1
|
Mulholland EJ, Leedham SJ. Redefining clinical practice through spatial profiling: a revolution in tissue analysis. Ann R Coll Surg Engl 2024; 106:305-312. [PMID: 38555868 PMCID: PMC10981989 DOI: 10.1308/rcsann.2023.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 04/02/2024] Open
Abstract
Spatial biology, which combines molecular biology and advanced imaging, enhances our understanding of tissue cellular organisation. Despite its potential, spatial omics encounters challenges related to data complexity, computational requirements and standardisation of analysis. In clinical applications, spatial omics has the potential to revolutionise biomarker discovery, disease stratification and personalised treatments. It can identify disease-specific cell patterns, and could help risk stratify patients for clinical trials and disease-appropriate therapies. Although there are challenges in adopting it in clinical practice, spatial omics has the potential to significantly enhance patient outcomes. In this paper, we discuss the recent evolution of spatial biology, and its potential for improving our tissue level understanding and treatment of disease, to help advance precision and effectiveness in healthcare interventions.
Collapse
|
2
|
Arenas-Mena C, Miljovska S, Rice EJ, Gurges J, Shashikant T, Wang Z, Ercan S, Danko CG. Identification and prediction of developmental enhancers in sea urchin embryos. BMC Genomics 2021; 22:751. [PMID: 34666684 PMCID: PMC8527612 DOI: 10.1186/s12864-021-07936-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/28/2021] [Indexed: 11/21/2022] Open
Abstract
Background The transcription of developmental regulatory genes is often controlled by multiple cis-regulatory elements. The identification and functional characterization of distal regulatory elements remains challenging, even in tractable model organisms like sea urchins. Results We evaluate the use of chromatin accessibility, transcription and RNA Polymerase II for their ability to predict enhancer activity of genomic regions in sea urchin embryos. ATAC-seq, PRO-seq, and Pol II ChIP-seq from early and late blastula embryos are manually contrasted with experimental cis-regulatory analyses available in sea urchin embryos, with particular attention to common developmental regulatory elements known to have enhancer and silencer functions differentially deployed among embryonic territories. Using the three functional genomic data types, machine learning models are trained and tested to classify and quantitatively predict the enhancer activity of several hundred genomic regions previously validated with reporter constructs in vivo. Conclusions Overall, chromatin accessibility and transcription have substantial power for predicting enhancer activity. For promoter-overlapping cis-regulatory elements in particular, the distribution of Pol II is the best predictor of enhancer activity in blastula embryos. Furthermore, ATAC- and PRO-seq predictive value is stage dependent for the promoter-overlapping subset. This suggests that the sequence of regulatory mechanisms leading to transcriptional activation have distinct relevance at different levels of the developmental gene regulatory hierarchy deployed during embryogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07936-0.
Collapse
Affiliation(s)
- César Arenas-Mena
- College of Staten Island, The City University of New York (CUNY), Staten Island, NY, 10314, USA. .,Programs in Biology and Biochemistry, The Graduate Center, CUNY, New York, NY, 10016, USA.
| | - Sofija Miljovska
- Department of Biology, New York University, New York, NY, 10003, USA
| | - Edward J Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Justin Gurges
- College of Staten Island, The City University of New York (CUNY), Staten Island, NY, 10314, USA
| | - Tanvi Shashikant
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zihe Wang
- College of Staten Island, The City University of New York (CUNY), Staten Island, NY, 10314, USA
| | - Sevinç Ercan
- Department of Biology, New York University, New York, NY, 10003, USA.,Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.,Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
3
|
Williams RM, Sauka-Spengler T. Rapid and efficient enhancer cloning and in vivo screening using the developing chick embryo. STAR Protoc 2021; 2:100507. [PMID: 34027475 PMCID: PMC8121703 DOI: 10.1016/j.xpro.2021.100507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Here, we describe a highly efficient, medium-throughput strategy for cloning and in vivo screening of putative enhancers using the chick embryo. By incorporating 48 unique nanotags for use in NanoString nCounter® across three different fluorescent reporters and developing a rapid and efficient digestion/ligation type IIs restriction enzyme-based cloning protocol, we develop a multiplexed approach for rapidly identifying enhancer activity. For complete details on the use and execution of this protocol, please see Williams et al. (2019).
Collapse
Affiliation(s)
- Ruth M. Williams
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
- Corresponding author
| | - Tatjana Sauka-Spengler
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
- Corresponding author
| |
Collapse
|
4
|
Williams RM, Candido-Ferreira I, Repapi E, Gavriouchkina D, Senanayake U, Ling ITC, Telenius J, Taylor S, Hughes J, Sauka-Spengler T. Reconstruction of the Global Neural Crest Gene Regulatory Network In Vivo. Dev Cell 2019; 51:255-276.e7. [PMID: 31639368 PMCID: PMC6838682 DOI: 10.1016/j.devcel.2019.10.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/31/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023]
Abstract
Precise control of developmental processes is encoded in the genome in the form of gene regulatory networks (GRNs). Such multi-factorial systems are difficult to decode in vertebrates owing to their complex gene hierarchies and dynamic molecular interactions. Here we present a genome-wide in vivo reconstruction of the GRN underlying development of the multipotent neural crest (NC) embryonic cell population. By coupling NC-specific epigenomic and transcriptional profiling at population and single-cell levels with genome/epigenome engineering in vivo, we identify multiple regulatory layers governing NC ontogeny, including NC-specific enhancers and super-enhancers, novel trans-factors, and cis-signatures allowing reverse engineering of the NC-GRN at unprecedented resolution. Furthermore, identification and dissection of divergent upstream combinatorial regulatory codes has afforded new insights into opposing gene circuits that define canonical and neural NC fates early during NC ontogeny. Our integrated approach, allowing dissection of cell-type-specific regulatory circuits in vivo, has broad implications for GRN discovery and investigation.
Collapse
Affiliation(s)
- Ruth M Williams
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Ivan Candido-Ferreira
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Emmanouela Repapi
- University of Oxford, MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK
| | - Daria Gavriouchkina
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Upeka Senanayake
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Irving T C Ling
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK; University of Oxford, Department of Paediatric Surgery, Children's Hospital Oxford, Oxford, UK
| | - Jelena Telenius
- University of Oxford, MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK; University of Oxford, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Stephen Taylor
- University of Oxford, MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK
| | - Jim Hughes
- University of Oxford, MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK; University of Oxford, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Tatjana Sauka-Spengler
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK.
| |
Collapse
|
5
|
Wang L, Koppitch K, Cutting A, Dong P, Kudtarkar P, Zeng J, Cameron RA, Davidson EH. Developmental effector gene regulation: Multiplexed strategies for functional analysis. Dev Biol 2019; 445:68-79. [PMID: 30392838 DOI: 10.1016/j.ydbio.2018.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 01/18/2023]
Abstract
The staggering complexity of the genome controls for developmental processes is revealed through massively parallel cis-regulatory analysis using new methods of perturbation and readout. The choice of combinations of these new methods is tailored to the system, question and resources at hand. Our focus is on issues that include the necessity or sufficiency of given cis-regulatory modules, cis-regulatory function in the normal spatial genomic context, and easily accessible high throughput and multiplexed analysis methods. In the sea urchin embryonic model, recombineered BACs offer new opportunities for consecutive modes of cis-regulatory analyses that answer these requirements, as we here demonstrate on a diverse suite of previously unstudied sea urchin effector genes expressed in skeletogenic cells. Positively active cis-regulatory modules were located in single Nanostring experiments per BAC containing the gene of interest, by application of our previously reported "barcode" tag vectors of which> 100 can be analyzed at one time. Computational analysis of DNA sequences that drive expression, based on the known skeletogenic regulatory state, then permitted effective identification of functional target site clusters. Deletion of these sub-regions from the parent BACs revealed module necessity, as simultaneous tests of the same regions in short constructs revealed sufficiency. Predicted functional inputs were then confirmed by site mutations, all generated and tested in multiplex formats. There emerged the simple conclusion that each effector gene utilizes a small subset of inputs from the skeletogenic GRN. These inputs may function to only adjust expression levels or in some cases necessary for expression. Since we know the GRN architecture upstream of the effector genes, we could then conceptually isolate and compare the wiring of the effector gene driver sub-circuits and identify the inputs whose removal abolish expression.
Collapse
Affiliation(s)
- Lijun Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Kari Koppitch
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Ann Cutting
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Ping Dong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Parul Kudtarkar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Jenny Zeng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - R Andrew Cameron
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| | - Eric H Davidson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| |
Collapse
|
6
|
Host-specific expression of Ixodes scapularis salivary genes. Ticks Tick Borne Dis 2018; 10:386-397. [PMID: 30545615 DOI: 10.1016/j.ttbdis.2018.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/20/2018] [Accepted: 12/02/2018] [Indexed: 11/22/2022]
Abstract
Ixodes scapularis vectors several pathogens including Borrelia burgdorferi, the agent of Lyme disease. Nymphal and larval stages, and the pathogens transmitted by I. scapularis are maintained in a zoonotic cycle involving rodent reservoir hosts, predominantly Peromyscus leucopus. Humans are not reservoir hosts, however, accidental encounters of infected ticks with humans, results in pathogen transmission to the human host. Laboratory models of non-reservoir hosts such as guinea pigs develop a strong immune response to tick salivary proteins and reject ticks upon repeated tick infestations. Anecdotal and scientific evidence suggests that humans that get frequent tick bites might also develop resistance to ticks. Mus musculus, the laboratory model of natural host, does not develop resistance to I. scapularis upon repeated tick infestations. Addressing this dichotomy in vector-host interaction, we present data that suggest that the salivary transcriptome and proteome composition is different in mouse and guinea pig-fed I. scapularis, and that these differences might contribute to differences in host immune responses. These findings reveal a new insight into vector-host interactions and offer a functional paradigm to better understand the phenomenon of acquired tick-resistance.
Collapse
|
7
|
Shashikant T, Khor JM, Ettensohn CA. From genome to anatomy: The architecture and evolution of the skeletogenic gene regulatory network of sea urchins and other echinoderms. Genesis 2018; 56:e23253. [PMID: 30264451 PMCID: PMC6294693 DOI: 10.1002/dvg.23253] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/14/2018] [Accepted: 09/23/2018] [Indexed: 01/19/2023]
Abstract
The skeletogenic gene regulatory network (GRN) of sea urchins and other echinoderms is one of the most intensively studied transcriptional networks in any developing organism. As such, it serves as a preeminent model of GRN architecture and evolution. This review summarizes our current understanding of this developmental network. We describe in detail the most comprehensive model of the skeletogenic GRN, one developed for the euechinoid sea urchin Strongylocentrotus purpuratus, including its initial deployment by maternal inputs, its elaboration and stabilization through regulatory gene interactions, and its control of downstream effector genes that directly drive skeletal morphogenesis. We highlight recent comparative studies that have leveraged the euechinoid GRN model to examine the evolution of skeletogenic programs in diverse echinoderms, studies that have revealed both conserved and divergent features of skeletogenesis within the phylum. Last, we summarize the major insights that have emerged from analysis of the structure and evolution of the echinoderm skeletogenic GRN and identify key, unresolved questions as a guide for future work.
Collapse
Affiliation(s)
- Tanvi Shashikant
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Shashikant T, Khor JM, Ettensohn CA. Global analysis of primary mesenchyme cell cis-regulatory modules by chromatin accessibility profiling. BMC Genomics 2018; 19:206. [PMID: 29558892 PMCID: PMC5859501 DOI: 10.1186/s12864-018-4542-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/13/2018] [Indexed: 12/11/2022] Open
Abstract
Background The developmental gene regulatory network (GRN) that underlies skeletogenesis in sea urchins and other echinoderms is a paradigm of GRN structure, function, and evolution. This transcriptional network is deployed selectively in skeleton-forming primary mesenchyme cells (PMCs) of the early embryo. To advance our understanding of this model developmental GRN, we used genome-wide chromatin accessibility profiling to identify and characterize PMC cis-regulatory modules (CRMs). Results ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) analysis of purified PMCs provided a global picture of chromatin accessibility in these cells. We used both ATAC-seq and DNase-seq (DNase I hypersensitive site sequencing) to identify > 3000 sites that exhibited increased accessibility in PMCs relative to other embryonic cell lineages, and provide both computational and experimental evidence that a large fraction of these sites represent bona fide skeletogenic CRMs. Putative PMC CRMs were preferentially located near genes differentially expressed by PMCs and consensus binding sites for two key transcription factors in the PMC GRN, Alx1 and Ets1, were enriched in these CRMs. Moreover, a high proportion of candidate CRMs drove reporter gene expression specifically in PMCs in transgenic embryos. Surprisingly, we found that PMC CRMs were partially open in other embryonic lineages and exhibited hyperaccessibility as early as the 128-cell stage. Conclusions Our work provides a comprehensive picture of chromatin accessibility in an early embryonic cell lineage. By identifying thousands of candidate PMC CRMs, we significantly enhance the utility of the sea urchin skeletogenic network as a general model of GRN architecture and evolution. Our work also shows that differential chromatin accessibility, which has been used for the high-throughput identification of enhancers in differentiated cell types, is a powerful approach for the identification of CRMs in early embryonic cells. Lastly, we conclude that in the sea urchin embryo, CRMs that control the cell type-specific expression of effector genes are hyperaccessible several hours in advance of gene activation. Electronic supplementary material The online version of this article (10.1186/s12864-018-4542-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tanvi Shashikant
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
9
|
Sequential Response to Multiple Developmental Network Circuits Encoded in an Intronic cis- Regulatory Module of Sea Urchin hox11/13b. Cell Rep 2017; 19:364-374. [DOI: 10.1016/j.celrep.2017.03.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/27/2017] [Accepted: 03/13/2017] [Indexed: 01/13/2023] Open
|
10
|
Cary GA, Hinman VF. Echinoderm development and evolution in the post-genomic era. Dev Biol 2017; 427:203-211. [PMID: 28185788 DOI: 10.1016/j.ydbio.2017.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 01/01/2023]
Abstract
The highly recognizable animals within the phylum Echinodermata encompass an enormous disparity of adult and larval body plans. The extensive knowledge of sea urchin development has culminated in the description of the exquisitely detailed gene regulatory network (GRN) that governs the specification of various embryonic territories. This information provides a unique opportunity for comparative studies in other echinoderm taxa to understand the evolution and developmental mechanisms underlying body plan change. This review focuses on recent work that has utilized new genomic resources and systems-level experiments to address questions of evolutionary developmental biology. In particular, we synthesize the results of several recent studies from various echinoderm classes that have explored the development and evolution of the larval skeleton, which is a major feature that distinguishes the two predominant larval subtypes within the Phylum. We specifically examine the ways in which GRNs can evolve, either through cis regulatory and/or protein-level changes in transcription factors. We also examine recent work comparing evolution across shorter time scales that occur within and between species of sea urchin, and highlight the kinds of questions that can be addressed by these comparisons. The advent of new genomic and transcriptomic datasets in additional species from all classes of echinoderm will continue to empower the use of these taxa for evolutionary developmental studies.
Collapse
Affiliation(s)
- Gregory A Cary
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA 15213, United States
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA 15213, United States.
| |
Collapse
|
11
|
Guay CL, McQuade ST, Nam J. Single embryo-resolution quantitative analysis of reporters permits multiplex spatial cis -regulatory analysis. Dev Biol 2017; 422:92-104. [DOI: 10.1016/j.ydbio.2017.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/31/2016] [Accepted: 01/15/2017] [Indexed: 12/13/2022]
|
12
|
Abstract
Eric Harris Davidson was a unique and creative intellectual force who grappled with the diversity of developmental processes used by animal embryos and wrestled them into an intelligible set of principles, then spent his life translating these process elements into molecularly definable terms through the architecture of gene regulatory networks. He took speculative risks in his theoretical writing but ran a highly organized, rigorous experimental program that yielded an unprecedentedly full characterization of a developing organism. His writings created logical order and a framework for mechanism from the complex phenomena at the heart of advanced multicellular organism development. This is a reminiscence of intellectual currents in his work as observed by the author through the last 30-35 years of Davidson's life.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
13
|
Barsi JC, Davidson EH. cis -Regulatory control of the initial neurogenic pattern of onecut gene expression in the sea urchin embryo. Dev Biol 2016; 409:310-318. [DOI: 10.1016/j.ydbio.2015.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/01/2015] [Accepted: 10/16/2015] [Indexed: 01/05/2023]
|
14
|
Chen J, Streit A. A medium-scale assay for enhancer validation in amniotes. Dev Dyn 2015; 244:1291-9. [PMID: 26177930 PMCID: PMC4973829 DOI: 10.1002/dvdy.24306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 07/02/2015] [Accepted: 07/09/2015] [Indexed: 12/27/2022] Open
Abstract
Background Enhancers are key elements to control gene expression in time and space and thus orchestrate gene function during development, homeostasis, and disease. Whole genome approaches and bioinformatic predictions have generated a tremendous pool of potential enhancers, however their spatiotemporal activity often remains to be validated in vivo. Despite recent progress in developing high throughput strategies for enhancer evaluation, these remain mainly restricted to invertebrates and in vitro cell culture. Results Here we design a medium‐scale method to validate potential enhancers in an amniote embryo, the chick. Using a unique barcode for different reporter vectors allows us to detect the activity of nine separate enhancers in a single embryo by one‐step RT‐PCR. The assay is sufficiently sensitive to expand its capacity further by generating additional barcoded vectors. Conclusions As a rapid, sensitive, and cost‐effective way to assess enhancer activity in an amniote vertebrate, this method provides a major advance and a useful alternative to the generation of transgenic animals. Developmental Dynamics 244:1291–1299, 2015. © 2015 The Authors. Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists Design of a new strategy for rapid enhancer validation in an amniote embryo, the chick. Generation of a simple vector for rapid cloning. The activity of many enhancers can be detected in a single embryo using a PCR‐based strategy. The assay is sufficiently sensitive to detect activity in a small fraction of cells.
Collapse
Affiliation(s)
- Jingchen Chen
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, London, United Kingdom
| | - Andrea Streit
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, London, United Kingdom
| |
Collapse
|
15
|
STARR-seq - principles and applications. Genomics 2015; 106:145-150. [PMID: 26072434 DOI: 10.1016/j.ygeno.2015.06.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/19/2015] [Accepted: 06/08/2015] [Indexed: 12/21/2022]
Abstract
Differential gene expression is the basis for cell type diversity in multicellular organisms and the driving force of development and differentiation. It is achieved by cell type-specific transcriptional enhancers, which are genomic DNA sequences that activate the transcription of their target genes. Their identification and characterization is fundamental to our understanding of gene regulation. Features that are associated with enhancer activity, such as regulatory factor binding or histone modifications can predict the location of enhancers. Nonetheless, enhancer activity can only be assessed by transcriptional reporter assays. Over the past years massively parallel reporter assays have been developed for large scale testing of enhancers. In this review we focus on the principles and applications of STARR-seq, a functional assay that quantifies enhancer strengths in complex candidate libraries and thus allows activity-based enhancer identification in entire genomes. We explain how STARR-seq works, discuss current uses and give an outlook to future applications.
Collapse
|
16
|
White MA. Understanding how cis-regulatory function is encoded in DNA sequence using massively parallel reporter assays and designed sequences. Genomics 2015; 106:165-170. [PMID: 26072432 DOI: 10.1016/j.ygeno.2015.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/09/2015] [Accepted: 06/08/2015] [Indexed: 01/07/2023]
Abstract
Genome-scale methods have identified thousands of candidate cis-regulatory elements (CREs), but methods to directly assay the regulatory function of these elements on a comparably large scale have not been available. The inability to directly test and perturb the regulatory activity of large numbers of DNA sequences has hindered efforts to discover how cis-regulatory function is encoded in genomic sequence. Recently developed massively parallel reporter gene assays combine next generation sequencing with high-throughput oligonucleotide synthesis to offer the capacity to test and mutationally perturb thousands of specifically chosen or designed cis-regulatory sequences in a single experiment. These assays are the basis of recent studies that include large-scale functional validation of genomic CREs, exhaustive mutational analyses of individual regulatory sequences, and tests of large libraries of synthetic CREs. The results demonstrate how massively parallel reporter assays with libraries of designed sequences provide the statistical power required to address previously intractable questions about cis-regulatory function.
Collapse
Affiliation(s)
- Michael A White
- Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA.
| |
Collapse
|
17
|
Dubrulle J, Jordan BM, Akhmetova L, Farrell JA, Kim SH, Solnica-Krezel L, Schier AF. Response to Nodal morphogen gradient is determined by the kinetics of target gene induction. eLife 2015; 4. [PMID: 25869585 PMCID: PMC4395910 DOI: 10.7554/elife.05042] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 03/02/2015] [Indexed: 12/24/2022] Open
Abstract
Morphogen gradients expose cells to different signal concentrations and induce target genes with different ranges of expression. To determine how the Nodal morphogen gradient induces distinct gene expression patterns during zebrafish embryogenesis, we measured the activation dynamics of the signal transducer Smad2 and the expression kinetics of long- and short-range target genes. We found that threshold models based on ligand concentration are insufficient to predict the response of target genes. Instead, morphogen interpretation is shaped by the kinetics of target gene induction: the higher the rate of transcription and the earlier the onset of induction, the greater the spatial range of expression. Thus, the timing and magnitude of target gene expression can be used to modulate the range of expression and diversify the response to morphogen gradients. DOI:http://dx.doi.org/10.7554/eLife.05042.001 How a cell can tell where it is in a developing embryo has fascinated scientists for decades. The pioneering computer scientist and mathematical biologist Alan Turing was the first person to coin the term ‘morphogen’ to describe a protein that provides information about locations in the body. A morphogen is released from a group of cells (called the ‘source’) and as it moves away its activity (called the ‘signal’) declines gradually. Cells sense this signal gradient and use it to detect their position with respect to the source. Nodal is an important morphogen and is required to establish the correct identity of cells in the embryo; for example, it helps determine which cells should become a brain or heart or gut cell and so on. The zebrafish is a widely used model to study animal development, in part because its embryos are transparent; this allows cells and proteins to be easily observed under a microscope. When Nodal acts on cells, another protein called Smad2 becomes activated, moves into the cell's nucleus, and then binds to specific genes. This triggers the expression of these genes, which are first copied into mRNA molecules via a process known as transcription and are then translated into proteins. The protein products of these targeted genes control cell identity and movement. Several models have been proposed to explain how different concentrations of Nodal switch on the expression of different target genes; that is to say, to explain how a cell interprets the Nodal gradient. Dubrulle et al. have now measured factors that underlie how this gradient is interpreted. Individual cells in zebrafish embryos were tracked under a microscope, and Smad2 activation and gene expression were assessed. Dubrulle et al. found that, in contradiction to previous models, the amount of Nodal present on its own was insufficient to predict the target gene response. Instead, their analysis suggests that the size of each target gene's response depends on its rate of transcription and how quickly it is first expressed in response to Nodal. These findings of Dubrulle et al. suggest that timing and transcription rate are important in determining the appropriate response to Nodal. Further work will be now needed to find out whether similar mechanisms regulate other processes that rely on the activity of morphogens. DOI:http://dx.doi.org/10.7554/eLife.05042.002
Collapse
Affiliation(s)
- Julien Dubrulle
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Benjamin M Jordan
- Department of Mathematics, College of Science and Engineering, University of Minnesota, Minneapolis, United States
| | - Laila Akhmetova
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Jeffrey A Farrell
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Seok-Hyung Kim
- Division of Medicine, Medical University of South Carolina, Charleston, United States
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, United States
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| |
Collapse
|
18
|
Suryamohan K, Halfon MS. Identifying transcriptional cis-regulatory modules in animal genomes. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:59-84. [PMID: 25704908 PMCID: PMC4339228 DOI: 10.1002/wdev.168] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/04/2014] [Accepted: 11/16/2014] [Indexed: 11/08/2022]
Abstract
UNLABELLED Gene expression is regulated through the activity of transcription factors (TFs) and chromatin-modifying proteins acting on specific DNA sequences, referred to as cis-regulatory elements. These include promoters, located at the transcription initiation sites of genes, and a variety of distal cis-regulatory modules (CRMs), the most common of which are transcriptional enhancers. Because regulated gene expression is fundamental to cell differentiation and acquisition of new cell fates, identifying, characterizing, and understanding the mechanisms of action of CRMs is critical for understanding development. CRM discovery has historically been challenging, as CRMs can be located far from the genes they regulate, have few readily identifiable sequence characteristics, and for many years were not amenable to high-throughput discovery methods. However, the recent availability of complete genome sequences and the development of next-generation sequencing methods have led to an explosion of both computational and empirical methods for CRM discovery in model and nonmodel organisms alike. Experimentally, CRMs can be identified through chromatin immunoprecipitation directed against TFs or histone post-translational modifications, identification of nucleosome-depleted 'open' chromatin regions, or sequencing-based high-throughput functional screening. Computational methods include comparative genomics, clustering of known or predicted TF-binding sites, and supervised machine-learning approaches trained on known CRMs. All of these methods have proven effective for CRM discovery, but each has its own considerations and limitations, and each is subject to a greater or lesser number of false-positive identifications. Experimental confirmation of predictions is essential, although shortcomings in current methods suggest that additional means of validation need to be developed. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Kushal Suryamohan
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- NY State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| | - Marc S. Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- Department of Biological Sciences, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- Department of Biomedical Informatics, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- NY State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
- Molecular and Cellular Biology Department and Program in Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
19
|
Transcriptional enhancers: from properties to genome-wide predictions. Nat Rev Genet 2014; 15:272-86. [PMID: 24614317 DOI: 10.1038/nrg3682] [Citation(s) in RCA: 934] [Impact Index Per Article: 84.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cellular development, morphology and function are governed by precise patterns of gene expression. These are established by the coordinated action of genomic regulatory elements known as enhancers or cis-regulatory modules. More than 30 years after the initial discovery of enhancers, many of their properties have been elucidated; however, despite major efforts, we only have an incomplete picture of enhancers in animal genomes. In this Review, we discuss how properties of enhancer sequences and chromatin are used to predict enhancers in genome-wide studies. We also cover recently developed high-throughput methods that allow the direct testing and identification of enhancers on the basis of their activity. Finally, we discuss recent technological advances and current challenges in the field of regulatory genomics.
Collapse
|
20
|
Materna SC, Ransick A, Li E, Davidson EH. Diversification of oral and aboral mesodermal regulatory states in pregastrular sea urchin embryos. Dev Biol 2012; 375:92-104. [PMID: 23261933 DOI: 10.1016/j.ydbio.2012.11.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 01/08/2023]
Abstract
Specification of the non-skeletogenic mesoderm (NSM) in sea urchin embryos depends on Delta signaling. Signal reception leads to expression of regulatory genes that later contribute to the aboral NSM regulatory state. In oral NSM, this is replaced by a distinct oral regulatory state in consequence of Nodal signaling. Through regulome wide analysis we identify the homeobox gene not as an immediate Nodal target. not expression in NSM causes extinction of the aboral regulatory state in the oral NSM, and expression of a new suite of regulatory genes. All NSM specific regulatory genes are henceforth expressed exclusively, in oral or aboral domains, presaging the mesodermal cell types that will emerge. We have analyzed the regulatory linkages within the aboral NSM gene regulatory network. A linchpin of this network is gataE which as we show is a direct Gcm target and part of a feedback loop locking down the aboral regulatory state.
Collapse
Affiliation(s)
- Stefan C Materna
- California Institute of Technology, Division of Biology, m/c 156-29, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
21
|
Streit A, Tambalo M, Chen J, Grocott T, Anwar M, Sosinsky A, Stern CD. Experimental approaches for gene regulatory network construction: the chick as a model system. Genesis 2012; 51:296-310. [PMID: 23174848 DOI: 10.1002/dvg.22359] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/09/2012] [Accepted: 11/11/2012] [Indexed: 01/23/2023]
Abstract
Setting up the body plan during embryonic development requires the coordinated action of many signals and transcriptional regulators in a precise temporal sequence and spatial pattern. The last decades have seen an explosion of information describing the molecular control of many developmental processes. The next challenge is to integrate this information into logic "wiring diagrams" that visualize gene actions and outputs, have predictive power and point to key control nodes. Here, we provide an experimental workflow on how to construct gene regulatory networks using the chick as model system.
Collapse
Affiliation(s)
- Andrea Streit
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
22
|
Ben-Tabou de-Leon S, Su YH, Lin KT, Li E, Davidson EH. Gene regulatory control in the sea urchin aboral ectoderm: spatial initiation, signaling inputs, and cell fate lockdown. Dev Biol 2012; 374:245-54. [PMID: 23211652 DOI: 10.1016/j.ydbio.2012.11.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/10/2012] [Accepted: 11/15/2012] [Indexed: 12/20/2022]
Abstract
The regulation of oral-aboral ectoderm specification in the sea urchin embryo has been extensively studied in recent years. The oral-aboral polarity is initially imposed downstream of a redox gradient induced by asymmetric maternal distribution of mitochondria. Two TGF-β signaling pathways, Nodal and BMP, are then respectively utilized in the generation of oral and aboral regulatory states. However, a causal understanding of the regulation of aboral ectoderm specification has been lacking. In this work control of aboral ectoderm regulatory state specification was revealed by combining detailed regulatory gene expression studies, perturbation and cis-regulatory analyses. Our analysis illuminates a dynamic system where different factors dominate at different developmental times. We found that the initial activation of aboral genes depends directly on the redox sensitive transcription factor, hypoxia inducible factor 1α (HIF-1α). Two BMP ligands, BMP2/4 and BMP5/8, then significantly enhance aboral regulatory gene transcription. Ultimately, encoded feedback wiring lockdown the aboral ectoderm regulatory state. Our study elucidates the different regulatory mechanisms that sequentially dominate the spatial localization of aboral regulatory states.
Collapse
Affiliation(s)
- Smadar Ben-Tabou de-Leon
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel.
| | | | | | | | | |
Collapse
|