1
|
Spindola LM, Santoro ML, Pan PM, Ota VK, Xavier G, Carvalho CM, Talarico F, Sleiman P, March M, Pellegrino R, Brietzke E, Grassi-Oliveira R, Mari JJ, Gadelha A, Miguel EC, Rohde LA, Bressan RA, Mazzotti DR, Sato JR, Salum GA, Hakonarson H, Belangero SI. Detecting multiple differentially methylated CpG sites and regions related to dimensional psychopathology in youths. Clin Epigenetics 2019; 11:146. [PMID: 31639064 PMCID: PMC6805541 DOI: 10.1186/s13148-019-0740-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/08/2019] [Indexed: 02/07/2023] Open
Abstract
Background Psychiatric symptomatology during late childhood and early adolescence tends to persist later in life. In the present longitudinal study, we aimed to identify changes in genome-wide DNA methylation patterns that were associated with the emergence of psychopathology in youths from the Brazilian High-Risk Cohort (HRC) for psychiatric disorders. Moreover, for the differentially methylated genes, we verified whether differences in DNA methylation corresponded to differences in mRNA transcript levels by analyzing the gene expression levels in the blood and by correlating the variation of DNA methylation values with the variation of mRNA levels of the same individuals. Finally, we examined whether the variations in DNA methylation and mRNA levels were correlated with psychopathology measurements over time. Methods We selected 24 youths from the HRC who presented with an increase in dimensional psychopathology at a 3-year follow-up as measured by the Child Behavior Checklist (CBCL). The DNA methylation and gene expression data were compared in peripheral blood samples (n = 48) obtained from the 24 youths before and after developing psychopathology. We implemented a methodological framework to reduce the effect of chronological age on DNA methylation using an independent population of 140 youths and the effect of puberty using data from the literature. Results We identified 663 differentially methylated positions (DMPs) and 90 differentially methylated regions (DMRs) associated with the emergence of psychopathology. We observed that 15 DMPs were mapped to genes that were differentially expressed in the blood; among these, we found a correlation between the DNA methylation and mRNA levels of RB1CC1 and a correlation between the CBCL and mRNA levels of KMT2E. Of the DMRs, three genes were differentially expressed: ASCL2, which is involved in neurogenesis; HLA-E, which is mapped to the MHC loci; and RPS6KB1, the gene expression of which was correlated with an increase in the CBCL between the time points. Conclusions We observed that changes in DNA methylation and, consequently, in gene expression in the peripheral blood occurred concurrently with the emergence of dimensional psychopathology in youths. Therefore, epigenomic modulations might be involved in the regulation of an individual’s development of psychopathology.
Collapse
Affiliation(s)
- Leticia M Spindola
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Leitão da Cunha, Vila Clementino, Sao Paulo, SP, Brazil.,LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil.,Department of Psychiatry, UNIFESP, São Paulo, Brazil
| | - Marcos L Santoro
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Leitão da Cunha, Vila Clementino, Sao Paulo, SP, Brazil.,LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil.,Department of Psychiatry, UNIFESP, São Paulo, Brazil
| | - Pedro M Pan
- LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil.,Department of Psychiatry, UNIFESP, São Paulo, Brazil
| | - Vanessa K Ota
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Leitão da Cunha, Vila Clementino, Sao Paulo, SP, Brazil.,LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil
| | - Gabriela Xavier
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Leitão da Cunha, Vila Clementino, Sao Paulo, SP, Brazil.,LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil
| | - Carolina M Carvalho
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Leitão da Cunha, Vila Clementino, Sao Paulo, SP, Brazil.,LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil.,Department of Psychiatry, UNIFESP, São Paulo, Brazil
| | - Fernanda Talarico
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Leitão da Cunha, Vila Clementino, Sao Paulo, SP, Brazil.,LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil
| | - Patrick Sleiman
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Michael March
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Renata Pellegrino
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, USA
| | | | - Rodrigo Grassi-Oliveira
- Brain Institute, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jair J Mari
- LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil.,Department of Psychiatry, UNIFESP, São Paulo, Brazil
| | - Ary Gadelha
- LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil.,Department of Psychiatry, UNIFESP, São Paulo, Brazil
| | - Euripedes C Miguel
- Department of Psychiatry, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Luis A Rohde
- Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rodrigo A Bressan
- LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil.,Department of Psychiatry, UNIFESP, São Paulo, Brazil
| | - Diego R Mazzotti
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, USA
| | - João R Sato
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Santo André, Brazil
| | - Giovanni A Salum
- Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Sintia I Belangero
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Leitão da Cunha, Vila Clementino, Sao Paulo, SP, Brazil. .,LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil. .,Department of Psychiatry, UNIFESP, São Paulo, Brazil.
| |
Collapse
|
3
|
Laudier B, Epiais T, Pâris A, Menuet A, Briault S, Ozsancak C, Perche O. Molecular and clinical analyses with neuropsychological assessment of a case of del(10)(q26.2qter) without intellectual disability: Genomic and transcriptomic combined approach and review of the literature. Am J Med Genet A 2016; 170:1806-12. [PMID: 27113058 DOI: 10.1002/ajmg.a.37677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/03/2016] [Indexed: 11/10/2022]
Abstract
Terminal deletion of the long arm of the chromosome 10 is a rare but well known abnormality, with a large phenotypic variability. Very few data are available about subtelomeric deletion 10q26 patients without intellectual disability. Herein, we report the case of a young adult with a classical 10q26.2qter deletion. She exhibited mainly short stature at birth and in childhood/adulthood without intellectual disability or behavioral problems. After clinical and neuropsychological assessments, we performed genomic array and transcriptomic analysis and compared our results to the data available in the literature. The patient presents a 6.525 Mb heterozygous 10q26.2qter deletion, encompassed 48 genes. Among those genes, DOCK1, C10orf90, and CALY previously described as potential candidate genes for intellectual disability, were partially or completed deleted. Interestingly, they were not deregulated as demonstrated by transcriptomic analysis. This allowed us to suggest that the mechanism involved in the deletion 10qter phenotype is much more complex that only the haploinsufficiency of DOCK1 or other genes encompassed in the deletion. Genomic and transcriptomic combined approach has to be considered to understand this pathogenesis. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Béatrice Laudier
- UMR7355, CNRS, Orleans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orleans, Orleans, France.,Department of Genetics, Regional Hospital, Orleans, France
| | | | - Arnaud Pâris
- UMR7355, CNRS, Orleans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orleans, Orleans, France
| | - Arnaud Menuet
- UMR7355, CNRS, Orleans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orleans, Orleans, France
| | - Sylvain Briault
- UMR7355, CNRS, Orleans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orleans, Orleans, France.,Department of Genetics, Regional Hospital, Orleans, France
| | - Canan Ozsancak
- Department of Neurology, Regional Hospital, Orleans, France
| | - Olivier Perche
- UMR7355, CNRS, Orleans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orleans, Orleans, France.,Department of Genetics, Regional Hospital, Orleans, France
| |
Collapse
|
4
|
Zhuang Q, Zhou T, He C, Zhang S, Qiu Y, Luo B, Zhao R, Liu H, Lin Y, Lin Z. Protein phosphatase 2A-B55δ enhances chemotherapy sensitivity of human hepatocellular carcinoma under the regulation of microRNA-133b. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:67. [PMID: 27074866 PMCID: PMC4831140 DOI: 10.1186/s13046-016-0341-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/05/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains a major public health problem worldwide. The identification of effective chemotherapeutic targets for advanced HCC patients is urgently required. In this study, we investigated the role of protein phosphatase 2A-B55δ subunit (PP2A-B55δ, encoded by the PPP2R2D gene) and related mechanisms affecting chemotherapy sensitivity of HCC. METHODS Experimental approaches for measuring the levels of PPP2R2D mRNA and B55δ protein in HCC included bioinformatics analyses, quantitative real-time polymerase chain reaction (qRT-PCR), western blotting (WB), immunofluorescence and immunohistochemistry assays. Cell cycle, migration, colony formation, apoptosis, and cell proliferation assays in stable PPP2R2D-knockdown and -overexpression cell lines in vitro, and tumorigenicity assays in vivo, were performed to explore the function of B55δ in cisplatin (cDDP) chemotherapy of HCC. Bioinformatics prediction, luciferase reporter assays, qRT-PCR, WB, and cell cycle analyses were used to reveal the regulatory relationship between microRNA-133b (miR-133b) and PPP2R2D expression. miR-133b mimic and inhibitor were used to elucidate the regulatory mechanism. RESULTS Our studies showed that PPP2R2D expression was down-regulated in both HCC tumors and HCC cell lines. Treatment with cDDP increased the amount of B55δ protein. Artificially increasing the expression of B55δ counteracted cyclin-dependent kinase 1 activation, modulated transitions of the cell cycle, and increased the suppressive effect of cDDP on cell migration, colony formation, apoptosis, and proliferation in vitro and tumor growth in vivo, thus enhancing therapeutic efficiency. In contrast, knockdown of B55δ partially inhibited the effect of cDDP chemotherapy. miR-133b was shown to regulate PPP2R2D expression by binding to the 3'-untranslated region of PPP2R2D mRNA. The miR-133b/PPP2R2D signaling pathway affects the effectiveness of cDDP chemotherapy. CONCLUSIONS PP2A-B55δ, regulated by miR-133b, enhances the sensitivity of HCC to cDDP chemotherapy. Our data indicate that PP2A-B55δ might be a novel and attractive target for increasing chemotherapy sensitivity of HCC.
Collapse
Affiliation(s)
- Qunying Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'an South Rd., Xiamen, Fujian, 361102, PR China
| | - Tengjian Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'an South Rd., Xiamen, Fujian, 361102, PR China
| | - Chengyong He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'an South Rd., Xiamen, Fujian, 361102, PR China
| | - Shili Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'an South Rd., Xiamen, Fujian, 361102, PR China
| | - Yang Qiu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'an South Rd., Xiamen, Fujian, 361102, PR China
| | - Bing Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'an South Rd., Xiamen, Fujian, 361102, PR China
| | - Ran Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'an South Rd., Xiamen, Fujian, 361102, PR China
| | - Hengchuan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'an South Rd., Xiamen, Fujian, 361102, PR China
| | - Yuchun Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'an South Rd., Xiamen, Fujian, 361102, PR China.
| | - Zhongning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'an South Rd., Xiamen, Fujian, 361102, PR China.
| |
Collapse
|
5
|
Meyer MA. Highly Expressed Genes within Hippocampal Sector CA1: Implications for the Physiology of Memory. Neurol Int 2014; 6:5388. [PMID: 24987507 PMCID: PMC4077213 DOI: 10.4081/ni.2014.5388] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/07/2014] [Indexed: 11/23/2022] Open
Abstract
As the CA1 sector has been implicated to play a key role in memory formation, a dedicated search for highly expressed genes within this region was made from an on-line atlas of gene expression within the mouse brain (GENSAT). From a data base of 1013 genes, 16 were identified that had selective localization of gene expression within the CA1 region, and included Angpt2, ARHGEF6, CCK, Cntnap1, DRD3, EMP1, Epha2, Itm2b, Lrrtm2, Mdk, PNMT, Ppm1e, Ppp2r2d, RASGRP1, Slitrk5, and Sstr4. Of the 16 identified, the most selective and intense localization for both adult and post-natal day 7 was noted for ARHGEF6, which is known to be linked to non-syndromic mental retardation, and has also been localized to dendritic spines. Further research on the role played by ARHGEF6 in memory formation is strongly advocated
Collapse
Affiliation(s)
- Michael A Meyer
- Department of Neurology, Sisters Hospital , Buffalo, NY, USA
| |
Collapse
|
6
|
Chen HF, Mai JR, Wan JX, Gao YF, Lin LN, Wang SZ, Chen YX, Zhang CZ, Zhang YJ, Xia B, Liao K, Lin YC, Lin ZN. Role of a novel functional variant in the PPP2R1A promoter on the regulation of PP2A-Aalpha and the risk of hepatocellular carcinoma. PLoS One 2013; 8:e59574. [PMID: 23555712 PMCID: PMC3612049 DOI: 10.1371/journal.pone.0059574] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/15/2013] [Indexed: 02/06/2023] Open
Abstract
Previously, we identified the genetic variant −241 (−/G) (rs11453459) in the PP2A-Aα gene (PPP2R1A) promoter and demonstrated that this variant influences the DNA-binding affinity of nuclear factor-kappa B (NF-κB). In this study, we further confirmed that the transcriptional activity of PPP2R1A may be regulated by NF-κB through the functional genetic variant −241 (−/G). Moreover, we also demonstrated that the methylation status of CpG islands in the promoter of PPP2R1A influences the activity of this gene promoter. Few studies have examined the role of this −241 (−/G) variant in genetic or epigenetic regulation in hepatocellular carcinoma (HCC). To investigate whether this functional variant in the PPP2R1A promoter is associated with the risk of HCC and confirm the function of the −241 (−/G) variant in the HCC population, we conducted a case-control study involving 251 HCC cases and 252 cancer-free controls from a Han population in southern China. Compared with the −241 (−−) homozygote, the heterozygous −241 (−G) genotype (adjusted OR = 0.32, 95% confidence interval (CI) = 0.17–0.58, P<0.001) and the −241 (−G)/(GG) genotypes (adjusted OR = 0.38, 95% CI = 0.22–0.67, P = 0.001) were both significantly associated with a reduced risk of HCC. Stratification analysis indicated that the protective role of −241 (−G) was more pronounced in individuals who were ≤ 40 years of age, female and HBV-negative. Our data suggest that the transcriptional activity of PPP2R1A is regulated by NF-κB through the −241 (−/G) variant and by the methylation of the promoter region. Moreover, the functional −241 (−/G) variant in the PPP2R1A promoter contributes to the decreased risk of HCC. These findings contribute novel information regarding the gene transcription of PPP2R1A regulated by the polymorphism and methylation in the promoter region through genetic and epigenetic mechanisms in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Hui-Feng Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|