1
|
Yang Z, Kao X, Zhang L, Huang N, Chen J, He M. Exploring the Anti-PANoptosis Mechanism of Dachaihu Decoction Against Sepsis-Induced Acute Lung Injury: Network Pharmacology, Bioinformatics, and Experimental Validation. Drug Des Devel Ther 2025; 19:349-368. [PMID: 39839500 PMCID: PMC11750123 DOI: 10.2147/dddt.s495225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/17/2024] [Accepted: 12/31/2024] [Indexed: 01/23/2025] Open
Abstract
Background Dachaihu decoction (DCHD) is a common Chinese medicine formula against sepsis-induced acute lung injury (SALI). PANoptosis is a novel type of programmed cell death. Nevertheless, The mechanisms of DCHD against SALI via anti-PANoptosis remains unknown. Methods First, we identified the intersecting targets among DCHD, SALI, and PANoptosis using relevant databases and published literature. Then, protein-protein interaction (PPI) network, molecular docking, and functional enrichment analysis were conducted. In vivo, cecal ligation and puncture (CLP) was used to construct a sepsis mouse model, and the therapeutic effects of DCHD on SALI were evaluated using hematoxylin and eosin (H&E) staining, quantitative real-time PCR (qRT-PCR), and ELISA. Finally, qRT-PCR, immunofluorescence staining, and Western blotting were used to verify the effect of DCHD-containing serum (DCHD-DS) on LPS-induced RAW 264.7 macrophages in vitro. Results 82 intersecting targets were identified by mapping the targets of DCHD, SALI, and PANoptosis. Enrichment analysis showed that DCHD against SALI via anti-PANoptosis by modulating tumor necrosis factor (TNF), AGE-RAGE, phosphoinositide 3-kinase (PI3K)-AKT, and Toll-like receptor signaling pathways by targeting Casp3, cellular tumor antigen p53 (TP53), B-cell lymphoma 2 (Bcl2), toll-like receptor-4 (TLR4), STAT3, STAT1, RELA, NF-κB1, myeloid cell leukemia-1 (MCL1), JUN, IL-1β, HSP90AA1, Casp9, Casp8, and Bcl2l1. Molecular docking analysis revealed that the key components of DCHD have a high binding affinity to the core targets. In vivo, DCHD improved lung histopathological injury, reduced inflammatory factor expression, and alleviated oxidative stress injury in lung tissues. In vitro, DCHD-DS alleviated cell morphology changes, the release of pro-inflammatory factors, and p65 nucleus aggregation. Furthermore, we verified that DCHD-DS inhibited PANoptosis by downregulating the PI3K/AKT/NF-κB signalling pathway. Conclusion DCHD attenuates SALI by inhibiting PANoptosis via control of the PI3K/AKT/NF-κB pathway. Our study provides a solid foundation for investigating the mechanisms of DCHD and its clinical application in the treatment of SALI.
Collapse
Affiliation(s)
- Zhen Yang
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, People’s Republic of China
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, People’s Republic of China
| | - Xingyu Kao
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, People’s Republic of China
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, People’s Republic of China
| | - Lin Zhang
- Department of Cardiovascular, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Na Huang
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, People’s Republic of China
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, People’s Republic of China
| | - Jingli Chen
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, People’s Republic of China
| | - Mingfeng He
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, People’s Republic of China
| |
Collapse
|
2
|
Wang M, Chen Z, Tang Z, Tang S. Natural products derived from traditional Chinese medicines targeting ER stress for the treatment of kidney diseases. Ren Fail 2024; 46:2396446. [PMID: 39192602 PMCID: PMC11360642 DOI: 10.1080/0886022x.2024.2396446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Various factors, both internal and external, can disrupt endoplasmic reticulum (ER) homeostasis and increase the burden of protein folding, resulting in ER stress. While short periods of ER stress can help cells return to normal function, excessive or prolonged ER stress triggers a complex signaling network that negatively affects cells. Numerous studies have demonstrated the significant role of ER stress in various kidney diseases, such as immune-related kidney injury, diabetic kidney diseases, renal ischemia reperfusion injury, and renal fibrosis. To date, there is a severe shortage of medications for the treatment of acute and chronic kidney diseases of all causes. Natural products derived from various traditional Chinese medicines (TCM), which are a major source of new drugs, have garnered considerable attention. Recent research has revealed that many natural products have renoprotective effects by targeting ER stress-mediated events, such as apoptosis, oxidative stress, inflammation, autophagy, and epithelial-mesenchymal transition. This article provides a comprehensive review of the current research progress on natural products targeting ER stress for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Mengping Wang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhengtao Chen
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ziru Tang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyun Tang
- GCP Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Sharawi ZW, Ibrahim IM, Abd-Alhameed EK, Althagafy HS, Jaber FA, Harakeh S, Hassanein EHM. Baicalin and lung diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1405-1419. [PMID: 37725153 DOI: 10.1007/s00210-023-02704-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/30/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
Studies focusing on natural products have been conducted worldwide, and the results suggest that their natural ingredients effectively treat a wide range of illnesses. Baicalin (BIA) is a glycoside derived from the flavonoid baicalein present in Scutellaria baicalensis of the Lamiaceae family. Interestingly, BIA has been shown to protect the lungs in several animal models used in numerous studies. Therefore, we fully analyzed the data of the studies that focused on BIA's lung protective function against various injuries and included them in this review. Interestingly, BIA exhibits promising effects against acute lung injury, lung fibrosis, pulmonary embolism, and lung remodelling associated with COPD, LPS, and paraquat insecticide. BAI exhibits anticancer activity against lung cancer. Additionally, BIA potently attenuates lung damage associated with infections. BIA primarily exerts its therapeutic effects by suppressing inflammation, oxidative stress immune response, and apoptosis pathways. Nrf2/HO-1, PI3K/Akt, NF-κB, STAT3, MAPKs, TLR4, and NLRP3 are important targets in the pulmonary therapeutic effects of BIA on different lung disease models. Consequently, we recommend using it in future potential clinical applications, its contribution to treatment guidelines, and translating its promising effects to clinical practice in lung diseases.
Collapse
Affiliation(s)
- Zeina W Sharawi
- Biological Sciences Department, Faculty of Sciences, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah, 21589, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Yousef Abdul Lateef Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| |
Collapse
|
4
|
Cui M, Chen F, Shao L, Wei C, Zhang W, Sun W, Wang J. Mesenchymal stem cells and ferroptosis: Clinical opportunities and challenges. Heliyon 2024; 10:e25251. [PMID: 38356500 PMCID: PMC10864896 DOI: 10.1016/j.heliyon.2024.e25251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/20/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Objective This review discusses recent experimental and clinical findings related to ferroptosis, with a focus on the role of MSCs. Therapeutic efficacy and current applications of MSC-based ferroptosis therapies are also discussed. Background Ferroptosis is a type of programmed cell death that differs from apoptosis, necrosis, and autophagy; it involves iron metabolism and is related to the pathogenesis of many diseases, such as Parkinson's disease, cancers, and liver diseases. In recent years, the use of mesenchymal stem cells (MSCs) and MSC-derived exosomes has become a trend in cell-free therapies. MSCs are a heterogeneous cell population isolated from a diverse range of human tissues that exhibit immunomodulatory functions, regulate cell growth, and repair damaged tissues. In addition, accumulating evidence indicates that MSC-derived exosomes play an important role, mainly by carrying a variety of bioactive substances that affect recipient cells. The potential mechanism by which MSC-derived exosomes mediate the effects of MSCs on ferroptosis has been previously demonstrated. This review provides the first overview of the current knowledge on ferroptosis, MSCs, and MSC-derived exosomes and highlights the potential application of MSCs exosomes in the treatment of ferroptotic conditions. It summarizes their mechanisms of action and techniques for enhancing MSC functionality. Results obtained from a large number of experimental studies revealed that both local and systemic administration of MSCs effectively suppressed ferroptosis in injured hepatocytes, neurons, cardiomyocytes, and nucleus pulposus cells and promoted the survival and regeneration of injured organs. Methods We reviewed the role of ferroptosis in related tissues and organs, focusing on its characteristics in different diseases. Additionally, the effects of MSCs and MSC-derived exosomes on ferroptosis-related pathways in various organs were reviewed, and the mechanism of action was elucidated. MSCs were shown to improve the disease course by regulating ferroptosis.
Collapse
Affiliation(s)
- Mengling Cui
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Fukun Chen
- Department of Radiology, Kunming Medical University & the Third Affiliated Hospital, Kunming, Yunnan, 650101, PR China
| | - Lishi Shao
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Chanyan Wei
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Weihu Zhang
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Wenmei Sun
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Jiaping Wang
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| |
Collapse
|
5
|
Zheng Z, Song X, Shi Y, Long X, Li J, Zhang M. Recent Advances in Biologically Active Ingredients from Natural Drugs for Sepsis Treatment. Comb Chem High Throughput Screen 2024; 27:688-700. [PMID: 37254548 DOI: 10.2174/1386207326666230529101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
Sepsis refers to the dysregulated host response to infection; its incidence and mortality rates are high. It is a worldwide medical problem but there is no specific drug for it. In recent years, clinical and experimental studies have found that many monomer components of traditional Chinese medicine have certain effects on the treatment of sepsis. This paper reviews the advances in research on the active ingredients of traditional Chinese medicine involved in the treatment of sepsis in recent years according to their chemical structure; it could provide ideas and references for further research and development in Chinese materia medica for the treatment of sepsis.
Collapse
Affiliation(s)
- Zhenzhen Zheng
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Xiayinan Song
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yanmei Shi
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaofeng Long
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Jie Li
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Min Zhang
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| |
Collapse
|
6
|
Zong B, Xiao Y, Ren M, Wang P, Fu S, Qiu Y. Baicalin Weakens the Porcine ExPEC-Induced Inflammatory Response in 3D4/21 Cells by Inhibiting the Expression of NF- κB/MAPK Signaling Pathways and Reducing NLRP3 Inflammasome Activation. Microorganisms 2023; 11:2126. [PMID: 37630686 PMCID: PMC10458126 DOI: 10.3390/microorganisms11082126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Porcine extraintestinal pathogenic Escherichia coli (ExPEC) is a leading cause of death in pigs and has led to considerable economic losses for the pig industry. Porcine ExPEC infections often cause systemic inflammatory responses in pigs, characterized by meningitis, arthritis, pneumonia, and septicemia. Baicalin has been reported to possess potent anti-inflammatory activity, but its function in porcine ExPEC remains unknown. The aim of this study was to explore the protective effect and mechanism of baicalin against the porcine ExPEC-induced inflammatory responses in 3D4/21 cells. After treatment with baicalin, the effects on cell damage, the level of pro-inflammatory cytokines, the expression of nuclear factor-κB (NF-κB)/mitogen-activated protein kinase (MAPK) signaling pathways, and the activation of NOD-like receptor protein 3 (NLRP3) inflammasomes were examined. Our results show that baicalin significantly reduced the damage to 3D4/21 cells infected with porcine ExPEC PCN033. Further study showed that baicalin significantly reduced the transcription and expression of pro-inflammatory cytokines such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and interleukin-8 (IL-8). Furthermore, baicalin inhibited the phosphorylation of proteins such as P65, nuclear factor κB inhibitor α (IκBα), extracellular regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and P38 and reduced the expression levels of proteins such as NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and caspase-1. These results reveal that baicalin reduced the damage to 3D4/21 cells by inhibiting the expression of NF-κB/MAPK signaling pathways and blocking NLRP3 inflammasome activation in 3D4/21 cells infected with porcine ExPEC. Taken together, these results suggest that baicalin may have potential as a medicine for the treatment of porcine ExPEC-infected pigs by regulating inflammatory responses. This study provides a novel potential pharmaco-therapeutic approach to preventing porcine ExPEC infection.
Collapse
Affiliation(s)
- Bingbing Zong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 400023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 400023, China
| | - Yong Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 400023, China
| | - Mingxing Ren
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 400023, China
| | - Peiyi Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 400023, China
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 400023, China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 400023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 400023, China
| |
Collapse
|
7
|
de Oliveira Rodrigues Junior E, de Santana IR, Durço AO, Conceição LSR, Barreto AS, Menezes IAC, Roman-Campos D, Dos Santos MRV. The effects of flavonoids in experimental sepsis: A systematic review and meta-analysis. Phytother Res 2023. [PMID: 37115723 DOI: 10.1002/ptr.7846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2022] [Revised: 03/22/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023]
Abstract
Sepsis is a host's dysregulated immune response to an infection associated with systemic inflammation and excessive oxidative stress, which can cause multiple organ failure and death. The literature suggests that flavonoids, a broad class of secondary plant metabolites, have numerous biological activities which can be valuable in the treatment of sepsis. This study aimed to review the effects of flavonoids on experimental sepsis, focusing mainly on survival rate, and also summarizing information on its mechanisms of action. We searched in the main databases up to November 2022 using relevant keywords, and data were extracted and analyzed qualitatively and quantitatively. Thirty-two articles met the study criteria for review and 29 for meta-analysis. Overall, 30 different flavonoids were used in the studies. The flavonoids were able to strongly inhibit inflammatory response by reducing the levels of important pro-inflammatory mediators, for example, tumor necrosis factor-alpha and interleukin-1β, oxidative stress, and showed antibacterial and anti-apoptotic actions. The meta-analysis found an increase of 50% in survival rate of the animals treated with flavonoids. They appear to act as multi-target drugs and may be an excellent therapeutic alternative to reduce a number of the complications caused by sepsis, and consequently, to improve survival rate.
Collapse
Affiliation(s)
| | - Izabel Rodrigues de Santana
- Department of Physiology, Federal University of Sergipe, Sao Cristovao, Sergipe, Brazil
- Health Sciences Graduate Program, Federal University of Sergipe, Hospital Universitário, Aracaju, Sergipe, Brazil
| | - Aimée Obolari Durço
- Health Sciences Graduate Program, Federal University of Sergipe, Hospital Universitário, Aracaju, Sergipe, Brazil
| | - Lino Sérgio Rocha Conceição
- Department of Physical Therapy, Federal University of Sergipe, Hospital Universitário, Aracaju, Sergipe, Brazil
| | - André Sales Barreto
- Health Sciences Graduate Program, Federal University of Sergipe, Hospital Universitário, Aracaju, Sergipe, Brazil
- Department of Health Education, Federal University of Sergipe, Lagarto, Sergipe, Brazil
| | | | - Danilo Roman-Campos
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Márcio Roberto Viana Dos Santos
- Department of Physiology, Federal University of Sergipe, Sao Cristovao, Sergipe, Brazil
- Health Sciences Graduate Program, Federal University of Sergipe, Hospital Universitário, Aracaju, Sergipe, Brazil
| |
Collapse
|
8
|
Tu X, Huang H, Xu S, Li C, Luo S. Single-cell transcriptomics reveals immune infiltrate in sepsis. Front Pharmacol 2023; 14:1133145. [PMID: 37113759 PMCID: PMC10126435 DOI: 10.3389/fphar.2023.1133145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/28/2022] [Accepted: 02/27/2023] [Indexed: 04/29/2023] Open
Abstract
Immune cells and immune microenvironment play important in the evolution of sepsis. This study aimed to explore hub genes related to the abundance of immune cell infiltration in sepsis. The GEOquery package is used to download and organize data from the GEO database. A total of 61 differentially expressed genes (DEGs) between sepsis samples and normal samples were obtained through the 'limma' package. T cells, natural killer (NK) cells, monocytes, megakaryocytes, dendritic cells (DCs), and B cells formed six distinct clusters on the t-distributed stochastic neighbor embedding (t-SNE) plot generated using the Seurat R package. Gene set enrichment analysis (GSEA) enrichment analysis showed that sepsis samples and normal samples were related to Neutrophil Degranulation, Modulators of Tcr Signaling and T Cell Activation, IL 17 Pathway, T Cell Receptor Signaling Pathway, Ctl Pathway, Immunoregulatory Interactions Between a Lymphoid and A Non-Lymphoid Cell. GO analysis and KEGG analysis of immune-related genes showed that the intersection genes were mainly associated with Immune-related signaling pathways. Seven hub genes (CD28, CD3D, CD2, CD4, IL7R, LCK, and CD3E) were screened using Maximal Clique Centrality, Maximum neighborhood component, and Density of Maximum Neighborhood Component algorithms. The lower expression of the six hub genes (CD28, CD3D, CD4, IL7R, LCK, and CD3E) was observed in sepsis samples. We observed the significant difference of several immune cell between sepsis samples and control samples. Finally, we carried out in vivo animal experiments, including Western blotting, flow cytometry, Elisa, and qPCR assays to detect the concentration and the expression of several immune factors.
Collapse
Affiliation(s)
- Xusheng Tu
- Department of Emergency Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - He Huang
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shilei Xu
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Caifei Li
- Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Caifei Li, ; Shaoning Luo,
| | - Shaoning Luo
- Department of Emergency Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Caifei Li, ; Shaoning Luo,
| |
Collapse
|
9
|
Fu T, Chen Y, Li J, Zhu P, He H, Zhang W, Yung KKL, Wu W. Exploring the Effective Components and Mechanism of Action of Japanese Ardisia in the Treatment of Autoimmune Hepatitis Based on Network Pharmacology and Experimental Verification. Pharmaceuticals (Basel) 2022; 15:ph15121457. [PMID: 36558908 PMCID: PMC9784645 DOI: 10.3390/ph15121457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Japanese Ardisia is widely used as a hepatoprotective and anti-inflammatory agent in China. However, the active ingredients in Japanese Ardisia and their potential mechanisms of action in the treatment of autoimmune hepatitis (AIH) are unknown. The pharmacodynamic substance and mechanism of action of Japanese Ardisia in the treatment of AIH were investigated using network pharmacology and molecular docking technology in this study. Following that, the effects of Japanese Ardisia were evaluated using the concanavalin A (Con A)-induced acute liver injury rat model. The active ingredients and targets of Japanese Ardisia were searched using the Traditional Chinese Medicine Systems Pharmacology database, and hepatitis-related therapeutic targets were identified through GeneCards and Online Mendelian Inheritance in Man databases. A compound-target network was then constructed using Cytoscape software, and enrichment analysis was performed using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Molecular docking technology was used to simulate the docking of key targets, and the AIH rat model was used to validate the expression of key targets. Nineteen active chemical components and 143 key target genes were identified. GO enrichment analysis revealed that the treatment of AIH with Japanese Ardisia mainly involved DNA-binding transcription factor binding, RNA polymerase II-specific DNA transcription factor binding, cytokine receptor binding, receptor-ligand activity, ubiquitin-like protein ligase binding, and cytokine activity. In the KEGG enrichment analysis, 165 pathways were identified, including the lipid and atherosclerotic pathway, IL-17 signaling pathway, TNF signaling pathway, hepatitis B pathway, and the AGE-RAGE signaling pathway in diabetic complications. These pathways may be the key to effective AIH treatment with Japanese Ardisia. Molecular docking showed that quercetin and kaempferol have good binding to AKT1, IL6, VEGFA, and CASP3. Animal experiments demonstrated that Japanese Ardisia could increase the expression of AKT1 and decrease the expression of CASP3 protein, as well as IL-6, in rat liver tissues. This study identified multiple molecular targets and pathways for Japanese Ardisia in the treatment of AIH. At the same time, the effectiveness of Japanese Ardisia in treating AIH was verified by animal experiments.
Collapse
Affiliation(s)
- Tian Fu
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yifei Chen
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Junkui Li
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
- Golden Meditech Centre for NeuroRegeneration Sciences (GCNS), Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong 999077, China
| | - Peili Zhu
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
- Golden Meditech Centre for NeuroRegeneration Sciences (GCNS), Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong 999077, China
| | - Huajuan He
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Wei Zhang
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Ken Kin Lam Yung
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
- Golden Meditech Centre for NeuroRegeneration Sciences (GCNS), Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong 999077, China
- Correspondence: (K.K.L.Y.); (W.W.)
| | - Wei Wu
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
- Correspondence: (K.K.L.Y.); (W.W.)
| |
Collapse
|
10
|
Exosomes Derived from Baicalin-Pretreated Mesenchymal Stem Cells Alleviate Hepatocyte Ferroptosis after Acute Liver Injury via the Keap1-NRF2 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8287227. [PMID: 35910831 PMCID: PMC9334037 DOI: 10.1155/2022/8287227] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/04/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022]
Abstract
Acute liver injury (ALI) is characterized as a severe metabolic dysfunction caused by extensive damage to liver cells. Ferroptosis is a type of cell death dependent on iron and oxidative stress, which differs from classical cell death, such as apoptosis and necrosis. Ferroptosis has unique morphological features, which mainly include mitochondrial dissolution and mitochondrial outline reduction. Furthermore, the intracellular accumulation of lipid peroxides directly affects the occurrence of ferroptosis. Baicalin, the main compound isolated from Scutellaria baicalensis, has anti-inflammatory and antioxidative effects. Recently, exosomes derived from preconditioned mesenchymal stem cells (MSCs) have shown great potential in the treatment of various diseases including ALI. This study investigates the ability of exosomes derived from baicalin-pretreated MSCs (Ba-Exo) to promote liver function recovery in mice with ALI compared with those without pretreatment. Through in vivo and in vitro experiments, this study demonstrates for the first time that Ba-Exo greatly attenuates D-galactosamine and lipopolysaccharide (D-GaIN/LPS)-induced liver damage and inhibits reactive oxygen species (ROS) production and lipid peroxide-induced ferroptosis. Moreover, P62 was significantly upregulated in Ba-Exo, whereas its downregulation in Ba-Exo counteracted the beneficial effect of Ba-Exo. P62 regulates hepatocyte ferroptosis by activating the Keap1-NRF2 pathway. The beneficial effect of Ba-Exo in inhibiting ferroptosis was also attenuated after the NRF2 pathway was inhibited. Therefore, baicalin pretreatment is an effective and promising approach to optimize the therapeutic efficacy of MSC-derived exosomes in ALI.
Collapse
|
11
|
Zhu T, Wang L, Wang LP, Wan Q. Therapeutic targets of neuroprotection and neurorestoration in ischemic stroke: Applications for natural compounds from medicinal herbs. Biomed Pharmacother 2022; 148:112719. [DOI: 10.1016/j.biopha.2022.112719] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
|
12
|
Wang L, Xian YF, Loo SKF, Ip SP, Yang W, Chan WY, Lin ZX, Wu JCY. Baicalin ameliorates 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in mice through modulating skin barrier function, gut microbiota and JAK/STAT pathway. Bioorg Chem 2021; 119:105538. [PMID: 34929516 DOI: 10.1016/j.bioorg.2021.105538] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/24/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 01/11/2023]
Abstract
Baicalin has distinct therapeutic effects in various skin diseases animal models such as atopic dermatitis (AD) and psoriasis. In this study, we aimed to investigate the anti-atopic dermatitis (AD) effects of baicalin in 2,4-dinitrochlorobenzene (DNCB)-treated mice. Female BALB/c mice treated with DNCB to induce AD-like skin lesions and orally administrated with baicalin daily for 14 consecutive days. Baicalin significantly inhibited dorsal skin thickness and trans-epidermal water loss and epidermal thickness in dorsal skin. In addition, baicalin also significantly up-regulated the protein expressions of filaggrin, involucrin, and loricrin, but inhibited the inflammatory response and the activation of NF-κB and JAK/STAT pathways in the dorsal skin of the DNCB-treated mice. Furthermore, baicalin significantly restored the abundance of probiotics in the gut microbiota of the DNCB-treated mice. Pseudo germ-free (GF) DNCB-treated mice receiving fecal microbiota from baicalin donors reduced the dorsal skin thickness and skin EASI score, and inhibited the release of IgE, histamine, TNF-α and IL-4 in serum of mice. In summary, baicalin ameliorates AD-like skin lesions induced by DNCB in mice via regulation of the Th1/Th2 balance, improvement of skin barrier function and modulation of gut dysbiosis, and inhibition of inflammation through suppressing the activation of NF-κB and JAK/STAT pathways.
Collapse
Affiliation(s)
- Lan Wang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region.
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region.
| | - Steven King Fan Loo
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region
| | - Siu Po Ip
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region.
| | - Wen Yang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region.
| | - Wood Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region.
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region; Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Justin Che Yuen Wu
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region.
| |
Collapse
|
13
|
Pellissery AJ, Vinayamohan PG, Kuttappan DA, Mishra N, Fragomeni BDO, Maas K, Mooyottu S, Venkitanarayanan K. Protective Effect of Baicalin against Clostridioides difficile Infection in Mice. Antibiotics (Basel) 2021; 10:antibiotics10080926. [PMID: 34438975 PMCID: PMC8388895 DOI: 10.3390/antibiotics10080926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/15/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
This study investigated the prophylactic and therapeutic efficacies of baicalin (BC), a plant-derived flavone glycoside, in reducing the severity of Clostridioides difficile infection (CDI) in a mouse model. In the prophylactic trial, C57BL/6 mice were provided with BC (0, 11, and 22 mg/L in drinking water) from 12 days before C. difficile challenge through the end of the experiment, whereas BC administration started day 1 post challenge in the therapeutic trial. Both challenge and control groups were infected with 106 CFU/mL of hypervirulent C. difficile BAA 1803 spores or sterile PBS, and the clinical and diarrheal scores were recorded for 10 days post challenge. On day 2 post challenge, fecal and tissue samples were collected from mice prophylactically administered with BC for microbiome and histopathologic analysis. Both prophylactic and therapeutic supplementation of BC significantly reduced the severity of colonic lesions and improved CDI clinical progression and outcome compared with control (p < 0.05). Microbiome analysis revealed a significant increase in Gammaproteobacteria and reduction in the abundance of protective microbiota (Firmicutes) in antibiotic-treated and C. difficile-infected mice compared with controls (p < 0.05). However, baicalin supplementation favorably altered the microbiome composition, as revealed by an increased abundance in beneficial bacteria, especially Lachnospiraceae and Akkermansia. Our results warrant follow-up investigations on the use of BC as an adjunct to antibiotic therapy to control gut dysbiosis and reduce C. difficile infection in humans.
Collapse
Affiliation(s)
- Abraham Joseph Pellissery
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA; (A.J.P.); (D.A.K.); (B.O.F.)
| | | | - Deepa Ashwarya Kuttappan
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA; (A.J.P.); (D.A.K.); (B.O.F.)
| | - Neha Mishra
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269, USA;
| | - Breno de Oliveira Fragomeni
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA; (A.J.P.); (D.A.K.); (B.O.F.)
| | - Kendra Maas
- Microbial Analysis, Resources, and Services, University of Connecticut, Storrs, CT 06269, USA;
| | - Shankumar Mooyottu
- Department of Veterinary Pathology, Iowa State University, Ames, IA 50011, USA;
| | - Kumar Venkitanarayanan
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA; (A.J.P.); (D.A.K.); (B.O.F.)
- Correspondence: ; Tel.: +1-(860)-486-1957
| |
Collapse
|
14
|
|
15
|
Zhao S, Gao J, Li J, Wang S, Yuan C, Liu Q. PD-L1 Regulates Inflammation in LPS-Induced Lung Epithelial Cells and Vascular Endothelial Cells by Interacting with the HIF-1α Signaling Pathway. Inflammation 2021; 44:1969-1981. [PMID: 34014492 DOI: 10.1007/s10753-021-01474-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/31/2022]
Abstract
Sepsis-induced lung injury was the most common cause of death in patients. This study aimed to investigate whether PD-L1 regulates the inflammation in LPS-induced lung epithelial cells and vascular endothelial cells by interacting with the HIF-1α signaling pathway. Sepsis-induced lung injury mice were constructed by cecal ligation and puncture (CLP) procedure, and lipopolysaccharide (LPS)-induced lung epithelial cells and vascular endothelial cells simulate the sepsis-induced lung injury model in vitro. Hematoxylin-eosin (HE) staining detected the morphological changes of the lung tissues, and immunohistochemistry (IHC) detected the PD-L1 expression in lung tissues. Bicinchoninic acid (BCA) assay determined the protein concentration in bronchial alveolar lavage fluid (BALF). The number of PD-1 (+) cells in blood was detected by flow cytometry. The apoptosis in lung tissues and LPS-induced cells was analyzed by TUNEL assay. The inflammatory factor levels and HIF-1α in lung tissues and LPS-induced cells were analyzed by ELISA. The transfection effects of KD-PDL1 or KD-HIF1A in lung epithelial cells and vascular endothelial cells were confirmed by qRT-PCR analysis. The protein expression related to the PD-L1- and HIF-1α-related pathway was determined by Western blot analysis. As a result, LMT-28, as an IL-6 inhibitor, alleviated lung injury and suppressed the apoptosis and inflammation in lung tissues in BALF and the number of PD-1 (+) cells in blood. Sepsis-induced lung injury activated the PD-L1- and HIF-1α-related pathway, while LMT-28 could not completely inhibit the pathway. In addition, downregulation of PD-L1 or downregulation of HIF-1α suppressed the apoptosis and alleviated the inflammation in LPS-induced lung epithelial cells and vascular endothelial cells. Downregulation of PD-L1 had significant effects on lung epithelial cells but had greater effects on vascular endothelial cells. Downregulation of HIF-1α could decrease PD-L1 expression, and downregulation of PD-L1 could also suppress the protein expression of HIF-1α and related pathways. In conclusion, downregulation of PD-L1 alleviated the inflammation in LPS-induced lung epithelial cells and vascular endothelial cells by suppressing the HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Shilong Zhao
- Department of Respiratory Intensive Care Unit (ICU), The First Affiliated Hospital of Zhengzhou University, No. 1 JianShe East Road, Zhengzhou, 450000, Henan Province, China
| | - Jing Gao
- Department of Respiratory Intensive Care Unit (ICU), The First Affiliated Hospital of Zhengzhou University, No. 1 JianShe East Road, Zhengzhou, 450000, Henan Province, China
| | - Jing Li
- Department of Respiratory Intensive Care Unit (ICU), The First Affiliated Hospital of Zhengzhou University, No. 1 JianShe East Road, Zhengzhou, 450000, Henan Province, China
| | - Shilei Wang
- Department of Respiratory Intensive Care Unit (ICU), The First Affiliated Hospital of Zhengzhou University, No. 1 JianShe East Road, Zhengzhou, 450000, Henan Province, China
| | - Congcong Yuan
- Department of Respiratory Intensive Care Unit (ICU), The First Affiliated Hospital of Zhengzhou University, No. 1 JianShe East Road, Zhengzhou, 450000, Henan Province, China
| | - Qiuhong Liu
- Department of Respiratory Intensive Care Unit (ICU), The First Affiliated Hospital of Zhengzhou University, No. 1 JianShe East Road, Zhengzhou, 450000, Henan Province, China.
| |
Collapse
|
16
|
Yin B, Li W, Qin H, Yun J, Sun X. The Use of Chinese Skullcap ( Scutellaria baicalensis) and Its Extracts for Sustainable Animal Production. Animals (Basel) 2021; 11:ani11041039. [PMID: 33917159 PMCID: PMC8067852 DOI: 10.3390/ani11041039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary With the increasing pressure to address the problems of bacterial resistance and drug residues, medicinal herbs are gradually taking a more important role in animal production. Scutellaria baicalensis is a common and widely used Chinese medicinal herb. The main bioactive compounds in the plant are baicalein and baicalin. These compounds have many biological functions including anti-oxidation, antipyretic, analgesic, anti-inflammatory, antiallergic, antimicrobial, immunomodulatory, and antitumor effects. S. baicalensis and its extracts can effectively promote animal growth, improve the production performance of dairy cows, reduce the stress and inflammatory response, and have effective therapeutic effects on diseases caused by bacteria, viruses, and other pathogenic microorganisms. This paper summarizes the biological function of S. baicalensis and its application in sustainable animal production to provide a reference for future application of S. baicalensis and other medicinal herbs in animal production and disease treatment. Abstract Drugs have been widely adopted in animal production. However, drug residues and bacterial resistance are a worldwide issue, and thus the most important organizations (FAO, USDA, EU, and EFSA) have limited or banned the use of some drugs and the use of antibiotics as growth promoters. Natural products such as medicinal herbs are unlikely to cause bacterial resistance and have no chemical residues. With these advantages, medicinal herbs have long been used to treat animal diseases and improve animal performance. In recent years, there has been an increasing interest in the study of medicinal herbs. S. baicalensis is a herb with a high medicinal value. The main active compounds are baicalin and baicalein. They may act as antipyretic, analgesic, anti-inflammatory, antiallergenic, antimicrobial, and antitumor agents. They also possess characteristics of being safe, purely natural, and not prone to drug resistance. S. baicalensis and its extracts can effectively promote the production performance of livestock and treat many animal diseases, such as mastitis. In this review, we summarize the active compounds, biological functions, and applications of S. baicalensis in the production of livestock and provide a guideline for the application of natural medicines in the production and treatment of diseases.
Collapse
Affiliation(s)
- Baishuang Yin
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
| | - Wei Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
| | - Hongyu Qin
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
| | - Jinyan Yun
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
| | - Xuezhao Sun
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
- The Innovation Centre of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin Agricultural Science and Technology University, Jilin 132109, China
- Jilin Inter-Regional Cooperation Centre for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin 132109, China
- Correspondence: ; Tel.: +86-187-4327-5745
| |
Collapse
|
17
|
Classical Active Ingredients and Extracts of Chinese Herbal Medicines: Pharmacokinetics, Pharmacodynamics, and Molecular Mechanisms for Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8868941. [PMID: 33791075 PMCID: PMC7984881 DOI: 10.1155/2021/8868941] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/28/2020] [Revised: 01/08/2021] [Accepted: 02/28/2021] [Indexed: 12/17/2022]
Abstract
Stroke is a leading cause of death and disability worldwide, and approximately 87% of cases are attributed to ischemia. The main factors that cause ischemic stroke include excitotoxicity, energy metabolism disorder, Ca+ overload, oxidative damage, apoptosis, autophagy, and inflammation. However, no effective drug is currently available for the comprehensive treatment of ischemic stroke in clinical applications; thus, there is an urgent need to find and develop comprehensive and effective drugs to treat postischemic stroke. Traditional Chinese medicine (TCM) has unique advantages in treating ischemic stroke, with overall regulatory effects at multiple levels and on multiple targets. Many researchers have studied the effective components of TCMs and have achieved undeniable results. This paper reviews studies on the anticerebral ischemia effects of TCM monomers such as tetramethylpyrazine (TMP), dl-3-n-butylphthalide (NBP), ginsenoside Rg1 (Rg1), tanshinone IIA (TSA), gastrodin (Gas), and baicalin (BA) as well as effective extracts such as Ginkgo biloba extract (EGB). Research on the anticerebral ischemia effects of TCMs has focused mostly on their antioxidative stress, antiapoptotic, anti-inflammatory, proangiogenic, and proneurogenic effects. However, the research on the use of TCM to treat ischemic stroke remains incompletely characterized. Thus, we summarized and considered this topic from the perspective of pharmacokinetics, pharmacological effects, and mechanistic research, and we have provided a reference basis for future research and development on anticerebral ischemia TCM drugs.
Collapse
|
18
|
Potential Effects of Nutraceuticals in Retinopathy of Prematurity. Life (Basel) 2021; 11:life11020079. [PMID: 33499180 PMCID: PMC7912639 DOI: 10.3390/life11020079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/02/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023] Open
Abstract
Retinopathy of prematurity (ROP), the most common cause of childhood blindness, is a hypoxia-induced eye disease characterized by retinal neovascularization. In the normal retina, a well-organized vascular network provides oxygen and nutrients as energy sources to maintain a normal visual function; however, it is disrupted when pathological angiogenesis is induced in ROP patients. Under hypoxia, inadequate oxygen and energy supply lead to oxidative stress and stimulate neovasculature formation as well as affecting the function of photoreceptors. In order to meet the metabolic needs in the developing retina, protection against abnormal vascular formation is one way to manage ROP. Although current treatments provide beneficial effects in reducing the severity of ROP, these invasive therapies may also induce life-long consequences such as systemic structural and functional complications as well as neurodevelopment disruption in the developing infants. Nutritional supplements for the newborns are a novel concept for restoring energy supply by protecting the retinal vasculature and may lead to better ROP management. Nutraceuticals are provided in a non-invasive manner without the developmental side effects associated with current treatments. These nutraceuticals have been investigated through various in vitro and in vivo methods and are indicated to protect retinal vasculature. Here, we reviewed and discussed how the use of these nutraceuticals may be beneficial in ROP prevention and management.
Collapse
|
19
|
Zhao ZZ, Wang XL, Xie J, Chen LP, Li Q, Wang XX, Wang JF, Deng XM. Therapeutic Effect of an Anti-Human Programmed Death-Ligand 1 (PD-L1) Nanobody on Polymicrobial Sepsis in Humanized Mice. Med Sci Monit 2021; 27:e926820. [PMID: 33421049 PMCID: PMC7805247 DOI: 10.12659/msm.926820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Immunosuppression is regarded as the main cause of death induced by sepsis. Anti-programmed death-ligand 1 (PD-L1) therapy is promising in reversing sepsis-induced immunosuppression but no evidence is available on use of commercially available anti-PD-L1 medications for this indication. The present preclinical study was performed to investigate the therapeutic effect of an anti-PD-L1 nanobody (KN035) in sepsis. MATERIAL AND METHODS The level of expression of PD-L1 in PD-L1 humanized mice was confirmed with flow cytometry. Plasma concentrations of KN035 at different dosages at different time points were detected using an enzyme-linked immunosorbent assay. PD-L1 humanized mice were allocated into 4 groups: sham, cecal ligation and puncture (CLP), isotype (isotype+CLP), and PD-L1 (KN035+CLP). The 7-day survival rate was observed to investigate outcomes in CLP mice. Disease severity was assessed with histopathological scoring of mice lungs and livers. Immune status was assessed based on cell apoptosis in the spleen and bacterial clearance. RESULTS PD-L1 levels were significantly elevated in peripheral lymphocytes, monocytes, and neutrophils after CLP surgery. Blood concentrations of KN035 showed that 2.5 mg/kg had potential to be an ideal dosage for KN035 therapy. Survival analysis demonstrated that KN035 was associated with significantly reduced mortality on Day 7 after surgery (P=0.0083). The histopathological tests showed that KN035 alleviated sepsis-induced injury in the lungs and liver. KN035 reduced the number of apoptotic cells in the spleen and almost eliminated bacterial colonies in the peritoneal lavage fluid from the CLP mice. CONCLUSIONS KN035, an anti-PD-L1 antibody, can improve the rate of survival in CLP mice and alleviate sepsis-induced apoptosis in the spleen.
Collapse
Affiliation(s)
- Zhen-Zhen Zhao
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China (mainland)
| | - Xiao-Lin Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China (mainland)
| | - Jian Xie
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China (mainland)
| | - Li-Ping Chen
- Alphamab Co., Ltd, Suzhou, Jiangsu, China (mainland)
| | - Qian Li
- Alphamab Co., Ltd, Suzhou, Jiangsu, China (mainland)
| | | | - Jia-Feng Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China (mainland)
| | - Xiao-Ming Deng
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China (mainland)
| |
Collapse
|
20
|
Tsai KC, Huang YC, Liaw CC, Tsai CI, Chiou CT, Lin CJ, Wei WC, Lin SJS, Tseng YH, Yeh KM, Lin YL, Jan JT, Liang JJ, Liao CC, Chiou WF, Kuo YH, Lee SM, Lee MY, Su YC. A traditional Chinese medicine formula NRICM101 to target COVID-19 through multiple pathways: A bedside-to-bench study. Biomed Pharmacother 2020; 133:111037. [PMID: 33249281 PMCID: PMC7676327 DOI: 10.1016/j.biopha.2020.111037] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/20/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
COVID-19 is a global pandemic, with over 50 million confirmed cases and 1.2 million deaths as of November 11, 2020. No therapies or vaccines so far are recommended to treat or prevent the new coronavirus. A novel traditional Chinese medicine formula, Taiwan Chingguan Yihau (NRICM101), has been administered to patients with COVID-19 in Taiwan since April 2020. Its clinical outcomes and pharmacology have been evaluated. Among 33 patients with confirmed COVID-19 admitted in two medical centers, those (n = 12) who were older, sicker, with more co-existing conditions and showing no improvement after 21 days of hospitalization were given NRICM101. They achieved 3 consecutive negative results within a median of 9 days and reported no adverse events. Pharmacological assays demonstrated the effects of the formula in inhibiting the spike protein/ACE2 interaction, 3CL protease activity, viral plaque formation, and production of cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α. This bedside-to-bench study suggests that NRICM101 may disrupt disease progression through its antiviral and anti-inflammatory properties, offering promise as a multi-target agent for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, No. 250 Wu-Xing Street, Taipei 11031, Taiwan.
| | - Yi-Chia Huang
- Department of Chinese Medicine, Tri-Service General Hospital, National Defense Medical Center, No.325, Section 2, Chenggong Road, Neihu District, Taipei 11490, Taiwan.
| | - Chia-Ching Liaw
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Chia-I Tsai
- Department of Traditional Chinese Medicine, Taichung Veterans General Hospital, No. 1650, Taiwan Boulevard Section 4, Seatwen District, Taichung 407204, Taiwan.
| | - Chun-Tang Chiou
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Chien-Jung Lin
- Department of Chinese Medicine, Tri-Service General Hospital, National Defense Medical Center, No.325, Section 2, Chenggong Road, Neihu District, Taipei 11490, Taiwan.
| | - Wen-Chi Wei
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Sunny Jui-Shan Lin
- Department of Chinese Medicine, Tri-Service General Hospital, National Defense Medical Center, No.325, Section 2, Chenggong Road, Neihu District, Taipei 11490, Taiwan.
| | - Yu-Hwei Tseng
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Kuo-Ming Yeh
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Road, Neihu District, Taipei 11490, Taiwan.
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei 11529, Taiwan.
| | - Jia-Tsrong Jan
- Genomic Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan.
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei 11529, Taiwan.
| | - Chun-Che Liao
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei 11529, Taiwan.
| | - Wen-Fei Chiou
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Yao-Haur Kuo
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Shen-Ming Lee
- Department of Statistic, Feng Chia University, No. 100, Wenhwa Road, Seatwen District, Taichung 40724, Taiwan.
| | - Ming-Yung Lee
- Department of Data Science and Big Data Analytics, Providence University, Taichung, No. 200, Section 7, Taiwan Boulevard, Shalu District, Taichung 43301, Taiwan.
| | - Yi-Chang Su
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan.
| |
Collapse
|
21
|
Kuo SW, Su WL, Chou TC. Baicalin improves the survival in endotoxic mice and inhibits the inflammatory responses in LPS-treated RAW 264.7 macrophages. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220967767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: Sepsis is a severe disease with a high morbidity and mortality. Baicalin, an active compound of Chinese medicine, Scutellaria baicalensis Georgi (Huang Qui), exhibits several beneficial effects. In this study, we examined whether administration of baicalin increases the survival in mice with endotoxemia and investigated its anti-inflammatory mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods: The production of NOx, PGE2, and pro-inflammatory cytokines, the mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and the nuclear translocation of NF-κB in LPS-stimulated macrophages or endotoxic mice were determined. The model of severe endotoxic mice was established by injection of LPS (60 mg/kg, i.p.). Results: Baicalin significantly inhibited the production of NO, PGE2, and pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6 in LPS-stimulated macrophages. Baicalin treatment also markedly suppressed LPS-induced iNOS and COX-2 expression at the transcriptional and translational levels, and the nuclear translocation of NF-κB in macrophages. Similarly, the serum concentrations of NOx, PGE2, and pro-inflammatory cytokines, and the lung myeloperoxidase activity were greatly reduced in baicalin-treated endotoxic mice. Notably, after LPS injection, the 3-day survival rate of mice treated with pre- or post-administration of baicalin (50 mg/kg, i.p.) remarkably increased to 100% and 90%, respectively compared with LPS-injected alone mice with a survival rate of 0%. Conclusion: Baicalin has a potent anti-inflammatory activity in LPS-stimulated macrophages and endotoxic mice. Moreover, treatment with baicalin dramatically increased the survival in the severe septic mice, suggesting that baicalin may be a potential agent for sepsis therapy.
Collapse
Affiliation(s)
- Shi-Wen Kuo
- Department of Endocrinology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City
| | - Wen-Lin Su
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City
- School of Medicine, Tzu Chi University, Hualien
- National Defense Medical Center, Taipei
| | - Tz-Chong Chou
- China Medical University Hospital, China Medical University, Taichung
- Department of Pharmacology, National Defense Medical Center, Taipei
- Cathay Medical Research Institute, Cathay General Hospital, New Taipei City
| |
Collapse
|
22
|
Histone Deacetylation Inhibitors as Modulators of Regulatory T Cells. Int J Mol Sci 2020; 21:ijms21072356. [PMID: 32235291 PMCID: PMC7177531 DOI: 10.3390/ijms21072356] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/13/2020] [Revised: 03/12/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Regulatory T cells (Tregs) are important mediators of immunological self-tolerance and homeostasis. Being cluster of differentiation 4+Forkhead box protein3+ (CD4+FOXP3+), these cells are a subset of CD4+ T lymphocytes and can originate from the thymus (tTregs) or from the periphery (pTregs). The malfunction of CD4+ Tregs is associated with autoimmune responses such as rheumatoid arthritis (RA), multiple sclerosis (MS), type 1 diabetes (T1D), inflammatory bowel diseases (IBD), psoriasis, systemic lupus erythematosus (SLE), and transplant rejection. Recent evidence supports an opposed role in sepsis. Therefore, maintaining functional Tregs is considered as a therapy regimen to prevent autoimmunity and allograft rejection, whereas blocking Treg differentiation might be favorable in sepsis patients. It has been shown that Tregs can be generated from conventional naïve T cells, called iTregs, due to their induced differentiation. Moreover, Tregs can be effectively expanded in vitro based on blood-derived tTregs. Taking into consideration that the suppressive role of Tregs has been mainly attributed to the expression and function of the transcription factor Foxp3, modulating its expression and binding to the promoter regions of target genes by altering the chromatin histone acetylation state may turn out beneficial. Hence, we discuss the role of histone deacetylation inhibitors as epigenetic modulators of Tregs in this review in detail.
Collapse
|
23
|
Jin BR, An HJ. Baicalin alleviates benign prostate hyperplasia through androgen-dependent apoptosis. Aging (Albany NY) 2020; 12:2142-2155. [PMID: 32018227 PMCID: PMC7041748 DOI: 10.18632/aging.102731] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2019] [Accepted: 01/02/2020] [Indexed: 12/17/2022]
Abstract
BPH is a disease prevalent among elderly men that is characterized by abnormal proliferation of prostatic epithelial and stromal tissues. No effective treatment exists for BPH owing to lack of a clear understanding of its molecular etiology. Although several studies have reported therapeutic effects of baicalin against numerous diseases, including prostate cancer, its beneficial effects on BPH have not yet been explored. The present study investigated the therapeutic effects of baicalin on the development of BPH and its mechanism of action. We established a testosterone-treated BPH animal model and DHT-stimulated prostate cell lines, including RWPE-1 and WPMY-1. Administration of baicalin ameliorated the pathological prostate enlargement, suppressed the production of DHT, and inhibited the activity of 5α- reductase Type II in the animal model. BC exerted these effects via its anti-proliferative effects by restoring the Bax/Bcl-2 ratio, activating caspase-3 and caspase-8, and inducing the phosphorylation of AMPK. In vitro studies using DHT-stimulated prostate cells demonstrated an up-regulation of BPH-related and proliferation markers, whereas baicalin clearly reduced the overexpression of AR, PSA, PCNA, and Bcl-2. These results suggested that baicalin could suppress androgen-dependent development of BPH both in vivo and in vitro by inducing apoptosis.
Collapse
Affiliation(s)
- Bo-Ram Jin
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju-si 26339, Gangwon-do, Republic of Korea
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju-si 26339, Gangwon-do, Republic of Korea
| |
Collapse
|
24
|
Jin H, Wang Q, Wu J, Han X, Qian T, Zhang Z, Wang J, Pan X, Wu A, Wang X. Baicalein Inhibits the IL-1β-Induced Inflammatory Response in Nucleus Pulposus Cells and Attenuates Disc Degeneration In vivo. Inflammation 2019; 42:1032-1044. [PMID: 30729381 DOI: 10.1007/s10753-019-00965-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023]
Abstract
Intervertebral disc degeneration (IDD) is widely considered one of the main causes of low back pain, which is a chronic progressive disease closely related to inflammation and degeneration of nucleus pulposus (NP) cells. Baicalein is a natural bioactive compound with anti-inflammatory effects in different diseases, including inhibition of the inflammatory response in chondrocytes, whose morphology and avascular supply are similar to those of NP cells. Therefore, we hypothesized that baicalein may have a therapeutic effect on IDD by suppressing the inflammatory response. In vitro, NP cells were pretreated with baicalein for 2 h and then incubated with IL-1β for 24 h. We found that baicalein not only inhibited the overexpression of inflammatory cytokine production, including NO, PGE2, TNF-α, and IL-6, but also suppressed the expression of COX-2 and iNOS. The IL-1β-induced overexpression of MMP13 and ADAMTS5 and degradation of aggrecan and type II collagen were reversed by baicalein in a dose-dependent manner. Mechanistically, we found that baicalein suppressed the IL-1β-induced activation of the NF-κB and MAPK pathways. Moreover, an in vivo study demonstrated that baicalein treatment could ameliorate IDD in a puncture-induced rat model. Thus, baicalein has great value as a potential therapeutic agent for IDD.
Collapse
Affiliation(s)
- Haiming Jin
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingqing Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianwei Wu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuyao Han
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tianchen Qian
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zengjie Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianle Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangxiang Pan
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Aimin Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang, China.
| | - Xiangyang Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang, China.
| |
Collapse
|
25
|
Li J, Qiao Z, Hu W, Zhang W, Shah SWA, Ishfaq M. Baicalin mitigated Mycoplasma gallisepticum-induced structural damage and attenuated oxidative stress and apoptosis in chicken thymus through the Nrf2/HO-1 defence pathway. Vet Res 2019; 50:83. [PMID: 31639045 PMCID: PMC6805401 DOI: 10.1186/s13567-019-0703-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/22/2019] [Accepted: 09/23/2019] [Indexed: 01/26/2023] Open
Abstract
The thymus is a primary lymphoid organ and plays a critical role in the immune response against infectious agents. Baicalin is a naturally derived flavonoid famous for its pharmacological properties, but the preventive effects of baicalin against immune impairment remain unclear. We examined this effect in the context of Mycoplasma gallisepticum (MG) infection-induced structural damage in the chicken thymus. Histopathological examination showed that the compact arrangement of cells in the thymus was lost in the MG-infected group. Inflammatory cell infiltration and nuclear debris accumulated, and the boundary between the cortex and medulla was not clearly visible. The mRNA and protein expression of apoptosis-related genes were significantly increased in the MG-infected group compared to the control group and the baicalin group. The number of positively stained nuclei in the terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay were increased in the MG-infected group. In addition, electron microscopic examination showed chromatin condensation, mitochondrial swelling and apoptotic vesicles in the MG-infected group. However, baicalin treatment significantly alleviated the oxidative stress and apoptosis induced by MG infection. Importantly, the abnormal morphology was partially ameliorated by baicalin treatment. Compared to the MG-infected group, the baicalin-treated group showed significantly reduced expression of apoptosis-related genes at both the mRNA and protein levels. Meanwhile, the nuclear factor erythroid 2-related factor 2 (Nrf2) signalling pathway and downstream genes were significantly upregulated by baicalin to counteract MG-induced oxidative stress and apoptosis in the thymocytes of chickens. In summary, these findings suggest that baicalin treatment efficiently attenuated oxidative stress and apoptosis by activating the Nrf2 signalling pathway and could protect the thymus from MG infection-mediated structural and functional damage.
Collapse
Affiliation(s)
- Jichang Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Zujian Qiao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, China.,Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Xiangfang District, Harbin, 150086, China
| | - Wanying Hu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Wei Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Syed Waqas Ali Shah
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
26
|
Baicalin improves intestinal microecology and abnormal metabolism induced by high-fat diet. Eur J Pharmacol 2019; 857:172457. [PMID: 31202804 DOI: 10.1016/j.ejphar.2019.172457] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/07/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/27/2022]
Abstract
Short-chain fatty acids (SCFAs) are produced by the fermentation of dietary fiber by the gut microbiota and are beneficial to the health of the body. Insufficient SCFAs productions are associated with type 2 diabetes (T2D). We used a long-term high-fat diet to simulate the pathogenesis of T2D and studied the effects of baicalin on gut microbiota and metabolites in mice as well as its mechanism, providing a theoretical basis for the treatment of T2D. Baicalin groups were given 200 mg/kg/day, and control groups were given an equal volume of 0.5% sodium carboxymethyl cellulose solution for 15 weeks. 16S rRNA amplicon pyrosequences was performed to evaluate the gut microbiota composition, and gas chromatography was used to detect SCFAs in stool samples in the different experimental groups. The abundance of gut microbiota in the high-fat model group was altered, and was associated with a decreased production of SCFAs. The microbiota abundance of the baicalin group was closer to that of the control group, increasing the population of SCFA-producing bacteria spp and improving metabolic syndrome, including abnormal glucose and lipid metabolism caused by a high-fat diet. Baicalin may improve abnormalities in glycolipid metabolism by affecting the production of SCFAs.
Collapse
|
27
|
Pan Y, Song D, Zhou W, Lu X, Wang H, Li Z. Baicalin inhibits C2C12 myoblast apoptosis and prevents against skeletal muscle injury. Mol Med Rep 2019; 20:709-718. [PMID: 31180563 DOI: 10.3892/mmr.2019.10298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/07/2018] [Accepted: 04/30/2019] [Indexed: 11/06/2022] Open
Abstract
Anti‑apoptotic and anti‑inflammatory treatments are imperative for skeletal muscle regeneration following injury. Baicalin is well known and has previously been investigated for its role in the treatment of injury and inflammatory diseases. Therefore, the present study aimed to investigate the effects of baicalin in inhibiting apoptosis of C2C12 myoblasts and preventing skeletal muscle injury. A cell counting kit‑8 (CCK‑8) assay and Annexin V/PI staining were initially performed to measure cell viability and apoptosis under conditions of H2O2 exposure with or without baicalin. Subsequently, oxidative activity, mitochondrial function, mitochondrial apoptogenic factors and caspase proteins were analyzed to examine the mechanism underlying the effect of baicalin on inhibiting apoptosis in C2C12 myoblasts. Furthermore, BALB/C mice with skeletal muscle injuries were established, and the potential application of baicalin for anti‑apoptotic and anti‑inflammatory effects was examined via small animal β‑2‑[18F]‑fluoro‑2‑deoxy‑D‑glucose (18F‑FDG) positron emission tomography (PET) imaging and pathological examination. The CCK‑8 assay and Annexin V/PI staining revealed cell death in the C2C12 myoblasts induced by H2O2, which was apoptotic, and this was effectively reversed by treatment with baicalin. H2O2 increased the reactive oxygen species and malondialdehyde levels in C2C12 myoblasts, which was caused by mitochondrial dysfunction, decreased expression of cytochrome c and apoptosis‑inducing factor from cytosolic and mitochondrial fractions, and activated expression of caspase‑3 and caspase‑9; however, treatment with baicalin reversed these effects. In addition, small animal PET imaging revealed that treatment with baicalin decreased the accumulation of FDG by ~65.9% in the injured skeletal muscle induced by H2O2. These pathological results also confirmed the protective effect of baicalin on injured skeletal muscle. Taken together, the results of the present study indicated that baicalin effectively inhibited the apoptosis of C2C12 myoblasts and protected skeletal muscle from injury, which may have potential therapeutic benefits for patients in a clinical setting.
Collapse
Affiliation(s)
- Yutao Pan
- Department of Emergency and Trauma Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Dongli Song
- Zhongshan Hospital Clinical Science Institute, Fudan University, Shanghai 200032, P.R. China
| | - Weiyan Zhou
- PET Center, Huashan Hospital, Fudan University, Shanghai 200235, P.R. China
| | - Xiuhong Lu
- PET Center, Huashan Hospital, Fudan University, Shanghai 200235, P.R. China
| | - Haiyan Wang
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Zengchun Li
- Department of Emergency and Trauma Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| |
Collapse
|
28
|
HIF1 α-Induced Glycolysis in Macrophage Is Essential for the Protective Effect of Ouabain during Endotoxemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7136585. [PMID: 31182997 PMCID: PMC6512009 DOI: 10.1155/2019/7136585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/28/2018] [Revised: 03/09/2019] [Accepted: 03/24/2019] [Indexed: 12/16/2022]
Abstract
Ouabain, a steroid binding to the Na+/K+-ATPase, has several pharmacological effects. In addition to the recognized effects of blood pressure, there is more convincing evidence suggesting that ouabain is involved in immunologic functions and inflammation. Hypoxia-inducible factor 1α (HIF-1α) is a metabolic regulator which plays a considerable role in immune responses. Previous studies had shown that HIF-1α-induced glycolysis results in functional reshaping in macrophages. In this study, we investigated the role of glycolytic pathway activation in the anti-inflammatory effect of ouabain. We found that ouabain is involved in anti-inflammatory effects both in vivo and in vitro. Additionally, ouabain can inhibit LPS-induced upregulation of GLUT1 and HK2 at the transcriptional level. GM-CSF pretreatment almost completely reversed the inhibitory effect of ouabain on LPS-induced release of proinflammatory cytokines. Alterations in glycolytic pathway activation were required for the anti-inflammatory effect of ouabain. Ouabain can significantly inhibit the upregulation of HIF-1α at the protein level. Our results also revealed that the overexpression of HIF-1α can reverse the anti-inflammatory effect of ouabain. Thus, we conclude that the HIF-1α-dependent glycolytic pathway is essential for the anti-inflammatory effect of ouabain.
Collapse
|
29
|
Shi J, Wu G, Zou X, Jiang K. Enteral Baicalin, a Flavone Glycoside, Reduces Indicators of Cardiac Surgery-Associated Acute Kidney Injury in Rats. Cardiorenal Med 2018; 9:31-40. [DOI: 10.1159/000492159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/19/2018] [Accepted: 07/16/2018] [Indexed: 11/19/2022] Open
Abstract
Background/Aims: Cardiac surgery-associated acute kidney injury (CSA-AKI) is one of the most common postoperative complications in intensive care medicine. Baicalin has been shown to have anti-inflammatory and antioxidant roles in various disorders. We aimed to test the protective effects of baicalin on CSA-AKI using a rat model. Methods: Sprague-Dawley rats underwent 75 min of cardiopulmonary bypass (CPB) with 45 min of cardioplegic arrest (CA) to establish the AKI model. Baicalin was administered at different doses intragastrically 1 h before CPB. The control and treated rats were subjected to the evaluation of different kidney injury index and inflammation biomarkers. Results: Baicalin significantly attenuated CPB/CA-induced AKI in rats, as evidenced by the lower levels of serum creatinine, serum NGAL, and Kim1. Baicalin remarkably inhibited oxidative stress, reflected in the decreased malondialdehyde and myeloperoxidase activity, and enhanced superoxide dismutase activity and glutathione in renal tissue. Baicalin suppressed the expression of IL-18 and iNOS, and activated the Nrf2/HO-1 pathway. Conclusion: Our data indicated that baicalin mediated CPB/CA-induced AKI by decreasing the oxidative stress and inflammation in the renal tissues, and that baicalin possesses the potential to be developed as a therapeutic tool in clinical use for CSA-AKI.
Collapse
|
30
|
Liu F, Zhang J, Qian J, Wu G, Ma Z. Baicalin attenuates liver hypoxia/reoxygenation injury by inducing autophagy. Exp Ther Med 2018; 16:657-664. [PMID: 30116320 PMCID: PMC6090227 DOI: 10.3892/etm.2018.6284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/24/2017] [Accepted: 05/14/2018] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to explore the effect of baicalin on liver hypoxia/reoxygenation (H/R) injury and the possible mechanism involved. A cellular H/R model was established and cells were treated with 50, 100 and 200 µmol/l baicalin. Following reoxygenation for 6 h, cell viability, lactate dehydrogenase (LDH), B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), caspase 3 and cleaved caspase 3 were assessed. Furthermore, levels of endoplasmic reticulum stress markers binding of immunoglobulin protein (BIP) and CCAAT/enhancer-binding protein homologous protein (CHOP) and autophagy markers microtubule-associated proteins 1A/1B light chain 3B (LC3) and beclin 1 were measured. To confirm the involvement of autophagy in baicalin-mediated attenuation of H/R injury, the autophagy inhibitor 3-methyladenine (3-MA) was administered. The results revealed that baicalin administration increased cell viability and decreased LDH levels, most notably at a dosage of 100 µmol/l. Baicalin pretreatment also downregulated the expression of caspase 3, cleaved caspase 3 and Bax, while upregulating the expression of Bcl-2. Furthermore, BIP and CHOP were decreased while LC3 and beclin-1 were significantly increased by baicalin pretreatment. Inhibiting autophagy using 3-MA, resulted in a significant decrease in LC3-II, beclin-1 and LDH, as well as increase in the expression of BIP, CHOP, caspase 3, cleaved caspase 3 and Bax. Bcl-2 and cell viability were also decreased. In conclusion, the results of the present study indicate that baicalin exerts a protective effect on liver H/R injury and this may be achieved via the induction of autophagy.
Collapse
Affiliation(s)
- Feng Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jing Zhang
- Nursing Center, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jianmin Qian
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Gang Wu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zhenyu Ma
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
31
|
Fu S, Liu H, Chen X, Qiu Y, Ye C, Liu Y, Wu Z, Guo L, Hou Y, Hu CAA. Baicalin Inhibits Haemophilus Parasuis-Induced High-Mobility Group Box 1 Release during Inflammation. Int J Mol Sci 2018; 19:ijms19051307. [PMID: 29702580 PMCID: PMC5983759 DOI: 10.3390/ijms19051307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/24/2018] [Revised: 04/04/2018] [Accepted: 04/24/2018] [Indexed: 02/07/2023] Open
Abstract
Haemophilus parasuis (H. parasuis) can cause Glässer’s disease in pigs. However, the molecular mechanism of the inflammation response induced by H. parasuis remains unclear. The high-mobility group box 1 (HMGB1) protein is related to the pathogenesis of various infectious pathogens, but little is known about whether H. parasuis can induce the release of HMGB1 in piglet peripheral blood monocytes. Baicalin displays important anti-inflammatory and anti-microbial activities. In the present study, we investigated whether H. parasuis can trigger the secretion of HMGB1 in piglet peripheral blood monocytes and the anti-inflammatory effect of baicalin on the production of HMGB1 in peripheral blood monocytes induced by H. parasuis during the inflammation response. In addition, host cell responses stimulated by H. parasuis were determined with RNA-Seq. The RNA-Seq results showed that H. parasuis infection provokes the expression of cytokines and the activation of numerous pathways. In addition, baicalin significantly reduced the release of HMGB1 in peripheral blood monocytes induced by H. parasuis. Taken together, our study showed that H. parasuis can induce the release of HMGB1 and baicalin can inhibit HMGB1 secretion in an H. parasuis-induced peripheral blood monocytes model, which may provide a new strategy for preventing the inflammatory disorders induced by H. parasuis.
Collapse
Affiliation(s)
- Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Huashan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Xiao Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Ling Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Chien-An Andy Hu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
32
|
Li CG, Yan L, Mai FY, Shi ZJ, Xu LH, Jing YY, Zha QB, Ouyang DY, He XH. Baicalin Inhibits NOD-Like Receptor Family, Pyrin Containing Domain 3 Inflammasome Activation in Murine Macrophages by Augmenting Protein Kinase A Signaling. Front Immunol 2017; 8:1409. [PMID: 29163487 PMCID: PMC5674921 DOI: 10.3389/fimmu.2017.01409] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2017] [Accepted: 10/11/2017] [Indexed: 01/24/2023] Open
Abstract
The flavonoid baicalin has been reported to possess potent anti-inflammatory activities by suppressing inflammatory signaling pathways. However, whether baicalin can suppress the activation of NOD-like receptor (NLR) family, pyrin containing domain 3 (NLRP3) inflammasome in macrophages is largely unknown. Here, we showed that baicalin treatment dose-dependently inhibited adenosine triphosphate (ATP) or nigericin-induced NLRP3 inflammasome activation, as revealed by the decreased release of mature interleukin (IL)-1β, active caspase-1p10, and high-mobility group box-1 protein from lipopolysaccharide (LPS)-primed bone marrow-derived macrophages. The formation of ASC specks, a critical marker of NLRP3 inflammasome assembly, was robustly inhibited by baicalin in the macrophages upon ATP or nigericin stimulation. All these inhibitory effects of baicalin could be partly reversed by MDL12330A or H89, both of which are inhibitors of the protein kinase A (PKA) signaling pathway. Consistent with this, baicalin strongly enhanced PKA-mediated phosphorylation of NLRP3, which has been suggested to prevent ASC recruitment into the inflammasome. Of note, the PKA inhibitor H89 could block baicalin-induced NLRP3 phosphorylation on PKA-specific sites, further supporting PKA’s role in this process. In addition, we showed that when administered pre and post exposure to Escherichia coli infection baicalin treatment significantly improved mouse survival in bacterial sepsis. Baicalin administration also significantly reduced IL-1β levels in the sera of bacterial infected mice. Altogether, our results revealed that baicalin inhibited NLRP3 inflammasome activation at least partly through augmenting PKA signaling, highlighting its therapeutic potential for the treatment of NLRP3-related inflammatory diseases.
Collapse
Affiliation(s)
- Chen-Guang Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Liang Yan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Feng-Yi Mai
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zi-Jian Shi
- Department of Fetal Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yan-Yun Jing
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing-Bing Zha
- Department of Fetal Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
33
|
CD155 blockade improves survival in experimental sepsis by reversing dendritic cell dysfunction. Biochem Biophys Res Commun 2017; 490:283-289. [DOI: 10.1016/j.bbrc.2017.06.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/07/2017] [Accepted: 06/10/2017] [Indexed: 01/28/2023]
|
34
|
Pan Y, Chen D, Lu Q, Liu L, Li X, Li Z. Baicalin prevents the apoptosis of endplate chondrocytes by inhibiting the oxidative stress induced by H2O2. Mol Med Rep 2017; 16:2985-2991. [DOI: 10.3892/mmr.2017.6904] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2016] [Accepted: 05/08/2017] [Indexed: 11/06/2022] Open
|
35
|
Zheng L, Zhang C, Li L, Hu C, Hu M, Sidikejiang N, Wang X, Lin M, Rong R. Baicalin ameliorates renal fibrosis via inhibition of transforming growth factor β1 production and downstream signal transduction. Mol Med Rep 2017; 15:1702-1712. [PMID: 28260014 PMCID: PMC5364985 DOI: 10.3892/mmr.2017.6208] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2015] [Accepted: 12/19/2016] [Indexed: 12/23/2022] Open
Abstract
Previous studies have demonstrated the potential antifibrotic effects of baicalin in vitro, via examination of 21 compounds isolated from plants. However, its biological activity and underlying mechanisms of action in vivo remain to be elucidated. The present study aimed to evaluate the effect of baicalin on renal fibrosis in vivo, and the potential signaling pathways involved. A unilateral ureteral obstruction (UUO)‑induced renal fibrosis model was established using Sprague‑Dawley rats. Baicalin was administrated intraperitoneally every 2 days for 10 days. The degree of renal damage and fibrosis was investigated by histological assessment, and detection of fibronectin and collagen I mRNA expression levels. Epithelial‑mesenchymal transition (EMT) markers, transforming growth factor-β1 (TGF-β1) levels and downstream phosphorylation of mothers against decapentaplegic 2/3 (Smad2/3) were examined in vivo and in an NRK‑52E rat renal tubular cell line in vitro. Baicalin was demonstrated to markedly ameliorate renal fibrosis and suppress EMT, as evidenced by reduced interstitial collagen accumulation, decreased fibronectin and collagen I mRNA expression levels, upregulation of N‑ and E‑cadherin expression levels, and downregulation of α‑smooth muscle actin and vimentin expression. Furthermore, baicalin decreased TGF‑β1 expression levels in serum and kidney tissue following UUO, and suppressed Smad2/3 phosphorylation in rat kidney tissue. In vitro studies identified that baicalin may inhibit the phosphorylation of Smad2/3 under the same TGF‑β1 concentration. In conclusion, baicalin may protect against renal fibrosis, potentially via inhibition of TGF‑β1 production and its downstream signal transduction.
Collapse
Affiliation(s)
- Long Zheng
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Chao Zhang
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Long Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Chao Hu
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Mushuang Hu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Niyazi Sidikejiang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Xuanchuan Wang
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Miao Lin
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
36
|
Zhu Y, Fu Y, Lin H. Baicalin Inhibits Renal Cell Apoptosis and Protects Against Acute Kidney Injury in Pediatric Sepsis. Med Sci Monit 2016; 22:5109-5115. [PMID: 28013315 PMCID: PMC5207012 DOI: 10.12659/msm.899061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/18/2023] Open
Abstract
Background Pediatric sepsis has high morbidity in children, may lead to acute kidney injury (AKI), and further aggravate the disease. Baicalin is a kind of flavonoid in Scutellaria baicalensis Georgi and has been reported to protect against several diseases, but its roles in septic AKI remain unclear. This study aimed to uncover the effects of baicalin in AKI during pediatric sepsis. Material/Methods Blood urea nitrogen (BUN) and serum creatinine (Cr) levels were detected in 50 pediatric patients, who underwent basic therapy with or without baicalin adjunctive therapy. Mouse sepsis models were constructed by cecal ligation and puncture (CLP) and treated with baicalin intragastrically, after which BUN and Cr examination, TUNEL apoptosis assay, and expression analyses of BAX and BCL2 were performed. Results Baicalin adjunctive therapy significantly decreased BUN and Cr levels in pediatric sepsis patients (P<0.05). CLP led to elevated BUN and Cr levels in the mouse model (P<0.01), indicating kidney injury accompanied by sepsis. Baicalin decreased BUN and Cr levels (P<0.05), and reduced the apoptotic cell percent in the renal tissue (P<0.05) of the CLP model. It inhibited BAX and promoted BCL2 in the renal tissue, which was consistent with cell apoptosis changes. Conclusions Baicalin is capable of suppressing renal cell apoptosis and protecting against AKI in pediatric sepsis. This study provides a potential adjunctive therapy for treating AKI in pediatric sepsis, and further research is necessary to reveal its deeper mechanisms.
Collapse
Affiliation(s)
- Yanping Zhu
- Department of Pediatrics, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Yanxia Fu
- Department of Pediatrics I, Binzhou City Center Hospital, Binzhou, Shandong, China (mainland)
| | - Hairong Lin
- Department of Pharmacy, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| |
Collapse
|
37
|
Hepatoprotective effect of apple polyphenols against concanavalin A-induced immunological liver injury in mice. Chem Biol Interact 2016; 258:159-65. [DOI: 10.1016/j.cbi.2016.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/22/2016] [Revised: 08/04/2016] [Accepted: 08/24/2016] [Indexed: 01/28/2023]
|
38
|
Ma S, Lin Y, Deng B, Zheng Y, Hao C, He R, Ding F. Endothelial bioreactor system ameliorates multiple organ dysfunction in septic rats. Intensive Care Med Exp 2016; 4:23. [PMID: 27447715 PMCID: PMC4958089 DOI: 10.1186/s40635-016-0097-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/19/2016] [Accepted: 07/13/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The endothelium is a potentially valuable target for sepsis therapy. We have previously studied an extracorporeal endothelial cell therapy system, called the endothelial bioreactor (EBR), which prolonged the survival time of endotoxemia sepsis in swine. To further study of the therapeutic effects and possible mechanisms, we established a miniature EBR system for septic rats induced by cecal ligation and puncture (CLP). METHODS In the miniature EBR system, the extracorporeal circulation first passed through a mini-hemofilter, and the ultrafiltrate (UF) was separated, then the UF passed through an EBR (a 1-mL cartridge containing approximately 2 × 10(6) endothelial cells grown on microcarriers) and interact with endothelial cells. Eighteen hours after CLP, the rats were treated for 4 h with this extracorporeal system containing either endothelial cells (EBR group) or no cells (sham EBR group). Physiologic and biochemical parameters, cytokines, endothelial functions, and 7-day survival time were monitored. In vitro, the pulmonary endothelial cells of the septic rats were treated with the EBR system and the resulting changes in their functions were monitored. RESULTS The EBR system ameliorated CLP-induced sepsis compared with the sham EBR system. After CLP, the 7-day survival rate of sham-treated rats was only 25.0 %, while in the EBR-treated group, it increased to 57.1 % (p = 0.04). The EBR system protected the liver and renal function and ameliorated the kidney and lung injury. Meanwhile, this therapy reduced pulmonary vascular leakage and alleviated the infiltration of inflammatory cells in the lungs, especially neutrophils. Furthermore, after the EBR treatment both in vivo and in vitro, the expression of intercellular adhesion molecule-1 and the secretion of CXCL1 and CXCL2 of pulmonary endothelium decreased, which helped to alleviate the adhesion and chemotaxis of neutrophils. In addition, the EBR system decreased CD11b expression and intracellular free calcium level of peripheral blood neutrophils, modulated the activation of these neutrophils. CONCLUSIONS The EBR system significantly ameliorated CLP-induced sepsis and improved survival and organ functions. Compared with the sham EBR system, this extracorporeal endothelial therapy may be involved in modulating the function of pulmonary endothelial cells, reducing the adhesion and chemotaxis of neutrophil, and modulating the activation of peripheral blood neutrophils.
Collapse
Affiliation(s)
- Shuai Ma
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China.,Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yuli Lin
- Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Bo Deng
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China.,Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yin Zheng
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China.,Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Chuanming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Rui He
- Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Feng Ding
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
39
|
Liao S, Li P, Wang J, Zhang Q, Xu D, Yang M, Kong L. Protection of baicalin against lipopolysaccharide induced liver and kidney injuries based on 1H NMR metabolomic profiling. Toxicol Res (Camb) 2016; 5:1148-1159. [PMID: 30090421 PMCID: PMC6060722 DOI: 10.1039/c6tx00082g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2016] [Accepted: 05/05/2016] [Indexed: 01/14/2023] Open
Abstract
Severe sepsis and septic shock are common and lethal conditions characterized by a systemic inflammatory response that is activated by invasive infection. In this study, a lipopolysaccharide (LPS) induced sepsis mice model was established to investigate the toxicities of LPS and the therapeutic effect of baicalin. Sera for clinical biochemistry and NMR metabolomic investigation, and liver and kidney tissues for histopathological examination, molecular biology measurement and NMR metabolomic profiling were collected. Multivariate analysis of metabolic profiles of the serum, liver and kidney extracts of mice revealed the occurrence of a severe inflammatory response, oxidative stress, and perturbances in energy and amino acid metabolism in LPS induced sepsis mice, which could be greatly ameliorated by baicalin treatment. This integrated 1H NMR based metabolomics approach gave us a new insight into the pathology of LPS induced sepsis, and helped in understanding the therapeutic effects of baicalin in a holistic view.
Collapse
Affiliation(s)
- Shanting Liao
- State Key Laboratory of Natural Medicines , Department of Natural Medicinal Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , PR China . ; ; Tel: +86-25-8327-1405
| | - Pei Li
- State Key Laboratory of Natural Medicines , Department of Natural Medicinal Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , PR China . ; ; Tel: +86-25-8327-1405
| | - Junsong Wang
- Center for Molecular Metabolism , Nanjing University of Science & Technology , 200 Xiao Ling Wei Street , Nanjing 210094 , PR China . ; Tel: +86-25-8431-5512
| | - Qian Zhang
- State Key Laboratory of Natural Medicines , Department of Natural Medicinal Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , PR China . ; ; Tel: +86-25-8327-1405
| | - Dingqiao Xu
- State Key Laboratory of Natural Medicines , Department of Natural Medicinal Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , PR China . ; ; Tel: +86-25-8327-1405
| | - Minghua Yang
- State Key Laboratory of Natural Medicines , Department of Natural Medicinal Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , PR China . ; ; Tel: +86-25-8327-1405
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines , Department of Natural Medicinal Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , PR China . ; ; Tel: +86-25-8327-1405
| |
Collapse
|
40
|
Wang P, Cao Y, Yu J, Liu R, Bai B, Qi H, Zhang Q, Guo W, Zhu H, Qu L. Baicalin alleviates ischemia-induced memory impairment by inhibiting the phosphorylation of CaMKII in hippocampus. Brain Res 2016; 1642:95-103. [PMID: 27016057 DOI: 10.1016/j.brainres.2016.03.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/16/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 11/18/2022]
Abstract
Baicalin has a significant neuroprotective effect in stroke. However, the mechanism remains unclear. This study was to reveal the mechanisms by which baicalin protected hippocampal neurons and improved learning and memory impairment after global cerebral ischemia/reperfusion in gerbil. In the present study, the Morris water maze test showed that baicalin significantly improved learning and memory impairment after global cerebral ischemia/reperfusion in gerbils. Laser scanning confocal fluorescence microscope examination showed that baicalin suppressed OGD-induced augmentation of intracellular calcium concentration. Western blotting analysis indicated that baicalin suppressed ischemia-caused elevated phosphorylation level of CaMKII in vivo, in hippocampal neurons in culture, and in SH-SY5Y cells in culture. Western blotting, TUNEL and RNA interference technology were applied to detect effects of baicalin on neuronal apoptosis. We found that baicalin, a CaMKII inhibitor and knocking down the CaMKII prevented OGD-induced apoptosis of hippocampal or SH-SY5Y cells in culture. Therefore, these results suggested that baicalin improves learning and memory impairment induced by global cerebral ischemia/reperfusion in gerbils via attenuating the phosphorylation level of CaMKII and further preventing hippocampal neuronal apoptosis.
Collapse
Affiliation(s)
- Peng Wang
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China; Department of Physiology, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yonggang Cao
- Department of Pharmacology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Juan Yu
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Ruxia Liu
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Bing Bai
- Department of genetics, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Hanping Qi
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Qianlong Zhang
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Wenguang Guo
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Hui Zhu
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University, Harbin, China.
| | - Lihui Qu
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China.
| |
Collapse
|
41
|
REN JUN, MENG SHANSHAN, YAN BINGDI, YU JINYAN, LIU JING. Protectin D1 reduces concanavalin A-induced liver injury by inhibiting NF-κB-mediated CX3CL1/CX3CR1 axis and NLR family, pyrin domain containing 3 inflammasome activation. Mol Med Rep 2016; 13:3627-38. [DOI: 10.3892/mmr.2016.4980] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/20/2015] [Accepted: 12/11/2015] [Indexed: 11/06/2022] Open
|
42
|
Jia Y, Xu R, Hu Y, Zhu T, Ma T, Wu H, Hu L. Anti-NDV activity of baicalin from a traditional Chinese medicine in vitro. J Vet Med Sci 2016; 78:819-24. [PMID: 26902693 PMCID: PMC4905837 DOI: 10.1292/jvms.15-0572] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to investigate the anti-Newcastle disease virus (NDV) activities of baicalin from Scutellaria baicalensis, a Traditional Chinese Medicine in vitro. Chicken embryo fibroblasts (CEFs) were infected with NDV, and quantitative analysis of apoptotic cells was performed using flow cytometry. Cytotoxicity and anti-viral activities of baicalin were studied using the MTT method. The results showed that the maximal safe concentrations of baicalin to CEFs was 1 × 2(-2) mg/ml. Baicalin could directly kill NDV, inhibit the infectivity of NDV to CEF and block intracellular NDV. It inhibited the apoptosis of NDV-infected CEFs and suppressed the spread of NDV. These results indicate that baicalin has strong anti-NDV activity and has the potential for use as components of an antiviral drug.
Collapse
Affiliation(s)
- Yan Jia
- Agricultural and Environmental Branch, Jiaxing Vocational Technical College, Zhejiang Province, Jiaxing 314036, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Ye C, Li S, Yao W, Xu L, Qiu Y, Liu Y, Wu Z, Hou Y. The anti-inflammatory effects of baicalin through suppression of NLRP3 inflammasome pathway in LPS-challenged piglet mononuclear phagocytes. Innate Immun 2016; 22:196-204. [DOI: 10.1177/1753425916631032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/21/2015] [Accepted: 01/14/2016] [Indexed: 01/23/2023] Open
Abstract
In this study, the anti-inflammatory effects and mechanisms of baicalin on LPS-induced NLRP3 inflammatory pathway were investigated in piglet mononuclear phagocytes (control, LPS stimulation, LPS stimulation + 12.5 µg/ml baicalin, LPS stimulation + 25 µg/ml baicalin, LPS stimulation + 50 µg/ml baicalin and LPS stimulation + 100 µg/ml baicalin). The levels of reactive oxygen species (ROS), the secretion levels of IL-1β, IL-18 and TNF-α, mRNA expression levels of IL-1β, IL-18, TNF-α and NLRP3, as well as the protein levels of cleaved caspase-1 p20 were significantly increased after LPS-challenge in vitro. However, LPS stimulation did not influence apoptosis-associated speck-like protein and caspase-1 mRNA levels, which are also components of the NLRP3 inflammasome. Baicalin at 50 µg/ml and 100 µg/ml could inhibit the production of ROS, TNF-α, IL-1β and IL-18, and down-regulate mRNA expression of IL-1β, IL-18, TNF-α and NLRP3, as well as expression of cleaved caspase-1 p20. These results showed that the anti-inflammatory effects of baicalin occurred via the regulation of the release of ROS and mRNA expression of NLRP3. The anti-inflammatory activity of baicalin could be related to the suppression of NLRP3 inflammasome pathway under LPS stimulation.
Collapse
Affiliation(s)
- Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Sali Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Wenxu Yao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Lei Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| |
Collapse
|
44
|
Okeke EB, Uzonna JE. In Search of a Cure for Sepsis: Taming the Monster in Critical Care Medicine. J Innate Immun 2016; 8:156-70. [PMID: 26771196 DOI: 10.1159/000442469] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/15/2015] [Accepted: 11/16/2015] [Indexed: 12/21/2022] Open
Abstract
In spite of over half a century of research, sepsis still constitutes a major problem in health care delivery. Although advances in research have significantly increased our knowledge of the pathogenesis of sepsis and resulted in better prognosis and improved survival outcome, sepsis still remains a major challenge in modern medicine with an increase in occurrence predicted and a huge socioeconomic burden. It is generally accepted that sepsis is due to an initial hyperinflammatory response. However, numerous efforts aimed at targeting the proinflammatory cytokine network have been largely unsuccessful and the search for novel potential therapeutic targets continues. Recent studies provide compelling evidence that dysregulated anti-inflammatory responses may also contribute to sepsis mortality. Our previous studies on the role of regulatory T cells and phosphoinositide 3-kinases in sepsis highlight immunological approaches that could be explored for sepsis therapy. In this article, we review the current and emerging concepts in sepsis, highlight novel potential therapeutic targets and immunological approaches for sepsis treatment and propose a biphasic treatment approach for management of the condition.
Collapse
Affiliation(s)
- Emeka B Okeke
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Man., Canada
| | | |
Collapse
|
45
|
Zhang Y, Li X, Ciric B, Ma CG, Gran B, Rostami A, Zhang GX. Therapeutic effect of baicalin on experimental autoimmune encephalomyelitis is mediated by SOCS3 regulatory pathway. Sci Rep 2015; 5:17407. [PMID: 26616302 PMCID: PMC4663791 DOI: 10.1038/srep17407] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/23/2015] [Accepted: 10/29/2015] [Indexed: 12/17/2022] Open
Abstract
Natural compounds derived from medicinal plants have long been considered a rich source of novel therapeutic agents. Baicalin (Ba) is a bioactive flavonoid compound derived from the root of Scutellaria baicalensis, an herb widely used in traditional medicine for the treatment of various inflammatory diseases. In this study, we investigate the effects and mechanism of action of Ba in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Ba treatment effectively ameliorated clinical disease severity in myelin oligodendrocyte glycoprotein (MOG)35–55 peptide-induced EAE, and reduced inflammation and demyelination of the central nervous system (CNS). Ba reduced infiltration of immune cells into the CNS, inhibited expression of proinflammatory molecules and chemokines, and prevented Th1 and Th17 cell differentiation via STAT/NFκB signaling pathways. Further, we showed that SOCS3 induction is essential to the effects of Ba, given that the inhibitory effect of Ba on pathogenic Th17 responses was largely abolished when SOCS3 signaling was knocked down. Taken together, our findings demonstrate that Ba has significant potential as a novel anti-inflammatory agent for therapy of autoimmune diseases such as MS.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.,Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Northwest China National Engineering Laboratory for Resource Development of Endangered Crude Drugs, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xing Li
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.,Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Northwest China National Engineering Laboratory for Resource Development of Endangered Crude Drugs, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Cun-Gen Ma
- Institute of Brain Science, Department of Neurology, Shanxi Datong University Medical School, Datong, China
| | - Bruno Gran
- Clinical Neurology Research Group, Division of Clinical Neuroscience, University of Nottingham School of Medicine, UK
| | | | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
46
|
Luan YY, Yin CF, Qin QH, Dong N, Zhu XM, Sheng ZY, Zhang QH, Yao YM. Effect of Regulatory T Cells on Promoting Apoptosis of T Lymphocyte and Its Regulatory Mechanism in Sepsis. J Interferon Cytokine Res 2015; 35:969-80. [PMID: 26309018 DOI: 10.1089/jir.2014.0235] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023] Open
Abstract
With both in vivo and in vitro experiments, the present study was conducted to investigate the effect of regulatory T cell (Treg) on promoting T-lymphocyte apoptosis and its regulatory mechanism through transforming growth factor-beta (TGF-β1) signaling in mice. A murine model of polymicrobial sepsis was reproduced by cecal ligation and puncture (CLP); PC61 and anti-TGF-β antibodies were used to decrease counts of CD4(+)CD25(+) Tregs and inhibit TGF-β activity, respectively. Splenic CD4(+)CD25(+) Tregs and CD4(+)CD25(-) T cells were isolated. Phenotypes, including cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), forkhead/winged helix transcription factor p3 (Foxp3), and TGFβ1(m+), as well as the apoptotic rate of CD4(+)CD25(-) T cell, were analyzed by flow cytometry. Real-time reverse transcription-polymerase chain reaction was performed to determine mRNA expression of TGF-β1, and the expressions of Smad2/Smad3, Bcl-2 superfamily members of Bcl-2/Bim, cytochrome C, the mitochondrial membrane potential, and caspases in CD4(+)CD25(-) T cells were simultaneously determined. After treatment with PC61 or anti-TGF-β antibody, CTLA-4, Foxp3, and TGFβ1(m+) expressions of CD4(+)CD25(+) Tregs were markedly decreased in comparison to that of the CLP group and the apoptosis rate of CD4(+)CD25(-) T cells was significantly positively correlated with the expression of TGF-β1. Meanwhile, levels of P-Smad2/P-Smad3, proapoptotic protein Bim, cytochrome C, and activity of caspase-3, -8, -9 were downregulated, whereas the mitochondrial membrane potential and antiapoptotic protein Bcl-2 expression were restored. Taken together, our data indicated that the TGF-β1 signal could be partly involved in the apoptosis of CD4(+)CD25(-) T cells promoted by CD4(+)CD25(+) Tregs, therefore inhibition of TGF-β1 expression may provide a novel strategy for the improvement of host immunosuppression following sepsis.
Collapse
Affiliation(s)
- Ying-yi Luan
- Department of Microbiology and Immunology, Trauma Research Center , First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Cheng-fen Yin
- Department of Microbiology and Immunology, Trauma Research Center , First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Qing-hua Qin
- Department of Microbiology and Immunology, Trauma Research Center , First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Ning Dong
- Department of Microbiology and Immunology, Trauma Research Center , First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiao-mei Zhu
- Department of Microbiology and Immunology, Trauma Research Center , First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Zhi-yong Sheng
- Department of Microbiology and Immunology, Trauma Research Center , First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Qing-hong Zhang
- Department of Microbiology and Immunology, Trauma Research Center , First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yong-ming Yao
- Department of Microbiology and Immunology, Trauma Research Center , First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
47
|
Cheng K, Wu Z, Gao B, Xu J. Analysis of influence of baicalin joint resveratrol retention enema on the TNF-α, SIgA, IL-2, IFN-γ of rats with respiratory syncytial virus infection. Cell Biochem Biophys 2015; 70:1305-9. [PMID: 24938899 DOI: 10.1007/s12013-014-0055-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
Explore the influence of baicalin joint resveratrol retention enema on TNF-α, SIgA, IL-2, and IFN-γ of rats with respiratory syncytial virus (RSV) infection. The 60 SD rats were randomly divided into normal group, model group, baicalin group, resveratrol group, joint group, and ribavirin group. For model group, baicalin group, resveratrol group, joint group, and ribavirin group, rats were given RSV virus suspension intranasally for 3 days, and model group was not given administration. Baicalin group, resveratrol group, joint group, and ribavirin group were, respectively, given baicalin 100 mg/kg/day, resveratrol 30 mg/kg/day, baicalin joint resveratrol, and ribavirin 1 g/kg/day retention enema. After continuously given administration 7 days, rats were measured in serum TNF-α, IL-2, IFN-γ levels and SIgA levels in bronchoalveolar lavage fluid. Model group, TNF-α, IL-2, IFN-γ, and SIgA were significantly higher than the normal group (P < 0.05); Baicalin group, resveratrol group, ribavirin group, TNF-α, IL-2, IFN-γ, and SIgA were significantly higher than the model group (P < 0.05); TNF-α, IL-2 between baicalin group, resveratrol group, ribavirin group, have no significant difference (P > 0.05); Baicalin group, resveratrol group, joint group, IFN-γ, and SIgA were significantly higher than the ribavirin group (P < 0.05); Joint group TNF-α, IL-2, IFN-γ, and SIgA were significantly higher than baicalin group, resveratrol group, and ribavirin group (P < 0.05). Baicalin joint resveratrol retention enema can increase RSV infection model in rats serum TNF-α, IL-2, IFN-γ levels and SIgA levels in bronchoalveolar lavage fluid, which may anti-virus through this mechanism.
Collapse
Affiliation(s)
- Kebin Cheng
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | | | | | | |
Collapse
|
48
|
Zhao Y, Feng H, Shan W, Cheng J, Wang X, Zhao Y, Qu H, Wang Q. Development of immunoaffinity chromatography to specifically knockout baicalin from Gegenqinlian Decoction. J Sep Sci 2015; 38:2746-52. [PMID: 26016729 DOI: 10.1002/jssc.201500168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/11/2015] [Revised: 04/16/2015] [Accepted: 05/08/2015] [Indexed: 12/14/2022]
Abstract
Specific knockout technology provides a powerful tool to confirm the role of target compounds in a plant or its derived prescriptions, and this principle is the same as that with knockout genes. In this study, we generated an immunoaffinity column conjugated with an anti-baicalin monoclonal antibody and then loaded Gegenqinlian Decoction extracts, followed by washing with deionized water and an elution solvent. The results of the high-performance liquid chromatography fingerprints and high-performance liquid chromatography with mass spectrometry showed that the immunoaffinity column was able to specifically knockout baicalin, oroxylin A-7-O-glucuronide, wogonoside, wogonin, and baicalein from Gegenqinlian Decoction. A reliable one-step method to specifically knockout baicalin was established with an immunoaffinity column. Gegenqinlian Decoction and its knocked-out fraction induced the expression of superoxide dismutase and were compared in human umbilical vein endothelial cells cultured with a high glucose concentration; the results showed that the Gegenqinlian Decoction and its knocked-out fraction showed no significant difference, which indicated that the baicalin, oroxylin A-7-O-glucuronide, wogonoside, wogonin, and baicalein that were knocked out by the immunoaffinity column might not be key compounds for the induction of Gegenqinlian Decoction superoxide dismutase secretion.
Collapse
Affiliation(s)
- Yan Zhao
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Chaoyang District, Beijing, China
| | - Huibin Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District, Beijing, China
| | - Wenchao Shan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District, Beijing, China
| | - Jinjun Cheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District, Beijing, China
| | - Xueqian Wang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Chaoyang District, Beijing, China
| | - Yan Zhao
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Chaoyang District, Beijing, China
| | - Huihua Qu
- Scientific Research Experiment Center, Beijing University of Chinese Medicine, Chaoyang District, Beijing, China
| | - Qingguo Wang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Chaoyang District, Beijing, China
| |
Collapse
|
49
|
Bao S, Zou Y, Wang B, Li Y, Zhu J, Luo Y, Li J. Ginsenoside Rg1 improves lipopolysaccharide-induced acute lung injury by inhibiting inflammatory responses and modulating infiltration of M2 macrophages. Int Immunopharmacol 2015; 28:429-34. [PMID: 26122136 DOI: 10.1016/j.intimp.2015.06.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/15/2015] [Revised: 05/31/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
Ginsenoside Rg1 (Rg1), the major effective component of ginseng, has been reported to have potent anti-inflammatory properties. However, the effect of ginsenoside Rg1 on lipopolysaccharide (LPS) -induced acute lung injury (ALI) in mice was unknown. The present study was designed to investigate the protective role of Rg1 on LPS-induced ALI and explore the potential mechanisms. The mice were divided randomly into four groups: the sham group, the LPS group and the LPS+Rg1 (40 mg/kg or 200mg/kg) pretreatment groups. All mice received Rg1 or an equivalent volume of phosphate buffer saline (PBS) intraperitoneally 1h before LPS administration. Edema quantification, histology, and apoptosis were detected 6h after LPS administration. The number of inflammatory cells, the percentage of alternative activated (M2) macrophages and the exudate quantification in bronchoalveolar lavage fluid (BALF) were evaluated. The caspase 3 expression, and the levels of phosphorylated IκB-α and p65 were tested. The results showed that the Rg1 pretreatment group markedly improved lung damage, modulated the infiltration of neutrophils and M2 macrophages, prevented the production of protein and proinflammatory cytokines in BALF, and inhibited apoptosis in lung. We also found that Rg1 suppressed NF-κB and caspase 3 activation. These data suggest that Rg1 plays a protective role against LPS-induced ALI by ameliorating inflammatory responses, regulating the infiltration of M2 macrophages, and inhibiting pulmonary cell apoptosis.
Collapse
Affiliation(s)
- Suhong Bao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou 221004, Jiangsu, China; Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yun Zou
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Bing Wang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yinjiao Li
- Department of Anesthesiology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Jiali Zhu
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China.
| | - Jinbao Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou 221004, Jiangsu, China; Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
50
|
Qin WT, Wang X, Shen WC, Sun BW. A novel role of kukoamine B: Inhibition of the inflammatory response in the livers of lipopolysaccharide-induced septic mice via its unique property of combining with lipopolysaccharide. Exp Ther Med 2015; 9:725-732. [PMID: 25667619 PMCID: PMC4316986 DOI: 10.3892/etm.2015.2188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2014] [Accepted: 12/19/2014] [Indexed: 12/21/2022] Open
Abstract
Kukoamine B (KB), derived from the traditional Chinese herb cortex Lycii, exerts anti-inflammatory effects due to its potent affinity with lipopolysaccharide (LPS) and CpG DNA; however, little is known regarding whether the in vivo administration of KB can effectively inhibit inflammation in septic mice. The present study thus aimed to investigate the inhibitory effects of KB on the inflammatory response in the livers of LPS-induced septic mice. KB treatment in the LPS-induced septic mice significantly decreased the plasma level of LPS. In addition, KB protected against liver injury, as confirmed by improved histology and decreased aminotransferase levels in the serum. Further experiments revealed that KB attenuated liver myeloperoxidase activity and reduced the expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1. These effects were accompanied by decreases in the levels of tumor necrosis factor α and interleukin-1β in the liver tissue. In parallel, the activity of nuclear factor-κ-gene binding (NF-κB) in the livers of LPS-induced septic mice was markedly inhibited with KB treatment. In combination, these results demonstrate that KB inhibits inflammation in septic mice by reducing the concentrations of plasma LPS, decreasing leukocyte sequestration and interfering with NF-κB activation, and, therefore, suppressing the pro-adhesive phenotype of endothelial cells.
Collapse
Affiliation(s)
- Wei-Ting Qin
- Department of Burns and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Xu Wang
- Department of Burns and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Wei-Chang Shen
- Department of Burns and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Bing-Wei Sun
- Department of Burns and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|