1
|
Jasińska M, Jasek-Gajda E, Ziaja M, Litwin JA, Lis GJ, Pyza E. Light-Modulated Circadian Synaptic Plasticity in the Somatosensory Cortex: Link to Locomotor Activity. Int J Mol Sci 2024; 25:12870. [PMID: 39684579 DOI: 10.3390/ijms252312870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The circadian clock controls various physiological processes, including synaptic function and neuronal activity, affecting the functioning of the entire organism. Light is an important external factor regulating the day-night cycle. This study examined the effects of the circadian clock and light on synaptic plasticity, and explored how locomotor activity contributes to these processes. We analyzed synaptic protein expression and excitatory synapse density in the somatosensory cortex of mice from four groups exposed to different lighting conditions (LD 12:12, DD, LD 16:8, and LL). Locomotor activity was assessed through individual wheel-running monitoring. To explore daily and circadian changes in synaptic proteins, we performed double-immunofluorescence labeling and laser scanning confocal microscopy imaging, targeting three pairs of presynaptic and postsynaptic proteins (Synaptophysin 1/PSD95, Piccolo/Homer 1, Neurexins/PICK1). Excitatory synapse density was evaluated by co-labeling presynaptic and postsynaptic markers. Our results demonstrated that all the analyzed synaptic proteins exhibited circadian regulation modulated by light. Under constant light conditions, only Piccolo and Homer 1 showed rhythmicity. Locomotor activity was also associated with the circadian clock's effects on synaptic proteins, showing a stronger connection to changes in postsynaptic protein levels. Excitatory synapse density peaked during the day/subjective day and exhibited an inverse relationship with locomotor activity. Continued light exposure disrupted cyclic changes in synapse density but kept it consistently elevated. These findings underscore the crucial roles of light and locomotor activity in regulating synaptic plasticity.
Collapse
Affiliation(s)
- Małgorzata Jasińska
- Department of Histology, Jagiellonian University Medical College, 31-034 Krakow, Poland
| | - Ewa Jasek-Gajda
- Department of Histology, Jagiellonian University Medical College, 31-034 Krakow, Poland
| | - Marek Ziaja
- Department of Histology, Jagiellonian University Medical College, 31-034 Krakow, Poland
| | - Jan A Litwin
- Department of Histology, Jagiellonian University Medical College, 31-034 Krakow, Poland
| | - Grzegorz J Lis
- Department of Histology, Jagiellonian University Medical College, 31-034 Krakow, Poland
| | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
2
|
Zhang Y, Chen Y, Li W, Tang L, Li J, Feng X. Targeting the circadian modulation: novel therapeutic approaches in the management of ASD. Front Psychiatry 2024; 15:1451242. [PMID: 39465045 PMCID: PMC11503653 DOI: 10.3389/fpsyt.2024.1451242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024] Open
Abstract
Circadian dysfunction is prevalent in neurodevelopmental disorders, particularly in autism spectrum disorder (ASD). A plethora of empirical studies demonstrate a strong correlation between ASD and circadian disruption, suggesting that modulation of circadian rhythms and the clocks could yield satisfactory advancements. Research indicates that circadian dysfunction associated with abnormal neurodevelopmental phenotypes in ASD individuals, potentially contribute to synapse plasticity disruption. Therefore, targeting circadian rhythms may emerge as a key therapeutic approach. In this study, we did a brief review of the mammalian circadian clock, and the correlation between the circadian mechanism and the pathology of ASD at multiple levels. In addition, we highlight that circadian is the target or modulator to participate in the therapeutic approaches in the management of ASD, such as phototherapy, melatonin, modulating circadian components, natural compounds, and chronotherapies. A deep understanding of the circadian clock's regulatory role in the neurodevelopmental phenotypes in ASD may inspire novel strategies for improving ASD treatment.
Collapse
Affiliation(s)
- Yuxing Zhang
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yinan Chen
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wu Li
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liya Tang
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jiangshan Li
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiang Feng
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
3
|
Shang Y, Su Q, Ma R, Chen M, Zhao Z, Yao C, Han L, Yao Z, Hu B. Functional Connectome Hierarchy Distortions in Female Nurses With Occupational Burnout and Its Gene Expression Signatures. J Magn Reson Imaging 2024; 59:2124-2136. [PMID: 37728385 DOI: 10.1002/jmri.28985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Burnout has become a serious public health issue worldwide, particularly during the COVID-19 pandemic. Functional connectome impairments associated with occupational burnout were widely distributed, involving both low-level sensorimotor cortices and high-level association cortices. PURPOSE To investigate whether there are hierarchical perturbations in the functional connectomes and if these perturbations are potentially influenced by genetic factors in nurses who feel "burned out." STUDY TYPE Prospective, case control. POPULATION Thirty-three female nurses with occupational burnout (aged 27-40, 32.42 ± 3.37) and 32 matched nurses who were not feeling burned out (aged 27-42, 32.50 ± 4.21). FIELD STRENGTH/SEQUENCE 3.0 T, gradient-echo echo-planar imaging sequence (GE-EPI). ASSESSMENT Gradient-based techniques were used to depict the perturbations in the multi-dimensional hierarchical structure of the macroscale connectome. Gene expression data were acquired from the Allen Human Brain Atlas. STATISTICAL TESTS Cortex-wide multivariate analyses were used for between-group differences in gradients as well as association analyses between the hierarchy distortions and the MBI score (FDR corrected). Partial least squares, spin test and bootstrapping were utilized together to select the gene sets (FDR corrected). Gene enrichment analyses (GO, KEGG and cell-type) were further performed. Significance level: P < 0.05. RESULTS There were significant gradient distortions, with strong between-group effects in the somatosensory network and moderate effects in the higher-order default-mode network, which were significantly correlated with the gene expression profiles (r = 0.3171). The most related genes were broadly involved in the cellular response to minerals, neuronal plasticity, and the circadian rhythm pathway (q value < 0.01). Significant enrichments were found in excitatory (r = 0.2588), inhibitory neurons (r = 0.2610), and astrocytes cells (r = 0.2633). Regions affected by burnout severity were mainly distributed in the association and visual cortices. DATA CONCLUSION By connecting in vivo imaging to genes, cell classes, and clinical data, this study provides a framework to understand functional impairments in occupational burnout and how the microscopic genetic architecture drive macroscopic distortions. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yingying Shang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China
| | - Qian Su
- Department of Nursing, Gansu Provincial Hospital, Lanzhou, Gansu Province, China
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Rong Ma
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China
| | - Miao Chen
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China
| | - Ziyang Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China
| | - Chaofan Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China
| | - Lin Han
- Department of Nursing, Gansu Provincial Hospital, Lanzhou, Gansu Province, China
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
- School of Nursing, Lanzhou University, Lanzhou, Gansu Province, China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China
- Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of Semiconductors, Chinese Academy of Sciences, Lanzhou, Gansu Province, China
- Engineering Research Center of Open Source Software and Real-Time System (Lanzhou University), Ministry of Education, Lanzhou, Gansu Province, China
| |
Collapse
|
4
|
Aerobic Exercise Induces Alternative Splicing of Neurexins in Frontal Cortex. J Funct Morphol Kinesiol 2021; 6:jfmk6020048. [PMID: 34072692 PMCID: PMC8261640 DOI: 10.3390/jfmk6020048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/02/2022] Open
Abstract
Aerobic exercise (AE) is known to produce beneficial effects on brain health by improving plasticity, connectivity, and cognitive functions, but the underlying molecular mechanisms are still limited. Neurexins (Nrxns) are a family of presynaptic cell adhesion molecules that are important in synapsis formation and maturation. In vertebrates, three-neurexin genes (NRXN1, NRXN2, and NRXN3) have been identified, each encoding for α and β neurexins, from two independent promoters. Moreover, each Nrxns gene (1-3) has several alternative exons and produces many splice variants that bind to a large variety of postsynaptic ligands, playing a role in trans-synaptic specification, strength, and plasticity. In this study, we investigated the impact of a continuous progressive (CP) AE program on alternative splicing (AS) of Nrxns on two brain regions: frontal cortex (FC) and hippocampus. We showed that exercise promoted Nrxns1-3 AS at splice site 4 (SS4) both in α and β isoforms, inducing a switch from exon-excluded isoforms (SS4-) to exon-included isoforms (SS4+) in FC but not in hippocampus. Additionally, we showed that the same AE program enhanced the expression level of other genes correlated with synaptic function and plasticity only in FC. Altogether, our findings demonstrated the positive effect of CP AE on FC in inducing molecular changes underlying synaptic plasticity and suggested that FC is possibly a more sensitive structure than hippocampus to show molecular changes.
Collapse
|
5
|
Lukacsovich D, Winterer J, Que L, Luo W, Lukacsovich T, Földy C. Single-Cell RNA-Seq Reveals Developmental Origins and Ontogenetic Stability of Neurexin Alternative Splicing Profiles. Cell Rep 2020; 27:3752-3759.e4. [PMID: 31242409 DOI: 10.1016/j.celrep.2019.05.090] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/08/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022] Open
Abstract
Neurexins are key synaptic organizers that are expressed in thousands of alternatively spliced isoforms. Because transsynaptic neurexin interactions with different postsynaptic molecules are largely isoform dependent, a cell type-level census of different neurexin isoforms could predict molecular interactions relating to synapse identity and function. Using single-cell transcriptomics to study the origin of neurexin diversity in multiple murine mature and embryonic cell types, we have discovered shared neurexin expression patterns in developmentally related cells. By comparing neurexin profiles in immature embryonic neurons, we show that neurexin profiles are specified during early development and remain unchanged throughout neuronal maturation. Thus, our findings reveal ontogenetic stability and provide a cell type-level census of neurexin isoform expression in the cortex.
Collapse
Affiliation(s)
- David Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Natural Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Jochen Winterer
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Natural Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Lin Que
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Natural Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Wenshu Luo
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Natural Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Tamas Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Natural Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Natural Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
6
|
Riedel CS, Georg B, Fahrenkrug J, Hannibal J. Altered light induced EGR1 expression in the SCN of PACAP deficient mice. PLoS One 2020; 15:e0232748. [PMID: 32379800 PMCID: PMC7205239 DOI: 10.1371/journal.pone.0232748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
The brain’s biological clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus and generates circadian rhythms in physiology and behavior. The circadian clock needs daily adjustment by light to stay synchronized (entrained) with the astronomical 24 h light/dark cycle. Light entrainment occurs via melanopsin expressing retinal ganglion cells (mRGCs) and two neurotransmitters of the retinohypothalamic tract (RHT), PACAP and glutamate, which transmit light information to the SCN neurons. In SCN neurons, light signaling involves the immediate-early genes Fos, Egr1 and the clock genes Per1 and Per2. In this study, we used PACAP deficient mice to evaluate PACAP’s role in light induced gene expression of EGR1 in SCN neurons during early (ZT17) and late (ZT23) subjective night at high (300 lux) and low (10 lux) white light exposure. We found significantly lower levels of both EGR1 mRNA and protein in the SCN in PACAP deficient mice compared to wild type mice at early subjective night (ZT17) exposed to low but not high light intensity. No difference was found between the two genotypes at late night (ZT23) at neither light intensities. In conclusion, light mediated EGR1 induction in SCN neurons at early night at low light intensities is dependent of PACAP signaling. A role of PACAP in shaping synaptic plasticity during light stimulation at night is discussed.
Collapse
Affiliation(s)
- Casper Schwartz Riedel
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen NV, Denmark
| | - Birgitte Georg
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen NV, Denmark
| | - Jan Fahrenkrug
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen NV, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen NV, Denmark
- * E-mail:
| |
Collapse
|
7
|
Park H, Choi Y, Jung H, Kim S, Lee S, Han H, Kweon H, Kang S, Sim WS, Koopmans F, Yang E, Kim H, Smit AB, Bae YC, Kim E. Splice-dependent trans-synaptic PTPδ-IL1RAPL1 interaction regulates synapse formation and non-REM sleep. EMBO J 2020; 39:e104150. [PMID: 32347567 PMCID: PMC7265247 DOI: 10.15252/embj.2019104150] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing regulates trans‐synaptic adhesions and synapse development, but supporting in vivo evidence is limited. PTPδ, a receptor tyrosine phosphatase adhering to multiple synaptic adhesion molecules, is associated with various neuropsychiatric disorders; however, its in vivo functions remain unclear. Here, we show that PTPδ is mainly present at excitatory presynaptic sites by endogenous PTPδ tagging. Global PTPδ deletion in mice leads to input‐specific decreases in excitatory synapse development and strength. This involves tyrosine dephosphorylation and synaptic loss of IL1RAPL1, a postsynaptic partner of PTPδ requiring the PTPδ‐meA splice insert for binding. Importantly, PTPδ‐mutant mice lacking the PTPδ‐meA insert, and thus lacking the PTPδ interaction with IL1RAPL1 but not other postsynaptic partners, recapitulate biochemical and synaptic phenotypes of global PTPδ‐mutant mice. Behaviorally, both global and meA‐specific PTPδ‐mutant mice display abnormal sleep behavior and non‐REM rhythms. Therefore, alternative splicing in PTPδ regulates excitatory synapse development and sleep by modulating a specific trans‐synaptic adhesion.
Collapse
Affiliation(s)
- Haram Park
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Yeonsoo Choi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Hwajin Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Seoyeong Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Hyemin Han
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Hanseul Kweon
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Suwon Kang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Woong Seob Sim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Frank Koopmans
- Department of Functional Genomics, CNCR, VU University and UMC Amsterdam, Amsterdam, The Netherlands.,Department of Molecular and Cellular Neurobiology, CNCR, VU University and UMC Amsterdam, Amsterdam, The Netherlands
| | - Esther Yang
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, CNCR, VU University and UMC Amsterdam, Amsterdam, The Netherlands
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea.,Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
8
|
Hannou L, Roy P, Ballester Roig MN, Mongrain V. Transcriptional control of synaptic components by the clock machinery. Eur J Neurosci 2019; 51:241-267. [DOI: 10.1111/ejn.14294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/01/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Lydia Hannou
- Center for Advanced Research in Sleep Medicine and Research CenterHôpital du Sacré‐Cœur de Montréal (CIUSSS‐NIM) Montreal Quebec Canada
- Department of PsychiatryUniversité de Montréal Montreal Quebec Canada
| | - Pierre‐Gabriel Roy
- Center for Advanced Research in Sleep Medicine and Research CenterHôpital du Sacré‐Cœur de Montréal (CIUSSS‐NIM) Montreal Quebec Canada
- Department of NeuroscienceUniversité de Montréal Montreal Quebec Canada
| | - Maria Neus Ballester Roig
- Center for Advanced Research in Sleep Medicine and Research CenterHôpital du Sacré‐Cœur de Montréal (CIUSSS‐NIM) Montreal Quebec Canada
- Department of NeuroscienceUniversité de Montréal Montreal Quebec Canada
| | - Valérie Mongrain
- Center for Advanced Research in Sleep Medicine and Research CenterHôpital du Sacré‐Cœur de Montréal (CIUSSS‐NIM) Montreal Quebec Canada
- Department of NeuroscienceUniversité de Montréal Montreal Quebec Canada
| |
Collapse
|
9
|
Tan X, Ye J, Liu W, Zhao B, Shi X, Zhang C, Liu Z, Liu X. Acrylamide aggravates cognitive deficits at night period via the gut-brain axis by reprogramming the brain circadian clock. Arch Toxicol 2018; 93:467-486. [PMID: 30374679 DOI: 10.1007/s00204-018-2340-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022]
Abstract
Imbalance of the circadian rhythm leads to pathologies including obesity, neurodegenerative diseases, and even cancer. Acrylamide (ACR) is a chronic neurotoxin which can lead to carcinogenicity, reproduction toxicity, teratogenicity, and neurotoxicity. The aim of this study was to reveal a potential mechanism of ACR-triggered neurotoxicity related to circadian clock in mice brain. For this purpose, 80 3-month-old C57/BL6J mice were randomly divided into two groups (n = 40/group): the control group was fed a standard diet (AIN-93M) with pure water, and the ACR group was fed a standard diet (AIN-93M) with 0.003% ACR in drinking water for 16 weeks. In the current study, ACR treatment induced circadian disorder and suppressed the circadian-related protein expressions in mice brain. Furthermore, ACR diet aggravated the cognitive dysfunction and spatial memory loss at night phase. Consistent with these results, ACR caused cognitive defects in the night period by down-regulating the ERK/cAMP response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathways and the expression of synaptosomal-related protein SNAP-25 and PSD-95. Moreover, excessive autophagy phenomenon also occurred in mice hippocampus in the night phase under ACR administration. Of note, ACR stimulated the brain inflammatory reaction via affecting the intestinal barrier integrity and increasing the levels of circulating LPS, IL-1β and TNF-α. Above all, the present research discovered that ACR is a potential circadian-depressing compound that influences cognitive function in mice brain.
Collapse
Affiliation(s)
- Xintong Tan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Xinong Road 2, 712100, Yangling, China
| | - Jin Ye
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Xinong Road 2, 712100, Yangling, China
| | - Weiqi Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Xinong Road 2, 712100, Yangling, China
| | - Beita Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Xinong Road 2, 712100, Yangling, China
| | - Xu Shi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Xinong Road 2, 712100, Yangling, China
| | - Chengliang Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Xinong Road 2, 712100, Yangling, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Xinong Road 2, 712100, Yangling, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Xinong Road 2, 712100, Yangling, China.
| |
Collapse
|
10
|
Mansilla A, Jordán-Álvarez S, Santana E, Jarabo P, Casas-Tintó S, Ferrús A. Molecular mechanisms that change synapse number. J Neurogenet 2018; 32:155-170. [DOI: 10.1080/01677063.2018.1506781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Ho KWD, Han S, Nielsen JV, Jancic D, Hing B, Fiedorowicz J, Weissman MM, Levinson DF, Potash JB. Genome-wide association study of seasonal affective disorder. Transl Psychiatry 2018; 8:190. [PMID: 30217971 PMCID: PMC6138666 DOI: 10.1038/s41398-018-0246-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/18/2018] [Accepted: 08/07/2018] [Indexed: 12/30/2022] Open
Abstract
Family and twin studies have shown a genetic component to seasonal affective disorder (SAD). A number of candidate gene studies have examined the role of variations within biologically relevant genes in SAD susceptibility, but few genome-wide association studies (GWAS) have been performed to date. The authors aimed to identify genetic risk variants for SAD through GWAS. The authors performed a GWAS for SAD in 1380 cases and 2937 controls of European-American (EA) origin, selected from samples for GWAS of major depressive disorder and of bipolar disorder. Further bioinformatic analyses were conducted to examine additional genomic and biological evidence associated with the top GWAS signals. No susceptibility loci for SAD were identified at a genome-wide significant level. The strongest association was at an intronic variant (rs139459337) within ZBTB20 (odds ratio (OR) = 1.63, p = 8.4 × 10-7), which encodes a transcriptional repressor that has roles in neurogenesis and in adult brain. Expression quantitative trait loci (eQTL) analysis showed that the risk allele "T" of rs139459337 is associated with reduced mRNA expression of ZBTB20 in human temporal cortex (p = 0.028). Zbtb20 is required for normal murine circadian rhythm and for entrainment to a shortened day. Of the 330 human orthologs of murine genes directly repressed by Zbtb20, there were 32 associated with SAD in our sample (at p < 0.05), representing a significant enrichment of ZBTB20 targets among our SAD genetic association signals (fold = 1.93, p = 0.001). ZBTB20 is a candidate susceptibility gene for SAD, based on a convergence of genetic, genomic, and biological evidence. Further studies are necessary to confirm its role in SAD.
Collapse
Affiliation(s)
- Kwo Wei David Ho
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Shizhong Han
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jakob V Nielsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Dubravka Jancic
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Benjamin Hing
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Jess Fiedorowicz
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Myrna M Weissman
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- The New York State Psychiatric Institute, New York, NY, USA
| | - Douglas F Levinson
- Department of Psychiatry, Stanford University School of Medicine, Palo Alto, CA, USA
| | - James B Potash
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Cooper JM, Halter KA, Prosser RA. Circadian rhythm and sleep-wake systems share the dynamic extracellular synaptic milieu. Neurobiol Sleep Circadian Rhythms 2018; 5:15-36. [PMID: 31236509 PMCID: PMC6584685 DOI: 10.1016/j.nbscr.2018.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/06/2018] [Accepted: 04/10/2018] [Indexed: 01/23/2023] Open
Abstract
The mammalian circadian and sleep-wake systems are closely aligned through their coordinated regulation of daily activity patterns. Although they differ in their anatomical organization and physiological processes, they utilize overlapping regulatory mechanisms that include an assortment of proteins and molecules interacting within the extracellular space. These extracellular factors include proteases that interact with soluble proteins, membrane-attached receptors and the extracellular matrix; and cell adhesion molecules that can form complex scaffolds connecting adjacent neurons, astrocytes and their respective intracellular cytoskeletal elements. Astrocytes also participate in the dynamic regulation of both systems through modulating neuronal appositions, the extracellular space and/or through release of gliotransmitters that can further contribute to the extracellular signaling processes. Together, these extracellular elements create a system that integrates rapid neurotransmitter signaling across longer time scales and thereby adjust neuronal signaling to reflect the daily fluctuations fundamental to both systems. Here we review what is known about these extracellular processes, focusing specifically on areas of overlap between the two systems. We also highlight questions that still need to be addressed. Although we know many of the extracellular players, far more research is needed to understand the mechanisms through which they modulate the circadian and sleep-wake systems.
Collapse
Key Words
- ADAM, A disintegrin and metalloproteinase
- AMPAR, AMPA receptor
- Astrocytes
- BDNF, brain-derived neurotrophic factor
- BMAL1, Brain and muscle Arnt-like-1 protein
- Bmal1, Brain and muscle Arnt-like-1 gene
- CAM, cell adhesion molecules
- CRY, cryptochrome protein
- Cell adhesion molecules
- Circadian rhythms
- Cry, cryptochrome gene
- DD, dark-dark
- ECM, extracellular matrix
- ECS, extracellular space
- EEG, electroencephalogram
- Endo N, endoneuraminidase N
- Extracellular proteases
- GFAP, glial fibrillary acidic protein
- IL, interleukin
- Ig, immunoglobulin
- LC, locus coeruleus
- LD, light-dark
- LH, lateral hypothalamus
- LRP-1, low density lipoprotein receptor-related protein 1
- LTP, long-term potentiation
- MMP, matrix metalloproteinases
- NCAM, neural cell adhesion molecule protein
- NMDAR, NMDA receptor
- NO, nitric oxide
- NST, nucleus of the solitary tract
- Ncam, neural cell adhesion molecule gene
- Nrl, neuroligin gene
- Nrx, neurexin gene
- P2, purine type 2 receptor
- PAI-1, plasminogen activator inhibitor-1
- PER, period protein
- PPT, peduculopontine tegmental nucleus
- PSA, polysialic acid
- Per, period gene
- REMS, rapid eye movement sleep
- RSD, REM sleep disruption
- SCN, suprachiasmatic nucleus
- SWS, slow wave sleep
- Sleep-wake system
- Suprachiasmatic nucleus
- TNF, tumor necrosis factor
- TTFL, transcriptional-translational negative feedback loop
- VIP, vasoactive intestinal polypeptide
- VLPO, ventrolateral preoptic
- VP, vasopressin
- VTA, ventral tegmental area
- dNlg4, drosophila neuroligin-4 gene
- nNOS, neuronal nitric oxide synthase gene
- nNOS, neuronal nitric oxide synthase protein
- tPA, tissue-type plasminogen activator
- uPA, urokinase-type plasminogen activator
- uPAR, uPA receptor
Collapse
|
13
|
Südhof TC. Synaptic Neurexin Complexes: A Molecular Code for the Logic of Neural Circuits. Cell 2017; 171:745-769. [PMID: 29100073 DOI: 10.1016/j.cell.2017.10.024] [Citation(s) in RCA: 513] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/04/2017] [Accepted: 10/15/2017] [Indexed: 10/18/2022]
Abstract
Synapses are specialized junctions between neurons in brain that transmit and compute information, thereby connecting neurons into millions of overlapping and interdigitated neural circuits. Here, we posit that the establishment, properties, and dynamics of synapses are governed by a molecular logic that is controlled by diverse trans-synaptic signaling molecules. Neurexins, expressed in thousands of alternatively spliced isoforms, are central components of this dynamic code. Presynaptic neurexins regulate synapse properties via differential binding to multifarious postsynaptic ligands, such as neuroligins, cerebellin/GluD complexes, and latrophilins, thereby shaping the input/output relations of their resident neural circuits. Mutations in genes encoding neurexins and their ligands are associated with diverse neuropsychiatric disorders, especially schizophrenia, autism, and Tourette syndrome. Thus, neurexins nucleate an overall trans-synaptic signaling network that controls synapse properties, which thereby determines the precise responses of synapses to spike patterns in a neuron and circuit and which is vulnerable to impairments in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Thomas C Südhof
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, 265 Campus Drive, CA 94305-5453, USA.
| |
Collapse
|
14
|
Partridge LMM, Carter DA. Novel Rbfox2 isoforms associated with alternative exon usage in rat cortex and suprachiasmatic nucleus. Sci Rep 2017; 7:9929. [PMID: 28855650 PMCID: PMC5577181 DOI: 10.1038/s41598-017-10535-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/09/2017] [Indexed: 12/20/2022] Open
Abstract
Transcriptome diversity in adult neurons is partly mediated by RNA binding proteins (RBPs), including the RBFOX factors. RBFOX3/NeuN, a neuronal maturity marker, is strangely depleted in suprachiasmatic nucleus (SCN) neurons, and may be compensated by a change in Rbfox2 expression. In this study, we found no superficial changes in Rbfox2 expression in the SCN, but mRNA population analysis revealed a distinct SCN transcript profile that includes multiple novel Rbfox2 isoforms. Of eleven isoforms in SCN and cerebral cortex that exhibit exon variation across two protein domains, we found a 3-fold higher abundance of a novel (‘−12–40’) C-terminal domain (CTD)-variant in the SCN. This isoform embraces an alternative reading frame that imparts a 50% change in CTD protein sequence, and functional impairment of exon 7 exclusion activity in a RBFOX2-target, the L-type calcium channel gene, Cacna1c. We have also demonstrated functional correlates in SCN gene transcripts; inclusion of Cacna1c exon 7, and also exclusion of both NMDA receptor gene Grin1 exon 4, and Enah exon 12, all consistent with a change in SCN RBFOX activity. The demonstrated regional diversity of Rbfox2 in adult brain highlights the functional adaptability of this RBP, enabling neuronal specialization, and potentially responding to disease-related neuronal dysfunction.
Collapse
Affiliation(s)
| | - D A Carter
- School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
15
|
Forni D, Pozzoli U, Cagliani R, Tresoldi C, Menozzi G, Riva S, Guerini FR, Comi GP, Bolognesi E, Bresolin N, Clerici M, Sironi M. Genetic adaptation of the human circadian clock to day-length latitudinal variations and relevance for affective disorders. Genome Biol 2015; 15:499. [PMID: 25358694 PMCID: PMC4237747 DOI: 10.1186/s13059-014-0499-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Indexed: 01/18/2023] Open
Abstract
Background The temporal coordination of biological processes into daily cycles is a common feature of most living organisms. In humans, disruption of circadian rhythms is commonly observed in psychiatric diseases, including schizophrenia, bipolar disorder, depression and autism. Light therapy is the most effective treatment for seasonal affective disorder and circadian-related treatments sustain antidepressant response in bipolar disorder patients. Day/night cycles represent a major circadian synchronizing signal and vary widely with latitude. Results We apply a geographically explicit model to show that out-of-Africa migration, which led humans to occupy a wide latitudinal area, affected the evolutionary history of circadian regulatory genes. The SNPs we identify using this model display consistent signals of natural selection using tests based on population genetic differentiation and haplotype homozygosity. Signals of natural selection driven by annual photoperiod variation are detected for schizophrenia, bipolar disorder, and restless leg syndrome risk variants, in line with the circadian component of these conditions. Conclusions Our results suggest that human populations adapted to life at different latitudes by tuning their circadian clock systems. This process also involves risk variants for neuropsychiatric conditions, suggesting possible genetic modulators for chronotherapies and candidates for interaction analysis with photoperiod-related environmental variables, such as season of birth, country of residence, shift-work or lifestyle habits. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0499-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diego Forni
- Scientific Institute IRCCS E. Medea, 23842 Bosisio Parini, LC, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Larkin A, Chen MY, Kirszenblat L, Reinhard J, van Swinderen B, Claudianos C. Neurexin-1 regulates sleep and synaptic plasticity in Drosophila melanogaster. Eur J Neurosci 2015. [PMID: 26201245 DOI: 10.1111/ejn.13023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurexins are cell adhesion molecules that are important for synaptic plasticity and homeostasis, although links to sleep have not yet been investigated. We examined the effects of neurexin-1 perturbation on sleep in Drosophila, showing that neurexin-1 nulls displayed fragmented sleep and altered circadian rhythm. Conversely, the over-expression of neurexin-1 could increase and consolidate night-time sleep. This was not solely due to developmental effects as it could be induced acutely in adulthood, and was coupled with evidence of synaptic growth. The timing of over-expression could differentially impact sleep patterns, with specific night-time effects. These results show that neurexin-1 was dynamically involved in synaptic plasticity and sleep in Drosophila. Neurexin-1 and a number of its binding partners have been repeatedly associated with mental health disorders, including autism spectrum disorders, schizophrenia and Tourette syndrome, all of which are also linked to altered sleep patterns. How and when plasticity-related proteins such as neurexin-1 function during sleep can provide vital information on the interaction between synaptic homeostasis and sleep, paving the way for more informed treatments of human disorders.
Collapse
Affiliation(s)
- Aoife Larkin
- Queensland Brain Institute, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Ming-Yu Chen
- Queensland Brain Institute, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Leonie Kirszenblat
- Queensland Brain Institute, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Judith Reinhard
- Queensland Brain Institute, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Charles Claudianos
- Queensland Brain Institute, The University of Queensland, St Lucia, Qld, 4072, Australia.,School of Psychological Sciences, Faculty of Biomedical and Psychological Sciences, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
17
|
Kobayashi Y, Ye Z, Hensch TK. Clock genes control cortical critical period timing. Neuron 2015; 86:264-75. [PMID: 25801703 PMCID: PMC4392344 DOI: 10.1016/j.neuron.2015.02.036] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 01/25/2015] [Accepted: 02/18/2015] [Indexed: 01/05/2023]
Abstract
Circadian rhythms control a variety of physiological processes, but whether they may also time brain development remains largely unknown. Here, we show that circadian clock genes control the onset of critical period plasticity in the neocortex. Within visual cortex of Clock-deficient mice, the emergence of circadian gene expression was dampened, and the maturation of inhibitory parvalbumin (PV) cell networks slowed. Loss of visual acuity in response to brief monocular deprivation was concomitantly delayed and rescued by direct enhancement of GABAergic transmission. Conditional deletion of Clock or Bmal1 only within PV cells recapitulated the results of total Clock-deficient mice. Unique downstream gene sets controlling synaptic events and cellular homeostasis for proper maturation and maintenance were found to be mis-regulated by Clock deletion specifically within PV cells. These data demonstrate a developmental role for circadian clock genes outside the suprachiasmatic nucleus, which may contribute mis-timed brain plasticity in associated mental disorders.
Collapse
Affiliation(s)
- Yohei Kobayashi
- Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA; F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Zhanlei Ye
- Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Takao K Hensch
- Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA; F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Abstract
The neurexin family of cell adhesion proteins consists of three members in
vertebrates and has homologs in several invertebrate species. In mammals, each
neurexin gene encodes an α-neurexin in which the extracellular portion is long,
and a β-neurexin in which the extracellular portion is short. As a result of
alternative splicing, both major isoforms can be transcribed in many variants,
contributing to distinct structural domains and variability. Neurexins act
predominantly at the presynaptic terminal in neurons and play essential roles in
neurotransmission and differentiation of synapses. Some of these functions require
the formation of trans-synaptic complexes with postsynaptic proteins such as
neuroligins, LRRTM proteins or cerebellin. In addition, rare mutations and
copy-number variations of human neurexin genes have been linked to autism and
schizophrenia, indicating that impairments of synaptic function sustained by
neurexins and their binding partners may be relevant to the pathomechanism of these
debilitating diseases.
Collapse
|
19
|
Reissner C, Stahn J, Breuer D, Klose M, Pohlentz G, Mormann M, Missler M. Dystroglycan binding to α-neurexin competes with neurexophilin-1 and neuroligin in the brain. J Biol Chem 2014; 289:27585-603. [PMID: 25157101 PMCID: PMC4183798 DOI: 10.1074/jbc.m114.595413] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
α-Neurexins (α-Nrxn) are mostly presynaptic cell surface molecules essential for neurotransmission that are linked to neuro-developmental disorders as autism or schizophrenia. Several interaction partners of α-Nrxn are identified that depend on alternative splicing, including neuroligins (Nlgn) and dystroglycan (αDAG). The trans-synaptic complex with Nlgn1 was extensively characterized and shown to partially mediate α-Nrxn function. However, the interactions of α-Nrxn with αDAG, neurexophilins (Nxph1) and Nlgn2, ligands that occur specifically at inhibitory synapses, are incompletely understood. Using site-directed mutagenesis, we demonstrate the exact binding epitopes of αDAG and Nxph1 on Nrxn1α and show that their binding is mutually exclusive. Identification of an unusual cysteine bridge pattern and complex type glycans in Nxph1 ensure binding to the second laminin/neurexin/sex hormone binding (LNS2) domain of Nrxn1α, but this association does not interfere with Nlgn binding at LNS6. αDAG, in contrast, interacts with both LNS2 and LNS6 domains without inserts in splice sites SS#2 or SS#4 mostly via LARGE (like-acetylglucosaminyltransferase)-dependent glycans attached to the mucin region. Unexpectedly, binding of αDAG at LNS2 prevents interaction of Nlgn at LNS6 with or without splice insert in SS#4, presumably by sterically hindering each other in the u-form conformation of α-Nrxn. Thus, expression of αDAG and Nxph1 together with alternative splicing in Nrxn1α may prevent or facilitate formation of distinct trans-synaptic Nrxn·Nlgn complexes, revealing an unanticipated way to contribute to the identity of synaptic subpopulations.
Collapse
Affiliation(s)
- Carsten Reissner
- From the Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Vesaliusweg 2-4, 48149 Münster, Germany
| | - Johanna Stahn
- From the Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Vesaliusweg 2-4, 48149 Münster, Germany
| | - Dorothee Breuer
- From the Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Vesaliusweg 2-4, 48149 Münster, Germany
| | - Martin Klose
- From the Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Vesaliusweg 2-4, 48149 Münster, Germany
| | - Gottfried Pohlentz
- Institute of Medical Physics and Biophysics, Westfälische Wilhelms-University, Robert-Koch Strasse 31, 48149 Münster, Germany, and
| | - Michael Mormann
- Institute of Medical Physics and Biophysics, Westfälische Wilhelms-University, Robert-Koch Strasse 31, 48149 Münster, Germany, and
| | - Markus Missler
- From the Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Vesaliusweg 2-4, 48149 Münster, Germany, Cluster of Excellence EXC 1003, Cells in Motion, 48149 Münster, Germany
| |
Collapse
|
20
|
Krzeptowski W, Górska-Andrzejak J, Kijak E, Görlich A, Guzik E, Moore G, Pyza EM. External and circadian inputs modulate synaptic protein expression in the visual system of Drosophila melanogaster. Front Physiol 2014; 5:102. [PMID: 24772085 PMCID: PMC3982107 DOI: 10.3389/fphys.2014.00102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/28/2014] [Indexed: 12/30/2022] Open
Abstract
In the visual system of Drosophila melanogaster the retina photoreceptors form tetrad synapses with the first order interneurons, amacrine cells and glial cells in the first optic neuropil (lamina), in order to transmit photic and visual information to the brain. Using the specific antibodies against synaptic proteins; Bruchpilot (BRP), Synapsin (SYN), and Disc Large (DLG), the synapses in the distal lamina were specifically labeled. Then their abundance was measured as immunofluorescence intensity in flies held in light/dark (LD 12:12), constant darkness (DD), and after locomotor and light stimulation. Moreover, the levels of proteins (SYN and DLG), and mRNAs of the brp, syn, and dlg genes, were measured in the fly's head and brain, respectively. In the head we did not detect SYN and DLG oscillations. We found, however, that in the lamina, DLG oscillates in LD 12:12 and DD but SYN cycles only in DD. The abundance of all synaptic proteins was also changed in the lamina after locomotor and light stimulation. One hour locomotor stimulations at different time points in LD 12:12 affected the pattern of the daily rhythm of synaptic proteins. In turn, light stimulations in DD increased the level of all proteins studied. In the case of SYN, however, this effect was observed only after a short light pulse (15 min). In contrast to proteins studied in the lamina, the mRNA of brp, syn, and dlg genes in the brain was not cycling in LD 12:12 and DD, except the mRNA of dlg in LD 12:12. Our earlier results and obtained in the present study showed that the abundance of BRP, SYN and DLG in the distal lamina, at the tetrad synapses, is regulated by light and a circadian clock while locomotor stimulation affects their daily pattern of expression. The observed changes in the level of synaptic markers reflect the circadian plasticity of tetrad synapses regulated by the circadian clock and external inputs, both specific and unspecific for the visual system.
Collapse
Affiliation(s)
- Wojciech Krzeptowski
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Jolanta Górska-Andrzejak
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Ewelina Kijak
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Alicja Görlich
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Elżbieta Guzik
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Gareth Moore
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Elżbieta M Pyza
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Kraków, Poland
| |
Collapse
|
21
|
Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing. Proc Natl Acad Sci U S A 2014; 111:E1291-9. [PMID: 24639501 DOI: 10.1073/pnas.1403244111] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurexins are evolutionarily conserved presynaptic cell-adhesion molecules that are essential for normal synapse formation and synaptic transmission. Indirect evidence has indicated that extensive alternative splicing of neurexin mRNAs may produce hundreds if not thousands of neurexin isoforms, but no direct evidence for such diversity has been available. Here we use unbiased long-read sequencing of full-length neurexin (Nrxn)1α, Nrxn1β, Nrxn2β, Nrxn3α, and Nrxn3β mRNAs to systematically assess how many sites of alternative splicing are used in neurexins with a significant frequency, and whether alternative splicing events at these sites are independent of each other. In sequencing more than 25,000 full-length mRNAs, we identified a novel, abundantly used alternatively spliced exon of Nrxn1α and Nrxn3α (referred to as alternatively spliced sequence 6) that encodes a 9-residue insertion in the flexible hinge region between the fifth LNS (laminin-α, neurexin, sex hormone-binding globulin) domain and the third EGF-like sequence. In addition, we observed several larger-scale events of alternative splicing that deleted multiple domains and were much less frequent than the canonical six sites of alternative splicing in neurexins. All of the six canonical events of alternative splicing appear to be independent of each other, suggesting that neurexins may exhibit an even larger isoform diversity than previously envisioned and comprise thousands of variants. Our data are consistent with the notion that α-neurexins represent extracellular protein-interaction scaffolds in which different LNS and EGF domains mediate distinct interactions that affect diverse functions and are independently regulated by independent events of alternative splicing.
Collapse
|
22
|
Presynaptic neurexin-3 alternative splicing trans-synaptically controls postsynaptic AMPA receptor trafficking. Cell 2013; 154:75-88. [PMID: 23827676 DOI: 10.1016/j.cell.2013.05.060] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 04/26/2013] [Accepted: 05/29/2013] [Indexed: 12/28/2022]
Abstract
Neurexins are essential presynaptic cell adhesion molecules that are linked to schizophrenia and autism and are subject to extensive alternative splicing. Here, we used a genetic approach to test the physiological significance of neurexin alternative splicing. We generated knockin mice in which alternatively spliced sequence #4 (SS4) of neuexin-3 is constitutively included but can be selectively excised by cre-recombination. SS4 of neurexin-3 was chosen because it is highly regulated and controls neurexin binding to neuroligins, LRRTMs, and other ligands. Unexpectedly, constitutive inclusion of SS4 in presynaptic neurexin-3 decreased postsynaptic AMPA, but not NMDA receptor levels, and enhanced postsynaptic AMPA receptor endocytosis. Moreover, constitutive inclusion of SS4 in presynaptic neurexin-3 abrogated postsynaptic AMPA receptor recruitment during NMDA receptor-dependent LTP. These phenotypes were fully rescued by constitutive excision of SS4 in neurexin-3. Thus, alternative splicing of presynaptic neurexin-3 controls postsynaptic AMPA receptor trafficking, revealing an unanticipated alternative splicing mechanism for trans-synaptic regulation of synaptic strength and long-term plasticity.
Collapse
|
23
|
Runkel F, Rohlmann A, Reissner C, Brand SM, Missler M. Promoter-like sequences regulating transcriptional activity in neurexin and neuroligin genes. J Neurochem 2013; 127:36-47. [PMID: 23875667 PMCID: PMC3910144 DOI: 10.1111/jnc.12372] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/10/2013] [Accepted: 07/16/2013] [Indexed: 01/06/2023]
Abstract
Synapse function requires the cell-adhesion molecules neurexins (Nrxn) and neuroligins (Nlgn). Although these molecules are essential for neurotransmission and prefer distinct isoform combinations for interaction, little is known about their transcriptional regulation. Here, we started to explore this important aspect because expression of Nrxn1-3 and Nlgn1-3 genes is altered in mice lacking the transcriptional regulator methyl-CpG-binding protein2 (MeCP2). Since MeCP2 can bind to methylated CpG-dinucleotides and Nrxn/Nlgn contain CpG-islands, we tested genomic sequences for transcriptional activity in reporter gene assays. We found that their influence on transcription are differentially activating or inhibiting. As we observed an activity difference between heterologous and neuronal cell lines for distinct Nrxn1 and Nlgn2 sequences, we dissected their putative promoter regions. In both genes, we identify regions in exon1 that can induce transcription, in addition to the alternative transcriptional start points in exon2. While the 5′-regions of Nrxn1 and Nlgn2 contain two CpG-rich elements that show distinct methylation frequency and binding to MeCP2, other regions may act independently of this transcriptional regulator. These data provide first insights into regulatory sequences of Nrxn and Nlgn genes that may represent an important aspect of their function at synapses in health and disease.
Collapse
Affiliation(s)
- Fabian Runkel
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | | | | | | | | |
Collapse
|
24
|
Abstract
The neurexin genes (NRXN1, NRXN2, and NRXN3) encode polymorphic presynaptic proteins that are implicated in synaptic plasticity and memory processing. In rat brain neurons grown in culture, depolarization induces reversible, calcium-dependent, repression of NRXN2α exon 11 (E11) splicing. Using Neuro2a cells as a model, we explored E11 cis elements and trans-acting factors involved in alternative splicing of NRXN2α E11 pre-mRNA under basal and depolarization conditions. E11 mutation studies revealed two motifs, CTGCCTG (enhancer) and GCACCCA (suppressor) regulating NRXN2α E11 alternative splicing. Subsequent E11 RNA affinity pull-down experiments demonstrated heterogeneous nuclear ribonucleoprotein (hnRNP) K and hnRNP L binding to this exon. Under depolarization, the amount of E11-bound hnRNP L (but not of hnRNP K) increased, in parallel to NRXN2α E11 splicing repression. Depletion of hnRNP K or hnRNP L in the Neuro2a cells by specific siRNAs enhanced NRXN2α E11 splicing and ablated the depolarization-induced repression of this exon. In addition, depolarization suppressed whereas hnRNP K depletion enhanced NRXN2α expression. These results indicate a role for hnRNP K in regulation of NRXN2α expression and of hnRNP L in the activity-dependent alternative splicing of neurexins which may potentially govern trans-synaptic signaling required for memory processing.
Collapse
|