyte-conditioned medium and purified type IV collagen. Intravitreal injection of collagenase mimicked PK's effect on retinal hemorrhage. CONCLUSIONS Intraocular hemorrhage increases retinal vascular permeability and leukostasis, and these responses are mediated, in part, via PK. Intravitreal injections of either PK or collagenase, but not bradykinin, induce retinal hemorrhage in rats. PK exerts collagenase-like activity that may contribute to blood-retinal barrier dysfunction.
Collapse
Affiliation(s)
- Jia Liu
- Research Division, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
49
|
Suppression of vascular inflammation by kinin B1 receptor antagonism in a rat model of insulin resistance. J Cardiovasc Pharmacol 2012; 60:61-9. [PMID: 22494994 DOI: 10.1097/fjc.0b013e3182576277] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Kinin B1 receptor (B1R) intervenes in a positive feedback loop to amplify and perpetuate the vascular oxidative stress in glucose-fed rats, a model of insulin resistance. This study aims at determining whether B1R blockade could reverse vascular inflammation in this model. METHODS/RESULTS Young male Sprague-Dawley rats were fed with 10% D-glucose or tap water (controls) for 8 weeks, and during the last week, rats were administered the B1R antagonist SSR240612 (10 mg/kg/day, gavage) or the vehicle. The outcome was determined on glycemia, insulinemia, insulin resistance (homeostasis model assessment index), and on protein or mRNA expression of the following target genes in the aorta (by Western blot and real-time quantitative polymerase chain reaction): B1R, endothelial nitric oxide synthase, inducible nitric oxide synthase, macrophage CD68, macrophage/monocyte CD11b, interleukin (IL) -1β, tumor necrosis factor-α, IL-6, macrophage migration inhibitory factor, intercellular adhesion molecule-1, and E-selectin (endothelial adhesion molecule). Data showed increased expression of all these markers in the aorta of glucose-fed rats except endothelial nitric oxide synthase and tumor necrosis factor-α, which were not affected. SSR240612 reversed hyperglycemia, hyperinsulinemia, insulin resistance, and the upregulation of B1R, inducible nitric oxide synthase, macrophage CD68, and CD11b, IL-1β, inter-cellular adhesion molecule-1, macrophage migration inhibitory factor, and E-selectin in glucose-fed rats, yet it had no significant effect on IL-6 and in control rats. CONCLUSIONS Kinin B1R antagonism reversed the upregulation of its own receptor and several pro-inflammatory markers in the aorta of glucose-fed rats. These data provide the first evidence that B1R may contribute to the low-grade vascular inflammation in insulin resistance, an early event in the development of type-2 diabetes.
Collapse
|
50
|
Talbot S, De Brito Gariépy H, Saint-Denis J, Couture R. Activation of kinin B1 receptor evokes hyperthermia through a vagal sensory mechanism in the rat. J Neuroinflammation 2012; 9:214. [PMID: 22971439 PMCID: PMC3460782 DOI: 10.1186/1742-2094-9-214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/27/2012] [Indexed: 12/25/2022] Open
Abstract
Background Kinins are mediators of pain and inflammation. Their role in thermoregulation is, however, unknown despite the fact the B1 receptor (B1R) was found implicated in lipopolysaccharide (LPS)-induced fever. The aim of this study was to investigate the mechanism by which peripheral B1R affects body core temperature in a rat model known to show up-regulated levels of B1R. Methods Male Sprague–Dawley rats received streptozotocin (STZ, 65 mg/kg; i.p.) to enhance B1R expression. Control rats received the vehicle only. One week later, rectal temperature was measured in awake rats after i.p. injection of increasing doses (0.01 to 5 mg/kg) of des-Arg9-Bradykinin (BK) and Sar-[D-Phe8]des-Arg9-BK (B1R agonists) or BK (B2R agonist). The mechanism of B1R-induced hyperthermia was addressed using specific inhibitors and in rats subjected to subdiaphragmatic vagal nerve ligation. B1R mRNA level was measured by quantitative Real Time-polymerase chain reaction (qRT-PCR) and B1R was localized by confocal microscopy. Results B1R agonists (0.1 to 5 mg/kg) showed transient (5- to 30-minute) and dose-dependent increases of rectal temperature (+1.5°C) in STZ-treated rats, but not in control rats. BK caused no effect in STZ and control rats. In STZ-treated rats, B1R agonist-induced hyperthermia was blocked by antagonists/inhibitors of B1R (SSR240612), cyclooxygenase-2 (COX-2) (niflumic acid) and nitric oxide synthase (NOS) (L-NAME), and after vagal nerve ligation. In contrast, COX-1 inhibition (indomethacin) had no effect on B1R agonist-induced hyperthermia. In STZ-treated rats, B1R mRNA was significantly increased in the hypothalamus and the vagus nerve where it was co-localized with calcitonin-gene-related peptide in sensory C-fibers. Conclusion B1R, which is induced in inflammatory diseases, could contribute to hyperthermia through a vagal sensory mechanism involving prostaglandins (via COX-2) and nitric oxide.
Collapse
Affiliation(s)
- Sébastien Talbot
- Department of Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | | | | |
Collapse
|