1
|
Phelps J, Hart DA, Mitha AP, Duncan NA, Sen A. Physiological oxygen conditions enhance the angiogenic properties of extracellular vesicles from human mesenchymal stem cells. Stem Cell Res Ther 2023; 14:218. [PMID: 37612731 PMCID: PMC10463845 DOI: 10.1186/s13287-023-03439-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Following an ischemic injury to the brain, the induction of angiogenesis is critical to neurological recovery. The angiogenic benefits of mesenchymal stem cells (MSCs) have been attributed at least in part to the actions of extracellular vesicles (EVs) that they secrete. EVs are membrane-bound vesicles that contain various angiogenic biomolecules capable of eliciting therapeutic responses and are of relevance in cerebral applications due to their ability to cross the blood-brain barrier (BBB). Though MSCs are commonly cultured under oxygen levels present in injected air, when MSCs are cultured under physiologically relevant oxygen conditions (2-9% O2), they have been found to secrete higher amounts of survival and angiogenic factors. There is a need to determine the effects of MSC-EVs in models of cerebral angiogenesis and whether those from MSCs cultured under physiological oxygen provide greater functional effects. METHODS Human adipose-derived MSCs were grown in clinically relevant serum-free medium and exposed to either headspace oxygen concentrations of 18.4% O2 (normoxic) or 3% O2 (physioxic). EVs were isolated from MSC cultures by differential ultracentrifugation and characterized by their size, concentration of EV specific markers, and their angiogenic protein content. Their functional angiogenic effects were evaluated in vitro by their induction of cerebral microvascular endothelial cell (CMEC) proliferation, tube formation, and angiogenic and tight junction gene expressions. RESULTS Compared to normoxic conditions, culturing MSCs under physioxic conditions increased their expression of angiogenic genes SDF1 and VEGF, and subsequently elevated VEGF-A content in the EV fraction. MSC-EVs demonstrated an ability to induce CMEC angiogenesis by promoting tube formation, with the EV fraction from physioxic cultures having the greatest effect. The physioxic EV fraction further upregulated the expression of CMEC angiogenic genes FGF2, HIF1, VEGF and TGFB1, as well as genes (OCLN and TJP1) involved in BBB maintenance. CONCLUSIONS EVs from physioxic MSC cultures hold promise in the generation of a cell-free therapy to induce angiogenesis. Their positive angiogenic effect on cerebral microvascular endothelial cells demonstrates that they may have utility in treating ischemic cerebral conditions, where the induction of angiogenesis is critical to improving recovery and neurological function.
Collapse
Affiliation(s)
- Jolene Phelps
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada
| | - David A Hart
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, AB, T2N 4N1, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada
| | - Alim P Mitha
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3300 Hospital Drive N.W., Calgary, AB, T2N 4N1, Canada
| | - Neil A Duncan
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, AB, T2N 4N1, Canada
- Department of Civil Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
- Musculoskeletal Mechanobiology and Multiscale Mechanics Bioengineering Lab, Department of Civil Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada
| | - Arindom Sen
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada.
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada.
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada.
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada.
| |
Collapse
|
2
|
Khan S, Mahgoub S, Fallatah N, Lalor PF, Newsome PN. Liver Disease and Cell Therapy: Advances Made and Remaining Challenges. Stem Cells 2023; 41:739-761. [PMID: 37052348 PMCID: PMC10809282 DOI: 10.1093/stmcls/sxad029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 02/27/2023] [Indexed: 04/14/2023]
Abstract
The limited availability of organs for liver transplantation, the ultimate curative treatment for end stage liver disease, has resulted in a growing and unmet need for alternative therapies. Mesenchymal stromal cells (MSCs) with their broad ranging anti-inflammatory and immunomodulatory properties have therefore emerged as a promising therapeutic agent in treating inflammatory liver disease. Significant strides have been made in exploring their biological activity. Clinical application of MSC has shifted the paradigm from using their regenerative potential to one which harnesses their immunomodulatory properties. Reassuringly, MSCs have been extensively investigated for over 30 years with encouraging efficacy and safety data from translational and early phase clinical studies, but questions remain about their utility. Therefore, in this review, we examine the translational and clinical studies using MSCs in various liver diseases and their impact on dampening immune-mediated liver damage. Our key observations include progress made thus far with use of MSCs for clinical use, inconsistency in the literature to allow meaningful comparison between different studies and need for standardized protocols for MSC manufacture and administration. In addition, the emerging role of MSC-derived extracellular vesicles as an alternative to MSC has been reviewed. We have also highlighted some of the remaining clinical challenges that should be addressed before MSC can progress to be considered as therapy for patients with liver disease.
Collapse
Affiliation(s)
- Sheeba Khan
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, West Midlands, UK
| | - Sara Mahgoub
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, West Midlands, UK
| | - Nada Fallatah
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Patricia F Lalor
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
| | - Philip N Newsome
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
3
|
Mahindran E, Wan Kamarul Zaman WS, Ahmad Amin Noordin KB, Tan YF, Nordin F. Mesenchymal Stem Cell-Derived Extracellular Vesicles: Hype or Hope for Skeletal Muscle Anti-Frailty. Int J Mol Sci 2023; 24:ijms24097833. [PMID: 37175537 PMCID: PMC10178115 DOI: 10.3390/ijms24097833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Steadily rising population ageing is a global demographic trend due to the advancement of new treatments and technologies in the medical field. This trend also indicates an increasing prevalence of age-associated diseases, such as loss of muscle mass (sarcopenia), which tends to afflict the older population. The deterioration in muscle function can cause severe disability and seriously affects a patient's quality of life. Currently, there is no treatment to prevent and reverse age-related skeletal muscle ageing frailty. Existing interventions mainly slow down and control the signs and symptoms. Mesenchymal stem cell-derived extracellular vesicle (MSC-EV) therapy is a promising approach to attenuate age-related skeletal muscle ageing frailty. However, more studies, especially large-scale randomised clinical trials need to be done in order to determine the adequacy of MSC-EV therapy in treating age-related skeletal muscle ageing frailty. This review compiles the present knowledge of the causes and changes regarding skeletal muscle ageing frailty and the potential of MSC-EV transplantation as a regenerative therapy for age-related skeletal muscle ageing frailty and its clinical trials.
Collapse
Affiliation(s)
- Elancheleyen Mahindran
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | | | | | - Yuen-Fen Tan
- PPUKM-MAKNA Cancer Center, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long Campus, Bandar Sungai Long, Kajang 43000, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
4
|
Particulates are everywhere, but are they harmful in cell and gene therapies? Cytotherapy 2022; 24:1195-1200. [PMID: 36175323 DOI: 10.1016/j.jcyt.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/13/2022] [Accepted: 07/31/2022] [Indexed: 01/31/2023]
|
5
|
Doglio M, Crossland RE, Alho AC, Penack O, Dickinson AM, Stary G, Lacerda JF, Eissner G, Inngjerdingen M. Cell-based therapy in prophylaxis and treatment of chronic graft-versus-host disease. Front Immunol 2022; 13:1045168. [PMID: 36466922 PMCID: PMC9714556 DOI: 10.3389/fimmu.2022.1045168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 08/31/2023] Open
Abstract
Hematopoietic allogeneic stem cell transplantation (allo-SCT) is a curative option for patients with hematological malignancies. However, due to disparities in major and minor histocompatibility antigens between donor and recipient, severe inflammatory complications can occur, among which chronic graft-versus-host disease (cGVHD) can be life-threatening. A classical therapeutic approach to the prevention and treatment of cGVHD has been broad immunosuppression, but more recently adjuvant immunotherapies have been tested. This review summarizes and discusses immunomodulatory approaches with T cells, including chimeric antigen receptor (CAR) and regulatory T cells, with natural killer (NK) cells and innate lymphoid cells (ILCs), and finally with mesenchymal stromal cells (MSC) and extracellular vesicles thereof. Clinical studies and pre-clinical research results are presented likewise.
Collapse
Affiliation(s)
- Matteo Doglio
- Experimental Haematology Unit, Division of Immunology Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, Milan, Italy
| | - Rachel E. Crossland
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ana C. Alho
- JLacerda Lab, Hematology and Transplantation Immunology, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Olaf Penack
- Department of Hematology, Oncology, and Cancer Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anne M. Dickinson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Alcyomics Ltd, Newcastle upon Tyne, United Kingdom
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - João F. Lacerda
- JLacerda Lab, Hematology and Transplantation Immunology, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Günther Eissner
- Systems Biology Ireland, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Marit Inngjerdingen
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Alberti G, Russo E, Corrao S, Anzalone R, Kruzliak P, Miceli V, Conaldi PG, Di Gaudio F, La Rocca G. Current Perspectives on Adult Mesenchymal Stromal Cell-Derived Extracellular Vesicles: Biological Features and Clinical Indications. Biomedicines 2022; 10:2822. [PMID: 36359342 PMCID: PMC9687875 DOI: 10.3390/biomedicines10112822] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 08/10/2023] Open
Abstract
Extracellular vesicles (EVs) constitute one of the main mechanisms by which cells communicate with the surrounding tissue or at distance. Vesicle secretion is featured by most cell types, and adult mesenchymal stromal cells (MSCs) of different tissue origins have shown the ability to produce them. In recent years, several reports disclosed the molecular composition and suggested clinical indications for EVs derived from adult MSCs. The parental cells were already known for their roles in different disease settings in regulating inflammation, immune modulation, or transdifferentiation to promote cell repopulation. Interestingly, most reports also suggested that part of the properties of parental cells were maintained by isolated EV populations. This review analyzes the recent development in the field of cell-free therapies, focusing on several adult tissues as a source of MSC-derived EVs and the available clinical data from in vivo models.
Collapse
Affiliation(s)
- Giusi Alberti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Eleonora Russo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Simona Corrao
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Rita Anzalone
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Peter Kruzliak
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | | | - Giampiero La Rocca
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
7
|
Haarmann A, Zimmermann L, Bieber M, Silwedel C, Stoll G, Schuhmann MK. Regulation and Release of Vasoactive Endoglin by Brain Endothelium in Response to Hypoxia/Reoxygenation in Stroke. Int J Mol Sci 2022; 23:ijms23137085. [PMID: 35806090 PMCID: PMC9267030 DOI: 10.3390/ijms23137085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
In large vessel occlusion stroke, recanalization to restore cerebral perfusion is essential but not necessarily sufficient for a favorable outcome. Paradoxically, in some patients, reperfusion carries the risk of increased tissue damage and cerebral hemorrhage. Experimental and clinical data suggest that endothelial cells, representing the interface for detrimental platelet and leukocyte responses, likely play a crucial role in the phenomenon referred to as ischemia/reperfusion (I/R)-injury, but the mechanisms are unknown. We aimed to determine the role of endoglin in cerebral I/R-injury; endoglin is a membrane-bound protein abundantly expressed by endothelial cells that has previously been shown to be involved in the maintenance of vascular homeostasis. We investigated the expression of membranous endoglin (using Western blotting and RT-PCR) and the generation of soluble endoglin (using an enzyme-linked immunosorbent assay of cell culture supernatants) after hypoxia and subsequent reoxygenation in human non-immortalized brain endothelial cells. To validate these in vitro data, we additionally examined endoglin expression in an intraluminal monofilament model of permanent and transient middle cerebral artery occlusion in mice. Subsequently, the effects of recombinant human soluble endoglin were assessed by label-free impedance-based measurement of endothelial monolayer integrity (using the xCELLigence DP system) and immunocytochemistry. Endoglin expression is highly inducible by hypoxia in human brain endothelial monolayers in vitro, and subsequent reoxygenation induced its shedding. These findings were corroborated in mice during MCAO; an upregulation of endoglin was displayed in the infarcted hemispheres under occlusion, whereas endoglin expression was significantly diminished after transient MCAO, which is indicative of shedding. Of note is the finding that soluble endoglin induced an inflammatory phenotype in endothelial monolayers. The treatment of HBMEC with endoglin resulted in a decrease in transendothelial resistance and the downregulation of VE-cadherin. Our data establish a novel mechanism in which hypoxia triggers the initial endothelial upregulation of endoglin and subsequent reoxygenation triggers its release as a vasoactive mediator that, when rinsed into adjacent vascular beds after recanalization, can contribute to cerebral reperfusion injury.
Collapse
Affiliation(s)
- Axel Haarmann
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany; (L.Z.); (M.B.); (G.S.)
- Correspondence: (A.H.); (M.K.S.)
| | - Lena Zimmermann
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany; (L.Z.); (M.B.); (G.S.)
| | - Michael Bieber
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany; (L.Z.); (M.B.); (G.S.)
| | - Christine Silwedel
- University Children’s Hospital, University of Würzburg, 97080 Würzburg, Germany;
| | - Guido Stoll
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany; (L.Z.); (M.B.); (G.S.)
| | - Michael K. Schuhmann
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany; (L.Z.); (M.B.); (G.S.)
- Correspondence: (A.H.); (M.K.S.)
| |
Collapse
|
8
|
Soares MBP, Gonçalves RGJ, Vasques JF, da Silva-Junior AJ, Gubert F, Santos GC, de Santana TA, Almeida Sampaio GL, Silva DN, Dominici M, Mendez-Otero R. Current Status of Mesenchymal Stem/Stromal Cells for Treatment of Neurological Diseases. Front Mol Neurosci 2022; 15:883378. [PMID: 35782379 PMCID: PMC9244712 DOI: 10.3389/fnmol.2022.883378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Neurological disorders include a wide spectrum of clinical conditions affecting the central and peripheral nervous systems. For these conditions, which affect hundreds of millions of people worldwide, generally limited or no treatments are available, and cell-based therapies have been intensively investigated in preclinical and clinical studies. Among the available cell types, mesenchymal stem/stromal cells (MSCs) have been widely studied but as yet no cell-based treatment exists for neurological disease. We review current knowledge of the therapeutic potential of MSC-based therapies for neurological diseases, as well as possible mechanisms of action that may be explored to hasten the development of new and effective treatments. We also discuss the challenges for culture conditions, quality control, and the development of potency tests, aiming to generate more efficient cell therapy products for neurological disorders.
Collapse
Affiliation(s)
- Milena B. P. Soares
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Renata G. J. Gonçalves
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana F. Vasques
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Almir J. da Silva-Junior
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Nanotecnologia no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Gubert
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Girlaine Café Santos
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Thaís Alves de Santana
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Gabriela Louise Almeida Sampaio
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | | | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, University of Modena and Reggio Emilia (UNIMORE), Modena, Italy
| | - Rosalia Mendez-Otero
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Nanotecnologia no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Tarasiuk O, Ballarini E, Donzelli E, Rodriguez-Menendez V, Bossi M, Cavaletti G, Scuteri A. Making Connections: Mesenchymal Stem Cells Manifold Ways to Interact with Neurons. Int J Mol Sci 2022; 23:ijms23105791. [PMID: 35628600 PMCID: PMC9146463 DOI: 10.3390/ijms23105791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/26/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal Stem Cells (MSCs) are adult multipotent cells able to increase sensory neuron survival: direct co-culture of MSCs with neurons is pivotal to observe a neuronal survival increase. Despite the identification of some mechanisms of action, little is known about how MSCs physically interact with neurons. The aim of this paper was to investigate and characterize the main mechanisms of interaction between MSCs and neurons. Morphological analysis showed the presence of gap junctions and tunneling nanotubes between MSCs and neurons only in direct co-cultures. Using a diffusible dye, we observed a flow from MSCs to neurons and further analysis demonstrated that MSCs donated mitochondria to neurons. Treatment of co-cultures with the gap junction blocker Carbenoxolone decreased neuronal survival, thus demonstrating the importance of gap junctions and, more in general, of cell communication for the MSC positive effect. We also investigated the role of extracellular vesicles; administration of direct co-cultures-derived vesicles was able to increase neuronal survival. In conclusion, our study demonstrates the presence and the importance of multiple routes of communication between MSCs and neurons. Such knowledge will allow a better understanding of the potential of MSCs and how to maximize their positive effect, with the final aim to provide the best protective treatment.
Collapse
|
10
|
Fuloria S, Subramaniyan V, Dahiya R, Dahiya S, Sudhakar K, Kumari U, Sathasivam K, Meenakshi DU, Wu YS, Sekar M, Malviya R, Singh A, Fuloria NK. Mesenchymal Stem Cell-Derived Extracellular Vesicles: Regenerative Potential and Challenges. BIOLOGY 2021; 10:172. [PMID: 33668707 PMCID: PMC7996168 DOI: 10.3390/biology10030172] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Evidence suggests that stem cells exert regenerative potential via the release of extracellular vesicles. Mesenchymal stem cell extracellular vesicles (MSCEVs) offer therapeutic benefits for various pathophysiological ailments by restoring tissues. Facts suggest that MSCEV action can be potentiated by modifying the mesenchymal stem cells culturing methodology and bioengineering EVs. Limited clinical trials of MSCEVs have questioned their superiority, culturing quality, production scale-up and isolation, and administration format. Translation of preclinically successful MSCEVs into a clinical platform requires paying attention to several critical matters, such as the production technique, quantification/characterization, pharmacokinetics/targeting/transfer to the target site, and the safety profile. Keeping these issues as a priority, the present review was designed to highlight the challenges in translating preclinical MSCEV research into clinical platforms and provide evidence for the regenerative potential of MSCEVs in various conditions of the liver, kidney, heart, nervous system, bone, muscle, cartilage, and other organs/tissues.
Collapse
Affiliation(s)
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | - Rajiv Dahiya
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago;
| | - Sunita Dahiya
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA;
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences (LIT-Pharmacy), Lovely Professional University, Jalandhar 144411, India;
| | - Usha Kumari
- Faculty of Medicine, AIMST University, Kedah 08100, Malaysia;
| | | | | | - Yuan Seng Wu
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | - Mahendran Sekar
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Malaysia;
| | - Rishabha Malviya
- Department of Pharmacy, SMAS, Galgotias University, Greater Noida 203201, India; (R.M.); (A.S.)
| | - Amit Singh
- Department of Pharmacy, SMAS, Galgotias University, Greater Noida 203201, India; (R.M.); (A.S.)
| | | |
Collapse
|
11
|
Wei W, Ao Q, Wang X, Cao Y, Liu Y, Zheng SG, Tian X. Mesenchymal Stem Cell-Derived Exosomes: A Promising Biological Tool in Nanomedicine. Front Pharmacol 2021; 11:590470. [PMID: 33716723 PMCID: PMC7944140 DOI: 10.3389/fphar.2020.590470] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022] Open
Abstract
As nano-scale biological vesicles, extracellular vesicles (EVs)/exosomes, in particular, exosomes derived from mesenchymal stem cells (MSC-exosomes), have been studied in the diagnosis, prevention, and treatment of many diseases. In addition, through the combination of nanotechnology and biotechnology, exosomes have emerged as innovative tools for the development of nanomedicine. This review focuses on a profound summarization of MSC-exosomes as a powerful tool in bionanomedicine. It systemically summarizes the role of MSC-exosomes as a nanocarrier, drug loading and tissue engineering, and their potential contribution in a series of diseases as well as the advantages of exosomes over stem cells and synthetic nanoparticles and potential disadvantages. The in-depth understanding of the functions and mechanisms of exosomes provides insights into the basic research and clinical transformation in the field of nanomedicine.
Collapse
Affiliation(s)
- Wumei Wei
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Qiang Ao
- Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Xiaohong Wang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Yue Cao
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Yanying Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, United States
| | - Xiaohong Tian
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| |
Collapse
|
12
|
Effect of Stem Cell-Derived Extracellular Vesicles on Damaged Human Corneal Endothelial Cells. Stem Cells Int 2021; 2021:6644463. [PMID: 33531909 PMCID: PMC7834816 DOI: 10.1155/2021/6644463] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/19/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Human corneal endothelial cells (HCECs) are essential to visual function; however, since they have limited proliferative capacity in vivo, they are prone to corneal endothelial dysfunction. At present, the only treatment is a corneal transplantation from donor cadavers. Also, due to a global shortage of donor corneas, it is important to find alternative strategies. Recent studies highlight that stem cell–derived extracellular vesicles (EVs) play a relevant role in stem cell-induced regeneration by reprogramming injured cells and inducing proregenerative pathways. The aim of this work is to evaluate whether EVs derived from mesenchymal stem cells (MSC-EVs) are able to promote regeneration of damaged HCECs. Methods We isolated HCECs from discarded corneas in patients undergoing corneal transplantation or enucleation (N = 23 patients). Bone marrow mesenchymal stem cells (MSCs) were obtained from Lonza, cultured, and characterized. MSC-EVs were obtained from supernatants of MSCs. In order to establish a valid in vitro damage model to test the regenerative potential of EVs on HCECs, we evaluated the proliferation rate and the apoptosis after exposing the cells to serum-deprived medium at different concentrations for 24 hours. We then evaluated the HCEC migration through a wound healing assay. Results In the selected serum deprivation damage conditions, the treatment with different doses of MSC-EVs resulted in a significantly higher proliferation rate of HCECs at all the tested concentrations of EVs (5‐20 × 103 MSC-EV/cell). MSC-EVs/cell induced a significant decrease in number of total apoptotic cells after 24 hours of serum deprivation. Finally, the wound healing assay showed a significantly faster repair of the wound after HCEC treatment with MSC-EVs. Conclusions Results highlight the already well-known proregenerative potential of MSC-EVs in a totally new biological model, the endothelium of the cornea. MSC-EVs, indeed, induced proliferation and survival of HCECs, promoting the migration of HCECs in vitro.
Collapse
|
13
|
Blood-based biomarkers and stem cell therapy in human stroke: a systematic review. Mol Biol Rep 2020; 47:6247-6258. [DOI: 10.1007/s11033-020-05627-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/26/2020] [Indexed: 01/22/2023]
|
14
|
Gowen A, Shahjin F, Chand S, Odegaard KE, Yelamanchili SV. Mesenchymal Stem Cell-Derived Extracellular Vesicles: Challenges in Clinical Applications. Front Cell Dev Biol 2020; 8:149. [PMID: 32226787 PMCID: PMC7080981 DOI: 10.3389/fcell.2020.00149] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Stem cell therapy has garnered much attention and application in the past decades for the treatment of diseases and injuries. Mesenchymal stem cells (MSCs) are studied most extensively for their therapeutic roles, which appear to be derived from their paracrine activity. Recent studies suggest a critical therapeutic role for extracellular vesicles (EV) secreted by MSCs. EV are nano-sized membrane-bound vesicles that shuttle important biomolecules between cells to maintain physiological homeostasis. Studies show that EV from MSCs (MSC-EV) have regenerative and anti-inflammatory properties. The use of MSC-EV, as an alternative to MSCs, confers several advantages, such as higher safety profile, lower immunogenicity, and the ability to cross biological barriers, and avoids complications that arise from stem cell-induced ectopic tumor formation, entrapment in lung microvasculature, and immune rejection. These advantages and the growing body of evidence suggesting that MSC-EV display therapeutic roles contribute to the strong rationale for developing EV as an alternative therapeutic option. Despite the success in preclinical studies, use of MSC-EV in clinical settings will require careful consideration; specifically, several critical issues such as (i) production methods, (ii) quantification and characterization, (iii) pharmacokinetics, targeting and transfer to the target sites, and (iv) safety profile assessments need to be resolved. Keeping these issues in mind, the aim of this mini-review is to shed light on the challenges faced in MSC-EV research in translating successful preclinical studies to clinical platforms.
Collapse
Affiliation(s)
- Austin Gowen
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Farah Shahjin
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Subhash Chand
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Katherine E Odegaard
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Sowmya V Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
15
|
Bang OY, Kim EH. Mesenchymal Stem Cell-Derived Extracellular Vesicle Therapy for Stroke: Challenges and Progress. Front Neurol 2019; 10:211. [PMID: 30915025 PMCID: PMC6422999 DOI: 10.3389/fneur.2019.00211] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/18/2019] [Indexed: 12/16/2022] Open
Abstract
Stroke is the leading cause of physical disability among adults. Stem cells such as mesenchymal stem cells (MSCs) secrete a variety of bioactive substances, including trophic factors and extracellular vesicles (EVs), into the injured brain, which may be associated with enhanced neurogenesis, angiogenesis, and neuroprotection. EVs are circular membrane fragments (30 nm−1 μm) that are shed from the cell surface and harbor proteins, microRNAs, etc. Since 2013 when it was first reported that intravenous application of MSC-derived EVs in a stroke rat model improved neurological outcomes and increased angiogenesis and neurogenesis, many preclinical studies have shown that stem cell-derived EVs can be used in stroke therapy, as an alternative approach to stem cell infusion. Although scientific research regarding MSC-derived EV therapeutics is still at an early stage, research is rapidly increasing and is demonstrating a promising approach for patients with severe stroke. MSC therapies have already been tested in preclinical studies and clinical trials, and EV-mediated therapy has unique advantages over cell therapies in stroke patients, in terms of biodistribution (overcoming the first pass effect and crossing the blood-brain-barrier), cell-free paradigm (avoidance of cell-related problems such as tumor formation and infarcts caused by vascular occlusion), whilst offering an off-the-shelf approach for acute ischemic stroke. Recently, advances have been made in the understanding of the function and biogenesis of EVs and EVs therapeutics for various diseases. This review presents the most recent advances in MSC-derived EV therapy for stroke, focusing on the application of this strategy for stroke patients.
Collapse
Affiliation(s)
- Oh Young Bang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, South Korea
| | - Eun Hee Kim
- Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, South Korea.,Medical Research Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Stem cell and Regenerative Medicine Institute, Samsung Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
16
|
Moon GJ, Sung JH, Kim DH, Kim EH, Cho YH, Son JP, Cha JM, Bang OY. Application of Mesenchymal Stem Cell-Derived Extracellular Vesicles for Stroke: Biodistribution and MicroRNA Study. Transl Stroke Res 2018; 10:509-521. [PMID: 30341718 DOI: 10.1007/s12975-018-0668-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/23/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) exert their therapeutic capability through a variety of bioactive substances, including trophic factors, microRNAs, and extracellular vesicles (EVs) in infarcted tissues. We therefore hypothesized that MSC-derived EVs (MSC-EVs) possess therapeutic molecules similar to MSCs. Moreover, given their nature as nanosized and lipid-shielded particles, the intravenous infusion of MSC-EVs would be advantageous over MSCs as a safer therapeutic approach. In this study, we investigated the biodistribution, therapeutic efficacy, and mode of action of MSC-EVs in a rat stroke model. MSC-EVs successfully stimulated neurogenesis and angiogenesis in vivo. When compared to the MSC-treated group, rats treated with MSC-EVs exhibited greater behavioral improvements than the control group (p < 0.05). Our biodistribution study using fluorescence-labeled MSC-EVs and MSCs demonstrated that the amounts of MSC-EVs in the infarcted hemisphere increased in a dose-dependent manner, and were rarely found in the lung and liver. In addition, MSC-EVs were highly inclusive of various proteins and microRNAs (miRNAs) associated with neurogenesis and/or angiogenesis compared to fibro-EVs. We further analyzed those miRNAs and found that miRNA-184 and miRNA-210 were essential for promoting neurogenesis and angiogenesis of MSC-EVs, respectively. MSC-EVs represent an ideal alternative to MSCs for stroke treatment, with similar medicinal capacity but an improved safety profile that overcomes cell-associated limitations in stem cell therapy.
Collapse
Affiliation(s)
- Gyeong Joon Moon
- Translational and Stem Cell Research Laboratory on Stroke, School of Medicine, Sungkyunkwan University, Seoul, 06351, South Korea.,School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea
| | - Ji Hee Sung
- Translational and Stem Cell Research Laboratory on Stroke, School of Medicine, Sungkyunkwan University, Seoul, 06351, South Korea.,Stem Cell & Regenerative Medicine Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea
| | - Dong Hee Kim
- Translational and Stem Cell Research Laboratory on Stroke, School of Medicine, Sungkyunkwan University, Seoul, 06351, South Korea.,Stem Cell & Regenerative Medicine Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea.,Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, South Korea
| | - Eun Hee Kim
- Translational and Stem Cell Research Laboratory on Stroke, School of Medicine, Sungkyunkwan University, Seoul, 06351, South Korea.,Stem Cell & Regenerative Medicine Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea
| | - Yeon Hee Cho
- Translational and Stem Cell Research Laboratory on Stroke, School of Medicine, Sungkyunkwan University, Seoul, 06351, South Korea.,Stem Cell & Regenerative Medicine Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea
| | - Jeong Pyo Son
- Translational and Stem Cell Research Laboratory on Stroke, School of Medicine, Sungkyunkwan University, Seoul, 06351, South Korea.,Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, South Korea
| | - Jae Min Cha
- 3D Stem Cell Bioprocessing Laboratory, Department of Mechatronics, Incheon National University, Incheon, 22012, Republic of Korea
| | - Oh Young Bang
- Translational and Stem Cell Research Laboratory on Stroke, School of Medicine, Sungkyunkwan University, Seoul, 06351, South Korea. .,Stem Cell & Regenerative Medicine Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea. .,Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, South Korea. .,Department of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, 06351, South Korea.
| |
Collapse
|
17
|
WANG WENTING, LI ZIJIAN, FENG JUAN. The potential role of exosomes in the diagnosis and therapy of ischemic diseases. Cytotherapy 2018; 20:1204-1219. [DOI: 10.1016/j.jcyt.2018.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/14/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022]
|
18
|
Jiang J, Wang Y, Liu B, Chen X, Zhang S. Challenges and research progress of the use of mesenchymal stem cells in the treatment of ischemic stroke. Brain Dev 2018; 40:612-626. [PMID: 29661589 DOI: 10.1016/j.braindev.2018.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 02/06/2023]
Abstract
Cerebral Ischemic Stroke (CIS) has become a hot issue in medical research because of the diversity of risk factors and the uncertainty of prognosis. In the field of regenerative medicine, mesenchymal stem cells (MSCs) have an increasingly prominent position due to their advantages of multiple differentiation, low immunogenicity and wide application. In the basic and clinical research of CIS, there are still some problems to be solved in the treatment of CIS. This paper will discuss the progresses and some obstacles of current MSCs for the treatment of CIS.
Collapse
Affiliation(s)
- Jipeng Jiang
- Institution of Brain Trauma and Neurology Disease of Affiliated Hospital of Logistics University of People's Armed Police Forces, Chenglin Road No. 220, Tianjin 300162, China.
| | - Yuting Wang
- Tianjin Medical University, Qixiangtai Road No. 22, Tianjin 300070, China
| | - Baohu Liu
- Tianjin University of Traditional Chinese Medicine, Yuquan Road No. 88, Tianjin 300193, China
| | - Xuyi Chen
- Institution of Brain Trauma and Neurology Disease of Affiliated Hospital of Logistics University of People's Armed Police Forces, Chenglin Road No. 220, Tianjin 300162, China
| | - Sai Zhang
- Institution of Brain Trauma and Neurology Disease of Affiliated Hospital of Logistics University of People's Armed Police Forces, Chenglin Road No. 220, Tianjin 300162, China.
| |
Collapse
|
19
|
Efficient scalable production of therapeutic microvesicles derived from human mesenchymal stem cells. Sci Rep 2018; 8:1171. [PMID: 29352188 PMCID: PMC5775399 DOI: 10.1038/s41598-018-19211-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/21/2017] [Indexed: 12/25/2022] Open
Abstract
Microvesicles (MVs) released by cells are involved in a multitude of physiological events as important mediators of intercellular communication. MVs derived from mesenchymal stem cells (MSCs) contain various paracrine factors from the cells that primarily contribute to their therapeutic efficacy observed in numerous clinical trials. As nano-sized and bi-lipid layered vesicles retaining therapeutic potency equivalent to that of MSCs, MSC-derived MVs have been in focus as ideal medicinal candidates for regenerative medicine, and are preferred over MSC infusion therapy with their improved safety profiles. However, technical challenges in obtaining sufficient amounts of MVs have limited further progress in studies and clinical application. Of the multiple efforts to reinforce the therapeutic capacity of MSCs, few studies have reportedly examined the scale-up of MSC-derived MV production. In this study, we successfully amplified MV secretion from MSCs compared to the conventional culture method using a simple and efficient 3D-bioprocessing method. The MSC-derived MVs produced in our dynamic 3D-culture contained numerous therapeutic factors such as cytokines and micro-RNAs, and showed their therapeutic potency in in vitro efficacy evaluation. Our results may facilitate diverse applications of MSC-derived MVs from the bench to the bedside, which requires the large-scale production of MVs.
Collapse
|
20
|
Badimon L, Suades R, Arderiu G, Peña E, Chiva-Blanch G, Padró T. Microvesicles in Atherosclerosis and Angiogenesis: From Bench to Bedside and Reverse. Front Cardiovasc Med 2017; 4:77. [PMID: 29326946 PMCID: PMC5741657 DOI: 10.3389/fcvm.2017.00077] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/22/2017] [Indexed: 12/28/2022] Open
Abstract
Atherosclerosis (AT) is a progressive chronic disease involving lipid accumulation, fibrosis, and inflammation in medium and large-sized arteries, and it is the main cause of cardiovascular disease (CVD). AT is caused by dyslipidemia and mediated by both innate and adaptive immune responses. Despite lipid-lowering drugs have shown to decrease the risk of cardiovascular events (CVEs), there is a significant burden of AT-related morbidity and mortality. Identification of subjects at increased risk for CVE as well as discovery of novel therapeutic targets for improved treatment strategies are still unmet clinical needs in CVD. Microvesicles (MVs), small extracellular plasma membrane particles shed by activated and apoptotic cells have been widely linked to the development of CVD. MVs from vascular and resident cells by facilitating exchange of biological information between neighboring cells serve as cellular effectors in the bloodstream and play a key role in all stages of disease progression. This article reviews the current knowledge on the role of MVs in AT and CVD. Attention is focused on novel aspects of MV-mediated regulatory mechanisms from endothelial dysfunction, vascular wall inflammation, oxidative stress, and apoptosis to coagulation and thrombosis in the progression and development of atherothrombosis. MV contribution to vascular remodeling is also discussed, with a particular emphasis on the effect of MVs on the crosstalk between endothelial cells and smooth muscle cells, and their role regulating the active process of AT-driven angiogenesis and neovascularization. This review also highlights the latest findings and main challenges on the potential prognostic, diagnostic, and therapeutic value of cell-derived MVs in CVD. In summary, MVs have emerged as new regulators of biological functions in atherothrombosis and might be instrumental in cardiovascular precision medicine; however, significant efforts are still needed to translate into clinics the latest findings on MV regulation and function.
Collapse
Affiliation(s)
- Lina Badimon
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- Cardiovascular Research Chair, UAB, Barcelona, Spain
| | - Rosa Suades
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Gemma Arderiu
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Esther Peña
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Gemma Chiva-Blanch
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| |
Collapse
|
21
|
Abstract
Endoglin (ENG, also known as CD105) is a transforming growth factor β (TGFβ) associated receptor and is required for both vasculogenesis and angiogenesis. Angiogenesis is important in the development of cerebral vasculature and in the pathogenesis of cerebral vascular diseases. ENG is an essential component of the endothelial nitric oxide synthase activation complex. Animal studies showed that ENG deficiency impairs stroke recovery. ENG deficiency also impairs the regulation of vascular tone, which contributes to the pathogenesis of brain arteriovenous malformation (bAVM) and vasospasm. In human, functional haploinsufficiency of ENG gene causes type I hereditary hemorrhagic telangiectasia (HHT1), an autosomal dominant disorder. Compared to normal population, HHT1 patients have a higher prevalence of AVM in multiple organs including the brain. Vessels in bAVM are fragile and tend to rupture, causing hemorrhagic stroke. High prevalence of pulmonary AVM in HHT1 patients are associated with a higher incidence of paradoxical embolism in the cerebral circulation causing ischemic brain injury. Therefore, HHT1 patients are at risk for both hemorrhagic and ischemic stroke. This review summarizes the possible mechanism of ENG in the pathogenesis of cerebrovascular diseases in experimental animal models and in patients.
Collapse
Affiliation(s)
- Wan Zhu
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Li Ma
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Rui Zhang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
22
|
Vozel D, Uršič B, Krek JL, Štukelj R, Kralj-Iglič V. Applicability of extracellular vesicles in clinical studies. Eur J Clin Invest 2017; 47:305-313. [PMID: 28156006 DOI: 10.1111/eci.12733] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/29/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Extracellular vesicles (EVs) are submicron cellular fragments that mediate intercellular communication. EVs have in the last decade attracted major interest as biomarkers or platforms for biomarkers of health and disease. To better understand the reasons why despite great expectations and considerable effort, EV-based methods have not yet been introduced into clinical practice, we present a systematic analysis of published results of clinical studies. MATERIALS AND METHODS Clinical studies on populations of body fluid samples, published from 2010 to including 2015, applying centrifugation of fluid human samples with centrifuge accelerations up to about 25 000 g and flow cytometry for detection of EVs were analysed with respect to statistical significance (p), statistical power (P), clinical significance (CS), defined as the difference between the means divided by the sum of standard deviations, and size of the populations (Nmin ), defined as the number of samples in the smaller group. RESULTS Final analysis included 65 publications with 716 comparisons reporting 308 (43%) statistically significant differences (P < 0·05), 242 (34%) had statistical power P > 0·8 and 88 (12%) had clinical importance CS > 1·96. None of comparison with CS > 1·96 included populations in which the smaller group consisted of 50 or more samples. CONCLUSIONS To fulfil claimed expectations for EV-based methods as promising diagnostic tools, more evidence on EV-based mechanisms of diseases should be gathered. Also, the methods of EV harvesting and assessment should be improved to yield better repeatability and thus allow clinical studies with larger number of samples.
Collapse
Affiliation(s)
- Domen Vozel
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Bojana Uršič
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Judita Lea Krek
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Roman Štukelj
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Veronika Kralj-Iglič
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
23
|
Bang OY. Advances in biomarker for stroke patients: from marker to regulator. PRECISION AND FUTURE MEDICINE 2017. [DOI: 10.23838/pfm.2017.00052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
24
|
Carmona A, Agüera ML, Luna-Ruiz C, Buendía P, Calleros L, García-Jerez A, Rodríguez-Puyol M, Arias M, Arias-Guillen M, de Arriba G, Ballarin J, Bernis C, Fernández E, García-Rebollo S, Mancha J, Del Peso G, Pérez E, Poch E, Portolés JM, Rodríguez-Puyol D, Sánchez-Villanueva R, Sarro F, Torres A, Martín-Malo A, Aljama P, Ramírez R, Carracedo J. Markers of endothelial damage in patients with chronic kidney disease on hemodialysis. Am J Physiol Renal Physiol 2017; 312:F673-F681. [PMID: 28077371 DOI: 10.1152/ajprenal.00013.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 12/22/2022] Open
Abstract
Patients with Stage 5 chronic kidney disease who are on hemodialysis (HD) remain in a chronic inflammatory state, characterized by the accumulation of uremic toxins that induce endothelial damage and cardiovascular disease (CVD). Our aim was to examine microvesicles (MVs), monocyte subpopulations, and angiopoietins (Ang) to identify prognostic markers in HD patients with or without diabetes mellitus (DM). A total of 160 prevalent HD patients from 10 centers across Spain were obtained from the Biobank of the Nephrology Renal Network (Madrid, Spain): 80 patients with DM and 80 patients without DM who were matched for clinical and demographic criteria. MVs from plasma and several monocyte subpopulations (CD142+/CD16+, CD14+/CD162+) were analyzed by flow cytometry, and the plasma concentrations of Ang1 and Ang2 were quantified by ELISA. Data on CVD were gathered over the 5.5 yr after these samples were obtained. MV level, monocyte subpopulations (CD14+/CD162+ and CD142+/CD16+), and Ang2-to-Ang1 ratios increased in HD patients with DM compared with non-DM patients. Moreover, MV level above the median (264 MVs/µl) was associated independently with greater mortality. MVs, monocyte subpopulations, and Ang2-to-Ang1 ratio can be used as predictors for CVD. In addition, MV level has a potential predictive value in the prevention of CVD in HD patients. These parameters undergo more extensive changes in patients with DM.
Collapse
Affiliation(s)
- Andrés Carmona
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Redes Temáticas de Investigación Cooperativa en Salud-Red Española de Investigación Renal, RD16/0009, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria L Agüera
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Unidad de Gestión Clínica Nefrología, Hospital Universitario Reina Sofía, Córdoba, Spain.,Redes Temáticas de Investigación Cooperativa en Salud-Red Española de Investigación Renal, RD16/0009, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Luna-Ruiz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Redes Temáticas de Investigación Cooperativa en Salud-Red Española de Investigación Renal, RD16/0009, Instituto de Salud Carlos III, Madrid, Spain
| | - Paula Buendía
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Redes Temáticas de Investigación Cooperativa en Salud-Red Española de Investigación Renal, RD16/0009, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Calleros
- Redes Temáticas de Investigación Cooperativa en Salud-Red Española de Investigación Renal, RD16/0009, Instituto de Salud Carlos III, Madrid, Spain.,Biologia de Sistemas Department, Alcalá de Henares University, Madrid, Spain.,Biobanco Redes Temáticas de Investigación Cooperativa en Salud Red Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Andrea García-Jerez
- Redes Temáticas de Investigación Cooperativa en Salud-Red Española de Investigación Renal, RD16/0009, Instituto de Salud Carlos III, Madrid, Spain.,Biologia de Sistemas Department, Alcalá de Henares University, Madrid, Spain.,Biobanco Redes Temáticas de Investigación Cooperativa en Salud Red Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Rodríguez-Puyol
- Redes Temáticas de Investigación Cooperativa en Salud-Red Española de Investigación Renal, RD16/0009, Instituto de Salud Carlos III, Madrid, Spain.,Biologia de Sistemas Department, Alcalá de Henares University, Madrid, Spain.,Biobanco Redes Temáticas de Investigación Cooperativa en Salud Red Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Arias
- Redes Temáticas de Investigación Cooperativa en Salud-Red Española de Investigación Renal, RD16/0009, Instituto de Salud Carlos III, Madrid, Spain.,Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Marta Arias-Guillen
- Redes Temáticas de Investigación Cooperativa en Salud-Red Española de Investigación Renal, RD16/0009, Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Nefrologia y Trasplante Renal, Hospital Clinic de Barcelona, Institut D'Investigacions Biomediques August Pi I Sunyer, Universidad de Barcelona, Barcelona, Spain
| | - Gabriel de Arriba
- Redes Temáticas de Investigación Cooperativa en Salud-Red Española de Investigación Renal, RD16/0009, Instituto de Salud Carlos III, Madrid, Spain.,Hospital Universitario de Guadalajara, Guadalajara, Spain.,Departamento de Medicina y Especialidades Médicas, Alcalá de Henares University, Madrid, Spain
| | - Jose Ballarin
- Redes Temáticas de Investigación Cooperativa en Salud-Red Española de Investigación Renal, RD16/0009, Instituto de Salud Carlos III, Madrid, Spain.,Fundació Puigvert, Barcelona, Spain
| | - Carmen Bernis
- Redes Temáticas de Investigación Cooperativa en Salud-Red Española de Investigación Renal, RD16/0009, Instituto de Salud Carlos III, Madrid, Spain.,Hospital Universitario La Princesa Madrid, Madrid, Spain
| | - Elvira Fernández
- Redes Temáticas de Investigación Cooperativa en Salud-Red Española de Investigación Renal, RD16/0009, Instituto de Salud Carlos III, Madrid, Spain.,Hospital Universitari Arnau de Villanova de Lleida, Lleida, Spain
| | - Sagrario García-Rebollo
- Redes Temáticas de Investigación Cooperativa en Salud-Red Española de Investigación Renal, RD16/0009, Instituto de Salud Carlos III, Madrid, Spain.,Servicio de Nefrología. Hospital Universitario de Canarias, Improving Biomedical Research and Innovation in the Canary Islands-Centro de Investigación Biomédica de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Javier Mancha
- Redes Temáticas de Investigación Cooperativa en Salud-Red Española de Investigación Renal, RD16/0009, Instituto de Salud Carlos III, Madrid, Spain.,Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Gloria Del Peso
- Redes Temáticas de Investigación Cooperativa en Salud-Red Española de Investigación Renal, RD16/0009, Instituto de Salud Carlos III, Madrid, Spain.,Hospital Universitario La Paz, Madrid, Spain
| | - Estefanía Pérez
- Redes Temáticas de Investigación Cooperativa en Salud-Red Española de Investigación Renal, RD16/0009, Instituto de Salud Carlos III, Madrid, Spain.,Servicio de Nefrología. Hospital Universitario de Canarias, Improving Biomedical Research and Innovation in the Canary Islands-Centro de Investigación Biomédica de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Esteban Poch
- Redes Temáticas de Investigación Cooperativa en Salud-Red Española de Investigación Renal, RD16/0009, Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Nefrologia y Trasplante Renal, Hospital Clinic de Barcelona, Institut D'Investigacions Biomediques August Pi I Sunyer, Universidad de Barcelona, Barcelona, Spain
| | - Jose M Portolés
- Redes Temáticas de Investigación Cooperativa en Salud-Red Española de Investigación Renal, RD16/0009, Instituto de Salud Carlos III, Madrid, Spain.,Hospital Puerta de Hierro, Madrid, Spain; and
| | - Diego Rodríguez-Puyol
- Redes Temáticas de Investigación Cooperativa en Salud-Red Española de Investigación Renal, RD16/0009, Instituto de Salud Carlos III, Madrid, Spain.,Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Rafael Sánchez-Villanueva
- Redes Temáticas de Investigación Cooperativa en Salud-Red Española de Investigación Renal, RD16/0009, Instituto de Salud Carlos III, Madrid, Spain.,Hospital Universitario La Paz, Madrid, Spain
| | - Felipe Sarro
- Redes Temáticas de Investigación Cooperativa en Salud-Red Española de Investigación Renal, RD16/0009, Instituto de Salud Carlos III, Madrid, Spain.,Hospital Universitari Arnau de Villanova de Lleida, Lleida, Spain
| | - Armando Torres
- Redes Temáticas de Investigación Cooperativa en Salud-Red Española de Investigación Renal, RD16/0009, Instituto de Salud Carlos III, Madrid, Spain.,Servicio de Nefrología. Hospital Universitario de Canarias, Improving Biomedical Research and Innovation in the Canary Islands-Centro de Investigación Biomédica de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Alejandro Martín-Malo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Unidad de Gestión Clínica Nefrología, Hospital Universitario Reina Sofía, Córdoba, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Córdoba, Spain.,Redes Temáticas de Investigación Cooperativa en Salud-Red Española de Investigación Renal, RD16/0009, Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro Aljama
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Unidad de Gestión Clínica Nefrología, Hospital Universitario Reina Sofía, Córdoba, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Córdoba, Spain.,Redes Temáticas de Investigación Cooperativa en Salud-Red Española de Investigación Renal, RD16/0009, Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Ramírez
- Redes Temáticas de Investigación Cooperativa en Salud-Red Española de Investigación Renal, RD16/0009, Instituto de Salud Carlos III, Madrid, Spain.,Biologia de Sistemas Department, Alcalá de Henares University, Madrid, Spain
| | - Julia Carracedo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; .,Unidad de Gestión Clínica Nefrología, Hospital Universitario Reina Sofía, Córdoba, Spain.,Redes Temáticas de Investigación Cooperativa en Salud-Red Española de Investigación Renal, RD16/0009, Instituto de Salud Carlos III, Madrid, Spain.,Departament of Animal Physiology II, Faculty Biology, Complutense University, Madrid, Spain
| |
Collapse
|
25
|
Bang OY, Kim EH, Cha JM, Moon GJ. Adult Stem Cell Therapy for Stroke: Challenges and Progress. J Stroke 2016; 18:256-266. [PMID: 27733032 PMCID: PMC5066440 DOI: 10.5853/jos.2016.01263] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/15/2016] [Accepted: 09/18/2016] [Indexed: 02/06/2023] Open
Abstract
Stroke is one of the leading causes of death and physical disability among adults. It has been 15 years since clinical trials of stem cell therapy in patients with stroke have been conducted using adult stem cells like mesenchymal stem cells and bone marrow mononuclear cells. Results of randomized controlled trials showed that adult stem cell therapy was safe but its efficacy was modest, underscoring the need for new stem cell therapy strategies. The primary limitations of current stem cell therapies include (a) the limited source of engraftable stem cells, (b) the presence of optimal time window for stem cell therapies, (c) inherited limitation of stem cells in terms of growth, trophic support, and differentiation potential, and (d) possible transplanted cell-mediated adverse effects, such as tumor formation. Here, we discuss recent advances that overcome these hurdles in adult stem cell therapy for stroke.
Collapse
Affiliation(s)
- Oh Young Bang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, Korea
| | - Eun Hee Kim
- Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, Korea
| | - Jae Min Cha
- Samsung Biomedical Research Institute, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Seoul, Korea.,Medical Device Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Gyeong Joon Moon
- Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, Korea.,Stem cell and Regenerative Medicine Institute, Samsung Biomedical Research Institute, Seoul, Korea
| |
Collapse
|
26
|
Microvesicles from brain-extract-treated mesenchymal stem cells improve neurological functions in a rat model of ischemic stroke. Sci Rep 2016; 6:33038. [PMID: 27609711 PMCID: PMC5016792 DOI: 10.1038/srep33038] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 08/17/2016] [Indexed: 12/16/2022] Open
Abstract
Transplantation of mesenchymal stem cells (MSCs) was reported to improve functional outcomes in a rat model of ischemic stroke, and subsequent studies suggest that MSC-derived microvesicles (MVs) can replace the beneficial effects of MSCs. Here, we evaluated three different MSC-derived MVs, including MVs from untreated MSCs (MSC-MVs), MVs from MSCs treated with normal rat brain extract (NBE-MSC-MVs), and MVs from MSCs treated with stroke-injured rat brain extract (SBE-MSC-MVs), and tested their effects on ischemic brain injury induced by permanent middle cerebral artery occlusion (pMCAO) in rats. NBE-MSC-MVs and SBE-MSC-MVs had significantly greater efficacy than MSC-MVs for ameliorating ischemic brain injury with improved functional recovery. We found similar profiles of key signalling proteins in NBE-MSC-MVs and SBE-MSC-MVs, which account for their similar therapeutic efficacies. Immunohistochemical analyses suggest that brain-extract—treated MSC-MVs reduce inflammation, enhance angiogenesis, and increase endogenous neurogenesis in the rat brain. We performed mass spectrometry proteomic analyses and found that the total proteomes of brain-extract—treated MSC-MVs are highly enriched for known vesicular proteins. Notably, MSC-MV proteins upregulated by brain extracts tend to be modular for tissue repair pathways. We suggest that MSC-MV proteins stimulated by the brain microenvironment are paracrine effectors that enhance MSC therapy for stroke injury.
Collapse
|
27
|
Lee MJ, Park DH, Kang JH. Exosomes as the source of biomarkers of metabolic diseases. Ann Pediatr Endocrinol Metab 2016; 21:119-125. [PMID: 27777903 PMCID: PMC5073157 DOI: 10.6065/apem.2016.21.3.119] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/25/2016] [Indexed: 01/09/2023] Open
Abstract
Exosomes are extracellular vesicles that contain molecules that regulate the metabolic functions of adjacent or remote cells. Recent in vitro, in vivo and clinical studies support the hypothesis that exosomes released from various cell types play roles in the progression of metabolic disorders including type 2 diabetes. Based on this concept and advances in other diseases, the proteins, mRNA, microRNA and lipids in exosomes isolated from biological fluids have been proposed as biomarkers in metabolic disorders. However, several problems with the development of clinically applicable biomarkers have not been resolved. In this review, the biologic functions of exosomes are briefly introduced, and we discuss the technical and practical pros and cons of different methods of exosome isolation for the identification of exosomal biomarkers of metabolic disorders. Standardization of preanalytical variables and isolation of high-purity exosomes from fully characterized biological fluids will be necessary for the identification of useful exosomal biomarkers that can provide insights into the pathogenic mechanisms of complications of metabolic syndrome and of whole-body metabolism.
Collapse
Affiliation(s)
- Min-Jae Lee
- Department of Pharmacology and Medicinal Toxicology Research Center, Inha University School of Medicine, Incheon, Korea.,Department of Kinesiology, College of Arts and Sports, Inha University School of Medicine, Incheon, Korea
| | - Dong-Ho Park
- Department of Kinesiology, College of Arts and Sports, Inha University School of Medicine, Incheon, Korea
| | - Ju-Hee Kang
- Department of Pharmacology and Medicinal Toxicology Research Center, Inha University School of Medicine, Incheon, Korea.,Hypoxia-related Disease Research Center, Inha University School of Medicine, Incheon, Korea
| |
Collapse
|
28
|
Bang OY, Chung JW, Lee MJ, Kim SJ, Cho YH, Kim GM, Chung CS, Lee KH, Ahn MJ, Moon GJ. Cancer Cell-Derived Extracellular Vesicles Are Associated with Coagulopathy Causing Ischemic Stroke via Tissue Factor-Independent Way: The OASIS-CANCER Study. PLoS One 2016; 11:e0159170. [PMID: 27427978 PMCID: PMC4948859 DOI: 10.1371/journal.pone.0159170] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/28/2016] [Indexed: 12/18/2022] Open
Abstract
Background Cancer and stroke, which are known to be associated with one another, are the most common causes of death in the elderly. However, the pathomechanisms that lead to stroke in cancer patients are not well known. Circulating extracellular vesicles (EVs) play a role in cancer-associated thrombosis and tumor progression. Therefore, we hypothesized that cancer cell-derived EVs cause cancer-related coagulopathy resulting in ischemic stroke. Methods Serum levels of D-dimer and EVs expressing markers for cancer cells (epithelial cell adhesion molecule [CD326]), tissue factor (TF [CD142]), endothelial cells (CD31+CD42b-), and platelets (CD62P) were measured using flow cytometry in (a) 155 patients with ischemic stroke and active cancer (116 − cancer-related, 39 − conventional stroke mechanisms), (b) 25 patients with ischemic stroke without cancer, (c) 32 cancer patients without stroke, and (d) 101 healthy subjects. Results The levels of cancer cell-derived EVs correlated with the levels of D-dimer and TF+ EVs. The levels of cancer cell-derived EVs (CD326+ and CD326+CD142+) were higher in cancer-related stroke than in other groups (P<0.05 in all the cases). Path analysis showed that cancer cell-derived EVs are related to stroke via coagulopathy as measured by D-dimer levels. Poor correlation was observed between TF+ EV and D-dimer, and path analysis demonstrated that cancer cell-derived EVs may cause cancer-related coagulopathy independent of the levels of TF+ EVs. Conclusions Our findings suggest that cancer cell-derived EVs mediate coagulopathy resulting in ischemic stroke via TF-independent mechanisms.
Collapse
Affiliation(s)
- Oh Young Bang
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, Republic of Korea
- * E-mail:
| | - Jong-Won Chung
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, Republic of Korea
| | - Mi Ji Lee
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Suk Jae Kim
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yeon Hee Cho
- Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, Republic of Korea
- Clinical Research Center, Samsung Biomedical Research Institute, Seoul, Republic of Korea
| | - Gyeong-Moon Kim
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chin-Sang Chung
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kwang Ho Lee
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Myung-Ju Ahn
- Departments of Hemato-oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Gyeong Joon Moon
- Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, Republic of Korea
- Clinical Research Center, Samsung Biomedical Research Institute, Seoul, Republic of Korea
| |
Collapse
|
29
|
Mesenchymal Stem/Stromal Cells in Liver Fibrosis: Recent Findings, Old/New Caveats and Future Perspectives. Stem Cell Rev Rep 2016; 11:586-97. [PMID: 25820543 DOI: 10.1007/s12015-015-9585-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) are progenitors which share plastic-adherence capacity and cell surface markers but have different properties according to their cell and tissue sources and to culture conditions applied. Many recent publications suggest that MSCs can differentiate into hepatic-like cells, which can be a consequence of either a positive selection of rare in vivo pluripotent cells or of the original plasticity of some cells contributing to MSC cultures. A possible role of MSCs in hereditary transmission of obesity and/or diabetes as well as properties of MSCs regarding immunomodulation, cell fusion and exosome release capacities are discussed according to recent literature. Limitations in methods used to track MSCs in vivo especially in the context of liver cirrhosis are addressed as well as strategies explored to enhance their migratory, survival and proliferation properties, which are known to be relevant for their future clinical use. Current knowledge regarding mechanisms involved in liver cirrhosis amelioration mediated by naïve and genetically modified MSCs as well as the effects of applying preconditioning and combined strategies to improve their therapeutic effects are evaluated. Finally, first reports of GMP guidelines and biosafety issues in MSCs applications are discussed.
Collapse
|
30
|
Lawson C, Vicencio JM, Yellon DM, Davidson SM. Microvesicles and exosomes: new players in metabolic and cardiovascular disease. J Endocrinol 2016; 228:R57-71. [PMID: 26743452 DOI: 10.1530/joe-15-0201] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2015] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed an exponential increase in the number of publications referring to extracellular vesicles (EVs). For many years considered to be extracellular debris, EVs are now seen as novel mediators of endocrine signalling via cell-to-cell communication. With the capability of transferring proteins and nucleic acids from one cell to another, they have become an attractive focus of research for different pathological settings and are now regarded as both mediators and biomarkers of disease including cardio-metabolic disease. They also offer therapeutic potential as signalling agents capable of targeting tissues or cells with specific peptides or miRNAs. In this review, we focus on the role that microvesicles (MVs) and exosomes, the two most studied classes of EV, have in diabetes, cardiovascular disease, endothelial dysfunction, coagulopathies, and polycystic ovary syndrome. We also provide an overview of current developments in MV/exosome isolation techniques from plasma and other fluids, comparing different available commercial and non-commercial methods. We describe different techniques for their optical/biochemical characterization and quantitation. We also review the signalling pathways that exosomes and MVs activate in target cells and provide some insight into their use as biomarkers or potential therapeutic agents. In summary, we give an updated focus on the role that these exciting novel nanoparticles offer for the endocrine community.
Collapse
Affiliation(s)
- Charlotte Lawson
- Department of Comparative Biomedical SciencesRoyal Veterinary College, Royal College Street, London NW1 0TU, UKThe Hatter Cardiovascular InstituteUniversity College London, London WC1E 6HX, UK
| | - Jose M Vicencio
- Department of Comparative Biomedical SciencesRoyal Veterinary College, Royal College Street, London NW1 0TU, UKThe Hatter Cardiovascular InstituteUniversity College London, London WC1E 6HX, UK
| | - Derek M Yellon
- Department of Comparative Biomedical SciencesRoyal Veterinary College, Royal College Street, London NW1 0TU, UKThe Hatter Cardiovascular InstituteUniversity College London, London WC1E 6HX, UK
| | - Sean M Davidson
- Department of Comparative Biomedical SciencesRoyal Veterinary College, Royal College Street, London NW1 0TU, UKThe Hatter Cardiovascular InstituteUniversity College London, London WC1E 6HX, UK
| |
Collapse
|
31
|
Valenti MT, Mori A, Malerba G, Dalle Carbonare L. Mesenchymal stem cells: A new diagnostic tool? World J Stem Cells 2015; 7:789-792. [PMID: 26131309 PMCID: PMC4478625 DOI: 10.4252/wjsc.v7.i5.789] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/27/2015] [Accepted: 04/30/2015] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are progenitor cells capable of self-renewal that can differentiate in multiple tissues and, under specific and standardized culture conditions, expand in vitro with little phenotypic alterations. In recent years, preclinical and clinical studies have focused on MSC analysis and understanding the potential use of these cells as a therapy in a wide range of pathologies, and many applications have been tested. Clinical trials using MSCs have been performed (e.g., for cardiac events, stroke, multiple sclerosis, blood diseases, auto-immune disorders, ischemia, and articular cartilage and bone pathologies), and for many genetic diseases, these cells are considered an important resource. Considering of the biology of MSCs, these cells may also be useful tools for understanding the physiopathology of different diseases, and they can be used to develop specific biomarkers for a broad range of diseases. In this editorial, we discuss the literature related to the use of MSCs for diagnostic applications and we suggest new technologies to improve their employment.
Collapse
|
32
|
Avoiding false positive antigen detection by flow cytometry on blood cell derived microparticles: the importance of an appropriate negative control. PLoS One 2015; 10:e0127209. [PMID: 25978814 PMCID: PMC4433223 DOI: 10.1371/journal.pone.0127209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 04/13/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Microparticles (MPs), also called microvesicles (MVs) are plasma membrane-derived fragments with sizes ranging from 0.1 to 1μm. Characterization of these MPs is often performed by flow cytometry but there is no consensus on the appropriate negative control to use that can lead to false positive results. MATERIALS AND METHODS We analyzed MPs from platelets, B-cells, T-cells, NK-cells, monocytes, and chronic lymphocytic leukemia (CLL) B-cells. Cells were purified by positive magnetic-separation and cultured for 48h. Cells and MPs were characterized using the following monoclonal antibodies (CD19,20 for B-cells, CD3,8,5,27 for T-cells, CD16,56 for NK-cells, CD14,11c for monocytes, CD41,61 for platelets). Isolated MPs were stained with annexin-V-FITC and gated between 300nm and 900nm. The latex bead technique was then performed for easy detection of MPs. Samples were analyzed by Transmission (TEM) and Scanning Electron microscopy (SEM). RESULTS Annexin-V positive events within a gate of 300-900nm were detected and defined as MPs. Our results confirmed that the characteristic antigens CD41/CD61 were found on platelet-derived-MPs validating our technique. However, for MPs derived from other cell types, we were unable to detect any antigen, although they were clearly expressed on the MP-producing cells in the contrary of several data published in the literature. Using the latex bead technique, we confirmed detection of CD41,61. However, the apparent expression of other antigens (already deemed positive in several studies) was determined to be false positive, indicated by negative controls (same labeling was used on MPs from different origins). CONCLUSION We observed that mother cell antigens were not always detected on corresponding MPs by direct flow cytometry or latex bead cytometry. Our data highlighted that false positive results could be generated due to antibody aspecificity and that phenotypic characterization of MPs is a difficult field requiring the use of several negative controls.
Collapse
|
33
|
Lai RC, Yeo RWY, Lim SK. Mesenchymal stem cell exosomes. Semin Cell Dev Biol 2015; 40:82-8. [PMID: 25765629 DOI: 10.1016/j.semcdb.2015.03.001] [Citation(s) in RCA: 402] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 12/18/2022]
Abstract
MSCs are an extensively used cell type in clinical trials today. The initial rationale for their clinical testing was based on their differentiation potential. However, the lack of correlation between functional improvement and cell engraftment or differentiation at the site of injury has led to the proposal that MSCs exert their effects not through their differentiation potential but through their secreted product, more specifically, exosomes, a type of extracellular vesicle. We propose here that MSC exosomes function as an extension of MSC's biological role as tissue stromal support cells. Like their cell source, MSC exosomes help maintain tissue homeostasis for optimal tissue function. They target housekeeping biological processes that operate ubiquitously in all tissues and are critical in maintaining tissue homeostasis, enabling cells to recover critical cellular functions and begin repair and regeneration. This hypothesis provides a rationale for the therapeutic efficacy of MSCs and their secreted exosomes in a wide spectrum of diseases. Here, we give a brief introduction of the biogenesis of MSC exosomes, review their physiological functions and highlight some of their biochemical potential to illustrate how MSC exosomes could restore tissue homeostasis leading to tissue recovery and repair.
Collapse
Affiliation(s)
- Ruenn Chai Lai
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore
| | - Ronne Wee Yeh Yeo
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore
| | - Sai Kiang Lim
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
34
|
Świtońska M, Słomka A, Sinkiewicz W, Żekanowska E. Tissue-factor-bearing microparticles (MPs-TF) in patients with acute ischaemic stroke: the influence of stroke treatment on MPs-TF generation. Eur J Neurol 2014; 22:395-401, e28-9. [PMID: 25370815 DOI: 10.1111/ene.12591] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 09/10/2014] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND PURPOSE Stroke is an important cause of death and disability throughout the world. Microparticles play a cardinal role in vascular hemostasis. The primary aim of this study was to evaluate the procoagulant activity of microparticles and levels of tissue-factor-bearing microparticles (MPs-TF), tissue factor (TF) and tissue factor pathway inhibitor (TFPI) in patients with acute ischaemic stroke. METHODS Seventy-three patients with a diagnosis of acute ischaemic stroke were included. Venous blood samples were drawn on the first day and the seventh day after stroke onset. Plasma microparticles, MPs-TF, TF and TFPI were determined by enzyme-linked immunosorbent assay. Assessment variables were timing of blood collection, type of stroke treatment, presence or absence of diabetes mellitus and hypertension, and scores on the National Institutes of Health Stroke Scale together with scores on the modified Rankin Scale. RESULTS Whilst MPs-TF and TFPI levels of stroke subjects were significantly higher (median, 1.63 vs. 0.73 pg/ml; median, 114.26 vs. 78.60 ng/ml, respectively), TF levels in the plasma of stroke patients were significantly lower (median, 82.27 vs. 97.80 pg/ml) than those of healthy individuals. Lower levels of TF were detected in patients with severe stroke in comparison with patients with mild stroke. Moreover, the data also showed that in stroke patients not treated with alteplase the activity of microparticles was significantly higher 1 week after diagnosis in comparison with the activity at the time of diagnosis. CONCLUSION Our findings suggest that patients with acute ischaemic stroke have increased generation of MPs-TF. Nevertheless, further studies are needed in order to confirm such inference.
Collapse
Affiliation(s)
- M Świtońska
- Neurology and Stroke Care Unit, Jan Biziel University Hospital No. 2, Bydgoszcz, Poland
| | | | | | | |
Collapse
|
35
|
García-Berrocoso T, Giralt D, Llombart V, Bustamante A, Penalba A, Flores A, Ribó M, Molina CA, Rosell A, Montaner J. Chemokines after human ischemic stroke: From neurovascular unit to blood using protein arrays. TRANSLATIONAL PROTEOMICS 2014. [DOI: 10.1016/j.trprot.2014.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
36
|
Song P, Zou MH. Redox regulation of endothelial cell fate. Cell Mol Life Sci 2014; 71:3219-39. [PMID: 24633153 DOI: 10.1007/s00018-014-1598-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 12/26/2022]
Abstract
Endothelial cells (ECs) are present throughout blood vessels and have variable roles in both physiological and pathological settings. EC fate is altered and regulated by several key factors in physiological or pathological conditions. Reactive nitrogen species and reactive oxygen species derived from NAD(P)H oxidases, mitochondria, or nitric oxide-producing enzymes are not only cytotoxic but also compose a signaling network in the redox system. The formation, actions, key molecular interactions, and physiological and pathological relevance of redox signals in ECs remain unclear. We review the identities, sources, and biological actions of oxidants and reductants produced during EC function or dysfunction. Further, we discuss how ECs shape key redox sensors and examine the biological functions, transcriptional responses, and post-translational modifications evoked by the redox system in ECs. We summarize recent findings regarding the mechanisms by which redox signals regulate the fate of ECs and address the outcome of altered EC fate in health and disease. Future studies will examine if the redox biology of ECs can be targeted in pathophysiological conditions.
Collapse
Affiliation(s)
- Ping Song
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, 941 Stanton L Young Blvd., Oklahoma City, OK, 73104, USA,
| | | |
Collapse
|
37
|
Kim SJ, Moon GJ, Chang WH, Kim YH, Bang OY. Intravenous transplantation of mesenchymal stem cells preconditioned with early phase stroke serum: current evidence and study protocol for a randomized trial. Trials 2013; 14:317. [PMID: 24083670 PMCID: PMC4016561 DOI: 10.1186/1745-6215-14-317] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 09/12/2013] [Indexed: 12/19/2022] Open
Abstract
Background Recovery after a major stroke is usually limited, but cell therapy for patients with fixed neurologic deficits is emerging. Several recent clinical trials have investigated mesenchymal stem cell (MSC) therapy for patients with ischemic stroke. We previously reported the results of a controlled trial on the application of autologous MSCs in patients with ischemic stroke with a long-term follow-up of up to 5 years (the 'STem cell Application Researches and Trials In NeuroloGy’ (STARTING) study). The results from this pilot trial are challenging, but also raise important issues. In addition, there have been recent efforts to improve the safety and efficacy of MSC therapy for stroke. Methods and design The clinical and preclinical background and the STARTING-2 study protocol are provided. The trial is a prospective, randomized, open-label, blinded-endpoint (PROBE) clinical trial. Both acute and chronic stroke patients will be selected based on clinical and radiological features and followed for 3 months after MSC treatment. The subjects will be randomized into one of two groups: (A) a MSC group (n = 40) or (B) a control group (n = 20). Autologous MSCs will be intravenously administered after ex vivo culture expansion with autologous ischemic serum obtained as early as possible, to enhance the therapeutic efficacy (ischemic preconditioning). Objective outcome measurements will be performed using multimodal MRI and detailed functional assessments by blinded observers. Discussion This trial is the first to evaluate the efficacy of MSCs in patients with ischemic stroke. The results may provide better evidence for the effectiveness of MSC therapy in patients with ischemic stroke. Trial registration This trial was registered with ClinicalTrials.gov, number NCT01716481.
Collapse
Affiliation(s)
- Suk Jae Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, 135-710, Gangnam-gu, Seoul, South Korea.
| | | | | | | | | | | |
Collapse
|
38
|
Barteneva NS, Fasler-Kan E, Bernimoulin M, Stern JNH, Ponomarev ED, Duckett L, Vorobjev IA. Circulating microparticles: square the circle. BMC Cell Biol 2013; 14:23. [PMID: 23607880 PMCID: PMC3651414 DOI: 10.1186/1471-2121-14-23] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/20/2013] [Indexed: 01/05/2023] Open
Abstract
Background The present review summarizes current knowledge about microparticles (MPs) and provides a systematic overview of last 20 years of research on circulating MPs, with particular focus on their clinical relevance. Results MPs are a heterogeneous population of cell-derived vesicles, with sizes ranging between 50 and 1000 nm. MPs are capable of transferring peptides, proteins, lipid components, microRNA, mRNA, and DNA from one cell to another without direct cell-to-cell contact. Growing evidence suggests that MPs present in peripheral blood and body fluids contribute to the development and progression of cancer, and are of pathophysiological relevance for autoimmune, inflammatory, infectious, cardiovascular, hematological, and other diseases. MPs have large diagnostic potential as biomarkers; however, due to current technological limitations in purification of MPs and an absence of standardized methods of MP detection, challenges remain in validating the potential of MPs as a non-invasive and early diagnostic platform. Conclusions Improvements in the effective deciphering of MP molecular signatures will be critical not only for diagnostics, but also for the evaluation of treatment regimens and predicting disease outcomes.
Collapse
Affiliation(s)
- Natasha S Barteneva
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, D-249, 200 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Kim SJ, Moon GJ, Bang OY. Biomarkers for stroke. J Stroke 2013; 15:27-37. [PMID: 24324937 PMCID: PMC3779673 DOI: 10.5853/jos.2013.15.1.27] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 12/26/2012] [Accepted: 12/27/2012] [Indexed: 01/22/2023] Open
Abstract
Background Major stroke clinical trials have failed during the past decades. The failures suggest the presence of heterogeneity among stroke patients. Biomarkers refer to indicators found in the blood, other body fluids or tissues that predicts physiologic or disease states, increased disease risk, or pharmacologic responses to a therapeutic intervention. Stroke biomarkers could be used as a guiding tool for more effective personalized therapy. Main Contents Three aspects of stroke biomarkers are explored in detail. First, the possible role of biomarkers in patients with stroke is discussed. Second, the limitations of conventional biomarkers (especially protein biomarkers) in the area of stroke research are presented with the reasons. Lastly, various types of biomarkers including traditional and novel genetic, microvesicle, and metabolomics-associated biomarkers are introduced with their advantages and disadvantages. We especially focus on the importance of comprehensive approaches using a variety of stroke biomarkers. Conclusion Although biomarkers are not recommended in practice guidelines for use in the diagnosis or treatment of stroke, many efforts have been made to overcome the limitations of biomarkers. The studies reviewed herein suggest that comprehensive analysis of different types of stroke biomarkers will improve the understanding of individual pathophysiologies and further promote the development of screening tools for of high-risk patients, and predicting models of stroke outcome and rational stroke therapy tailored to the characteristics of each case.
Collapse
Affiliation(s)
- Suk Jae Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | |
Collapse
|
40
|
Wong HL, Siu WS, Shum WT, Gao S, Leung PC, Ko CH. Application of Chinese herbal medicines to revitalize adult stem cells for tissue regeneration. Chin J Integr Med 2012; 18:903-8. [PMID: 23238998 DOI: 10.1007/s11655-012-1293-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Indexed: 12/11/2022]
Abstract
It has been established in the recent several decades that adult stem cells play a crucial role in tissue renewal and regeneration. Adult stem cells locate in certain organs can differentiate into functional entities such as macrophages and bone cells. Hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) are two of the most important populations of adult stem cells. The application of these stem cells offers a new insight in treating various pathological conditions, through replenishing cells of specific functions by turning on or off the differentiating program within quiescent stem cell niches. Apart from that, they are also capable to travel through the circulation, migrate to injury sites and differentiate to enhance regeneration process. Recently, Chinese medicine (CM) has shown to be potential candidates to activate adult stem cells for tissue regeneration. This review summarizes our own, as well as others' findings concerning the use of Chinese herbal medicine in the regulation processes of adult stem cells differentiation and their movement in tissue repair and rejuvenation. A number of Chinese herbs are used as therapeutic agents and presumably preventive agents on metabolic disorders. In our opinion, the activation of adult stem cells self-regeneration not only provides a novel way to repair tissue damage, but also reduces the use of targeted drug that adversely altering the normal metabolism of human subjects.
Collapse
Affiliation(s)
- Hing-Lok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
41
|
Zong Z, Li N, Ran X, Su Y, Shen Y, Shi CM, Cheng TM. Isolation and characterization of two kinds of stem cells from the same human skin back sample with therapeutic potential in spinal cord injury. PLoS One 2012; 7:e50222. [PMID: 23226248 PMCID: PMC3511430 DOI: 10.1371/journal.pone.0050222] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 10/22/2012] [Indexed: 01/22/2023] Open
Abstract
Backgrounds and Objective Spinal cord injury remains to be a challenge to clinicians and it is attractive to employ autologous adult stem cell transplantation in its treatment, however, how to harvest cells with therapeutic potential easily and how to get enough number of cells for transplantation are challenging issues. In the present study, we aimed to isolate skin-derived precursors (SKPs) and dermal multipotent stem cells (dMSCs) simultaneously from single human skin samples from patients with paraplegia. Methods Dissociated cells were initially generated from the dermal layer of skin samples from patients with paraplegia and cultured in SKPs proliferation medium. Four hours later, many cells adhered to the base of the flask. The suspended cells were then transferred to another flask for further culture as SKPs, while the adherent cells were cultured in dMSCs proliferation medium. Twenty-four hours later, the adherent cells were harvested and single-cell colonies were generated using serial dilution method. [3H]thymidine incorporation assay, microchemotaxis Transwell chambers assay, RT-PCR and fluorescent immunocytochemistry were employed to examine the characterizations of the isolated cells. Results SKPs and dMSCs were isolated simultaneously from a single skin sample. SKPs and dMSCs differed in several respects, including in terms of intermediate protein expression, proliferation capacities, and differentiation tendencies towards mesodermal and neural progenies. However, both SKPs and dMSCs showed high rates of differentiation into neurons and Schwann cells under appropriate inducing conditions. dMSCs isolated by this method showed no overt differences from dMSCs isolated by routine methods. Conclusions Two kinds of stem cells, namely SKPs and dMSCs, can be isolated simultaneously from individual human skin sample from paraplegia patients. Both of them show ability to differentiate into neural cells under proper inducing conditions, indicating their potential for the treatment of spinal cord injury patients by autologous cell transplantation.
Collapse
Affiliation(s)
- Zhaowen Zong
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Trauma Surgery, Daping Hospital, Third Military Medical University, ChongQing, China.
| | | | | | | | | | | | | |
Collapse
|
42
|
Veronesi F, Giavaresi G, Tschon M, Borsari V, Nicoli Aldini N, Fini M. Clinical use of bone marrow, bone marrow concentrate, and expanded bone marrow mesenchymal stem cells in cartilage disease. Stem Cells Dev 2012; 22:181-92. [PMID: 23030230 DOI: 10.1089/scd.2012.0373] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) from bone marrow (BM) are widely used for bone and less for cartilage tissue regeneration due to their self-renewal and differentiating properties into osteogenic or chondrogenic lineages. This review considers the last decade of clinical trials involving a two-step procedure, by expanding in vitro MSCs from BM, or the so called "one-step" procedure, using BM in toto or BM concentrate, for the regeneration of cartilage and osteochondral tissue defects. The following conclusions were drawn: (1) Cartilage defects that can be repaired by the two-step technique are about twice the size as those where the one-step method is used; (2) the two-step procedure is especially used for the treatment of osteoarthritic lesions, whereas the one-step procedure is used for osteochondral defects; (3) the number of transplanted cells ranges between 3.8×10(6) and 11.2×10(6) cells/mL, and the period of cell culture expansion of implanted MSCs varies widely with regard to the two-step procedure; (4) hyaluronic or collagenic scaffolds are used in all the clinical studies analyzed for both techniques; (5) the follow-up of the two-step procedure is longer than that of the one-step method, despite having a lower number of patients; and, finally, (6) the mean age of the patients (about 39 years old) is similar in both procedures. Clinical results underline the safety and good and encouraging outcomes for the use of MSCs in clinics. Although more standardized procedures are required, the length of follow-up and the number of patients observed should be augmented, and the design of trials should be implemented to achieve evidence-based results.
Collapse
Affiliation(s)
- Francesca Veronesi
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Via Di Barbiano 1/10, Bologna, Italy
| | | | | | | | | | | |
Collapse
|