1
|
Fyfe-Desmarais G, Desmarais F, Rassart É, Mounier C. Apolipoprotein D in Oxidative Stress and Inflammation. Antioxidants (Basel) 2023; 12:antiox12051027. [PMID: 37237893 DOI: 10.3390/antiox12051027] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Apolipoprotein D (ApoD) is lipocalin able to bind hydrophobic ligands. The APOD gene is upregulated in a number of pathologies, including Alzheimer's disease, Parkinson's disease, cancer, and hypothyroidism. Upregulation of ApoD is linked to decreased oxidative stress and inflammation in several models, including humans, mice, Drosophila melanogaster and plants. Studies suggest that the mechanism through which ApoD modulates oxidative stress and regulate inflammation is via its capacity to bind arachidonic acid (ARA). This polyunsaturated omega-6 fatty acid can be metabolised to generate large variety of pro-inflammatory mediators. ApoD serves as a sequester, blocking and/or altering arachidonic metabolism. In recent studies of diet-induced obesity, ApoD has been shown to modulate lipid mediators derived from ARA, but also from eicosapentaenoic acid and docosahexaenoic acid in an anti-inflammatory way. High levels of ApoD have also been linked to better metabolic health and inflammatory state in the round ligament of morbidly obese women. Since ApoD expression is upregulated in numerous diseases, it might serve as a therapeutic agent against pathologies aggravated by OS and inflammation such as many obesity comorbidities. This review will present the most recent findings underlying the central role of ApoD in the modulation of both OS and inflammation.
Collapse
Affiliation(s)
- Guillaume Fyfe-Desmarais
- Laboratory of Metabolism of Lipids, Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Department of Biological Sciences, University of Quebec in Montreal (UQAM), 141 Av. du Président-Kennedy, Montreal, QC H2X 1Y4, Canada
| | - Fréderik Desmarais
- Department of Medecine, Faculty of Medecine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, 1050 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
| | - Éric Rassart
- Laboratory of Metabolism of Lipids, Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Department of Biological Sciences, University of Quebec in Montreal (UQAM), 141 Av. du Président-Kennedy, Montreal, QC H2X 1Y4, Canada
| | - Catherine Mounier
- Laboratory of Metabolism of Lipids, Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Department of Biological Sciences, University of Quebec in Montreal (UQAM), 141 Av. du Président-Kennedy, Montreal, QC H2X 1Y4, Canada
| |
Collapse
|
2
|
Apolipoprotein D modulates lipid mediators and osteopontin in an anti-inflammatory direction. Inflamm Res 2023; 72:263-280. [PMID: 36536251 DOI: 10.1007/s00011-022-01679-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND HDL has been proposed to possess anti-inflammatory properties; however, the detail mechanisms have not been fully elucidated. METHODS We investigated the roles of Apolipoprotein D (ApoD) in the pathogenesis of inflammation in the mouse model of diet-induced obesity and that of lipopolysaccharide-induced sepsis and the in vitro experiments. Furthermore, we analyzed serum ApoD levels in human subjects. RESULTS The overexpression of human ApoD decreased the plasma IL-6 and TNF-a levels in both mice models. Lipidomics analyses demonstrated association of ApoD with increase of arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, as well as of their metabolites, and of the anti-inflammatory molecule sphingosine 1-phosphate, and decrease of proinflammatory lysophosphatidic acids and lysophosphatidylinositol. ApoD-containing lipoproteins might directly bind eicosapentaenoic acid and docosahexaenoic acid. The modulations of the lysophosphatidic acid and sphingosine 1-phosphate levels resulted from the suppression of autotaxin expression and elevation of apolipoprotein M (ApoM), respectively. Moreover, ApoD negatively regulated osteopontin, a proinflammatory adipokine. The activation of PPARg by ApoD might suppress autotaxin and osteopontin. Serum ApoD levels were negatively correlated with the serum osteopontin and autotaxin levels and, positively with serum ApoM levels. CONCLUSION ApoD is an anti-inflammatory apolipoprotein, which modulates lipid mediators and osteopontin in an anti-inflammatory direction.
Collapse
|
3
|
Sanchez D, Ganfornina MD. The Lipocalin Apolipoprotein D Functional Portrait: A Systematic Review. Front Physiol 2021; 12:738991. [PMID: 34690812 PMCID: PMC8530192 DOI: 10.3389/fphys.2021.738991] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Apolipoprotein D is a chordate gene early originated in the Lipocalin protein family. Among other features, regulation of its expression in a wide variety of disease conditions in humans, as apparently unrelated as neurodegeneration or breast cancer, have called for attention on this gene. Also, its presence in different tissues, from blood to brain, and different subcellular locations, from HDL lipoparticles to the interior of lysosomes or the surface of extracellular vesicles, poses an interesting challenge in deciphering its physiological function: Is ApoD a moonlighting protein, serving different roles in different cellular compartments, tissues, or organisms? Or does it have a unique biochemical mechanism of action that accounts for such apparently diverse roles in different physiological situations? To answer these questions, we have performed a systematic review of all primary publications where ApoD properties have been investigated in chordates. We conclude that ApoD ligand binding in the Lipocalin pocket, combined with an antioxidant activity performed at the rim of the pocket are properties sufficient to explain ApoD association with different lipid-based structures, where its physiological function is better described as lipid-management than by long-range lipid-transport. Controlling the redox state of these lipid structures in particular subcellular locations or extracellular structures, ApoD is able to modulate an enormous array of apparently diverse processes in the organism, both in health and disease. The new picture emerging from these data should help to put the physiological role of ApoD in new contexts and to inspire well-focused future research.
Collapse
Affiliation(s)
- Diego Sanchez
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| | - Maria D Ganfornina
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| |
Collapse
|
4
|
Khayat E, Lockhart C, Delfing BM, Smith AK, Klimov DK. Met35 Oxidation Hinders Aβ25-35 Peptide Aggregation within the Dimyristoylphosphatidylcholine Bilayer. ACS Chem Neurosci 2021; 12:3225-3236. [PMID: 34383481 DOI: 10.1021/acschemneuro.1c00407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Using all-atom explicit solvent replica exchange molecular dynamics simulations, we studied the aggregation of oxidized (ox) Aβ25-35 peptides into dimers mediated by the zwitterionic dimyristoylphosphatidylcholine (DMPC) lipid bilayer. By comparing oxAβ25-35 aggregation with that observed for reduced and phosphorylated Aβ25-35 peptides, we elucidated plausible impact of post-translational modifications on cytotoxicity of Aβ peptides involved in Alzheimer's disease. We found that Met35 oxidation reduces helical propensity in oxAβ25-35 peptides bound to the lipid bilayer and enhances backbone fluctuations. These factors destabilize the wild-type head-to-tail dimer interface and lower the aggregation propensity. Met35 oxidation diversifies aggregation pathways by adding monomeric species to the bound conformational ensemble. The oxAβ25-35 dimer becomes partially expelled from the DMPC bilayer and as a result inflicts limited disruption to the bilayer structure compared to wild-type Aβ25-35. Interestingly, the effect of Ser26 phosphorylation is largely opposite, as it preserves the wild-type head-to-tail aggregation interface and strengthens, not weakens, aggregation propensity. The differing effects can be attributed to the sequence locations of these post-translational modifications, since in contrast to Ser26 phosphorylation, Met35 oxidation directly affects the wild-type C-terminal aggregation interface. A comparison with experimental data is provided.
Collapse
Affiliation(s)
- Elias Khayat
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| | - Christopher Lockhart
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| | - Bryan M. Delfing
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| | - Amy K. Smith
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| | - Dmitri K. Klimov
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| |
Collapse
|
5
|
Martínez-Pinilla E, Rubio-Sardón N, Peláez R, García-Álvarez E, del Valle E, Tolivia J, Larráyoz IM, Navarro A. Neuroprotective Effect of Apolipoprotein D in Cuprizone-Induced Cell Line Models: A Potential Therapeutic Approach for Multiple Sclerosis and Demyelinating Diseases. Int J Mol Sci 2021; 22:1260. [PMID: 33514021 PMCID: PMC7866080 DOI: 10.3390/ijms22031260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Apolipoprotein D (Apo D) overexpression is a general finding across neurodegenerative conditions so the role of this apolipoprotein in various neuropathologies such as multiple sclerosis (MS) has aroused a great interest in last years. However, its mode of action, as a promising compound for the development of neuroprotective drugs, is unknown. The aim of this work was to address the potential of Apo D to prevent the action of cuprizone (CPZ), a toxin widely used for developing MS models, in oligodendroglial and neuroblastoma cell lines. On one hand, immunocytochemical quantifications and gene expression measures showed that CPZ compromised neural mitochondrial metabolism but did not induce the expression of Apo D, except in extremely high doses in neurons. On the other hand, assays of neuroprotection demonstrated that antipsychotic drug, clozapine, induced an increase in Apo D synthesis only in the presence of CPZ, at the same time that prevented the loss of viability caused by the toxin. The effect of the exogenous addition of human Apo D, once internalized, was also able to directly revert the loss of cell viability caused by treatment with CPZ by a reactive oxygen species (ROS)-independent mechanism of action. Taken together, our results suggest that increasing Apo D levels, in an endo- or exogenous way, moderately prevents the neurotoxic effect of CPZ in a cell model that seems to replicate some features of MS which would open new avenues in the development of interventions to afford MS-related neuroprotection.
Collapse
Affiliation(s)
- Eva Martínez-Pinilla
- Department of Morphology and Cell Biology, University of Oviedo, 33003 Oviedo, Spain; (N.R.-S.); (E.G.-Á.); (E.d.V.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33003 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Núria Rubio-Sardón
- Department of Morphology and Cell Biology, University of Oviedo, 33003 Oviedo, Spain; (N.R.-S.); (E.G.-Á.); (E.d.V.); (A.N.)
| | - Rafael Peláez
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain; (R.P.); (I.M.L.)
| | - Enrique García-Álvarez
- Department of Morphology and Cell Biology, University of Oviedo, 33003 Oviedo, Spain; (N.R.-S.); (E.G.-Á.); (E.d.V.); (A.N.)
| | - Eva del Valle
- Department of Morphology and Cell Biology, University of Oviedo, 33003 Oviedo, Spain; (N.R.-S.); (E.G.-Á.); (E.d.V.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33003 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jorge Tolivia
- Department of Morphology and Cell Biology, University of Oviedo, 33003 Oviedo, Spain; (N.R.-S.); (E.G.-Á.); (E.d.V.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33003 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Ignacio M. Larráyoz
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain; (R.P.); (I.M.L.)
| | - Ana Navarro
- Department of Morphology and Cell Biology, University of Oviedo, 33003 Oviedo, Spain; (N.R.-S.); (E.G.-Á.); (E.d.V.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33003 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
6
|
Small angle X-ray scattering analysis of ligand-bound forms of tetrameric apolipoprotein-D. Biosci Rep 2021; 41:227100. [PMID: 33399852 PMCID: PMC7786332 DOI: 10.1042/bsr20201423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022] Open
Abstract
Human apolipoprotein-D (apoD) is a glycosylated lipocalin that plays a protective role in Alzheimer's disease due to its antioxidant function. Native apoD from human body fluids forms oligomers, predominantly a stable tetramer. As a lipocalin, apoD binds and transports small hydrophobic molecules such as progesterone, palmitic acid and sphingomyelin. Oligomerisation is a common trait in the lipocalin family and is affected by ligand binding in other lipocalins. The crystal structure of monomeric apoD shows no major changes upon progesterone binding. Here, we used small-angle X-ray scattering (SAXS) to investigate the influence of ligand binding and oxidation on apoD oligomerisation and conformation. As a solution-based technique, SAXS is well suited to detect changes in oligomeric state and conformation in response to ligand binding. Our results show no change in oligomeric state of apoD and no major conformational changes or subunit rearrangements in response to binding of ligands or protein oxidation. This highlights the highly stable structure of the native apoD tetramer under various physiologically relevant experimental conditions.
Collapse
|
7
|
Rassart E, Desmarais F, Najyb O, Bergeron KF, Mounier C. Apolipoprotein D. Gene 2020; 756:144874. [PMID: 32554047 DOI: 10.1016/j.gene.2020.144874] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/28/2022]
Abstract
ApoD is a 25 to 30 kDa glycosylated protein, member of the lipocalin superfamily. As a transporter of several small hydrophobic molecules, its known biological functions are mostly associated to lipid metabolism and neuroprotection. ApoD is a multi-ligand, multi-function protein that is involved lipid trafficking, food intake, inflammation, antioxidative response and development and in different types of cancers. An important aspect of ApoD's role in lipid metabolism appears to involve the transport of arachidonic acid, and the modulation of eicosanoid production and delivery in metabolic tissues. ApoD expression in metabolic tissues has been associated positively and negatively with insulin sensitivity and glucose homeostasis in a tissue dependent manner. ApoD levels rise considerably in association with aging and neuropathologies such as Alzheimer's disease, stroke, meningoencephalitis, moto-neuron disease, multiple sclerosis, schizophrenia and Parkinson's disease. ApoD is also modulated in several animal models of nervous system injury/pathology.
Collapse
Affiliation(s)
- Eric Rassart
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada.
| | - Frederik Desmarais
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada; Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Ouafa Najyb
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Karl-F Bergeron
- Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Catherine Mounier
- Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
8
|
Lockhart C, Smith AK, Klimov DK. Methionine Oxidation Changes the Mechanism of Aβ Peptide Binding to the DMPC Bilayer. Sci Rep 2019; 9:5947. [PMID: 30976055 PMCID: PMC6459879 DOI: 10.1038/s41598-019-42304-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/28/2019] [Indexed: 12/22/2022] Open
Abstract
Using all-atom explicit solvent replica exchange molecular dynamics simulations with solute tempering, we study the effect of methionine oxidation on Aβ10–40 peptide binding to the zwitterionic DMPC bilayer. By comparing oxidized and reduced peptides, we identified changes in the binding mechanism caused by this modification. First, Met35 oxidation unravels C-terminal helix in the bound peptides. Second, oxidation destabilizes intrapeptide interactions and expands bound peptides. We explain these outcomes by the loss of amphiphilic character of the C-terminal helix due to oxidation. Third, oxidation “polarizes” Aβ binding to the DMPC bilayer by strengthening the interactions of the C-terminus with lipids while largely releasing the rest of the peptide from bilayer. Fourth, in contrast to the wild-type peptide, oxidized Aβ induces significantly smaller bilayer thinning and drop in lipid density within the binding footprint. These observations are the consequence of mixing oxidized peptide amino acids with lipids promoted by enhanced Aβ conformational fluctuations. Fifth, methionine oxidation reduces the affinity of Aβ binding to the DMPC bilayer by disrupting favorable intrapeptide interactions upon binding, which offset the gains from better hydration. Reduced binding affinity of the oxidized Aβ may represent the molecular basis for its reduced cytotoxicity.
Collapse
Affiliation(s)
| | - Amy K Smith
- School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Dmitri K Klimov
- School of Systems Biology, George Mason University, Manassas, VA, 20110, USA.
| |
Collapse
|
9
|
Kielkopf CS, Ghosh M, Anand GS, Brown SHJ. HDX-MS reveals orthosteric and allosteric changes in apolipoprotein-D structural dynamics upon binding of progesterone. Protein Sci 2018; 28:365-374. [PMID: 30353968 DOI: 10.1002/pro.3534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/17/2022]
Abstract
Apolipoprotein-D is a glycosylated tetrameric lipocalin that binds and transports small hydrophobic molecules such as progesterone and arachidonic acid. Like other lipocalins, apolipoprotein-D adopts an eight-stranded β-barrel fold stabilized by two intramolecular disulphide bonds, with an adjacent α-helix. Crystallography studies of recombinant apolipoprotein-D demonstrated no major conformational changes upon progesterone binding. Amide hydrogen-deuterium exchange mass spectrometry (HDX-MS) reports structural changes of proteins in solution by monitoring exchange of amide hydrogens in the protein backbone with deuterium. HDX-MS detects changes in conformation and structural dynamics in response to protein function such as ligand binding that may go undetected in X-ray crystallography, making HDX-MS an invaluable orthogonal technique. Here, we report an HDX-MS protocol for apolipoprotein-D that solved challenges of high protein rigidity and low pepsin cleavage using rigorous quenching conditions and longer deuteration times, yielding 85% sequence coverage and 50% deuterium exchange. The relative fractional deuterium exchange of ligand-free apolipoprotein-D revealed apolipoprotein-D to be a highly structured protein. Progesterone binding was detected by significant reduction in deuterium exchange in eight peptides. Stabilization of apolipoprotein-D dynamics can be interpreted as a combined orthosteric effect in the ligand binding pocket and allosteric effect at the N-terminus and C-terminus. Together, our experiments provide insight into apolipoprotein-D structural dynamics and map the effects of progesterone binding that are relayed to distal parts of the protein. The observed stabilization of apolipoprotein-D dynamics upon progesterone binding demonstrates a common behaviour in the lipocalin family and may have implications for interactions of apolipoprotein-D with receptors or lipoprotein particles. Statement: We reveal for the first time how apolipoprotein-D, which is protective in Alzheimer's disease, becomes more ordered when bound to a molecule of steroid hormone. These results significantly extend the understanding of apolipoprotein-D structure from X-ray crystallography studies by incorporating information on how protein motion changes over time. To achieve these results an improved protocol was developed, suitable for proteins similar to apolipoprotein-D, to elucidate how proteins change flexibility when binding to small molecules.
Collapse
Affiliation(s)
- Claudia S Kielkopf
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia.,Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia.,School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Madhubrata Ghosh
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Simon H J Brown
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia.,Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia.,School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
10
|
Glasgow BJ, Abduragimov AR. Ligand binding complexes in lipocalins: Underestimation of the stoichiometry parameter (n). BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:1001-1007. [PMID: 30037780 PMCID: PMC6481938 DOI: 10.1016/j.bbapap.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/15/2018] [Accepted: 07/03/2018] [Indexed: 11/18/2022]
Abstract
The stoichiometry of a ligand binding reaction to a protein is given by a parameter (n). The value of this parameter may indicate the presence of protein monomer or dimers in the binding complex. Members of the lipocalin superfamily show variation in the stoichiometry of binding to ligands. In some cases the stoichiometry parameter (n) has been variously reported for the same protein as mono- and multimerization of the complex. Prime examples include retinol binding protein, β lactoglobulin and tear lipocalin, also called lipocalin-1(LCN1). Recent work demonstrated the stoichiometric ratio for ceramide:tear lipocalin varied (range n = 0.3-0.75) by several different methods. The structure of ceramide raises the intriguing possibility of a lipocalin dimer complex with each lipocalin molecule attached to one of the two alkyl chains of ceramide. The stoichiometry of the ceramide-tear lipocalin binding complex was explored in detail using size exclusion chromatography and time resolved fluorescence anisotropy. Both methods showed consistent results that tear lipocalin remains monomeric when bound to ceramide. Delipidation experiments suggest the most likely explanation is that the low 'n' values result from prior occupancy of the binding sites by native ligands. Lipocalins such as tear lipocalin that have numerous binding partners are particularly prone to an underestimated apparent stoichiometry parameter.
Collapse
Affiliation(s)
- Ben J Glasgow
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza Rm. BH 623, Los Angeles, CA 90095, United States.
| | - Adil R Abduragimov
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza Rm. BH 623, Los Angeles, CA 90095, United States
| |
Collapse
|
11
|
Kielkopf CS, Low JKK, Mok YF, Bhatia S, Palasovski T, Oakley AJ, Whitten AE, Garner B, Brown SHJ. Identification of a novel tetrameric structure for human apolipoprotein-D. J Struct Biol 2018; 203:205-218. [PMID: 29885491 DOI: 10.1016/j.jsb.2018.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/18/2018] [Accepted: 05/30/2018] [Indexed: 10/14/2022]
Abstract
Apolipoprotein-D is a 25 kDa glycosylated member of the lipocalin family that folds into an eight-stranded β-barrel with a single adjacent α-helix. Apolipoprotein-D specifically binds a range of small hydrophobic ligands such as progesterone and arachidonic acid and has an antioxidant function that is in part due to the reduction of peroxidised lipids by methionine-93. Therefore, apolipoprotein-D plays multiple roles throughout the body and is protective in Alzheimer's disease, where apolipoprotein-D overexpression reduces the amyloid-β burden in Alzheimer's disease mouse models. Oligomerisation is a common feature of lipocalins that can influence ligand binding. The native structure of apolipoprotein-D, however, has not been conclusively defined. Apolipoprotein-D is generally described as a monomeric protein, although it dimerises when reducing peroxidised lipids. Here, we investigated the native structure of apolipoprotein-D derived from plasma, breast cyst fluid (BCF) and cerebrospinal fluid. In plasma and cerebrospinal fluid, apolipoprotein-D was present in high-molecular weight complexes, potentially in association with lipoproteins. In contrast, apolipoprotein-D in BCF formed distinct oligomeric species. We assessed apolipoprotein-D oligomerisation using native apolipoprotein-D purified from BCF and a suite of complementary methods, including multi-angle laser light scattering, analytical ultracentrifugation and small-angle X-ray scattering. Our analyses showed that apolipoprotein-D predominantly forms a ∼95 to ∼100 kDa tetramer. Small-angle X-ray scattering analysis confirmed these findings and provided a structural model for apolipoprotein-D tetramer. These data indicate apolipoprotein-D rarely exists as a free monomer under physiological conditions and provide insights into novel native structures of apolipoprotein-D and into oligomerisation behaviour in the lipocalin family.
Collapse
Affiliation(s)
- Claudia S Kielkopf
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia.
| | - Yee-Foong Mok
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia.
| | - Surabhi Bhatia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia.
| | - Tony Palasovski
- Illawarra and Shoalhaven Local Health District (ISLHD), Wollongong, NSW, Australia; Specialist Breast Clinic Sutherland Shire and Wollongong, NSW, Australia; Integrated Specialist Health Care Sutherland Shire, NSW, Australia
| | - Aaron J Oakley
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia; School of Chemistry, University of Wollongong, Wollongong, NSW, Australia.
| | - Andrew E Whitten
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia.
| | - Brett Garner
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| | - Simon H J Brown
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
12
|
Kliuchnikova AA, Samokhina NI, Ilina IY, Karpov DS, Pyatnitskiy MA, Kuznetsova KG, Toropygin IY, Kochergin SA, Alekseev IB, Zgoda VG, Archakov AI, Moshkovskii SA. Human aqueous humor proteome in cataract, glaucoma, and pseudoexfoliation syndrome. Proteomics 2017; 16:1938-46. [PMID: 27193151 DOI: 10.1002/pmic.201500423] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 05/04/2016] [Accepted: 05/16/2016] [Indexed: 12/28/2022]
Abstract
Twenty-nine human aqueous humor samples from patients with eye diseases such as cataract and glaucoma with and without pseudoexfoliation syndrome were characterized by LC-high resolution MS analysis. In total, 269 protein groups were identified with 1% false discovery rate including 32 groups that were not reported previously for this biological fluid. Since the samples were analyzed individually, but not pooled, 36 proteins were identified in all samples, comprising the constitutive proteome of the fluid. The most dominant molecular function of aqueous humor proteins as determined by GO analysis is endopeptidase inhibitor activity. Label-free protein quantification showed no significant difference between glaucoma and cataract aqueous humor proteomes. At the same time, we found decrease in the level of apolipoprotein D as a marker of the pseudoexfoliation syndrome. The data are available from ProteomeXchange repository (PXD002623).
Collapse
Affiliation(s)
| | - Nadezhda I Samokhina
- Institute of Biomedical Chemistry, Moscow, Russia.,Russian Medical Academy of Postgraduate Education, Moscow, Russia
| | | | - Dmitry S Karpov
- Institute of Biomedical Chemistry, Moscow, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail A Pyatnitskiy
- Institute of Biomedical Chemistry, Moscow, Russia.,Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | | | | | | | - Igor B Alekseev
- Russian Medical Academy of Postgraduate Education, Moscow, Russia
| | | | | | - Sergei A Moshkovskii
- Institute of Biomedical Chemistry, Moscow, Russia.,Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| |
Collapse
|
13
|
Najyb O, Do Carmo S, Alikashani A, Rassart E. Apolipoprotein D Overexpression Protects Against Kainate-Induced Neurotoxicity in Mice. Mol Neurobiol 2016; 54:3948-3963. [PMID: 27271124 PMCID: PMC7091089 DOI: 10.1007/s12035-016-9920-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 05/03/2016] [Indexed: 01/23/2023]
Abstract
Excitotoxicity due to the excessive activation of glutamatergic receptors leads to neuronal dysfunction and death. Excitotoxicity has been implicated in the pathogenesis of a myriad of neurodegenerative diseases with distinct etiologies such as Alzheimer's and Parkinson's. Numerous studies link apolipoprotein D (apoD), a secreted glycoprotein highly expressed in the central nervous system (CNS), to maintain and protect neurons in various mouse models of acute stress and neurodegeneration. Here, we used a mouse model overexpressing human apoD in neurons (H-apoD Tg) to test the neuroprotective effects of apoD in the kainic acid (KA)-lesioned hippocampus. Our results show that apoD overexpression in H-apoD Tg mice induces an increased resistance to KA-induced seizures, significantly attenuates inflammatory responses and confers protection against KA-induced cell apoptosis in the hippocampus. The apoD-mediated protection against KA-induced toxicity is imputable in part to increased plasma membrane Ca2+ ATPase type 2 expression (1.7-fold), decreased N-methyl-D-aspartate receptor (NMDAR) subunit NR2B levels (30 %) and lipid metabolism alterations. Indeed, we demonstrate that apoD can attenuate intracellular cholesterol content in primary hippocampal neurons and in brain of H-apoD Tg mice. In addition, apoD can be internalised by neurons and this internalisation is accentuated in ageing and injury conditions. Our results provide additional mechanistic information on the apoD-mediated neuroprotection in neurodegenerative conditions.
Collapse
Affiliation(s)
- Ouafa Najyb
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, QC, H3C-3P8, Canada
| | - Sonia Do Carmo
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, QC, H3C-3P8, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Azadeh Alikashani
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, QC, H3C-3P8, Canada
| | - Eric Rassart
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, QC, H3C-3P8, Canada.
| |
Collapse
|
14
|
Li H, Ruberu K, Karl T, Garner B. Cerebral Apolipoprotein-D Is Hypoglycosylated Compared to Peripheral Tissues and Is Variably Expressed in Mouse and Human Brain Regions. PLoS One 2016; 11:e0148238. [PMID: 26829325 PMCID: PMC4734669 DOI: 10.1371/journal.pone.0148238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/14/2016] [Indexed: 01/26/2023] Open
Abstract
Recent studies have shown that cerebral apoD levels increase with age and in Alzheimer’s disease (AD). In addition, loss of cerebral apoD in the mouse increases sensitivity to lipid peroxidation and accelerates AD pathology. Very little data are available, however, regarding the expression of apoD protein levels in different brain regions. This is important as both brain lipid peroxidation and neurodegeneration occur in a region-specific manner. Here we addressed this using western blotting of seven different regions (olfactory bulb, hippocampus, frontal cortex, striatum, cerebellum, thalamus and brain stem) of the mouse brain. Our data indicate that compared to most brain regions, the hippocampus is deficient in apoD. In comparison to other major organs and tissues (liver, spleen, kidney, adrenal gland, heart and skeletal muscle), brain apoD was approximately 10-fold higher (corrected for total protein levels). Our analysis also revealed that brain apoD was present at a lower apparent molecular weight than tissue and plasma apoD. Utilising peptide N-glycosidase-F and neuraminidase to remove N-glycans and sialic acids, respectively, we found that N-glycan composition (but not sialylation alone) were responsible for this reduction in molecular weight. We extended the studies to an analysis of human brain regions (hippocampus, frontal cortex, temporal cortex and cerebellum) where we found that the hippocampus had the lowest levels of apoD. We also confirmed that human brain apoD was present at a lower molecular weight than in plasma. In conclusion, we demonstrate apoD protein levels are variable across different brain regions, that apoD levels are much higher in the brain compared to other tissues and organs, and that cerebral apoD has a lower molecular weight than peripheral apoD; a phenomenon that is due to the N-glycan content of the protein.
Collapse
Affiliation(s)
- Hongyun Li
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Kalani Ruberu
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Tim Karl
- Neuroscience Research Australia, Randwick, NSW 2031, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Schizophrenia Research Institute, Randwick, NSW 2031, Australia
| | - Brett Garner
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
- * E-mail:
| |
Collapse
|
15
|
Apolipoprotein D subcellular distribution pattern in neuronal cells during oxidative stress. Acta Histochem 2015; 117:536-44. [PMID: 25953740 DOI: 10.1016/j.acthis.2015.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/09/2015] [Accepted: 04/14/2015] [Indexed: 12/19/2022]
Abstract
Apolipoprotein D (Apo D) is a secreted glycoprotein, member of the lipocalin superfamily, with a related beneficial role in metabolism and lipid transport due to the presence of a binding pocket that allows its interaction with several lipids. Nowadays, it has been clearly demonstrated that Apo D expression is induced and its subcellular location undergoes modifications in stressful and pathological conditions that characterize aging processes and neurodegenerative diseases. The aim of the present work was to study in detail the effect of H2O2 on the subcellular location of Apo D, in the hippocampal cell line HT22, by structural, ultrastructural, immunocytochemical, and molecular techniques in order to characterize the Apo D distribution pattern in neurons during oxidative stress. Our results indicate that Apo D is located in the cytoplasm under physiological conditions but treatment with H2O2 induces apoptosis and causes a displacement of Apo D location to the nucleus, coinciding with DNA fragmentation. In addition, we demonstrated that Apo D tends to accumulate around the nuclear envelope in neurons and glial cells of different brain areas in some neurodegenerative diseases and during human aging, but never inside the nucleus. These data suggest that the presence of Apo D in the nucleus, which some authors related with a specific transport, is a consequence of structural and functional alterations during oxidative stress and not the result of a specific role in the regulation of nuclear processes.
Collapse
|
16
|
Najyb O, Brissette L, Rassart E. Apolipoprotein D Internalization Is a Basigin-dependent Mechanism. J Biol Chem 2015; 290:16077-87. [PMID: 25918162 DOI: 10.1074/jbc.m115.644302] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 01/07/2023] Open
Abstract
Apolipoprotein D (apoD), a member of the lipocalin family, is a 29-kDa secreted glycoprotein that binds and transports small lipophilic molecules. Expressed in several tissues, apoD is up-regulated under different stress stimuli and in a variety of pathologies. Numerous studies have revealed that overexpression of apoD led to neuroprotection in various mouse models of acute stress and neurodegeneration. This multifunctional protein is internalized in several cells types, but the specific internalization mechanism remains unknown. In this study, we demonstrate that the internalization of apoD involves a specific cell surface receptor in 293T cells, identified as the transmembrane glycoprotein basigin (BSG, CD147); more particularly, its low glycosylated form. Our results show that internalized apoD colocalizes with BSG into vesicular compartments. Down-regulation of BSG disrupted the internalization of apoD in cells. In contrast, overexpression of basigin in SH-5YSY cells, which poorly express BSG, restored the uptake of apoD. Cyclophilin A, a known ligand of BSG, competitively reduced apoD internalization, confirming that BSG is a key player in the apoD internalization process. In summary, our results demonstrate that basigin is very likely the apoD receptor and provide additional clues on the mechanisms involved in apoD-mediated functions, including neuroprotection.
Collapse
Affiliation(s)
- Ouafa Najyb
- From the Laboratoire de Biologie Moléculaire and
| | - Louise Brissette
- Laboratoire du Métabolisme des Lipoprotéines, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Succursale Centre-ville, Montréal, Quebec H3C 3P8, Canada
| | - Eric Rassart
- From the Laboratoire de Biologie Moléculaire and
| |
Collapse
|
17
|
Li H, Ruberu K, Muñoz SS, Jenner AM, Spiro A, Zhao H, Rassart E, Sanchez D, Ganfornina MD, Karl T, Garner B. Apolipoprotein D modulates amyloid pathology in APP/PS1 Alzheimer's disease mice. Neurobiol Aging 2015; 36:1820-33. [PMID: 25784209 DOI: 10.1016/j.neurobiolaging.2015.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/22/2015] [Accepted: 02/10/2015] [Indexed: 11/24/2022]
Abstract
Apolipoprotein D (apoD) is expressed in the brain and levels are increased in affected brain regions in Alzheimer's disease (AD). The role that apoD may play in regulating AD pathology has not been addressed. Here, we crossed both apoD-null mice and Thy-1 human apoD transgenic mice with APP-PS1 amyloidogenic AD mice. Loss of apoD resulted in a nearly 2-fold increase in hippocampal amyloid plaque load, as assessed by immunohistochemical staining. Conversely, transgenic expression of neuronal apoD reduced hippocampal plaque load by approximately 35%. This latter finding was associated with a 60% decrease in amyloid β 1-40 peptide levels, and a 34% decrease in insoluble amyloid β 1-42 peptide. Assessment of β-site amyloid precursor protein cleaving enzyme-1 (BACE1) levels and proteolytic products of amyloid precursor protein and neuregulin-1 point toward a possible association of altered BACE1 activity in association with altered apoD levels. In conclusion, the current studies provide clear evidence that apoD regulates amyloid plaque pathology in a mouse model of AD.
Collapse
Affiliation(s)
- Hongyun Li
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Kalani Ruberu
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Sonia Sanz Muñoz
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Andrew M Jenner
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Adena Spiro
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Hua Zhao
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Eric Rassart
- Laboratoire de biologie moléculaire, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Canada; BioMed, centre de recherches biomédicales, Université du Québec à Montréal, Montréal, Canada
| | - Diego Sanchez
- Departamento de Bioquímica y Biología Molecular y Fisiología - Instituto de Biología y Genética Molecular, Universidad de Valladolid - CSIC, Valladolid, Spain
| | - Maria D Ganfornina
- Departamento de Bioquímica y Biología Molecular y Fisiología - Instituto de Biología y Genética Molecular, Universidad de Valladolid - CSIC, Valladolid, Spain
| | - Tim Karl
- Neuroscience Research Australia, Randwick, NSW, Australia; School of Medical Sciences, University of New South Wales, NSW, Australia; Schizophrenia Research Institute, Darlinghurst, NSW, Australia
| | - Brett Garner
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, NSW, Australia.
| |
Collapse
|
18
|
Thibaut HJ, van der Linden L, Jiang P, Thys B, Canela MD, Aguado L, Rombaut B, Wimmer E, Paul A, Pérez-Pérez MJ, van Kuppeveld FJM, Neyts J. Binding of glutathione to enterovirus capsids is essential for virion morphogenesis. PLoS Pathog 2014; 10:e1004039. [PMID: 24722756 PMCID: PMC3983060 DOI: 10.1371/journal.ppat.1004039] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 02/17/2014] [Indexed: 11/18/2022] Open
Abstract
Enteroviruses (family of the Picornaviridae) cover a large group of medically important human pathogens for which no antiviral treatment is approved. Although these viruses have been extensively studied, some aspects of the viral life cycle, in particular morphogenesis, are yet poorly understood. We report the discovery of TP219 as a novel inhibitor of the replication of several enteroviruses, including coxsackievirus and poliovirus. We show that TP219 binds directly glutathione (GSH), thereby rapidly depleting intracellular GSH levels and that this interferes with virus morphogenesis without affecting viral RNA replication. The inhibitory effect on assembly was shown not to depend on an altered reducing environment. Using TP219, we show that GSH is an essential stabilizing cofactor during the transition of protomeric particles into pentameric particles. Sequential passaging of coxsackievirus B3 in the presence of low GSH-levels selected for GSH-independent mutants that harbored a surface-exposed methionine in VP1 at the interface between two protomers. In line with this observation, enteroviruses that already contained this surface-exposed methionine, such as EV71, did not rely on GSH for virus morphogenesis. Biochemical and microscopical analysis provided strong evidence for a direct interaction between GSH and wildtype VP1 and a role for this interaction in localizing assembly intermediates to replication sites. Consistently, the interaction between GSH and mutant VP1 was abolished resulting in a relocalization of the assembly intermediates to replication sites independent from GSH. This study thus reveals GSH as a novel stabilizing host factor essential for the production of infectious enterovirus progeny and provides new insights into the poorly understood process of morphogenesis. Enteroviruses contain many significant human pathogens, including poliovirus, enterovirus 71, coxsackieviruses and rhinoviruses. Most enterovirus infections subside mild or asymptomatically, but may also result in severe morbidity and mortality. Here, we report on the mechanism of antiviral action of a small molecule, TP219, as an inhibitor of enterovirus morphogenesis. Morphogenesis represents an important stage at the end of the virus replication cycle and requires multiple steps, of which some are only poorly understood. Better understanding of this process holds much potential to facilitate the development of new therapies to combat enterovirus infections. We demonstrate that TP219 rapidly depletes intracellular glutathione (GSH) by covalently binding free GSH resulting in the inhibition of virus morphogenesis without affecting viral RNA replication. We discovered that GSH directly interacts with viral capsid precursors and mature virions and that this interaction is required for the formation of an assembly intermediate (pentameric particles) and consequently infectious progeny. Remarkably, enteroviruses that were capable of replicating in the absence of GSH contained a surface-exposed methionine at the protomeric interface. We propose that GSH is an essential and stabilizing host factor during morphogenesis and that this stabilization is a prerequisite for a functional encapsidation of progeny viral RNA.
Collapse
Affiliation(s)
- Hendrik Jan Thibaut
- Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Lonneke van der Linden
- Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
- Department Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Ping Jiang
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Bert Thys
- Department of Pharmaceutical Biotechnology & Molecular Biology, Vrije Universiteit Brussel, Brussel, Belgium
| | | | - Leire Aguado
- Instituto de Química Médica (IQM-CSIC), Madrid, Spain
| | - Bart Rombaut
- Department of Pharmaceutical Biotechnology & Molecular Biology, Vrije Universiteit Brussel, Brussel, Belgium
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Aniko Paul
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | | | - Frank J. M. van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Johan Neyts
- Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
19
|
Dassati S, Waldner A, Schweigreiter R. Apolipoprotein D takes center stage in the stress response of the aging and degenerative brain. Neurobiol Aging 2014; 35:1632-42. [PMID: 24612673 PMCID: PMC3988949 DOI: 10.1016/j.neurobiolaging.2014.01.148] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/17/2014] [Accepted: 01/30/2014] [Indexed: 02/08/2023]
Abstract
Apolipoprotein D (ApoD) is an ancient member of the lipocalin family with a high degree of sequence conservation from insects to mammals. It is not structurally related to other major apolipoproteins and has been known as a small, soluble carrier protein of lipophilic molecules that is mostly expressed in neurons and glial cells within the central and peripheral nervous system. Recent data indicate that ApoD not only supplies cells with lipophilic molecules, but also controls the fate of these ligands by modulating their stability and oxidation status. Of particular interest is the binding of ApoD to arachidonic acid and its derivatives, which play a central role in healthy brain function. ApoD has been shown to act as a catalyst in the reduction of peroxidized eicosanoids and to attenuate lipid peroxidation in the brain. Manipulating its expression level in fruit flies and mice has demonstrated that ApoD has a favorable effect on both stress resistance and life span. The APOD gene is the gene that is upregulated the most in the aging human brain. Furthermore, ApoD levels in the nervous system are elevated in a large number of neurologic disorders including Alzheimer's disease, schizophrenia, and stroke. There is increasing evidence for a prominent neuroprotective role of ApoD because of its antioxidant and anti-inflammatory activity. ApoD emerges as an evolutionarily conserved anti-stress protein that is induced by oxidative stress and inflammation and may prove to be an effective therapeutic agent against a variety of neuropathologies, and even against aging.
Collapse
Affiliation(s)
- Sarah Dassati
- Department of Neurological Rehabilitation, Private Hospital "Villa Melitta", Bolzano, Italy
| | - Andreas Waldner
- Department of Neurological Rehabilitation, Private Hospital "Villa Melitta", Bolzano, Italy
| | - Rüdiger Schweigreiter
- Division of Neurobiochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|
20
|
Fogelman AM, Reddy ST, Navab M. Protection against ischemia/reperfusion injury by high-density lipoprotein and its components. Circ Res 2013; 113:1281-2. [PMID: 24311615 DOI: 10.1161/circresaha.113.302943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Alan M Fogelman
- From the Departments of Medicine (A.M.F., S.T.R., M.N.), Obstetrics and Gynecology (S.T.R.), and Molecular and Medical Pharmacology (S.T.R.), David Geffen School of Medicine at UCLA, Los Angeles, CA
| | | | | |
Collapse
|
21
|
Identification of apolipoprotein D as a cardioprotective gene using a mouse model of lethal atherosclerotic coronary artery disease. Proc Natl Acad Sci U S A 2013; 110:17023-8. [PMID: 24082102 DOI: 10.1073/pnas.1315986110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mice with homozygous null mutations in the HDL receptor (scavenger receptor class B, type I, or SR-BI) and apolipoprotein E (apoE) genes [SR-BI/apoE double KO (SR-BI(-/-)/apoE(-/-) or dKO) mice] spontaneously develop occlusive, atherosclerotic coronary artery disease (CAD) and die prematurely (50% mortality at 42 d of age). Using microarray mRNA expression profiling, we identified genes whose expression in the hearts of dKO mice changed substantially during disease progression [at 21 d of age (no CAD), 31 d of age (small myocardial infarctions), and 43 d of age (extensive myocardial infarctions) vs. CAD-free SR-BI(+/-)/apoE(-/-) controls]. Expression of most genes that increased >sixfold in dKO hearts at 43 d also increased after coronary artery ligation. We examined the influence and potential mechanism of action of apolipoprotein D (apoD) whose expression in dKO hearts increased 80-fold by 43 d. Analysis of ischemia/reperfusion-induced myocardial infarction in both apoD KO mice and wild-type mice with abnormally high plasma levels of apoD (adenovirus-mediated hepatic overexpression) established that apoD reduces myocardial infarction. There was a correlation of apoD's ability to protect primary cultured rat cardiomyocytes from hypoxia/reoxygenation injury with its potent ability to inhibit oxidation in a standard antioxidation assay in vitro. We conclude that dKO mice represent a useful mouse model of CAD and apoD may be part of an intrinsic cardioprotective system, possibly as a consequence of its antioxidation activity.
Collapse
|