1
|
Ungvari A, Kiss T, Gulej R, Tarantini S, Csik B, Yabluchanskiy A, Mukli P, Csiszar A, Harris ML, Ungvari Z. Irradiation-induced hair graying in mice: an experimental model to evaluate the effectiveness of interventions targeting oxidative stress, DNA damage prevention, and cellular senescence. GeroScience 2024; 46:3105-3122. [PMID: 38182857 PMCID: PMC11009199 DOI: 10.1007/s11357-023-01042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/10/2023] [Indexed: 01/07/2024] Open
Abstract
Hair graying, also known as canities or achromotrichia, is a natural phenomenon associated with aging and is influenced by external factors such as stress, environmental toxicants, and radiation exposure. Understanding the mechanisms underlying hair graying is an ideal approach for developing interventions to prevent or reverse age-related changes in regenerative tissues. Hair graying induced by ionizing radiation (γ-rays or X-rays) has emerged as a valuable experimental model to investigate the molecular pathways involved in this process. In this review, we examine the existing evidence on radiation-induced hair graying, with a particular focus on the potential role of radiation-induced cellular senescence. We explore the current understanding of hair graying in aging, delve into the underlying mechanisms, and highlight the unique advantages of using ionizing-irradiation-induced hair graying as a research model. By elucidating the molecular pathways involved, we aim to deepen our understanding of hair graying and potentially identify novel therapeutic targets to address this age-related phenotypic change.
Collapse
Affiliation(s)
- Anna Ungvari
- Department of Public Health, Semmelweis University, Budapest, Hungary.
| | - Tamas Kiss
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, Hungary
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Boglarka Csik
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Melissa L Harris
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zoltan Ungvari
- Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
2
|
Zhang W, Jin M, Li T, Lu Z, Wang H, Yuan Z, Wei C. Whole-Genome Resequencing Reveals Selection Signal Related to Sheep Wool Fineness. Animals (Basel) 2023; 13:2944. [PMID: 37760343 PMCID: PMC10526036 DOI: 10.3390/ani13182944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Wool fineness affects the quality of wool, and some studies have identified about forty candidate genes that affect sheep wool fineness, but these genes often reveal only a certain proportion of the variation in wool thickness. We further explore additional genes associated with the fineness of sheep wool. Whole-genome resequencing of eight sheep breeds was performed to reveal selection signals associated with wool fineness, including four coarse wool and four fine/semi-fine wool sheep breeds. Multiple methods to reveal selection signals (Fst and θπ Ratio and XP-EHH) were applied for sheep wool fineness traits. In total, 269 and 319 genes were annotated in the fine wool (F vs. C) group and the coarse wool (C vs. F) group, such as LGR4, PIK3CA, and SEMA3C and NFIB, OPHN1, and THADA. In F vs. C, 269 genes were enriched in 15 significant GO Terms (p < 0.05) and 38 significant KEGG Pathways (p < 0.05), such as protein localization to plasma membrane (GO: 0072659) and Inositol phosphate metabolism (oas 00562). In C vs. F, 319 genes were enriched in 21 GO Terms (p < 0.05) and 16 KEGG Pathways (p < 0.05), such as negative regulation of focal adhesion assembly (GO: 0051895) and Axon guidance (oas 04360). Our study has uncovered genomic information pertaining to significant traits in sheep and has identified valuable candidate genes. This will pave the way for subsequent investigations into related traits.
Collapse
Affiliation(s)
- Wentao Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Meilin Jin
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Taotao Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China;
| | - Huihua Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Zehu Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China;
| | - Caihong Wei
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| |
Collapse
|
3
|
Sikkink SK, Mine S, Freis O, Danoux L, Tobin DJ. Stress-sensing in the human greying hair follicle: Ataxia Telangiectasia Mutated (ATM) depletion in hair bulb melanocytes in canities-prone scalp. Sci Rep 2020; 10:18711. [PMID: 33128003 PMCID: PMC7603349 DOI: 10.1038/s41598-020-75334-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Canities (or hair greying) is an age-linked loss of the natural pigment called melanin from hair. While the specific cause(s) underlying the loss of melanogenically-active melanocytes from the anagen hair bulbs of affected human scalp remains unclear, oxidative stress sensing appears to be a key factor involved. In this study, we examined the follicular melanin unit in variably pigmented follicles from the aging human scalp of healthy individuals (22-70 years). Over 20 markers were selected within the following categories: melanocyte-specific, apoptosis, cell cycle, DNA repair/damage, senescence and oxidative stress. As expected, a reduction in melanocyte-specific markers in proportion to the extent of canities was observed. A major finding of our study was the intense and highly specific nuclear expression of Ataxia Telangiectasia Mutated (ATM) protein within melanocytes in anagen hair follicle bulbs. ATM is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks and functions as an important sensor of reactive oxygen species (ROS) in human cells. The incidence and expression level of ATM correlated with pigmentary status in canities-affected hair follicles. Moreover, increased staining of the redox-associated markers 8-OHdG, GADD45 and GP-1 were also detected within isolated bulbar melanocytes, although this change was not clearly associated with donor age or canities extent. Surprisingly, we were unable to detect any specific change in the expression of other markers of oxidative stress, senescence or DNA damage/repair in the canities-affected melanocytes compared to surrounding bulbar keratinocytes. By contrast, several markers showed distinct expression of markers for oxidative stress and apoptosis/differentiation in the inner root sheath (IRS) as well as other parts of the hair follicle. Using our in vitro model of primary human scalp hair follicle melanocytes, we showed that ATM expression increased after incubation with the pro-oxidant hydrogen peroxide (H2O2). In addition, this ATM increase was prevented by pre-incubation of cells with antioxidants. The relationship between ATM and redox stress sensing was further evidenced as we observed that the inhibition of ATM expression by chemical inhibition promoted the loss of melanocyte viability induced by oxidative stress. Taken together these new findings illustrate the key role of ATM in the protection of human hair follicle melanocytes from oxidative stress/damage within the human scalp hair bulb. In conclusion, these results highlight the remarkable complexity and role of redox sensing in the status of human hair follicle growth, differentiation and pigmentation.
Collapse
Affiliation(s)
- Stephen K Sikkink
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, Richmond Rd., Bradford, BD7 1DP, West Yorkshire, UK.
| | - Solene Mine
- BASF Beauty Care Solutions France S.A.S., Pulnoy, France
| | - Olga Freis
- BASF Beauty Care Solutions France S.A.S., Pulnoy, France
| | - Louis Danoux
- BASF Beauty Care Solutions France S.A.S., Pulnoy, France
| | - Desmond J Tobin
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, Richmond Rd., Bradford, BD7 1DP, West Yorkshire, UK. .,The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
4
|
Giuliani A, Lorenzini L, Baldassarro VA, Pannella M, Cescatti M, Fernandez M, Alastra G, Flagelli A, Villetti G, Imbimbo BP, Giardino L, Calzà L. Effects of Topical Application of CHF6467, a Mutated Form of Human Nerve Growth Factor, on Skin Wound Healing in Diabetic Mice. J Pharmacol Exp Ther 2020; 375:317-331. [PMID: 32948647 DOI: 10.1124/jpet.120.000110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
Nerve growth factor (NGF) is the protein responsible for the development and maintenance of sensory skin innervation. Given the role of appropriate innervation in skin healing, NGF has been indicated as a possible prohealing treatment in pathologic conditions characterized by nerve-ending loss, such as chronic ulcers in diabetes; however, its use as a therapeutic agent is limited by its hyperalgesic effect. We tested the effect of topical application of the nonalgogenic NGF derivative hNGFP61S/R100E in two models of skin ulcer induced in dbdb diabetic mice, investigating healing time, skin histology, reinnervation, and angiogenesis using morphologic and molecular approaches. We showed that the topical administration of CHF6467, a recombinant human NGF in which an amino acid substitution (R100E) abolished the hyperalgesic effect usually associated with NGF, accelerated skin repair in experimental wounds (full-excision and pressure-ulcer) induced in diabetic mice (dbdb). CHF6467-induced acceleration of wound healing was accompanied by increased re-epithelization, reinnervation, and revascularization as assessed by histology, immunohistochemistry, and image analysis. Bioinformatic analysis of differentially expressed genes and signaling pathways in the wound tissues showed that protein kinase B-mammalian target of rapamycin was the most regulated pathway. In spite of the transdermal absorption leading to measurable, dose-dependent increases in CHF6467 plasma levels, no systemic thermal or local mechanical hyperalgesia was observed in treated mice. When tested in vitro in human cell lines, CHF6467 stimulated keratinocyte and fibroblast proliferation and tube formation by endothelial cells. Collectively, these results support a possible use of CHF6467 as a prohealing agent in skin lesions in diabetes. SIGNIFICANCE STATEMENT: Topical application of CHF6467 accelerates reinnervation, neoangiogenesis, and wound healing in diabetic mice in both full-thickness skin-excision and pressure-ulcer models through the protein kinase B/mammalian target of rapamycin pathway and does not induce hyperalgesia.
Collapse
Affiliation(s)
- A Giuliani
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - L Lorenzini
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - V A Baldassarro
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - M Pannella
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - M Cescatti
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - M Fernandez
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - G Alastra
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - A Flagelli
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - G Villetti
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - B P Imbimbo
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - L Giardino
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - L Calzà
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| |
Collapse
|
5
|
Mwacharo JM, Kim ES, Elbeltagy AR, Aboul-Naga AM, Rischkowsky BA, Rothschild MF. Genomic footprints of dryland stress adaptation in Egyptian fat-tail sheep and their divergence from East African and western Asia cohorts. Sci Rep 2017; 7:17647. [PMID: 29247174 PMCID: PMC5732286 DOI: 10.1038/s41598-017-17775-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/20/2017] [Indexed: 01/08/2023] Open
Abstract
African indigenous sheep are classified as fat-tail, thin-tail and fat-rump hair sheep. The fat-tail are well adapted to dryland environments, but little is known on their genome profiles. We analyzed patterns of genomic variation by genotyping, with the Ovine SNP50K microarray, 394 individuals from five populations of fat-tail sheep from a desert environment in Egypt. Comparative inferences with other East African and western Asia fat-tail and European sheep, reveal at least two phylogeographically distinct genepools of fat-tail sheep in Africa that differ from the European genepool, suggesting separate evolutionary and breeding history. We identified 24 candidate selection sweep regions, spanning 172 potentially novel and known genes, which are enriched with genes underpinning dryland adaptation physiology. In particular, we found selection sweeps spanning genes and/or pathways associated with metabolism; response to stress, ultraviolet radiation, oxidative stress and DNA damage repair; activation of immune response; regulation of reproduction, organ function and development, body size and morphology, skin and hair pigmentation, and keratinization. Our findings provide insights on the complexity of genome architecture regarding dryland stress adaptation in the fat-tail sheep and showcase the indigenous stocks as appropriate genotypes for adaptation planning to sustain livestock production and human livelihoods, under future climates.
Collapse
Affiliation(s)
- Joram M Mwacharo
- Small Ruminant Genomics Group, International Center for Agricultural Research in the Dry Areas (ICARDA), P. O. Box 5689, Addis Ababa, Ethiopia.
| | - Eui-Soo Kim
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011-3150, USA
| | - Ahmed R Elbeltagy
- Animal Production Research Institute (APRI), Agriculture Research Centre (ARC), Ministry of Agriculture, Nadi Elsaid Street, Dokki, Cairo, Egypt
| | - Adel M Aboul-Naga
- Animal Production Research Institute (APRI), Agriculture Research Centre (ARC), Ministry of Agriculture, Nadi Elsaid Street, Dokki, Cairo, Egypt
| | - Barbara A Rischkowsky
- Small Ruminant Genomics Group, International Center for Agricultural Research in the Dry Areas (ICARDA), P. O. Box 5689, Addis Ababa, Ethiopia
| | - Max F Rothschild
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011-3150, USA
| |
Collapse
|
6
|
miRNA signatures and transcriptional regulation of their target genes in vitiligo. J Dermatol Sci 2016; 84:50-58. [DOI: 10.1016/j.jdermsci.2016.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/05/2016] [Accepted: 07/04/2016] [Indexed: 12/18/2022]
|
7
|
Liu M, Wu R, Yang F, Wang T, Zhang P, Gu J, Wan D, Yang S. Identification of FN1BP1 as a novel cell cycle regulator through modulating G1 checkpoint in human hepatocarcinoma Hep3B cells. PLoS One 2013; 8:e57574. [PMID: 23469028 PMCID: PMC3585200 DOI: 10.1371/journal.pone.0057574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/22/2013] [Indexed: 01/05/2023] Open
Abstract
A novel human gene, FN1BP1 (fibronectin 1 binding protein 1), was identified using the human placenta cDNA library. Northern blotting showed a transcript of ∼2.8 kb in human placenta, liver, and skeletal muscle tissues. This mRNA transcript length was similar to the full FN1BP1 sequence obtained previously. We established a conditionally induced stable cell line of Hep3B-Tet-on-FN1BP1 to investigate the preliminary function and mechanism of the secretory FN1BP1 protein. Cell-proliferation and colony-conformation assays demonstrated that FN1BP1 protein suppressed Hep3B cell growth and colonization in vitro. Analysis of Atlas human cDNA expression indicated that after FN1BP1 Dox-inducing expression for 24 h, 19 genes were up-regulated and 22 genes were down-regulated more than two-fold. Most of these gene changes were related to cell-cycle-arrest proteins (p21cip1, p15, and cyclin E1), transcription factors (general transcription factors, zinc finger proteins, transcriptional enhancer factors), SWI/SNF (SWItch/Sucrose NonFermentable) complex units, early-response proteins, and nerve growth or neurotrophic factors. Down-regulated genes were subject to colony-stimulating factors (e.g., GMSFs), and many repair genes were involved in DNA damage (RAD, ERCC, DNA topoisomerase, polymerase, and ligase). Some interesting genes (p21cip1, ID2, GMSF, ERCC5, and RPA1), which changed in the cDNA microarray analysis, were confirmed by semi-qRT-PCR, and similar changes in expression were observed. FCM cell-cycle analysis indicated that FN1BP1 over-expression could result in G1 phase arrest. FN1BP1 might inhibit cell growth and/or colony conformation through G1 phase arrest of the Hep3B cell cycle. These results indicate the potential role of FN1BP1 as a treatment target for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mei Liu
- The Jingsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiaotong University, Shanghai, China
| | - Ronghua Wu
- The Jingsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Fuye Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiaotong University, Shanghai, China
| | - Tao Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiaotong University, Shanghai, China
| | - Pingping Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiaotong University, Shanghai, China
| | - Jianren Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiaotong University, Shanghai, China
| | - Dafang Wan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiaotong University, Shanghai, China
| | - Shengli Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiaotong University, Shanghai, China
- * E-mail:
| |
Collapse
|