1
|
Santa Cruz-Pavlovich FJ, Bolaños-Chang AJ, Del Rio-Murillo XI, Aranda-Preciado GA, Razura-Ruiz EM, Santos A, Navarro-Partida J. Beyond Vision: An Overview of Regenerative Medicine and Its Current Applications in Ophthalmological Care. Cells 2024; 13:179. [PMID: 38247870 PMCID: PMC10814238 DOI: 10.3390/cells13020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Regenerative medicine (RM) has emerged as a promising and revolutionary solution to address a range of unmet needs in healthcare, including ophthalmology. Moreover, RM takes advantage of the body's innate ability to repair and replace pathologically affected tissues. On the other hand, despite its immense promise, RM faces challenges such as ethical concerns, host-related immune responses, and the need for additional scientific validation, among others. The primary aim of this review is to present a high-level overview of current strategies in the domain of RM (cell therapy, exosomes, scaffolds, in vivo reprogramming, organoids, and interspecies chimerism), centering around the field of ophthalmology. A search conducted on clinicaltrials.gov unveiled a total of at least 209 interventional trials related to RM within the ophthalmological field. Among these trials, there were numerous early-phase studies, including phase I, I/II, II, II/III, and III trials. Many of these studies demonstrate potential in addressing previously challenging and degenerative eye conditions, spanning from posterior segment pathologies like Age-related Macular Degeneration and Retinitis Pigmentosa to anterior structure diseases such as Dry Eye Disease and Limbal Stem Cell Deficiency. Notably, these therapeutic approaches offer tailored solutions specific to the underlying causes of each pathology, thus allowing for the hopeful possibility of bringing forth a treatment for ocular diseases that previously seemed incurable and significantly enhancing patients' quality of life. As advancements in research and technology continue to unfold, future objectives should focus on ensuring the safety and prolonged viability of transplanted cells, devising efficient delivery techniques, etc.
Collapse
Affiliation(s)
- Francisco J. Santa Cruz-Pavlovich
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Andres J. Bolaños-Chang
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Ximena I. Del Rio-Murillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | | | - Esmeralda M. Razura-Ruiz
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| |
Collapse
|
2
|
Li H, Gu J, Sun X, Zuo Q, Li B, Gu X. Isolation of Swine Bone Marrow Lin-/CD45-/CD133 + Cells and Cardio-protective Effects of its Exosomes. Stem Cell Rev Rep 2023; 19:213-229. [PMID: 35925437 PMCID: PMC9822881 DOI: 10.1007/s12015-022-10432-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND The identification in murine bone marrow (BM) of CD133 + /Lin-/CD45- cells, possessing several features of pluripotent stem cells, encouraged us to investigate if similar population of cells could be also isolated from the swine BM. Heart failure is the terminal stage of many cardiovascular diseases, and its key pathological basis is cardiac fibrosis (CF). Research showed that stem cell derived exosomes may play a critical role in cardiac fibrosis. The effect of exosomes (Exos) on CF has remained unclear. OBJECTIVE To establish an isolation and amplification method of CD133 + /Lin-/CD45- cells from newbron swine BM in vitro, explore an highly efficient method to enrich swine bone marrow derived CD133 + /Lin-/CD45- cells and probe into their biological characteristics further. Furher more, to extract exosomes from it and explore its effect on CF. METHODS The mononuclear cells isolated from swine bone marrow by red blood cell (RBC) lysing buffer were coated by adding FcR blocking solution and coupled with CD133 antibody immunomagnetic beads, obtaining CD133 + cell group via Magnetic Activated Cell Sorting (MACS). In steps, the CD133 + /Lin-/CD45- cells were collected by fluorescence-activated cell sorting (FACS) labeled with CD133, Lin and CD45 antibodies, which were cultured and amplified in vitro. The biological features of CD133 + /Lin-/CD45- cells were studied in different aspects, including morphological trait observed with inverted microscope, ultrastructural characteristics observed under transmission electron microscope, expression of pluripotent markersidentified by immunofluorescent staining and Alkaline phosphatase staining. The Exos were extracted using a sequential centrifugation approach and its effects on CF were analyzed in Angiotensin II (Ang-II) induced-cardiac fibrosis in vivo. Rats in each group were treated for 4 weeks, and 2D echocardiography was adopted to evaluate the heart function. The degree of cardiac fibrosis was assessed by Hematoxylin-Eosin (HE) and Masson's trichrome staining. RESULTS The CD133 + /Lin-/CD45- cells accounted for about 0.2%-0.5% of the total mononuclear cells isolated from swine bone marrow. The combination of MACS and FACS to extract CD133 + /Lin-/CD45- cells could improved efficiency and reduced cell apoptosis. The CD133 + /Lin-/CD45- cells featured typical traits of pluripotent stem cells, the nucleus is large, mainly composed of euchromatin, with less cytoplasm and larger nucleoplasmic ratio, which expressed pluripotent markers (SSEA-1, Oct-4, Nanog and Sox-2) and alkaline phosphatase staining was positive.Animal experiment indicated that the cardiac injury related indexes (BNP、cTnI、CK-MB and TNF-α), the expression of key gene Smad3 and the degree of cardiac fibrosis in Exo treatment group were significantly reduced compared with the control group. 4 weeks after the treatment, cardiac ejection fraction (EF) value in the model group showed a remarkable decrease, indicating the induction of HF model. While Exo elevated the EF values, demonstrating cardio-protective effects. CONCLUSION The CD133 + /Lin-/CD45- cells derived from swine bone marrow were successfully isolated and amplified, laying a good foundation for further research on this promising therapeutic cell. The Exos may be a promising potential treatment strategy for CF.
Collapse
Affiliation(s)
- Hongxiao Li
- Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, 225001, Jiangsu, China
| | - Jianjun Gu
- Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, 225001, Jiangsu, China
| | - Xiaolin Sun
- Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, 225001, Jiangsu, China
| | - Qisheng Zuo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Bichun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Xiang Gu
- Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, China.
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
3
|
Waszczuk K, Kucharska-Mazur J, Tyburski E, Rek-Owodziń K, Plichta P, Rudkowski K, Podwalski P, Grąźlewski T, Mak M, Misiak B, Michalczyk A, Tarnowski M, Sielatycka K, Szczęśniak A, Łuczkowska K, Dołęgowska B, Budkowska M, Ratajczak MZ, Samochowiec J. Psychopathology and Stem Cell Mobilization in Ultra-High Risk of Psychosis and First-Episode Psychosis Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106001. [PMID: 35627537 PMCID: PMC9141672 DOI: 10.3390/ijerph19106001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023]
Abstract
Although regenerative and inflammatory processes are involved in the etiopathogenesis of many psychiatric disorders, their roles are poorly understood. We investigate the potential role of stem cells (SC) and factors influencing the trafficking thereof, such as complement cascade (CC) components, phospholipid substrates, and chemokines, in the etiology of schizophrenia. We measured sphingosine-1-phosphate (S1P), stromal-derived factor 1 (SDF-1), and CC cleavage fragments (C3a, C5a, and C5b-C9; also known as the membrane attack complex) in the peripheral blood of 49 unrelated patients: 9 patients with ultra-high risk of psychosis (UHR), 22 patients with first-episode psychosis (FEP), and 18 healthy controls (HC). When compared with the HC group, the UHR and FEP groups had higher levels of C3a. We found no significant differences in hematopoietic SC, very small embryonic-like stem cell (VSEL), C5a, S1P, or SDF-1 levels in the UHR and FEP groups. However, among FEP patients, there was a significant positive correlation between VSELs (CD133+) and negative symptoms. These preliminary findings support the role of the immune system and regenerative processes in the etiology of schizophrenia. To establish the relevance of SC and other factors affecting the trafficking thereof as potential biomarkers of schizophrenia, more studies on larger groups of individuals from across the disease spectrum are needed.
Collapse
Affiliation(s)
- Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland; (J.K.-M.); (K.R.); (P.P.); (T.G.); (A.M.); (J.S.)
- Correspondence: ; Tel./Fax: +48-91-35-11-322
| | - Jolanta Kucharska-Mazur
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland; (J.K.-M.); (K.R.); (P.P.); (T.G.); (A.M.); (J.S.)
| | - Ernest Tyburski
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland; (E.T.); (K.R.-O.); (P.P.); (M.M.)
| | - Katarzyna Rek-Owodziń
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland; (E.T.); (K.R.-O.); (P.P.); (M.M.)
| | - Piotr Plichta
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland; (E.T.); (K.R.-O.); (P.P.); (M.M.)
| | - Krzysztof Rudkowski
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland; (J.K.-M.); (K.R.); (P.P.); (T.G.); (A.M.); (J.S.)
| | - Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland; (J.K.-M.); (K.R.); (P.P.); (T.G.); (A.M.); (J.S.)
| | - Tomasz Grąźlewski
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland; (J.K.-M.); (K.R.); (P.P.); (T.G.); (A.M.); (J.S.)
| | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland; (E.T.); (K.R.-O.); (P.P.); (M.M.)
| | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland; (J.K.-M.); (K.R.); (P.P.); (T.G.); (A.M.); (J.S.)
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian University of Medicine, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Katarzyna Sielatycka
- Institute of Biology, Faculty of Exact and Natural Sciences, University of Szczecin, Felczaka 3c, 71-415 Szczecin, Poland;
| | - Angelika Szczęśniak
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (A.S.); (B.D.)
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (A.S.); (B.D.)
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Mariusz Z. Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40292, USA;
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland; (J.K.-M.); (K.R.); (P.P.); (T.G.); (A.M.); (J.S.)
| |
Collapse
|
4
|
Aquino JB, Sierra R, Montaldo LA. Diverse cellular origins of adult blood vascular endothelial cells. Dev Biol 2021; 477:117-132. [PMID: 34048734 DOI: 10.1016/j.ydbio.2021.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022]
Abstract
During embryonic stages, vascular endothelial cells (ECs) originate from the mesoderm, at specific extraembryonic and embryonic regions, through a process called vasculogenesis. In the adult, EC renewal/replacement mostly depend on local resident ECs or endothelial progenitor cells (EPCs). Nevertheless, contribution from circulating ECs/EPCs was also reported. In addition, cells lacking from EC/EPC markers with in vitro extended plasticity were shown to originate endothelial-like cells (ELCs). Most of these cells consist of mesenchymal stromal progenitors, which would eventually get mobilized from the bone marrow after injury. Based on that, current knowledge on different mouse and human bone marrow stromal cell (BM-SC) subpopulations, able to contribute with mesenchymal stromal/stem cells (MSCs), is herein reviewed. Such analyses underline an unexpected heterogeneity among sinusoidal LepR+ stromal/CAR cells. For instance, in a recent report a subgroup of LepR+ stromal/CAR progenitors, which express GLAST and is traced in Wnt1Cre;R26RTom mice, was found to contribute with ELCs in vivo. These GLAST + Wnt1+ BM-SCs were shown to get mobilized to the peripheral blood and to contribute with liver regeneration. Other sources of ELCs, such as adipose, neural and dental pulp tissues, were also published. Finally, mechanisms likely involved in the enhanced cellular plasticity properties of bone marrow/adipose tissue stromal cells, able to originate ELCs, are assessed. In the future, strategies to analyze the in vivo expression profile of stromal cells, with MSC properties, in combination with screening of active genomic regions at the single cell-level, during early postnatal development and/or after injury, will likely help understanding properties of these ELC sources.
Collapse
Affiliation(s)
- Jorge B Aquino
- CONICET-Universidad Austral, Instituto de Investigaciones en Medicina Traslacional (IIMT), Developmental Biology & Regenerative Medicine Laboratory, Argentina.
| | - Romina Sierra
- CONICET-Universidad Austral, Instituto de Investigaciones en Medicina Traslacional (IIMT), Developmental Biology & Regenerative Medicine Laboratory, Argentina
| | - Laura A Montaldo
- CONICET-Universidad Austral, Instituto de Investigaciones en Medicina Traslacional (IIMT), Developmental Biology & Regenerative Medicine Laboratory, Argentina
| |
Collapse
|
5
|
Vermeulen M, Giudice MG, Del Vento F, Wyns C. Role of stem cells in fertility preservation: current insights. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2019; 12:27-48. [PMID: 31496751 PMCID: PMC6689135 DOI: 10.2147/sccaa.s178490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022]
Abstract
While improvements made in the field of cancer therapy allow high survival rates, gonadotoxicity of chemo- and radiotherapy can lead to infertility in male and female pre- and postpubertal patients. Clinical options to preserve fertility before starting gonadotoxic therapies by cryopreserving sperm or oocytes for future use with assisted reproductive technology (ART) are now applied worldwide. Cryopreservation of pre- and postpubertal ovarian tissue containing primordial follicles, though still considered experimental, has already led to the birth of healthy babies after autotransplantation and is performed in an increasing number of centers. For prepubertal boys who do not produce gametes ready for fertilization, cryopreservation of immature testicular tissue (ITT) containing spermatogonial stem cells may be proposed as an experimental strategy with the aim of restoring fertility. Based on achievements in nonhuman primates, autotransplantation of ITT or testicular cell suspensions appears promising to restore fertility of young cancer survivors. So far, whether in two- or three-dimensional culture systems, in vitro maturation of immature male and female gonadal cells or tissue has not demonstrated a capacity to produce safe gametes for ART. Recently, primordial germ cells have been generated from embryonic and induced pluripotent stem cells, but further investigations regarding efficiency and safety are needed. Transplantation of mesenchymal stem cells to improve the vascularization of gonadal tissue grafts, increase the colonization of transplanted cells, and restore the damaged somatic compartment could overcome the current limitations encountered with transplantation.
Collapse
Affiliation(s)
- Maxime Vermeulen
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, 1200, Belgium
| | - Maria-Grazia Giudice
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, 1200, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels 1200, Belgium
| | - Federico Del Vento
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, 1200, Belgium
| | - Christine Wyns
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, 1200, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels 1200, Belgium
| |
Collapse
|
6
|
Gounari E, Daniilidis A, Tsagias N, Michopoulou A, Kouzi K, Koliakos G. Isolation of a novel embryonic stem cell cord blood-derived population with in vitro hematopoietic capacity in the presence of Wharton's jelly-derived mesenchymal stromal cells. Cytotherapy 2018; 21:246-259. [PMID: 30522805 DOI: 10.1016/j.jcyt.2018.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND Recent studies highlight the existence of a population of cord blood (CB)-derived stem cells that bare embryonic features (very small embryonic-like stem cells [VSELs]) as the most primitive CB-stem cell population. In the present study, we present for the first time a novel and high purity isolation method of VSELs with in vitro hematopoietic capacity in the presence of Wharton's jelly-derived mesenchymal stromal cells (WJ-MSCs). METHODS The experimental procedure includes isolation upon gradually increased centrifugation spins and chemotaxis to Stromal cell-derived factor 1a (SDF-1a). Τhis cell population is characterized with flow cytometry, alkaline phosphatase (ALP) staining and qRT-PCR. The functional role of the isolated VSELs is assayed following co-culture with WJ-MSCs or bone marrow-derived mesenchymal stromal cells (BM-MSCs), whereas the stimulation of the quiescent VSEL population is verified via cell cycle analysis. The in vitro hematopoietic capacity is evaluated in methylcellulose cultures and also through induction of erythroid differentiation. RESULTS The final isolated subpopulation is characterized as a small-sized CD45/Lineage-/CXCR4+/CD133+/SSEA-4+cell population, positive in ALP staining and overexpressing the Oct3/4, Nanog and Sox-2 transcription factors. Upon the co-culture with MSCs, a stimulation of the quiescent VSEL population is observed. An impressive increase in the co-expression of the CD34+/CD45+ markers is observed following the co-culture with the WJ-MSCs, which is confirmed by the intense clonogenic ability suggesting in vitro differentiation toward all of the hematopoietic cell lineages and successful differentiation toward erythrocytes. DISCUSSION Conclusively, we propose a novel, rapid and rather simplified isolation method of CB-VSELs, capable of in vitro hematopoiesis.
Collapse
Affiliation(s)
- Eleni Gounari
- Biohellenika Biotechnology Company, Thessaloniki, Greece; Department of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Angelos Daniilidis
- 2nd Department of Obstetrics and Gynecology, Hippokratio General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Anna Michopoulou
- Biohellenika Biotechnology Company, Thessaloniki, Greece; Department of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kokkona Kouzi
- Biohellenika Biotechnology Company, Thessaloniki, Greece; Department of Histology Embryology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Koliakos
- Biohellenika Biotechnology Company, Thessaloniki, Greece; Department of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
7
|
Galkowski D, Ratajczak MZ, Kocki J, Darzynkiewicz Z. Of Cytometry, Stem Cells and Fountain of Youth. Stem Cell Rev Rep 2018; 13:465-481. [PMID: 28364326 DOI: 10.1007/s12015-017-9733-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Outlined are advances of cytometry applications to identify and sort stem cells, of laser scanning cytometry and ImageStream imaging instrumentation to further analyze morphometry of these cells, and of mass cytometry to classify a multitude of cellular markers in large cell populations. Reviewed are different types of stem cells, including potential candidates for cancer stem cells, with respect to their "stemness", and other characteristics. Appraised is further progress in identification and isolation of the "very small embryonic-like stem cells" (VSELs) and their autogenous transplantation for tissue repair and geroprotection. Also assessed is a function of hyaluronic acid, the major stem cells niche component, as a guardian and controller of stem cells. Briefly appraised are recent advances and challenges in the application of stem cells in regenerative medicine and oncology and their future role in different disciplines of medicine, including geriatrics.
Collapse
Affiliation(s)
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University in Lublin, 20-080, Lublin, Poland
| | - Zbigniew Darzynkiewicz
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, NY, 10095, USA.
| |
Collapse
|
8
|
Reeve RL, Yammine SZ, Morshead CM, van der Kooy D. Quiescent Oct4 + Neural Stem Cells (NSCs) Repopulate Ablated Glial Fibrillary Acidic Protein + NSCs in the Adult Mouse Brain. Stem Cells 2017; 35:2071-2082. [PMID: 28733998 DOI: 10.1002/stem.2662] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 05/19/2017] [Accepted: 06/13/2017] [Indexed: 11/12/2022]
Abstract
Adult primitive neural stem cells (pNSCs) are a rare population of glial fibrillary acidic protein (GFAP)- Oct4+ cells in the mouse forebrain subependymal zone bordering the lateral ventricles that give rise to clonal neurospheres in leukemia inhibitory factor in vitro. pNSC neurospheres can be passaged to self-renew or give rise to GFAP+ NSCs that form neurospheres in epidermal growth factor and fibroblast growth factor 2, which we collectively refer to as definitive NSCs (dNSCs). Label retention experiments using doxycycline-inducible histone-2B (H2B)-green fluorescent protein (GFP) mice and several chase periods of up to 1 year quantified the adult pNSC cell cycle time as 3-5 months. We hypothesized that while pNSCs are not very proliferative at baseline, they may exist as a reserve pool of NSCs in case of injury. To test this function of pNSCs, we obtained conditional Oct4 knockout mice, Oct4fl/fl ;Sox1Cre (Oct4CKO ), which do not yield adult pNSC-derived neurospheres. When we ablated the progeny of pNSCs, namely all GFAP+ dNSCs, in these Oct4CKO mice, we found that dNSCs did not recover as they do in wild-type mice, suggesting that pNSCs are necessary for dNSC repopulation. Returning to the H2B-GFP mice, we observed that the cytosine β-d-arabinofuranoside ablation of proliferating cells including dNSCs-induced quiescent pNSCs to proliferate and significantly dilute their H2B-GFP label. In conclusion, we demonstrate that pNSCs are the most quiescent stem cells in the adult brain reported to date and that their lineage position upstream of GFAP+ dNSCs allows them to repopulate a depleted neural lineage. Stem Cells 2017;35:2071-2082.
Collapse
Affiliation(s)
- Rachel L Reeve
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Samantha Z Yammine
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | - Derek van der Kooy
- Institute of Medical Sciences, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
Putative germline and pluripotent stem cells in adult mouse ovary and their in vitro differentiation potential into oocyte-like and somatic cells. ZYGOTE 2017; 25:358-375. [PMID: 28669362 DOI: 10.1017/s0967199417000235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
According to classical knowledge of reproductive biology, in the ovary of female mammals there is a limited number of oocytes and there is no possibility of renewal if the oocytes are lost due to disease or injury. However, in recent years, the results of some studies on renewal and formation of oocytes and follicles in the adult mammalian ovary have led to the questioning of this opinion. The aim of our study is to demonstrate the presence of putative germline and pluripotent stem cells in the adult mouse ovary and their differentiation potential into germ and somatic cells. In ovary tissues and cells harvested from pre-differentiation step, the expression of pluripotent and germline stem cell markers was analysed by reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence staining and western blotting. Embryoid bodies that formed in this step were analysed using immunofluorescence staining and transmission electron microscopy. Ovarian stem cells were induced to differentiate into oocyte, osteoblast, chondrocyte and neural cells. Besides morphological observation, differentiated cells were analysed by RT-PCR, histochemical and immunofluorescence staining. Expression of germline and pluripotent stem cell markers both in mRNA and at the protein level were detected in the pre-differentiated cells and ovary tissues. As a result of the differentiation process, the formation of oocyte-like cells, osteoblasts, chondrocytes and neural cells was observed and characteristics of differentiated cells were confirmed using the methods mentioned above. Our study results revealed that the adult mouse ovary contains germline and pluripotent stem cells with the capacity to differentiate into oocyte-like cells, osteoblasts, chondrocytes and neural cells.
Collapse
|
10
|
Monti M, Imberti B, Bianchi N, Pezzotta A, Morigi M, Del Fante C, Redi CA, Perotti C. A Novel Method for Isolation of Pluripotent Stem Cells from Human Umbilical Cord Blood. Stem Cells Dev 2017; 26:1258-1269. [PMID: 28583028 DOI: 10.1089/scd.2017.0012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Very small embryonic-like cells (VSELs) are a population of very rare pluripotent stem cells isolated in adult murine bone marrow and many other tissues and organs, including umbilical cord blood (UCB). VSEL existence is still not universally accepted by the scientific community, so for this purpose, we sought to investigate whether presumptive VSELs (pVSELs) could be isolated from human UCB with an improved protocol based on the isolation of enriched progenitor cells by depletion of nonprogenitor cells with magnetic separation. Progenitor cells, likely including VSELs, cultured with retinoic acid were able to form dense colonies and cystic embryoid bodies and to differentiate toward the ecto-meso-endoderm lineages as shown by the positivity to specific markers. VSEL differentiative potential toward mesodermal lineage was further demonstrated in vitro upon exposure to an established inductive protocol, which induced the acquisition of renal progenitor cell phenotype. VSEL-derived renal progenitors showed regenerative potential in a cisplatin model of acute kidney injury by restoring renal function and tubular structure through induction of proliferation of endogenous renal cells. The data presented here foster the great debate that surrounds VSELs and, more in general, the existence of cells endowed with pluripotent features in adult tissues. In fact, the possibility to find and isolate subpopulations of cells that fully fit all the criteria utilized to define pluripotency remains, nowadays, almost unproven. Thus, efforts to better characterize the phenotype of these intriguing cells are crucial to understand their possible applications for regenerative and precision medicine purposes.
Collapse
Affiliation(s)
- Manuela Monti
- 1 Research Center for Regenerative Medicine, Biotechnologies Research Laboratories, Fondazione IRCCS Policlinico San Matteo , Pavia, Italy
| | - Barbara Imberti
- 2 Cell Biology and Regenerative Medicine Laboratory, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso , Bergamo, Italy .,3 Scientific Department, Fondazione IRCCS Policlinico San Matteo , Pavia, Italy
| | - Niccolò Bianchi
- 1 Research Center for Regenerative Medicine, Biotechnologies Research Laboratories, Fondazione IRCCS Policlinico San Matteo , Pavia, Italy
| | - Anna Pezzotta
- 2 Cell Biology and Regenerative Medicine Laboratory, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso , Bergamo, Italy
| | - Marina Morigi
- 2 Cell Biology and Regenerative Medicine Laboratory, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso , Bergamo, Italy
| | - Claudia Del Fante
- 4 Immunohaematology and Transfusion Service, Fondazione IRCCS Policlinico San Matteo , Pavia, Italy
| | - Carlo Alberto Redi
- 5 Department of Biology and Biotechnology "L. Spallanzani," University of Pavia , Pavia, Italy
| | - Cesare Perotti
- 4 Immunohaematology and Transfusion Service, Fondazione IRCCS Policlinico San Matteo , Pavia, Italy
| |
Collapse
|
11
|
Zhang S, Zhao L, Wang J, Chen N, Yan J, Pan X. HIF-2α and Oct4 have synergistic effects on survival and myocardial repair of very small embryonic-like mesenchymal stem cells in infarcted hearts. Cell Death Dis 2017; 8:e2548. [PMID: 28079892 PMCID: PMC5386383 DOI: 10.1038/cddis.2016.480] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/08/2016] [Accepted: 12/13/2016] [Indexed: 12/26/2022]
Abstract
Poor cell survival and limited functional benefits have restricted mesenchymal stem cell (MSC) efficacy for treating myocardial infarction (MI), suggesting that a better understanding of stem cell biology is needed. The transcription factor HIF-2α is an essential regulator of the transcriptional response to hypoxia, which can interact with embryonic stem cells (ESCs) transcription factor Oct4 and modulate its signaling. Here, we obtained very small embryonic-like mesenchymal stem cells (vselMSCs) from MI patients, which possessed the very small embryonic-like stem cells' (VSELs) morphology as well as ESCs' pluripotency. Using microarray analysis, we compared HIF-2α-regulated gene profiles in vselMSCs with ESC profiles and determined that HIF-2α coexpressed Oct4 in vselMSCs similarly to ESCs. However, this coexpression was absent in unpurified MSCs (uMSCs). Under hypoxic condition, vselMSCs exhibited stronger survival, proliferation and differentiation than uMSCs. Transplantation of vselMSCs caused greater improvement in cardiac function and heart remodeling in the infarcted rats. We further demonstrated that HIF-2α and Oct4 jointly regulate their relative downstream gene expressions, including Bcl2 and Survivin; the important pluripotent markers Nanog, Klf4, and Sox2; and Ang-1, bFGF, and VEGF, promoting angiogenesis and engraftment. Importantly, these effects were generally magnified by upregulation of HIF-2α and Oct4 induced by HIF-2α or Oct4 overexpression, and the greatest improvements were elicited after co-overexpressing HIF-2α and Oct4; overexpressing one transcription factor while silencing the other canceled this increase, and HIF-2α or Oct4 silencing abolished these effects. Together, these findings demonstrated that HIF-2α in vselMSCs cooperated with Oct4 in survival and function. The identification of the cooperation between HIF-2α and Oct4 will lead to deeper characterization of the downstream targets of this interaction in vselMSCs and will have novel pathophysiological implications for the repair of infarcted myocardium.
Collapse
Affiliation(s)
- Shaoheng Zhang
- Department of Cardiology, the Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Road, Tianhe District, Guangzhou 510630, China
| | - Lan Zhao
- Department of Cardiology, Dahua Hospital, 901 Laohumin Rd, Xuhui District, Shanghai 200237, China
| | - Jiahong Wang
- Department of Cardiology, Yangpu Hospital, Tongji Univercity School of Medicine, 450 Tengyue Rd, Shanghai 200090, China
| | - Nannan Chen
- Department of Cardiology, Yangpu Hospital, Tongji Univercity School of Medicine, 450 Tengyue Rd, Shanghai 200090, China
| | - Jian Yan
- Department of Cardiology, Dahua Hospital, 901 Laohumin Rd, Xuhui District, Shanghai 200237, China
| | - Xin Pan
- Central Laboratory, Yangpu Hospital, Tongji Univercity School of Medicine, 450 Tengyue Rd, Shanghai 200090, China
| |
Collapse
|
12
|
Wu J, Sun Y, Block TJ, Marinkovic M, Zhang ZL, Chen R, Yin Y, Song J, Dean DD, Lu Z, Chen XD. Umbilical cord blood-derived non-hematopoietic stem cells retrieved and expanded on bone marrow-derived extracellular matrix display pluripotent characteristics. Stem Cell Res Ther 2016; 7:176. [PMID: 27906056 PMCID: PMC5134264 DOI: 10.1186/s13287-016-0437-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/24/2016] [Accepted: 11/08/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Umbilical cord blood (UCB) not only contains hematopoietic stem cells (HSCs), but also non-hematopoietic stem cells (NHSCs) that are able to differentiate into a number of distinct cell types. Based on studies published to date, the frequency of NHSCs in UCB is believed to be very low. However, the isolation of these cells is primarily based on their adhesion to tissue culture plastic surfaces. METHODS AND RESULTS In the current study, we demonstrate that this approach overlooks some of the extremely immature NHSCs because they lack the ability to adhere to plastic. Using a native extracellular matrix (ECM), produced by bone marrow (BM) stromal cells, the majority of the UCB-NHSCs attached within 4 h. The colony-forming unit fibroblast frequency of these cells was 1.5 × 104/108 mononuclear cells, which is at least 4000-fold greater than previously reported for UCB-NHSCs. The phenotype of these cells was fibroblast-like and different from those obtained by plastic adhesion; they formed embryonic body-like clusters that were OCT4-positive and expressed other human embryonic stem cell-related markers. Importantly, when implanted subcutaneously for 8 weeks into immunocompromised mice, these ECM-adherent and expanded NHSCs generated three germ layer-derived human tissues including muscle, fat, blood vessel, bone, gland, and nerve. Moreover, injection of these cells into muscle damaged by cryoinjury significantly accelerated muscle regeneration. CONCLUSIONS These results indicate that UCB may be a virtually unlimited source of NHSCs when combined with isolation and expansion on ECM. NHSCs may be a practical alternative to embryonic stem cells for a number of therapeutic applications.
Collapse
Affiliation(s)
- Junjie Wu
- Research Division, Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA.,Department of Orthodontics, Fourth Military Medical University, School of Stomatology, Xi'an, Shaanxi Province, 710032, People's Republic of China
| | - Yun Sun
- Research Division, Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA.,Center for Reproductive Medicine, Ren-Ji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai, 200135, People's Republic of China
| | - Travis J Block
- Research Division, Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Milos Marinkovic
- Research Division, Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Zhi-Liang Zhang
- Research Division, Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA.,Department of Plastic Surgery, Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, People's Republic of China
| | - Richard Chen
- Research Division, Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - Yixia Yin
- Research Division, Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA.,Biomedical Materials Engineering Research Center, Wuhan University of Technology, Wuhan, People's Republic of China
| | - Juquan Song
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - David D Dean
- Research Division, Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Zhongding Lu
- Research Division, Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA.
| | - Xiao-Dong Chen
- Research Division, Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA. .,Research Service, Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, 78229-4404, USA.
| |
Collapse
|
13
|
Lee S, Lee CM, Kim SC. Adult human pancreas-derived cells expressing stage-specific embryonic antigen 4 differentiate into Sox9-expressing and Ngn3-expressing pancreatic ducts in vivo. Stem Cell Res Ther 2016; 7:162. [PMID: 27836003 PMCID: PMC5105312 DOI: 10.1186/s13287-016-0422-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/10/2016] [Accepted: 10/14/2016] [Indexed: 12/28/2022] Open
Abstract
Background Tissue-specific stem/progenitor cells are found in various adult tissues and may have the capacity for lineage-specific differentiation, facilitating applications in autologous transplantation. Stage-specific embryonic antigen 4 (SSEA-4), an early embryonic glycolipid antigen, is expressed in cells derived from adult human pancreas exocrine tissue. Here, we examined the characteristics and lineage-specific differentiation capacity of SSEA-4+ cells. Methods Human adult partial pancreas tissues were obtained from different donors and cultured in vitro. SSEA-4+ and CA19-9+ cells were isolated from adult human pancreas exocrine cells using magnetic-activated cell sorting, and gene expression was validated by quantitative polymerase chain reaction. To confirm in-vivo differentiation, SSEA-4+ and CA19-9+ cells were transplanted into the dorsal subcutaneous region of mice. Finally, morphological features of differentiated areas were confirmed by immunostaining and morphometric analysis. Results SSEA-4-expressing cells were detected in isolated pancreas exocrine cells from adult humans. These SSEA-4+ cells exhibited coexpression of CA19-9, a marker of pancreatic duct cells, but not amylase expression, as shown by immunostaining and flow cytometry. SSEA-4+ cells exhibited higher relative expression of Oct4, Nanog, Klf4, Sox2, and c-Myc mRNAs than CA19-9+ cells. Pancreatic intralobular ducts (PIDs) were generated from SSEA-4+ or CA19-9+ cells in vivo at 5 weeks after transplantation. However, newly formed PIDs from CA19-9+ cells were less abundant and showed an incomplete PID morphology. In contrast, newly formed PIDs from SSEA-4+ cells were abundant in the transplanted area and showed a crowded morphology, typical of PIDs. Sox9 and Ngn3, key transcription factors associated with pancreatic development and regeneration, were expressed in PIDs from SSEA-4+ cells. Conclusions SSEA-4-expressing cells in the adult human pancreas may have the potential for regeneration of the pancreas and may be used as a source of stem/progenitor cells for pancreatic cell lineage-specific differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0422-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Song Lee
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea.,Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Chan Mi Lee
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea.,Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Song Cheol Kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea. .,Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
14
|
Bhartiya D, Shaikh A, Anand S, Patel H, Kapoor S, Sriraman K, Parte S, Unni S. Endogenous, very small embryonic-like stem cells: critical review, therapeutic potential and a look ahead. Hum Reprod Update 2016; 23:41-76. [PMID: 27614362 DOI: 10.1093/humupd/dmw030] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Both pluripotent very small embryonic-like stem cells (VSELs) and induced pluripotent stem (iPS) cells were reported in 2006. In 2012, a Nobel Prize was awarded for iPS technology whereas even today the very existence of VSELs is not well accepted. The underlying reason is that VSELs exist in low numbers, remain dormant under homeostatic conditions, are very small in size and do not pellet down at 250-280g. The VSELs maintain life-long tissue homeostasis, serve as a backup pool for adult stem cells and are mobilized under stress conditions. An imbalance in VSELs function (uncontrolled proliferation) may result in cancer. SEARCH METHODS The electronic database 'Medline/Pubmed' was systematically searched with the subject heading term 'very small embryonic-like stem cells'. OBJECTIVE AND RATIONALE The most primitive stem cells that undergo asymmetric cell divisions to self-renew and give rise to progenitors still remain elusive in the hematopoietic system and testes, while the presence of stem cells in ovary is still being debated. We propose to review the available literature on VSELs, the methods of their isolation and characterization, their ontogeny, how they compare with embryonic stem (ES) cells, primordial germ cells (PGCs) and iPS cells, and their role in maintaining tissue homeostasis. The review includes a look ahead on how VSELs will result in paradigm shifts in basic reproductive biology. OUTCOMES Adult tissue-specific stem cells including hematopoietic, spermatogonial, ovarian and mesenchymal stem cells have good proliferation potential and are indeed committed progenitors (with cytoplasmic OCT-4), which arise by asymmetric cell divisions of pluripotent VSELs (with nuclear OCT-4). VSELs are the most primitive stem cells and postulated to be an overlapping population with the PGCs. Rather than migrating only to the gonads, PGCs migrate and survive in various adult body organs throughout life as VSELs. VSELs express both pluripotent and PGC-specific markers and are epigenetically and developmentally more mature compared with ES cells obtained from the inner cell mass of a blastocyst-stage embryo. As a result, VSELs readily differentiate into three embryonic germ layers and spontaneously give rise to both sperm and oocytes in vitro. Like PGCs, VSELs do not divide readily in culture, nor produce teratoma or integrate in the developing embryo. But this property of being relatively quiescent allows endogenous VSELs to survive various kinds of toxic insults. VSELs that survive oncotherapy can be targeted to induce endogenous regeneration of non-functional gonads. Transplanting healthy niche (mesenchymal) cells have resulted in improved gonadal function and live births. WIDER IMPLICATIONS Being quiescent, VSELs possibly do not accumulate genomic (nuclear or mitochondrial) mutations and thus may be ideal endogenous, pluripotent stem cell candidates for regenerative and reproductive medicine. The presence of VSELs in adult gonads and the fact that they survive oncotherapy may obviate the need to bank gonadal tissue for fertility preservation prior to oncotherapy. VSELs and their ability to undergo spermatogenesis/neo-oogenesis in the presence of a healthy niche will help identify newer strategies toward fertility restoration in cancer survivors, delaying menopause and also enabling aged mothers to have better quality eggs.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Ambreen Shaikh
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Sandhya Anand
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Hiren Patel
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Sona Kapoor
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Kalpana Sriraman
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,The Foundation for Medical Research, 84-A, RG Thadani Marg, Worli, Mumbai 400018, India
| | - Seema Parte
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,Department of Physiology, James Graham Brown Cancer Centre, University of Louisville School of Medicine, 2301 S 3rd St, Louisville, KY 40202, USA
| | - Sreepoorna Unni
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,Inter Disciplinary Studies Department, University College, Zayed University, Academic City, PO Box 19282, Dubai, United Arab Emirates
| |
Collapse
|
15
|
Nakatsuka R, Iwaki R, Matsuoka Y, Sumide K, Kawamura H, Fujioka T, Sasaki Y, Uemura Y, Asano H, Kwon AH, Sonoda Y. Identification and Characterization of Lineage(-)CD45(-)Sca-1(+) VSEL Phenotypic Cells Residing in Adult Mouse Bone Tissue. Stem Cells Dev 2015; 25:27-42. [PMID: 26595762 DOI: 10.1089/scd.2015.0168] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Murine bone marrow (BM)-derived very small embryonic-like stem cells (BM VSELs), defined by a lineage-negative (Lin(-)), CD45-negative (CD45(-)), Sca-1-positive (Sca-1(+)) immunophenotype, were previously reported as postnatal pluripotent stem cells (SCs). We developed a highly efficient method for isolating Lin(-)CD45(-)Sca-1(+) small cells using enzymatic treatment of murine bone. We designated these cells as bone-derived VSELs (BD VSELs). The incidences of BM VSELs in the BM-derived nucleated cells and that of BD VSELs in bone-derived nucleated cells were 0.002% and 0.15%, respectively. These BD VSELs expressed a variety of hematopoietic stem cell (HSC), mesenchymal stem cell (MSC), and endothelial cell markers. The gene expression profile of the BD VSELs was clearly distinct from those of HSCs, MSCs, and ES cells. In the steady state, the BD VSELs proliferated slowly, however, the number of BD VSELs significantly increased in the bone after acute liver injury. Moreover, green fluorescent protein-mouse derived BD VSELs transplanted via tail vein injection after acute liver injury were detected in the liver parenchyma of recipient mice. Immunohistological analyses suggested that these BD VSELs might transdifferentiate into hepatocytes. This study demonstrated that the majority of the Lin(-)CD45(-)Sca-1(+) VSEL phenotypic cells reside in the bone rather than the BM. However, the immunophenotype and the gene expression profile of BD VSELs were clearly different from those of other types of SCs, including BM VSELs, MSCs, HSCs, and ES cells. Further studies will therefore be required to elucidate their cellular and/or SC characteristics and the potential relationship between BD VSELs and BM VSELs.
Collapse
Affiliation(s)
- Ryusuke Nakatsuka
- 1 Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University , Hirakata, Japan
| | - Ryuji Iwaki
- 1 Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University , Hirakata, Japan .,2 Department of Surgery, Kansai Medical University , Hirakata, Japan
| | - Yoshikazu Matsuoka
- 1 Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University , Hirakata, Japan
| | - Keisuke Sumide
- 1 Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University , Hirakata, Japan
| | - Hiroshi Kawamura
- 1 Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University , Hirakata, Japan .,3 Department of Orthopedic Surgery, Kansai Medical University , Hirakata, Japan
| | - Tatsuya Fujioka
- 1 Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University , Hirakata, Japan
| | - Yutaka Sasaki
- 1 Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University , Hirakata, Japan
| | - Yasushi Uemura
- 4 Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center National Cancer Center , Chiba, Japan
| | - Hiroaki Asano
- 5 School of Nursing, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - A-Hon Kwon
- 2 Department of Surgery, Kansai Medical University , Hirakata, Japan
| | - Yoshiaki Sonoda
- 1 Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University , Hirakata, Japan
| |
Collapse
|
16
|
In vitro cardiomyocyte differentiation of umbilical cord blood cells: crucial role for c-kit+ cells. Cytotherapy 2015; 17:1627-37. [DOI: 10.1016/j.jcyt.2015.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/16/2015] [Accepted: 07/20/2015] [Indexed: 11/22/2022]
|
17
|
Shaikh A, Nagvenkar P, Pethe P, Hinduja I, Bhartiya D. Molecular and phenotypic characterization of CD133 and SSEA4 enriched very small embryonic-like stem cells in human cord blood. Leukemia 2015; 29:1909-17. [PMID: 25882698 DOI: 10.1038/leu.2015.100] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/19/2015] [Accepted: 04/07/2015] [Indexed: 02/07/2023]
Abstract
Very small embryonic-like stem cells (VSELs) are immature primitive cells residing in adult and fetal tissues. This study describes enrichment strategy and molecular and phenotypic characterization of human cord blood VSELs. Flow cytometry analysis revealed that a majority of VSELs (LIN(-)/CD45(-)/CD34(+)) were present in the red blood cell (RBC) pellet after Ficoll-Hypaque centrifugation in contrast to the hematopoietic stem cells (LIN(-)/CD45(+)/CD34(+)) in the interphase layer. Thus, after lyses of RBCs, VSELs were enriched using CD133 and SSEA4 antibodies. These enriched cells were small in size (4-6 μm), spherical, exhibited telomerase activity and expressed pluripotent stem cell (OCT4A, OCT4, SSEA4, NANOG, SOX2, REX1), primordial germ cell (STELLA, FRAGILIS) as well as primitive hematopoietic (CD133, CD34) markers at protein and transcript levels. Heterogeneity was noted among VSELs based on subtle differences in expression of various markers studied. DNA analysis and cell cycle studies revealed that a majority of enriched VSELs were diploid, non-apoptotic and in G0/G1 phase, reflecting their quiescent state. VSELs also survived 5-fluorouracil treatment in vitro and treated cells entered into cell cycle. This study provides further support for the existence of pluripotent, diploid and relatively quiescent VSELs in cord blood and suggests further exploration of the subpopulations among them.
Collapse
Affiliation(s)
- A Shaikh
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, India
| | - P Nagvenkar
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, India
| | - P Pethe
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, India
| | - I Hinduja
- Jaslok Hospital & Research Centre, Mumbai, India
| | - D Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|
18
|
Chen ZH, Lv X, Dai H, Liu C, Lou D, Chen R, Zou GM. Hepatic regenerative potential of mouse bone marrow very small embryonic-like stem cells. J Cell Physiol 2015; 230:1852-61. [PMID: 25545634 DOI: 10.1002/jcp.24913] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/18/2014] [Indexed: 12/12/2022]
Abstract
Very small embryonic-like stem cells (VSELs) are a Sca-1 (+) Lin(-) CD45(-) cell population that has been isolated from the bone marrow of mice. The similarities and differences between the mRNA profiles of VSELs and embryonic stem (ES) cells have not yet been defined. Here, we report the whole genome gene expression profile of VSELs and ES cells. We analyzed the global gene expression of VSELs and compared it with ES cells by microarray analysis. We observed that 9,521 genes are expressed in both VSELs and ES cells, 1,159 genes are expressed uniquely in VSELs, and 420 genes are expressed uniquely in ES cells. We found that although VSELs are similar to ES cells in their expression of genes associated with stem cell behavior and pluripotency, there are also differences in their mRNA expression. We further analyzed the expression of stem cell-associated genes in VSELs and ES cells, and found that there were differences in these genes. For instance, the Pkd2 and Yap1 gene were reduced in their expression in VSELs when compared with ES cells. But we also found Zfp54 gene expression was higher in VSELs compared with ES cells. More interestingly, we demonstrated that VSELs express c-kit, the stem cell factor (SCF) receptor. In vitro, SCF promoted VSEL differentiation into hepatic colonies in the presence of hepatocyte growth factor. In vivo, transplantation of VSELs directly into CCl4-induced injured livers significantly reduced serum ALT and AST levels. Therefore, these data suggest that VSELs play a role in the repair of injured livers.
Collapse
Affiliation(s)
- Zhi-Hua Chen
- Department of Neurosurgery, Shanghai Children's Hospital, Shanghai, P.R. China; Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | | | | | | | | | | | | |
Collapse
|
19
|
Szade K, Bukowska-Strakova K, Nowak WN, Jozkowicz A, Dulak J. Comment on: The proper criteria for identification and sorting of very small embryonic-like stem cells, and some nomenclature issues. Stem Cells Dev 2014; 23:714-6. [PMID: 24593315 DOI: 10.1089/scd.2014.0028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Krzysztof Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Krakow, Poland
| | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Bor L Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine National University of Singapore Singapore ; NUS Graduate School for Integrative Sciences and Engineering National University of Singapore Singapore
| |
Collapse
|
21
|
Nezakati T, Cousins BG, Seifalian AM. Toxicology of chemically modified graphene-based materials for medical application. Arch Toxicol 2014; 88:1987-2012. [PMID: 25234085 PMCID: PMC4201927 DOI: 10.1007/s00204-014-1361-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/03/2014] [Indexed: 12/12/2022]
Abstract
This review article aims to provide an overview of chemically modified graphene, and graphene oxide (GO), and their impact on toxicology when present in biological systems. Graphene is one of the most promising nanomaterials due to unique physicochemical properties including enhanced optical, thermal, and electrically conductive behavior in addition to mechanical strength and high surface-to-volume ratio. Graphene-based nanomaterials have received much attention over the last 5 years in the biomedical field ranging from their use as polymeric conduits for nerve regeneration, carriers for targeted drug delivery and in the treatment of cancer via photo-thermal therapy. Both in vitro and in vivo biological studies of graphene-based nanomaterials help understand their relative toxicity and biocompatibility when used for biomedical applications. Several studies investigating important material properties such as surface charge, concentration, shape, size, structural defects, and chemical functional groups relate to their safety profile and influence cyto- and geno-toxicology. In this review, we highlight the most recent studies of graphene-based nanomaterials and outline their unique properties, which determine their interactions under a range of environmental conditions. The advent of graphene technology has led to many promising new opportunities for future applications in the field of electronics, biotechnology, and nanomedicine to aid in the diagnosis and treatment of a variety of debilitating diseases.
Collapse
Affiliation(s)
- Toktam Nezakati
- UCL Centre for Nanotechnology and Regeneration Medicine, Division of Surgery and Interventional Science, University College London, London, UK
| | - Brian G. Cousins
- UCL Centre for Nanotechnology and Regeneration Medicine, Division of Surgery and Interventional Science, University College London, London, UK
| | - Alexander M. Seifalian
- UCL Centre for Nanotechnology and Regeneration Medicine, Division of Surgery and Interventional Science, University College London, London, UK
- Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
22
|
Very small embryonic-like stem cells are involved in regeneration of mouse pancreas post-pancreatectomy. Stem Cell Res Ther 2014; 5:106. [PMID: 25182166 PMCID: PMC4355147 DOI: 10.1186/scrt494] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/21/2014] [Indexed: 12/12/2022] Open
Abstract
Introduction Despite numerous research efforts, mechanisms underlying regeneration of pancreas remains controversial. Views are divided whether stem cells are involved during pancreatic regeneration or it involves duplication of pre-existing islets or ductal cells or whether pancreatic islet numbers are fixed by birth or they renew throughout life. Pluripotent embryonic stem (ES) and induced pluripotent stem (iPS) cells have been used by several groups to regenerate diabetic mouse pancreas but the beneficial effects are short-lived. It has been suggested that cells obtained after directed differentiation of ES/iPS cells resemble fetal and not their adult counterparts; thus are functionally different and may be of little use to regenerate adult pancreas. A novel population of pluripotent very small embryonic-like stem cells (VSELs) exists in several adult body tissues in both mice and humans. VSELs have been reported in the mouse pancreas, and nuclear octamer-binding transcription factor 4 (OCT-4) positive, small-sized cells have also been detected in human pancreas. VSELs are mobilized into peripheral blood in streptozotocin treated diabetic mice and also in patients with pancreatic cancer. This study aimed to evaluate whether VSELs are involved during regeneration of adult mouse pancreas after partial pancreatectomy. Methods Mice were subjected to partial pancreatectomy wherein almost 70% of pancreas was surgically removed and residual pancreas was studied on Days 1, 3 and 5 post-surgery. Results VSELs were detected in Hematoxylin and Eosin stained smears of pancreatic tissue as spherical, small sized cells with a large nucleus surrounded by a thin rim of cytoplasm and could be sorted as LIN-/CD45-/SCA-1+ cells by flow cytometry. Results reveal that although neutrophils with multi-lobed nuclei are mobilized into the pancreas on day 1 after pancreatectomy, by day 5 VSELs with spherical nuclei, high nucleo-cytoplasmic ratio and nuclear OCT-4 are mobilized into the residual pancreas. VSELs undergo differentiation and give rise to PDX-1 and OCT-4 positive progenitors which possibly regenerate both acinar cells and islets. Conclusions Results provide direct evidence supporting the presence of VSELs in adult mouse pancreas and their role during regeneration. VSELs are an interesting alternative to ES/iPS cells to regenerate a diabetic pancreas in future.
Collapse
|
23
|
|
24
|
Havens AM, Sun H, Shiozawa Y, Jung Y, Wang J, Mishra A, Jiang Y, O'Neill DW, Krebsbach PH, Rodgerson DO, Taichman RS. Human and murine very small embryonic-like cells represent multipotent tissue progenitors, in vitro and in vivo. Stem Cells Dev 2014; 23:689-701. [PMID: 24372153 DOI: 10.1089/scd.2013.0362] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The purpose of this study was to determine the lineage progression of human and murine very small embryonic-like (HuVSEL or MuVSEL) cells in vitro and in vivo. In vitro, HuVSEL and MuVSEL cells differentiated into cells of all three embryonic germ layers. HuVSEL cells produced robust mineralized tissue of human origin compared with controls in calvarial defects. Immunohistochemistry demonstrated that the HuVSEL cells gave rise to neurons, adipocytes, chondrocytes, and osteoblasts within the calvarial defects. MuVSEL cells were also able to differentiate into similar lineages. First round serial transplants of MuVSEL cells into irradiated osseous sites demonstrated that ∼60% of the cells maintained their VSEL cell phenotype while other cells differentiated into multiple tissues at 3 months. Secondary transplants did not identify donor VSEL cells, suggesting limited self renewal but did demonstrate VSEL cell derivatives in situ for up to 1 year. At no point were teratomas identified. These studies show that VSEL cells produce multiple cellular structures in vivo and in vitro and lay the foundation for future cell-based regenerative therapies for osseous, neural, and connective tissue disorders.
Collapse
Affiliation(s)
- Aaron M Havens
- 1 Department of Periodontics and Oral Medicine, University of Michigan , School of Dentistry, Ann Arbor, Michigan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang J, Guo X, Lui M, Chu PJ, Yoo J, Chang M, Yen Y. Identification of a distinct small cell population from human bone marrow reveals its multipotency in vivo and in vitro. PLoS One 2014; 9:e85112. [PMID: 24465489 PMCID: PMC3894949 DOI: 10.1371/journal.pone.0085112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 11/30/2013] [Indexed: 01/10/2023] Open
Abstract
Small stem cells, such as spore-like cells, blastomere-like stem cells (BLSCs), and very-small embryonic-like stem cells (VSELs) have been described in recent studies, although their multipotency in human tissues has not yet been confirmed. Here, we report the discovery of adult multipotent stem cells derived from human bone marrow, which we call StemBios (SB) cells. These isolated SB cells are smaller than 6 ìm and are DAPI+ and Lgr5+ (Leucine-Rich Repeat Containing G Protein-Coupled Receptor 5). Because Lgr5 has been characterized as a stem cell marker in the intestine, we hypothesized that SB cells may have a similar function. In vivo cell tracking assays confirmed that SB cells give rise to three types of cells, and in vitro studies demonstrated that SB cells cultured in proprietary media are able to grow to 6–25 ìm in size. Once the SB cells have attached to the wells, they differentiate into different cell lineages upon exposure to specific differentiation media. We are the first to demonstrate that stem cells smaller than 6 ìm can differentiate both in vivo and in vitro. In the future, we hope that SB cells will be used therapeutically to cure degenerative diseases.
Collapse
Affiliation(s)
- James Wang
- StemBios Technologies, Inc., Monterey Park, California, United States of America
- * E-mail: (YY); (JW)
| | - Xiaoyu Guo
- StemBios Technologies, Inc., Monterey Park, California, United States of America
| | - Monica Lui
- StemBios Technologies, Inc., Monterey Park, California, United States of America
| | - Pei-Ju Chu
- StemBios Technologies, Inc., Monterey Park, California, United States of America
| | - Jennifer Yoo
- StemBios Technologies, Inc., Monterey Park, California, United States of America
| | - Megan Chang
- StemBios Technologies, Inc., Monterey Park, California, United States of America
| | - Yun Yen
- Board Member of the Scientific Advisory Board, StemBios Technologies, Inc., Monterey Park, California, United States of America
- * E-mail: (YY); (JW)
| |
Collapse
|
26
|
Suszynska M, Zuba-Surma EK, Maj M, Mierzejewska K, Ratajczak J, Kucia M, Ratajczak MZ. The proper criteria for identification and sorting of very small embryonic-like stem cells, and some nomenclature issues. Stem Cells Dev 2014; 23:702-13. [PMID: 24299281 DOI: 10.1089/scd.2013.0472] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Evidence has accumulated that both murine and human adult tissues contain early-development stem cells with a broader differentiation potential than other adult monopotent stem cells. These cells, being pluripotent or multipotent, exist at different levels of specification and most likely represent overlapping populations of cells that, depending on the isolation strategy, ex vivo expansion protocol, and markers employed for their identification, have been given different names. In this review, we will discuss a population of very small embryonic-like stem cells (VSELs) in the context of other stem cells that express pluripotent/multipotent markers isolated from adult tissues as well as review the most current, validated working criteria on how to properly identify and isolate these very rare cells. VSELs have been successfully purified in several laboratories; however, a few have failed to isolate them, which has raised some unnecessary controversy in the field. Therefore, in this short review, we will address the most important reasons that some investigators have experienced problems in isolating these very rare cells and discuss some still unresolved challenges which should be overcome before these cells can be widely employed in the clinic.
Collapse
Affiliation(s)
- Malwina Suszynska
- 1 Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville , Louisville, Kentucky
| | | | | | | | | | | | | |
Collapse
|
27
|
Ilic D. Industry Update: Latest developments in stem cell research and regenerative medicine. Regen Med 2014. [DOI: 10.2217/rme.13.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Dusko Ilic
- Human Embryonic Stem Cell Laboratories, Guy’s Assisted Conception Unit, Division of Women’s Health, King’s College London School of Medicine, London, UK
| |
Collapse
|
28
|
Kuroda Y, Dezawa M. Mesenchymal stem cells and their subpopulation, pluripotent muse cells, in basic research and regenerative medicine. Anat Rec (Hoboken) 2013; 297:98-110. [PMID: 24293378 DOI: 10.1002/ar.22798] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) have gained a great deal of attention for regenerative medicine because they can be obtained from easy accessible mesenchymal tissues, such as bone marrow, adipose tissue, and the umbilical cord, and have trophic and immunosuppressive effects to protect tissues. The most outstanding property of MSCs is their potential for differentiation into cells of all three germ layers. MSCs belong to the mesodermal lineage, but they are known to cross boundaries from mesodermal to ectodermal and endodermal lineages, and differentiate into a variety of cell types both in vitro and in vivo. Such behavior is exceptional for tissue stem cells. As observed with hematopoietic and neural stem cells, tissue stem cells usually generate cells that belong to the tissue in which they reside, and do not show triploblastic differentiation. However, the scientific basis for the broad multipotent differentiation of MSCs still remains an enigma. This review summarizes the properties of MSCs from representative mesenchymal tissues, including bone marrow, adipose tissue, and the umbilical cord, to demonstrate their similarities and differences. Finally, we introduce a novel type of pluripotent stem cell, multilineage-differentiating stress-enduring (Muse) cells, a small subpopulation of MSCs, which can explain the broad spectrum of differentiation ability in MSCs.
Collapse
Affiliation(s)
- Yasumasa Kuroda
- Department of Anatomy and Anthropology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | |
Collapse
|
29
|
Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: recent pros and cons in the midst of a lively debate. Leukemia 2013; 28:473-84. [PMID: 24018851 PMCID: PMC3948156 DOI: 10.1038/leu.2013.255] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 08/28/2013] [Indexed: 02/07/2023]
Abstract
The concept that adult tissue, including bone marrow (BM), contains early-development cells with broader differentiation potential has again been recently challenged. In response, we would like to review the accumulated evidence from several independent laboratories that adult tissues, including BM, harbor a population of very rare stem cells that may cross germ layers in their differentiation potential. Thus, the BM stem cell compartment hierarchy needs to be revisited. These dormant, early-development cells that our group described as very small embryonic-like stem cells (VSELs) most likely overlap with similar populations of stem cells that have been identified in adult tissues by other investigators as the result of various experimental strategies and have been given various names. As reported, murine VSELs have some pluripotent stem cell characteristics. Moreover, they display several epiblast/germline markers that suggest their embryonic origin and developmental deposition in adult BM. Moreover, at the molecular level, changes in expression of parentally imprinted genes (for example, Igf2–H19) and resistance to insulin/insulin-like growth factor signaling (IIS) regulates their quiescent state in adult tissues. In several emergency situations related to organ damage, VSELs can be activated and mobilized into peripheral blood, and in appropriate animal models they contribute to tissue organ/regeneration. Interestingly, their number correlates with lifespan in mice, and they may also be involved in some malignancies. VSELs have been successfully isolated in several laboratories; however, some investigators experience problems with their isolation.
Collapse
|
30
|
Nowak WN, Borys S, Kusińska K, Bukowska-Strakova K, Witek P, Koblik T, Józkowicz A, Małecki MT, Dulak J. Number of circulating pro-angiogenic cells, growth factor and anti-oxidative gene profiles might be altered in type 2 diabetes with and without diabetic foot syndrome. J Diabetes Investig 2013; 5:99-107. [PMID: 24843745 PMCID: PMC4025239 DOI: 10.1111/jdi.12131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 05/30/2013] [Accepted: 06/27/2013] [Indexed: 12/12/2022] Open
Abstract
Aims/Introduction Type 2 diabetes is often complicated by diabetic foot syndrome (DFS). We analyzed the circulating stem cells, growth factor and anti‐oxidant gene expression profiles in type 2 diabetes patients without or with different forms of DFS. Materials and Methods Healthy volunteers (n = 13) and type 2 diabetes patients: (i) without DFS (n = 10); or with (ii) Charcot osteoneuropathy (n = 10); (iii) non‐infected (n = 17); (iv) infected (n = 11); and (v) healed ulceration were examined (n = 12). Peripheral blood endothelial progenitor cells (EPC), mesenchymal stem cells (MSC), hematopoietic stem cells (HSC) and very small embryonic‐like (VSEL) cells were phenotyped using flow cytometry. Plasma cytokine concentrations and gene expressions in blood cells were measured by Luminex and quantitative real‐time polymerase chain reaction assays, respectively. Results Patients with non‐complicated type 2 diabetes showed reduced HMOX1 expression, accompanied by HMOX2 upregulation, and had less circulating EPC, MSC or HSC than healthy subjects. In contrast, VSEL cells were elevated in the type 2 diabetes group. However, subjects with DFS, even with healed ulceration, had fewer VSEL cells, more CD45‐CD29+CD90+MSC, and upregulated HMOX1 when compared with the type 2 diabetes group. Patients with Charcot osteopathy had lowered plasma fibroblast growth factor‐2. Elevated plasma tumor necrosis factor‐α and decreased catalase expression was found in all diabetic patients. Conclusions Patients with type 2 diabetes and different forms of DFS have an altered number of circulating stem cells. Type 2 diabetes might also be associated with a changed plasma growth factor and anti‐oxidant gene expression profile. Altogether, these factors could contribute to the pathogenesis of different forms of DFS.
Collapse
Affiliation(s)
- Witold N Nowak
- Department of Medical Biotechnology Faculty Of Biochemistry, Biophysics and Biotechnology Jagiellonian University Krakow Poland ; Jagiellonian Center for Experimental Therapeutics Krakow Poland
| | | | - Katarzyna Kusińska
- Department of Medical Biotechnology Faculty Of Biochemistry, Biophysics and Biotechnology Jagiellonian University Krakow Poland
| | - Karolina Bukowska-Strakova
- Department of Medical Biotechnology Faculty Of Biochemistry, Biophysics and Biotechnology Jagiellonian University Krakow Poland ; Jagiellonian Center for Experimental Therapeutics Krakow Poland
| | - Przemysław Witek
- University Hospital Krakow Poland ; Department of Metabolic Diseases Jagiellonian University Medical College Krakow Poland
| | | | - Alicja Józkowicz
- Department of Medical Biotechnology Faculty Of Biochemistry, Biophysics and Biotechnology Jagiellonian University Krakow Poland
| | - Maciej Tadeusz Małecki
- University Hospital Krakow Poland ; Department of Metabolic Diseases Jagiellonian University Medical College Krakow Poland
| | - Józef Dulak
- Department of Medical Biotechnology Faculty Of Biochemistry, Biophysics and Biotechnology Jagiellonian University Krakow Poland
| |
Collapse
|
31
|
3D graphene oxide-encapsulated gold nanoparticles to detect neural stem cell differentiation. Biomaterials 2013; 34:8660-70. [PMID: 23937915 DOI: 10.1016/j.biomaterials.2013.07.101] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/28/2013] [Indexed: 11/21/2022]
Abstract
Monitoring of stem cell differentiation and pluripotency is an important step for the practical use of stem cells in the field of regenerative medicine. Hence, a new non-destructive detection tool capable of in situ monitoring of stem cell differentiation is highly needed. In this study, we report a 3D graphene oxide-encapsulated gold nanoparticle that is very effective for the detection of the differentiation potential of neural stem cells (NSCs) based on surface-enhanced Raman spectroscopy (SERS). A new material, 3D GO-encapsulated gold nanoparticle, is developed to induce the double enhancement effect of graphene oxide and gold nanoparticle on SERS signals which is only effective for undifferentiated NSCs. The Raman peaks achieved from undifferentiated NSCs on the graphene oxide (GO)-encapsulated gold nanoparticles were 3.5 times higher than peaks obtained from normal metal structures and were clearly distinguishable from those of differentiated cells. The number of CC bonds and the Raman intensity at 1656 cm(-1) was found to show a positive correlation, which matches the differentiation state of the NSCs. Moreover, the substrate composed of 3D GO-encapsulated gold nanoparticles was also effective at distinguishing the differentiation state of single NSC by using electrochemical and electrical techniques. Hence, the proposed technique can be used as a powerful non-destructive in situ monitoring tool for the identification of the differentiation potential of various kinds of stem cells (mesenchymal, hematopoietic, and neural stem cells).
Collapse
|
32
|
|
33
|
Miyanishi M, Mori Y, Seita J, Chen JY, Karten S, Chan CKF, Nakauchi H, Weissman IL. Do pluripotent stem cells exist in adult mice as very small embryonic stem cells? Stem Cell Reports 2013; 1:198-208. [PMID: 24052953 PMCID: PMC3757755 DOI: 10.1016/j.stemcr.2013.07.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 02/03/2023] Open
Abstract
Very small embryonic-like stem cells (VSELs) isolated from bone marrow (BM) have been reported to be pluripotent. Given their nonembryonic source, they could replace blastocyst-derived embryonic stem cells in research and medicine. However, their multiple-germ-layer potential has been incompletely studied. Here, we show that we cannot find VSELs in mouse BM with any of the reported stem cell potentials, specifically for hematopoiesis. We found that: (1) most events within the "VSEL" flow-cytometry gate had little DNA and the cells corresponding to these events (2) could not form spheres, (3) did not express Oct4, and (4) could not differentiate into blood cells. These results provide a failure to confirm the existence of pluripotent VSELs.
Collapse
Affiliation(s)
- Masanori Miyanishi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Alvarez-Gonzalez C, Duggleby R, Vagaska B, Querol S, Gomez SG, Ferretti P, Madrigal A. Cord blood Lin(-)CD45(-) embryonic-like stem cells are a heterogeneous population that lack self-renewal capacity. PLoS One 2013; 8:e67968. [PMID: 23840798 PMCID: PMC3695943 DOI: 10.1371/journal.pone.0067968] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 05/24/2013] [Indexed: 02/02/2023] Open
Abstract
Human umbilical cord blood (hUCB) has been proposed to contain not only haematopoietic stem cells, but also a rare pluripotent embryonic-like stem cell (ELSc) population that is negative for hematopoietic markers (Lin−CD45−) and expresses markers typical of pluripotent cells. The aim of this work was to isolate, characterise and expand this ELSc fraction from hUCB, as it may provide a valuable cell source for regenerative medicine applications. We found that we could indeed isolate a Lin−CD45− population of small cells (3–10 µm diameter) with a high nucleus to cytoplasm ratio that expressed the stem cell markers CD34 and CXCR4. However, in contrast to some previous reports, this fraction was not positive for CD133. Furthermore, although these cells expressed transcripts typical of pluripotent cells, such as SOX2, OCT3/4, and NANOG, they were not able to proliferate in any of the culture media known to support stem cell growth that we tested. Further analysis of the Lin−CD45− population by flow cytometry showed the presence of a Lin−CD45−Nestin+ population that were also positive for CD34 (20%) but negative for CXCR4. These data suggest that the Lin−CD45− stem cell fraction present in the cord blood represents a small heterogeneous population with phenotypic characteristics of stem cells, including a Lin−CD45−Nestin+ population not previously described. This study also suggests that heterogeneity within the Lin−CD45− cell fraction is the likely explanation for differences in the hUCB cell populations described by different groups that were isolated using different methods. These populations have been widely called “embryonic-like stem cell” on the basis of their phenotypical similarity to embryonic stem cells. However, the fact they do not seem to be able to self-renew casts some doubt on their identity, and warns against defining them as “embryonic-like stem cell” at this stage.
Collapse
Affiliation(s)
- Cesar Alvarez-Gonzalez
- Anthony Nolan Research Institute, London, United Kingdom
- Cancer Institute, University College London, London, United Kingdom
| | | | - Barbora Vagaska
- Development Biology Unit, Institute of Child Health, University College London, London, United Kingdom
| | - Sergio Querol
- Anthony Nolan Research Institute, London, United Kingdom
- Banc de Sang i Teixits, Barcelona, Spain
| | - Susana G. Gomez
- Anthony Nolan Research Institute, London, United Kingdom
- Anthony Nolan Cell Therapy Centre, Nottingham, United Kingdom
| | - Patrizia Ferretti
- Development Biology Unit, Institute of Child Health, University College London, London, United Kingdom
| | | |
Collapse
|
35
|
Gao L, Thilakavathy K, Nordin N. A plethora of human pluripotent stem cells. Cell Biol Int 2013; 37:875-87. [DOI: 10.1002/cbin.10120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 04/15/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Liyang Gao
- Clinical Genetics Unit; Department of Obstetrics & Gynaecology; Faculty of Medicine & Health Sciences; Universiti Putra Malaysia; 43400; UPM Serdang; Selangor; Malaysia
| | | | | |
Collapse
|
36
|
Szade K, Bukowska-Strakova K, Nowak WN, Szade A, Kachamakova-Trojanowska N, Zukowska M, Jozkowicz A, Dulak J. Murine bone marrow Lin⁻Sca⁻1⁺CD45⁻ very small embryonic-like (VSEL) cells are heterogeneous population lacking Oct-4A expression. PLoS One 2013; 8:e63329. [PMID: 23696815 PMCID: PMC3656957 DOI: 10.1371/journal.pone.0063329] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 03/30/2013] [Indexed: 02/06/2023] Open
Abstract
Murine very small embryonic-like (VSEL) cells, defined by the Lin(-)Sca-1(+)CD45(-) phenotype and small size, were described as pluripotent cells and proposed to be the most primitive hematopoietic precursors in adult bone marrow. Although their isolation and potential application rely entirely on flow cytometry, the immunophenotype of VSELs has not been extensively characterized. Our aim was to analyze the possible heterogeneity of Lin(-)Sca(+)CD45(-) population and investigate the extent to which VSELs characteristics may overlap with that of hematopoietic stem cells (HSCs) or endothelial progenitor cells (EPCs). The study evidenced that murine Lin(-)Sca-1(+)CD45(-) population was heterogeneous in terms of c-Kit and KDR expression. Accordingly, the c-Kit(+)KDR(-), c-Kit(-)KDR(+), and c-Kit(-)KDR(-) subpopulations could be distinguished, while c-Kit(+)KDR(+) events were very rare. The c-Kit(+)KDR(-) subset contained almost solely small cells, meeting the size criterion of VSELs, in contrast to relatively bigger c-Kit(-)KDR(+) cells. The c-Kit(-)KDR(-)FSC(low) subset was highly enriched in Annexin V-positive, apoptotic cells, hence omitted from further analysis. Importantly, using qRT-PCR, we evidenced lack of Oct-4A and Oct-4B mRNA expression either in whole adult murine bone marrow or in the sorted of Lin(-)Sca-1(+)CD45(-)FSC(low) population, even by single-cell qRT-PCR. We also found that the Lin(-)Sca-1(+)CD45(-)c-Kit(+) subset did not exhibit hematopoietic potential in a single cell-derived colony in vitro assay, although it comprised the Sca-1(+)c-Kit(+)Lin(-) (SKL) CD34(-)CD45(-)CD105(+) cells, expressing particular HSC markers. Co-culture of Lin(-)Sca-1(+)CD45(-)FSC(low) with OP9 cells did not induce hematopoietic potential. Further investigation revealed that SKL CD45(-)CD105(+) subset consisted of early apoptotic cells with fragmented chromatin, and could be contaminated with nuclei expelled from erythroblasts. Concluding, murine bone marrow Lin(-)Sca-1(+)CD45(-)FSC(low) cells are heterogeneous population, which do not express the pluripotency marker Oct-4A. Despite expression of some hematopoietic markers by a Lin(-)Sca-1(+)CD45(-)c-Kit(+)KDR(-) subset of VSELs, they do not display hematopoietic potential in a clonogenic assay and are enriched in early apoptotic cells.
Collapse
Affiliation(s)
- Krzysztof Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Karolina Bukowska-Strakova
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Witold Norbert Nowak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Neli Kachamakova-Trojanowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Monika Zukowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail: (JD); (AJ)
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail: (JD); (AJ)
| |
Collapse
|
37
|
Kong W, Nuo M, Zhu XP, Han XJ, Luo L, Wang X. Pre-stem cell formation by non-platelet RNA-containing particle fusion. Clin Exp Pharmacol Physiol 2013; 40:412-21. [PMID: 23611023 PMCID: PMC3748798 DOI: 10.1111/1440-1681.12101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/29/2013] [Accepted: 04/17/2013] [Indexed: 12/13/2022]
Abstract
We found a group of non-platelet RNA-containing particles (NPRCP) in human umbilical cord blood. To understand the origin, characterization and differentiation of NPRCP, we examined cord blood-isolated NPRCP in vitro. The NPRCP range in size from < 1 to 5 μm, have a thin bilayer membrane and various morphological features, contain short RNA and microRNA and express octamer-binding transcription factor 4 (OCT4), sex-determining region Y 2 (SOX2) and DEAD box polypeptide 4 (DDX4). On coculture with nucleated cells from umbilical cord blood, NPRCP fuse to small, active, non-nucleated cells called 'particle fusion-derived non-nucleated cells' (PFDNC). The PFDNC are approximately 8 μm in diameter and are characterized by their twisting movement in culture plates. They can easily move into and out of nucleated cells and finally differentiate into mesenchymal-like cells. In addition, the larger non-nucleated cellular structures that are derived from the aggregation and fusion of multiple NPRCP can further differentiate into large stem cells that also release OCT4- and SOX2-positive non-nucleated small cells. Our data provide strong evidence that NPRCP can fuse into PFDNC, which further differentiate into mesenchymal-like cells. Multiple NPRCP also fuse into other types of large stem cells. We believe that stem cells are derived from NPRCP fusion. There is considerable potential for the use of NPRCP in clinical therapy.
Collapse
Affiliation(s)
- Wuyi Kong
- Beijing Khasar Medical Technology Co., Beijing, China.
| | | | | | | | | | | |
Collapse
|
38
|
Kassmer SH, Krause DS. Very small embryonic-like cells: biology and function of these potential endogenous pluripotent stem cells in adult tissues. Mol Reprod Dev 2013; 80:677-90. [PMID: 23440892 DOI: 10.1002/mrd.22168] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/17/2013] [Indexed: 01/15/2023]
Abstract
Very small embryonic-like cells (VSELs), found in murine bone marrow and other adult tissues, are small, non-hematopoietic cells expressing markers of pluripotent embryonic and primordial germ cells. A similar cell type in humans has begun to be characterized, though with a slightly different phenotype and surface markers. Consistent with expression of pluripotency genes, murine VSELs differentiate into cell types from three germ-layer lineages in vitro, though pluripotency has yet to be shown at the single-cell level or in vivo. VSELs appear to be quiescent under steady state conditions, apparently due to partially erased imprinting and overexpression of cell cycle inhibitory genes. In vivo, VSELs can enter the cell cycle under stress conditions, but which factors regulate quiescence versus proliferation and self-renewal versus differentiation are as yet unknown, and in vitro conditions that induce proliferation and self-renewal have yet to be defined. Future experiments are needed to address whether a VSEL niche actively regulates quiescence in vivo or quiescence is cell autonomous under steady state conditions. Insights into these mechanisms may help to address whether or not VSELs could play a role in regenerative medicine in the future.
Collapse
Affiliation(s)
- Susannah H Kassmer
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
39
|
Heider A, Alt R. virtualArray: a R/bioconductor package to merge raw data from different microarray platforms. BMC Bioinformatics 2013; 14:75. [PMID: 23452776 PMCID: PMC3599117 DOI: 10.1186/1471-2105-14-75] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 02/22/2013] [Indexed: 11/10/2022] Open
Abstract
Background Microarrays have become a routine tool to address diverse biological questions. Therefore, different types and generations of microarrays have been produced by several manufacturers over time. Likewise, the diversity of raw data deposited in public databases such as NCBI GEO or EBI ArrayExpress has grown enormously. This has resulted in databases currently containing several hundred thousand microarray samples clustered by different species, manufacturers and chip generations. While one of the original goals of these databases was to make the data available to other researchers for independent analysis and, where appropriate, integration with their own data, current software implementations could not provide that feature. Only those data sets generated on the same chip platform can be readily combined and even here there are batch effects to be taken care of. A straightforward approach to deal with multiple chip types and batch effects has been missing. The software presented here was designed to solve both of these problems in a convenient and user friendly way. Results The virtualArray software package can combine raw data sets using almost any chip types based on current annotations from NCBI GEO or Bioconductor. After establishing congruent annotations for the raw data, virtualArray can then directly employ one of seven implemented methods to adjust for batch effects in the data resulting from differences between the chip types used. Both steps can be tuned to the preferences of the user. When the run is finished, the whole dataset is presented as a conventional Bioconductor “ExpressionSet” object, which can be used as input to other Bioconductor packages. Conclusions Using this software package, researchers can easily integrate their own microarray data with data from public repositories or other sources that are based on different microarray chip types. Using the default approach a robust and up-to-date batch effect correction technique is applied to the data.
Collapse
Affiliation(s)
- Andreas Heider
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, Semmelweisstr. 14, Leipzig 04103, Germany.
| | | |
Collapse
|
40
|
Toward personalized cell therapies by using stem cells: seven relevant topics for safety and success in stem cell therapy. J Biomed Biotechnol 2012; 2012:758102. [PMID: 23226945 PMCID: PMC3514047 DOI: 10.1155/2012/758102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 10/18/2012] [Indexed: 02/07/2023] Open
Abstract
Stem cells, both embryonic and adult, due to the potential for application in tissue regeneration have been the target of interest to the world scientific community. In fact, stem cells can be considered revolutionary in the field of medicine, especially in the treatment of a wide range of human diseases. However, caution is needed in the clinical application of such cells and this is an issue that demands more studies. This paper will discuss some controversial issues of importance for achieving cell therapy safety and success. Particularly, the following aspects of stem cell biology will be presented: methods for stem cells culture, teratogenic or tumorigenic potential, cellular dose, proliferation, senescence, karyotyping, and immunosuppressive activity.
Collapse
|
41
|
Heider A, Danova-Alt R, Egger D, Cross M, Alt R. Murine and human very small embryonic-like cells: a perspective. Cytometry A 2012; 83:72-5. [PMID: 23165990 DOI: 10.1002/cyto.a.22229] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 10/01/2012] [Accepted: 10/17/2012] [Indexed: 12/21/2022]
Abstract
In 2006, very small embryonic-like (VSEL) stem cells were described as a pluripotent population of prospectively isolated stem cells in adult murine bone marrow (mBM) and human umbilical cord blood (hUCB). While rigorous proof of pluripotency is still lacking, murine VSEL cells have been shown to overlap with an independently identified population of neural crest derived mesenchymal stem cells (MSC). The presence of primitive mesenchymal precursors within the VSEL cell population may partially explain the findings that have led to the concept of an "embryonic-like" stem cell in mBM. However, our own studies on human VSEL cells revealed very little similarity between murine VSEL cells and their reportedly equivalent population in hUCB. On the contrary, our data strongly suggest that human VSEL cells are an aberrant and inactive population that cannot expand in vitro and has neither embryonic nor adult stem cell like properties. Here we critically re-examine the data supporting stemness and pluripotency of murine and human VSEL cells, respectively.
Collapse
Affiliation(s)
- Andreas Heider
- Translational Centre for Regenerative Medicine-TRM, Universität Leipzig, Leipzig, Germany
| | | | | | | | | |
Collapse
|
42
|
Wakao S, Kuroda Y, Ogura F, Shigemoto T, Dezawa M. Regenerative Effects of Mesenchymal Stem Cells: Contribution of Muse Cells, a Novel Pluripotent Stem Cell Type that Resides in Mesenchymal Cells. Cells 2012; 1:1045-60. [PMID: 24710542 PMCID: PMC3901150 DOI: 10.3390/cells1041045] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/01/2012] [Accepted: 11/05/2012] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are easily accessible and safe for regenerative medicine. MSCs exert trophic, immunomodulatory, anti-apoptotic, and tissue regeneration effects in a variety of tissues and organs, but their entity remains an enigma. Because MSCs are generally harvested from mesenchymal tissues, such as bone marrow, adipose tissue, or umbilical cord as adherent cells, MSCs comprise crude cell populations and are heterogeneous. The specific cells responsible for each effect have not been clarified. The most interesting property of MSCs is that, despite being adult stem cells that belong to the mesenchymal tissue lineage, they are able to differentiate into a broad spectrum of cells beyond the boundary of mesodermal lineage cells into ectodermal or endodermal lineages, and repair tissues. The broad spectrum of differentiation ability and tissue-repairing effects of MSCs might be mediated in part by the presence of a novel pluripotent stem cell type recently found in adult human mesenchymal tissues, termed multilineage-differentiating stress enduring (Muse) cells. Here we review recently updated studies of the regenerative effects of MSCs and discuss their potential in regenerative medicine.
Collapse
Affiliation(s)
- Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| | - Yasumasa Kuroda
- Department of Anatomy and Anthropology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| | - Fumitaka Ogura
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| | - Taeko Shigemoto
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| |
Collapse
|