1
|
Tezuka T, Nagai S, Matsuo C, Okamori T, Iizuka T, Marubashi W. Genetic Cause of Hybrid Lethality Observed in Reciprocal Interspecific Crosses between Nicotiana simulans and N. tabacum. Int J Mol Sci 2024; 25:1226. [PMID: 38279225 PMCID: PMC10817076 DOI: 10.3390/ijms25021226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Hybrid lethality, a type of postzygotic reproductive isolation, is an obstacle to wide hybridization breeding. Here, we report the hybrid lethality that was observed in crosses between the cultivated tobacco, Nicotiana tabacum (section Nicotiana), and the wild tobacco species, Nicotiana simulans (section Suaveolentes). Reciprocal hybrid seedlings were inviable at 28 °C, and the lethality was characterized by browning of the hypocotyl and roots, suggesting that hybrid lethality is due to the interaction of nuclear genomes derived from each parental species, and not to a cytoplasmic effect. Hybrid lethality was temperature-sensitive and suppressed at 36 °C. However, when hybrid seedlings cultured at 36 °C were transferred to 28 °C, all of them showed hybrid lethality. After crossing between an N. tabacum monosomic line missing one copy of the Q chromosome and N. simulans, hybrid seedlings with or without the Q chromosome were inviable and viable, respectively. These results indicated that gene(s) on the Q chromosome are responsible for hybrid lethality and also suggested that N. simulans has the same allele at the Hybrid Lethality A1 (HLA1) locus responsible for hybrid lethality as other species in the section Suaveolentes. Haplotype analysis around the HLA1 locus suggested that there are at least six and two haplotypes containing Hla1-1 and hla1-2 alleles, respectively, in the section Suaveolentes.
Collapse
Affiliation(s)
- Takahiro Tezuka
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Osaka, Japan;
- Education and Research Field, School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Osaka, Japan
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan;
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan
| | - Shota Nagai
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Osaka, Japan;
| | - Chihiro Matsuo
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan
| | - Toshiaki Okamori
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan
| | - Takahiro Iizuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan;
| | - Wataru Marubashi
- School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan;
| |
Collapse
|
2
|
He H, Shiragaki K, Tezuka T. Understanding and overcoming hybrid lethality in seed and seedling stages as barriers to hybridization and gene flow. FRONTIERS IN PLANT SCIENCE 2023; 14:1219417. [PMID: 37476165 PMCID: PMC10354522 DOI: 10.3389/fpls.2023.1219417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
Hybrid lethality is a type of reproductive isolation barrier observed in two developmental stages, hybrid embryos (hybrid seeds) and hybrid seedlings. Hybrid lethality has been reported in many plant species and limits distant hybridization breeding including interspecific and intergeneric hybridization, which increases genetic diversity and contributes to produce new germplasm for agricultural purposes. Recent studies have provided molecular and genetic evidence suggesting that underlying causes of hybrid lethality involve epistatic interaction of one or more loci, as hypothesized by the Bateson-Dobzhansky-Muller model, and effective ploidy or endosperm balance number. In this review, we focus on the similarities and differences between hybrid seed lethality and hybrid seedling lethality, as well as methods of recovering seed/seedling activity to circumvent hybrid lethality. Current knowledge summarized in our article will provides new insights into the mechanisms of hybrid lethality and effective methods for circumventing hybrid lethality.
Collapse
Affiliation(s)
- Hai He
- School of Agriculture, Sun Yat-sen University, Shenzhen, China
| | - Kumpei Shiragaki
- Laboratory of Plant Breeding and Genetics, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Takahiro Tezuka
- Laboratory of Breeding and Genetics, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
- Education and Research Field, School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
| |
Collapse
|
3
|
Mino M, Tezuka T, Shomura S. The hybrid lethality of interspecific F 1 hybrids of Nicotiana: a clue to understanding hybrid inviability-a major obstacle to wide hybridization and introgression breeding of plants. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:10. [PMID: 37309322 PMCID: PMC10248639 DOI: 10.1007/s11032-022-01279-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Reproductive isolation poses a major obstacle to wide hybridization and introgression breeding of plants. Hybrid inviability in the postzygotic isolation barrier inevitably reduces hybrid fitness, consequently causing hindrances in the establishment of novel genotypes from the hybrids among genetically divergent parents. The idea that the plant immune system is involved in the hybrid problem is applicable to the intra- and/or interspecific hybrids of many different taxa. The lethality characteristics and expression profile of genes associated with the hypersensitive response of the hybrids, along with the suppression of causative genes, support the deleterious epistatic interaction of parental NB-LRR protein genes, resulting in aberrant hyper-immunity reactions in the hybrid. Moreover, the cellular, physiological, and biochemical reactions observed in hybrid cells also corroborate this hypothesis. However, the difference in genetic backgrounds of the respective hybrids may contribute to variations in lethality phenotypes among the parental species combinations. The mixed state in parental components of the chaperone complex (HSP90-SGT1-RAR1) in the hybrid may also affect the hybrid inviability. This review article discusses the facts and hypothesis regarding hybrid inviability, alongside the findings of studies on the hybrid lethality of interspecific hybrids of the genus Nicotiana. A possible solution for averting the hybrid problem has also been scrutinized with the aim of improving the wide hybridization and introgression breeding program in plants.
Collapse
Affiliation(s)
- Masanobu Mino
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
- Present Address: Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku Sakai, Osaka, 599-8531 Japan
| | - Takahiro Tezuka
- Present Address: Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku Sakai, Osaka, 599-8531 Japan
| | - Sachiko Shomura
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
| |
Collapse
|
4
|
Tezuka T, Kitamura N, Imagawa S, Hasegawa A, Shiragaki K, He H, Yanase M, Ogata Y, Morikawa T, Yokoi S. Genetic Mapping of the HLA1 Locus Causing Hybrid Lethality in Nicotiana Interspecific Hybrids. PLANTS 2021; 10:plants10102062. [PMID: 34685871 PMCID: PMC8539413 DOI: 10.3390/plants10102062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022]
Abstract
Hybrid lethality, a postzygotic mechanism of reproductive isolation, is a phenomenon that causes the death of F1 hybrid seedlings. Hybrid lethality is generally caused by the epistatic interaction of two or more loci. In the genus Nicotiana, N. debneyi has the dominant allele Hla1-1 at the HLA1 locus that causes hybrid lethality in F1 hybrid seedlings by interaction with N. tabacum allele(s). Here, we mapped the HLA1 locus using the F2 population segregating for the Hla1-1 allele derived from the interspecific cross between N. debneyi and N. fragrans. To map HLA1, several DNA markers including random amplified polymorphic DNA, amplified fragment length polymorphism, and simple sequence repeat markers, were used. Additionally, DNA markers were developed based on disease resistance gene homologs identified from the genome sequence of N. benthamiana. Linkage analysis revealed that HLA1 was located between two cleaved amplified polymorphic sequence markers Nb14-CAPS and NbRGH1-CAPS at a distance of 10.8 and 10.9 cM, respectively. The distance between these markers was equivalent to a 682 kb interval in the genome sequence of N. benthamiana.
Collapse
Affiliation(s)
- Takahiro Tezuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
- Education and Research Field, College of Life, Environment and Advanced Sciences, Osaka Prefecture University, Osaka 599-8531, Japan
- Correspondence:
| | - Naoto Kitamura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
| | - Sae Imagawa
- School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (S.I.); (A.H.)
| | - Akira Hasegawa
- School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (S.I.); (A.H.)
| | - Kumpei Shiragaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
| | - Hai He
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
| | - Masanori Yanase
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
| | - Yoshiyuki Ogata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
| | - Toshinobu Morikawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
| | - Shuji Yokoi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
- Education and Research Field, College of Life, Environment and Advanced Sciences, Osaka Prefecture University, Osaka 599-8531, Japan
- Bioeconomy Research Institute, Research Center for the 21st Century, Osaka Prefecture University, Osaka 599-8531, Japan
| |
Collapse
|
5
|
Kawaguchi K, Ohya Y, Maekawa M, Iizuka T, Hasegawa A, Shiragaki K, He H, Oda M, Morikawa T, Yokoi S, Tezuka T. Two Nicotiana occidentalis accessions enable gene identification for Type II hybrid lethality by the cross to N. sylvestris. Sci Rep 2021; 11:17093. [PMID: 34429461 PMCID: PMC8384851 DOI: 10.1038/s41598-021-96482-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 08/11/2021] [Indexed: 12/18/2022] Open
Abstract
Hybrid lethality, meaning the death of F1 hybrid seedlings, has been observed in many plant species, including Nicotiana. Previously, we have revealed that hybrids of the selected Nicotiana occidentalis accession and N. tabacum, an allotetraploid with S and T genomes, exhibited lethality characterized by the fading of shoot color. The lethality was suggested to be controlled by alleles of loci on the S and T genomes derived from N. sylvestris and N. tomentosiformis, respectively. Here, we extended the analysis of hybrid lethality using other two accessions of N. occidentalis identified from the five tested accessions. The two accessions were crossed with N. tabacum and its two progenitors, N. sylvestris and N. tomentosiformis. After crosses with N. tabacum, the two N. occidentalis accessions yielded inviable hybrid seedlings whose lethality was characterized by the fading of shoot color, but only the T genome of N. tabacum was responsible for hybrid lethality. Genetic analysis indicated that first-mentioned N. occidentalis accession carries a single gene causing hybrid lethality by allelic interaction with the S genome.
Collapse
Affiliation(s)
- Kenji Kawaguchi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- NARO Hokkaido Agricultural Research Center, Memuro Research Station, 9-4 Shinsei-minami, Memuro, Kasai, Hokkaido, 082-0081, Japan
| | - Yuichiro Ohya
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Maho Maekawa
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Takahiro Iizuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Akira Hasegawa
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Kumpei Shiragaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Hai He
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Toshinobu Morikawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Shuji Yokoi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- Bioeconomy Research Institute, Research Center for the 21St Century, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Takahiro Tezuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
6
|
He H, Iizuka T, Maekawa M, Sadahisa K, Morikawa T, Yanase M, Yokoi S, Oda M, Tezuka T. Nicotiana suaveolens accessions with different ploidy levels exhibit different reproductive isolation mechanisms in interspecific crosses with Nicotiana tabacum. JOURNAL OF PLANT RESEARCH 2019; 132:461-471. [PMID: 31115709 DOI: 10.1007/s10265-019-01114-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
Reproductive isolation, including prezygotic and postzygotic barriers, is a mechanism that separates species. Many species in the Nicotiana section Suaveolentes exhibit reproductive isolation in crosses with Nicotiana tabacum. In this study, we investigated whether the chromosome numbers and ploidy levels of eight Nicotiana suaveolens accessions are related to the reproductive isolation after crosses with N. tabacum by flow cytometry and chromosome analyses. Additionally, the internal transcribed spacer (ITS) regions of the eight N. suaveolens accessions were sequenced and compared with the previously reported sequences of 22 Suaveolentes species to elucidate the phylogenetic relationships in the section Suaveolentes. We revealed that four N. suaveolens accessions comprised 64 chromosomes, while the other four accessions carried 32 chromosomes. Depending on the ploidy levels of N. suaveolens, several types of reproductive isolation were observed after crosses with N. tabacum, including decreases in the number of capsules and the germination rates of hybrid seeds, as well as hybrid lethality and abscission of enlarged ovaries at 12-17 days after pollination. A phylogenetic analysis involving ITS sequences divided the eight N. suaveolens accessions into three distinct clades. Based on the results, we confirmed that N. suaveolens accessions vary regarding ploidy levels and reproductive isolation mechanisms in crosses with N. tabacum. These accessions will be very useful for revealing and characterizing the reproductive isolation mechanisms in interspecific crosses and their relationships with ploidy levels.
Collapse
Affiliation(s)
- Hai He
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Takahiro Iizuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Maho Maekawa
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Kumi Sadahisa
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Toshinobu Morikawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Masanori Yanase
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Shuji Yokoi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Takahiro Tezuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan.
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
7
|
Tian M, Nie Q, Li Z, Zhang J, Liu Y, Long Y, Wang Z, Wang G, Liu R. Transcriptomic analysis reveals overdominance playing a critical role in nicotine heterosis in Nicotiana tabacum L. BMC PLANT BIOLOGY 2018; 18:48. [PMID: 29566653 PMCID: PMC5863848 DOI: 10.1186/s12870-018-1257-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 03/01/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND As a unique biological phenomenon, heterosis has been concerned with the superior performance of the heterosis than either parents. Despite several F1 hybrids, containing supernal nicotine content, had been discovered and applied to heterosis utilization in Nicotiana tabacum L., nevertheless, the potential molecular mechanism revealing nicotine heterosis has not been illustrated clearly. RESULT Phenotypically, the F1 hybrids (Vall6 × Basma) show prominent heterosis in nicotine content by 3 years of field experiments. Transcriptome analysis revealed that genes participating in nicotine anabolism (ADC, PMT, MPO, QPT, AO, QS, QPT, A622, BBLs) and nicotine transport (JAT2, MATE1 and 2, NUP1 and 2) showed an upregulated expression in the hybrid, a majority of which demonstrated an overdominant performance. RT-PCR confirmed that nicotine anabolism was induced in the hybrid. CONCLUSIONS These findings strongly suggest that nicotine synthesis and transport efficiency improved in hybrid and overdominance at gene-expression level played a critical role in heterosis of nicotine metabolism.
Collapse
Affiliation(s)
- Maozhu Tian
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Qiong Nie
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Zhenhua Li
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China
| | - Jie Zhang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yiling Liu
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Yao Long
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Zhiwei Wang
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Guoqing Wang
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Renxiang Liu
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China.
- College of Tobacco, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
8
|
Jassbi AR, Zare S, Asadollahi M, Schuman MC. Ecological Roles and Biological Activities of Specialized Metabolites from the Genus Nicotiana. Chem Rev 2017; 117:12227-12280. [PMID: 28960061 DOI: 10.1021/acs.chemrev.7b00001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Species of Nicotiana grow naturally in different parts of the world and have long been used both medicinally and recreationally by human societies. More recently in our history, Nicotiana tabacum has attracted interest as one of the most economically important industrial crops. Nicotiana species are frequently investigated for their bioactive natural products, and the ecological role of their specialized metabolites in responses to abiotic stress or biotic stress factors like pathogens and herbivores. The interest of tobacco companies in genetic information as well as the success of a few wild tobacco species as experimental model organisms have resulted in growing knowledge about the molecular biology and ecology of these plants and functional studies of the plant's natural products. Although a large number of reviews and books on biologically active natural products already exists, mostly from N. tabacum, we focus our attention on the ecological roles and biological activity of natural products, versus products from cured and processed material, in this Review. The studied compounds include alkaloids, aromatic compounds, flavonoids, volatiles, sesquiterpenoids, diterpenes alcohols, and sugar esters from trichomes of the plants, and recently characterized acyclic hydroxygeranyllinalool diterpene glycosides (HGL-DTGs). In this Review (1800s-2017), we describe the above-mentioned classes of natural products, emphasizing their biological activities and functions as they have been determined either in bioassay-guided purification approaches or in bioassays with plants in which the expression of specific biosynthetic genes has been genetically manipulated. Additionally, a review on the history, taxonomy, ecology, and medicinal application of different Nicotiana species growing around the globe presented in this Review may be of interest for pharmacognosists, natural products, and ecological chemists.
Collapse
Affiliation(s)
| | | | | | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology , Jena 07745, Germany
- German Centre for Integrative Biodiversity Research (iDiv) , Deutscher Platz 5e, Leipzig 04103, Germany
| |
Collapse
|
9
|
Takanashi H, Marubashi W. Tumorigenesis inheritance from the putative progenitor species of Nicotiana rustica. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2017; 34:79-87. [PMID: 31275012 PMCID: PMC6543759 DOI: 10.5511/plantbiotechnology.17.0413a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 04/13/2017] [Indexed: 06/09/2023]
Abstract
Hybrid seedlings from crosses of Nicotiana rustica×N. langsdorffii and N. rustica×N. alata show tumors including teratomas and vitrification. In the present study, we attempted to elucidate the genetic background leading to tumorigenesis and vitrification from the viewpoint of the amphidiploidy of N. rustica. The species N. undulata, N. paniculata, and N. knightiana have been suggested to be the progenitors of N. rustica or closely related to its progenitors. We tested tumorigenesis in interspecific hybrids between these putative progenitors of N. rustica and N. langsdorffii or N. alata, which are the species in section Alatae. The hybrid seedlings were cultured in test tubes and their morphological characteristics were observed. According to previous reports, most of the hybrid seedlings from the crosses N. rustica×N. langsdorffii and N. rustica×N. alata formed tumors and showed vitrification. In crosses with every putative progenitor of N. rustica, a portion of hybrid seedlings formed tumors and showed vitrification. These observations suggested that N. rustica inherited the factors leading to expression of abnormal symptoms from its putative progenitors. We also observed the influence of high temperature on the expression of abnormal symptoms of hybrid seedlings from the cross N. rustica×N. alata. While these hybrids developed teratomas and other tumors at 28°C, when cultured at 34°C, they did not show any abnormalities. This is the first report to show that phenotypic abnormalities in hybrid seedlings of N. rustica×N. alata are temperature sensitive.
Collapse
Affiliation(s)
- Haruka Takanashi
- Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| | - Wataru Marubashi
- Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| |
Collapse
|
10
|
Liu H, Marubashi W. Species origin of genomic factors in Nicotiana nudicaulis Watson controlling hybrid lethality in interspecific hybrids between N. nudicaulis Watson and N. tabacum L. PLoS One 2014; 9:e97004. [PMID: 24806486 PMCID: PMC4013128 DOI: 10.1371/journal.pone.0097004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/15/2014] [Indexed: 11/21/2022] Open
Abstract
Hybrid lethality is expressed at 28°C in the cross Nicotiana nudicaulis × N. tabacum. The S subgenome of N. tabacum has been identified as controlling this hybrid lethality. To clarify the responsible genomic factor(s) of N. nudicaulis, we crossed N. trigonophylla (paternal progenitor of N. nudicaulis) with N. tabacum, because hybrids between N. sylvestris (maternal progenitor of N. nudicaulis) and N. tabacum are viable when grown in a greenhouse. In the cross N. trigonophylla×N. tabacum, approximately 50% of hybrids were vitrified, 20% were viable, and 20% were nonviable at 28°C. To reveal which subgenome of N. tabacum was responsible for these phenotypes, we crossed N. trigonophylla with two progenitors of N. tabacum, N. sylvestris (SS) and N. tomentosiformis (TT). In the cross N. sylvestris × N. trigonophylla, we confirmed that over half of hybrids of N. sylvestris × N. trigonophylla were vitrified, and none of the hybrids of N. trigonophylla × N. tomentosiformis were. The results imply that the S subgenome, encoding a gene or genes inducing hybrid lethality in the cross between N. nudicaulis and N. tabacum, has one or more genomic factors that induce vitrification. Furthermore, in vitrified hybrids of N. trigonophylla × N. tabacum and N. sylvestris × N. trigonophylla, we found that nuclear fragmentation, which progresses during expression of hybrid lethality, was accompanied by vitrification. This observation suggests that vitrification has a relationship to hybrid lethality. Based on these results, we speculate that when N. nudicaulis was formed approximately 5 million years ago, several causative genomic factors determining phenotypes of hybrid seedlings were inherited from N. trigonophylla. Subsequently, genome downsizing and various recombination-based processes took place. Some of the causative genomic factors were lost and some became genomic factor(s) controlling hybrid lethality in extant N. nudicaulis.
Collapse
Affiliation(s)
- Hongshuo Liu
- Graduate School of Agriculture, Meiji University, Kanagawa, Japan
| | - Wataru Marubashi
- Graduate School of Agriculture, Meiji University, Kanagawa, Japan
| |
Collapse
|
11
|
Tezuka T, Matsuo C, Iizuka T, Oda M, Marubashi W. Identification of Nicotiana tabacum linkage group corresponding to the Q chromosome gene(s) involved in hybrid lethality. PLoS One 2012; 7:e37822. [PMID: 22629459 PMCID: PMC3358278 DOI: 10.1371/journal.pone.0037822] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/24/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND A linkage map consisting of 24 linkage groups has been constructed using simple sequence repeat (SSR) markers in Nicotiana tabacum. However, chromosomal assignments of all linkage groups have not yet been made. The Q chromosome in N. tabacum encodes a gene or genes triggering hybrid lethality, a phenomenon that causes death of hybrids derived from some crosses. METHODOLOGY/PRINCIPAL FINDINGS We identified a linkage group corresponding to the Q chromosome using an interspecific cross between an N. tabacum monosomic line lacking the Q chromosome and N. africana. N. ingulba yielded inviable hybrids after crossing with N. tabacum. SSR markers on the identified linkage group were used to analyze hybrid lethality in this cross. The results implied that one or more genes on the Q chromosome are responsible for hybrid lethality in this cross. Furthermore, the gene(s) responsible for hybrid lethality in the cross N. tabacum × N. africana appear to be on the region of the Q chromosome to which SSR markers PT30342 and PT30365 map. CONCLUSIONS/SIGNIFICANCE Linkage group 11 corresponded to the Q chromosome. We propose a new method to correlate linkage groups with chromosomes in N. tabacum.
Collapse
Affiliation(s)
- Takahiro Tezuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan.
| | | | | | | | | |
Collapse
|